
 

 
 
 
 
 
 

 
 
Abstract—A new technique is presented that produces a 

characterized yield-predictive model by incorporating yield 
into the goal function directly. We explore the trade off between 
performance functions and yield estimation during the design 
optimization process. Through the integration of yield into the 
optimization process, the trade off between the performance 
functions can be better treated that able to produce a higher 
yield. This concept together with full circuit simulation and 
global search algorithm provides a robust solution across 
process corners and parameter variations. Encouraging results 
have been obtained and an example is presented to demonstrate 
the technique. 

 
 
 

I. INTRODUCTION 
Statistical parameter variation in analog circuit design has 

become one of the important criteria and has attracted good 
attention in recent times. The reason for this is simple, as the 
transistor dimension decrease, the statistical variations of the 
devices become more prominent. Therefore this variations 
become increasingly significant especially in deep 
submicron design and must be considered in the design 
process. These statistical variations will estimate the yield of 
a circuit. A significant amount of research has been devoted 
to analog circuit synthesis [1] [2]. Most previous research 
work had developed several synthesis techniques to trade the 
accuracy of the optimization for the speed of operation [3], 
[5]-[11]. 

In this paper, we present a new fully simulation-based 
analog circuit design strategy which incorporates yield as the 
cost function in the optimization process. As a contrary to 
the previous approach which optimize the yield during post-
design process, our strategy is to include yield in the 
beginning of the performance optimization. Here, yield is 
treated as one of the performance parameters. The 
optimization procedure is based on Genetic Algorithm taken 
from GALib library [6]. The paper is organized as follows. 
Section II briefly reviews previous work in analog circuit 
synthesis. Section III describes the proposed methodology  
and focuses on yield optimization approach. Results are  
given in section IV and finally concluding remarks are given 
in section V.  

 

 
 
 
 
 
 
 
 

II.   BACKGROUND 
 Previous work in analog circuit synthesis can be classified 

into three main categories, namely knowledge-based, 
equation-based and simulation-based. 

Early work in analog synthesis is mostly based on 
knowledge-based techniques. Some of the synthesis tools 
that were developed based on this approach are BLADES [3] 
and OASYS [5]. BLADES used expert systems technology 
from a stored knowledge to create a complete analog design 
environment. The limitation of this approach lies in the sense 
of having to codify extensive circuit knowledge and design 
heuristics. 

 In an equation-based approach, explicit scripts of equation 
is used to evaluate each circuit candidate. A number of 
techniques have been attempted with this approach. 
OPASYN [6] uses simple analytical equations of OPAMP 
performance. Symbolic analysis techniques [7] have been 
developed to automate the process to obtain some of the 
design equations. Recent work in equation-based approach 
involved on convex optimization techniques via a geometric 
programming formulation [8],[9]. Even though equation-
based approach offers fast circuit evaluation, but the 
simplifications that is required to form the analytical model 
limit their accuracy. 

Reference [10], ASTRX/OBLX [11], ANACONDA [12], 
MAELSTROM[13] and ASF [14] use simulation-based 
approach which is relevant to the ideas developed in this 
paper. This approach does not require much circuit 
knowledge, support wide range of circuit that can be 
synthesized and gives high accuracy result in the expense of 
computational cost. None of the techniques above include 
yield as one of the parameter for optimization. 
 However, there are some efforts that have been developed 
that include parameter variations in the analog circuit 
synthesis.[15],[16] use post-design yield analysis to change 
the cost function of the inner circuit optimization. While [17] 
incorporates mismatch parameter as the cost function, but 
this is done only for global variations and the mismatch is 
represented by a simplified model rather than simulation-
based estimation.[18] had proposed a synthesis technique 
that include yield parameter during optimization which is  
based on symbolic equation model which we argue will limit 
the accuracy. HOLMES [19] uses a design centering method 
that push the design far from specification boundary as the 
method to optimize the yield. Here the yield is estimated by 
using analytical approach. 
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III.  PROPOSED METHODOLOGY 
This paper propose a technique that utilizes full 

simulation-based approach that incorporates yield as one of 
the performance parameter for optimization. The key 
concepts in the methodology are first to include yield as the 
cost function in the very beginning of the design and second 
to use full simulation-based optimization strategy. Monte 
Carlo simulation is used to simulate the yield performance. 

