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The iterated learning model (ILM), in which a language comaésut via communication
pressures exerted over successive generations of agastatttacted much attention in recent
years. Its importance lies in the focus on cultural emergeas opposed to biological
evolution. The ILM simplifies a compositional language as ttompression of an object
space, motivated by a poverty of stimulus—as not all objectee space will be encountered
by an individual in its lifetime. However, in the original M, every agent ‘magically’ has
a complete understanding of the surrounding object spab&hwveakens the relevance to
natural language evolution. In this paper, we define eachtagaeaning space as an internal
self-organising map, allowing it to remain personal aneéptiélly unique. This strengthens the
parallels to real language as the agent’'s omniscience aimil-reading’ abilities that feature
in the original ILM are removed. Additionally, this impravent motivates the compression of
the language through a poverty of memory as well as a povérsfiraulus. Analysis of our
new implementation shows maintenance of a compositiomalogsired) language. The effect
of a (previously-implicit) generalisation parameter iscahnalysed; when each agent is able to
generalise over a larger number of objects, a more stablpasitional language emerges.

1. Introduction

Hypothesising that language is a system of compressiormltiv adjust itself so
that it can be learned by the next generation is a relatively approach in the
field of linguistics. Several important simulations (KirByHurford, 1997; Kirby,
2001, 2002; Brighton, 2002; Smith, Kirby, & Brighton, 2008ave illustrated
its potential and provide an alternative to establishedt@accounts of language
(Chomsky, 1975; Bever & Montalbetti, 2002; Hauser, Chomsgkizitch, 2002).
Currently, existing versions of this iterated learning miodLM) suffer from a
number of shortcomings, highlighted by Smith (2005), Vdadd5), Steels and
Wellens (2006). This paper will address some of these wh#éntaining the
positive features of the model.

In the classical ILM, an agent selects an object from its remrnent and
produces a meaning-signal pair that is directly perceiyed listener. The pairing



is formed through a weighted connection between a meanidg aad a signal
node, and is used to adjust the weighted connections betiveeneaning space
and the signal space of the listening agent. In this way, guage evolves across
a number of generations. If each agent is only given the &gsolcsignal for a
small subset of possible objects, it is forced to generaigess the remaining
object space, so promoting the formation of a stable cortiponsai language.

2. Shortcomingsof the Iterated Learning Approach

Inthe ILM, the agents’ meaning space loosely representstimel’ of a language
user. In many respects, however, this analogy breaks dosveaeh agent is
created with a perfect knowledge of the surrounding objeats, which is never
found in reality. We need to consider the nature of the obgpetce and the
agents’ ability to generalise across it. Also, a learningraglirectly observes
each meaning-signal pair, and this introduces an elememiafl-reading’, as
the learner knows exactly what the adult teacher was thgnkinen it produced a
signal. Obviously, this weakens the ILM’s credentials agvautation of cultural
language evolution. Kirby (2002, p.197) himself acknowgesl this criticism,
writing “the ready availability of signals with meaningsatly attached to them
reduces the credibility of any results derived from theselehs’, whereas Smith
et al. (2003, p.374) write: “This is obviously an oversinfightion of the task
facing language learners.”

We aim to develop a new ILM to address these criticisms. Letitrated
learning approach yield a language, able to describe evbjgcbfound in
the object space)V, through a process of compression, governed by a form
of generalisation. This compression is possible by formangompositional
language, which describes common features of objects isfghee. Figure 1(a)
illustrates how a compositional meaning node is able to defartially a number
of objects. In the original ILM, this is automatically det@ned by the number of
values,V, in the object space, e.g., in Fig. 1(a) each compositioraning node
is able partially to defind” = 4 objects. An implicit generalisation parameter
then determines the proportion of thelBevalues that each meaning node can
generalise over: in Fig. 1(a), = 1. This parameter, ignored in previous work,
impacts significantly on the structure of the final composiél language. To
understand the role of the environment in the emergencenglulzge, we need
to consider what happens when the generalisation parameternot equal
to 1. Figure 1(b) shows the compression which results frotitg the, now
explicit, generalisation parameter. We see that 4 mearodgs—rather than 2 as
previously—are now required to specify the same number @abmodes (i.e.,
poorer generalisation). In this exampies= 0.25 would correspond to a holistic,
non-compositional language (i.e., no generalisation).