There are two main components in the synthesis model : 
the Optimizer and the Evaluator. The Optimizer will provide 
all the necessary parameters of a circuit candidate. The 
circuit candidate is then evaluated by the evaluator in order 
to determine a fitness score. This fitness score will be passed 
back to the optimizer. An interfacing tool connects these two 
different components as illustrated in figure 1. 

 The reason to include yield as the cost function in the 
begininng of the design is to give a direction to the 
optimization process. With this approach, the searching 
algorithm (optimizer) will find the best solution that meets 
all these performance functions, including yield. This is a 
100% simulation-based synthesis technique including direct-
yield measurement. Below is the basic optimization 
formulation used where fiw  is a scalar weight and )(xfi  is 
the performance objective function. 
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The idea to this formulation is that the maximum )(xO  
corresponds to the circuit that best matches the specification 
and at the same time provides the higher yield result. The 
weight attachment in the formulation will balance the 
competing objectives and gives high flexibility to maximize 
the objective function.  

 In this work, a global stochastic search algorithm, the 
Genetic Algorithm (GA) technique, was chosen to do the 
searching process. The GA was chosen rather than a 
gradient-style local optimization because of its empirical 

 
 
 
 

 
 
 
 
 
 
 
 

 
Figure 1 : Synthesis Model 

robustness in nonlinear and non-convex objective functions. 
Global search optimization also has the potential to avoid 
many local minima that can degrade the searching 
efficiency. 

 The algorithm that has been used in this work is based on 
the C++ GALib Library developed by Matthew Wall [4]. It 
is based on simple GA algorithm that uses non-overlapping 
population described by Goldberg [20]. The algorithm starts 
with random initial generation of individuals based on the 
population size. In each generation, a new set of individuals 
will be created. The new generation will have offspring from 
previous generations using selection and recombination 
processes. This process continues until the total number of 
generation is reached. The “Elitism” technique was used in 
the algorithm meaning that the best individual from each 
generation is carried over to the new generation. Linear 
fitness scaling is used to avoid premature convergence. 
Without fitness scaling, there is a possibility a mediocre 
individuals would take over a significant proportion of the 
finite population in a single generation which is undesirable 
and can lead to premature convergence. A “roulette wheel” 
method was used for the selection scheme. This method 
picks an individual based on magnitude of fitness score 
relative to the rest of the population. The higher the score, 
the more likely the individual will be selected. The 
probability p of being chosen is equal to the fitness of the 
individual divided by the sum of the fitness of each 
individual in the population. 

 An interface unit connects the optimizer and evaluator. 
All the result calculation and data processing is done by this 
unit. Figure 2 shows the flow chart of the synthesis 
methodology. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Synthesis Methodology 

 
 
 

 This methodology yields an adequate result, albeit 
somewhat slowly. The reason for this is because of the large 
number of circuit solutions that must be visited during the 
searching algorithm. Each visited solution requires more 

Spice Netlist Creation 

Parameter generation  

Parsing parameter to spice 
netlist 

Hspice Simulation 

Spice Result saved and parse 
to GA 

Rank individual by GA 

Store best individual & 
Finish 

Next generation creation 

Reach No. 
Gen.? 

 
Optimizer 

 
Evaluator 

parameters 

Fitness 

Interface 



 

than one circuit simulation to evaluate it. In addition to that, 
monte-carlo simulation consumes higher cpu time to be 
completed. This issue is one that is common across all 
optimization approaches. 

II. SIMULATION RESULT 

The ideas presented in this paper have been implemented 
on balanced-Operational Trans-conductance Amplifier 
(OTA) in a 0.35um AMS technology. Its circuit topology is 
shown in Fig. 3. Table 1 shows the design parameters of the 
simulation. 

 

 
 

Figure 3: Balanced Operational Transconductance Amplifier 
 
 

TABLE I  
 Design Parameters 

 
Design Variables 

 
Description 

 
Designable Parameters with 

Statistical variations 

 
Lpair 1, Lpair2, 

Lpair3 & Lpair 4 
Non-Designalble Parameters 

with 
Statistical variations 

 
All transistor Widths 

 
Transistor Length 

 
0.35u ~ 2.0u 

 
Transistor Widths 

 
15u 

 
Monte Carlo Simulation 

100 samples, 1000 
samples for verification 

 
Statistical Variations 

 
Gaussian 

Distribution, 3σ , 5% 
 

GA Populations 
 

100 
 

GA Generations 
 

30 
 

The objective function which is based on a weighted 
summation of the performances were calculated and the 
result was used to determine the fitness score for each 
individual. The Genetic algorithm optimized the design by 

maximizing this fitness score. Mean and maximum values of 
the objective function were plotted to show how the data 
track each other until converge to the solution point. The 
graphs (Figure 4) show how the optimization process 
reaches the final solution after 30 generations.  

 Table 2 shows the result of the optimization process. We 
have compared the proposed method with previous work that 
did not imply yield prediction. The table shows the 
performance, specifications and the final results between 
these two methods. 
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Figure 4: Max and  Mean Plot 
 
 
 
 

TABLE II   
Optimization Results 

In yield-predictive approach, the yield parameter caused 
the optimizer to search for a solution that will give high 
overall yield. From the table, the yield is improved by 23%.  

In Traditional method, the optimiztion will go towards 
achieving better performance trade-offs. From our 

    Yield-Predictive Non-Predictive 

    Approach Approach 

Performance Indiv. Indiv. 

Function 
Spec Result 

Yield 
Result 

Yield 

Gain > 50dB 50.7 dB 100% 50.9 dB 100% 

Volt. Offset < 13mV 7.5 mV 89% 10.77 
mV 72% 

GBW > 16 MHz 16.67 
MHz 96% 17.08 

MHz 100% 

Phase Margin > 67 deg 68 deg 94% 69.8 
deg 100% 

Slew Rate > 15 V/us 
16.1 V/us 17.7 V/us 

Power Minimised 
256.2 uW 255.7 uW 

Area Minimised 
209.3um² 195.3um² 

Overall Yield   
89% 72% 



 

simulation, we found out that the best performance trade-off 
will not necessary gives the best overall yield. This is 
because some performances are too sensitive to process 
variations. However it might happened with the other 
approach to reach to an improved yield by running additional 
or separate optimisation. With our approach, the problem is 
tackled in one-shot.Figure 6 and 7 show the Monte Carlo 
simulation result for the voltage offset and open loop gain. 
The Monte Carlo simulation was done with 1000 samples. 
This simulation is to verify the yield result for each of the 
performance function. 

V.  CONCLUSIONS 
We have presented a new strategy in analog circuit design 

that able to produce higher yield result. The contribution of 
the work is towards achieving higher yield design based on a 
yield-predictive approach. By integrating yield parameter in 
the beginning of the optimization process and with Monte 
Carlo technique that is used to estimate the yield, a relatively 
high accuracy result is achieved at the expense of increased 
computational cost. The balanced-OTA circuit was used to 
illustrate this new methodology and a comparison was done 
with the non-predictive approach. The result shows that a 
higher yield was achieved with the proposed method. The 
computational cost is one that can be overcome with a 
parallelization of the optimization process [15]. 
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Figure 5 Monte Carlo Simulation for Open Loop Gain 

 
Voltage Offset
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Figure 6 Monte Carlo Simulation for Voltage Offset 
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