Having acknowledged the role of this (previously-implicifeneralisation
parameter, we are now able to remove the ‘mind-readingrattibn from our
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Figure 1. In an ILM, the object space is defined by the numbeobjéct valuesV' in each of
F dimensions. In this exampldy = 2 andV = 4. In the original ILM in (a), the generalisation
parametery, representing a proportion of object values, is implicét to 1. By varyingy as in (b),
wherey = 0.5, we can vary the level of compression that each composltioreaning node can
achieve.

simulations. To do this, we will define the agent’s meaningcspas a self-
organising map (SOM) and as a radius around a selected object, removing the
two criticisms of IL stated above. An agent no longer has detepand perfect
knowledge of the object space, and this knowledge remainatprso that each
agent develops a different ‘understanding’ of its lingigishvironment.

3. Self-organising mapsand iterated learning

Self-organising maps (Kohonen, 1982) have previously need to good effect to
model emergent phonology (e.g., Guenter & Gjaja, 1996; @aid2005; Worgan
& Damper, 2007). In the present work, SOMs offer a way to madeh agent’s
unique and private understanding of its environment. Oudehis based on the
neural network model of (Smith et al., 2003, Sect. 4.2.1}, voith important
differences motivated by the discussion of Section 2 andrdesd explicitly in
this section.

In this environment, an object can be defined as, e;9= {1,2}, and in the
meaning space as; = {1, 2}. Equivalently, it can be defined as the pair:

m; = {1,%}

m;+1 = {x2}

wherex represents a wildcard. In this example, forms a holistic signal, as
this individual meaning node is only capable of defining objeat, whereasn;
andm_, together form a compositional signal, as features from tead space
are defined by the two meaning nodes and can be combined te defindividual
object. These feature definitions can then be used in othmbications to
describe other objects. We will maintain this aspect ofitiadl IL by redefining
generalisation as a variable radius around a perceivedtobje

The weightings on the connections between nodes of the mgaamd
signal spaces determine the mapping from meaning-todsagrhfrom signal-



to-meaning. The object spack’, that each agent talks about is represented by
a simple coordinate system and a subset of these coordisadesmwn from the
object space according to a uniform probability distribati Each object in turn

is mapped directly to the appropriate meaning node in thatagmeaning space.
The signals/;, are generated by mapping from this meaning space to thalsign
space, and are represented as characters from an alphatset,

Li={(s1,82,...,8i,...,81):8 €%, 1 <l <lna} Q)

from which it is clear that we need a sufficient number of signuales to express
any of the nodes in the meaning space.
Formally, the object space is:

N = {$17.”L'27...,.’L'k,...,w]v}

with T — {(f17f2,...,fi7...,fp):1§fi§V}

When required to produce an utterance, an agent will seteabpectr;,, and each
node in the meaning space; competes to have the shortest euclidean distance
from this point. Formally, if we define the closest noderas;,) then:

m(zg) = argmin ||z —m;||, j=1,2,---,1 2
J

The winning node is then moved closer to the selected poattebdefining the

object space as a whole. In addition, neighbouring nodesnareed somewhat
closer to the object, allowing the network as a whole to repméthe experienced
object space. The extent to which these nodes move is detedrby a gaussian
function, h; ,, centred around the selected object (Haykin, 1999, p. 449):

d?
hjr = exp <—2Jf"§> with o =~ (3)

whered; ;, is the distance between the winning neujand the excited neurdn

To form a compositional signal, we build valid decompositgets from the
meaning space, governed by the generalisation parametéfe can then define
a set, ki, containing all of those meaning nodes which fall inside tadius
aroundz. Formally:

K =A{m; : [log —myl| <~} 4)
Considering all possible decompositions in turn, the agdhpick the signal,
with the highest combination of corresponding weight valaecording to:

151 1K
g({la)) = DY w(E(@);) - Wi(a), s, ()

i=1 j=1



which is similar to Smith et al.’s equation on p. 380, in th&f<(x);) “... is a
weighting function which gives the non-wildcard proportiof ..." K(z);, so
favouring compositional meaning nodes.

All meaning and signal nodes that correspond to a possilzierdposition of
the object are activated, with activatioms anda,,;, respectively. If two active
nodes are connected, the weight on that connection is isedealf there is a
connection between an active node and an inactive node tightwie decreased.
Weights between two inactive nodes remain unchanged. Hmgitg displayed
by this Hebbian network can be formalised as follows:

+1 iff as, = am; =1
Awij = -1 iff As; 75 amj (6)
0 otherwise

where Aw;; is the weight change at the intersection betweenand m;,
s; € Ng andmj e Ny

While listening to each utterance, the weight values of genaare adjusted—
extending its knowledge of the current language. This hypsis allows it to
generalise to objects it has not encountered before, megult a meaningful
expression. Therefore, a poverty of stimulus causes ttgukge to generalise
across an object space. Additionally, by having a limitechbar of nodes form
the meaning space, the agent does not have an infinite megsnynce to draw
upon, forcing compression through limited memory as weliraged stimuli.

Using this model, we will varyy in order to assess how this affects the
stability, S, of the final compositional language:

Se
S, + Sy Q)
wheresS, represents the proportion of compositional languagessaraefines the
proportion of holistic languages, which emerge over calttime. The higher the
value of S, the more likely is a compositional language to emerge—saighS
et al. (2003, p. 377).

In the new model, each agent’s meaning space is undefinedfaftaindomly
initialised) and will need to learn the structure of the abgpace as each objectis
encountered. Consequently, the meaning space graduatigrebends the object
space but also remains potentially unique to each agentddfeeent subset of
objects is encountered.

4. Reaults

We first ran the new SOM iterated learning model under the seonelitions
as the previous implementation, see Figure 2. As we can set tfrie results,
compositional languages emerdge % 0.5) under a similar set of circumstances



to Smith et al.’s (2003) previous implementation. Therefthe requirements for
a tight bottleneck and a structured meaning space remalmsiimiplementation.
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Figure 2. Stability of the resulting languages, calculatedording to equation 7, when each agent is
exposed to some percentage of the object space (Smithsebalttleneck” parameter).

Next, we considered the effect of varying the generalisgparametery, as
shown in Figure 3. The higher the generalisation, the grahte stability, S,
of the compositional language and, conversely, the lowergémeralisation, the
lower the stability. This highlights the importance of theeygously implicit
generalisation parameter on the final stability of the cositpmal language.
Accordingly, a reasonable level of generalisation is regglito enable cultural
emergence.

Figure 3. Stability of the resulting languages when eacimiaigeexposed to 10% of the object space,
with different degrees of generalisation: (a)y= 2, (b) v = 0.5. Here~ has been reformulated as a
gaussian width, as shown in equations 3 and 4

Figure 4 shows how structuring the object space allows eamdmnimg node
to generalise over a greater number of objects, increabimgtability.S. As we
can see, the potential generalisation of each meaning sogiet ias effective as
fewer objects are located in each generalisation areaoiim@asitional meaning
node can only generalise across two objects in the unstadtibject space of



Fig. 4(b). This gives us greater insight into Smith et al.Q23 comparison of
structured and unstructured meaning spaces. By congitbse results in terms
of v we can see how these meaning spaces indirectly affect teedépotential
generalisation.
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Figure 4. In a structured object space, each meaning noderajises over a greater number of
objects.

5. Conclusions

In this paper, we have addressed some criticisms of the kmellvn iterated
learning model of cultural language emergence, most npthbl ‘mind-reading’
aspect of earlier ILM implementations. This was achievddgiself-organising
maps to model each agent’'s meaning space. The result is er doalogy
to real cognitive spaces. Specifically, the meaning spacedirited in the
amount of memory resource they have available, and are noisoient. Rather
they are private and unique to each agent. The SOM does net daugh
enough capacity to completely define the agents’ envirotwréarming a further
motivation to generalise. We have made explicit the gersatadn parameter that
was previously implicit to earlier ILM’s and demonstartesl iole in promoting
emergence of compositionality. As well as being unique haadividual, the
learning displayed by the SOM demonstrates another prppémeal language
learners: namely, change over time with each new encouhtdsject.

These enhancements, or improvements, to the classicakeitedearning
framework are gained without compromising the essentiatieof the paradigm.
As with the classical framework, stable, compositionaglaages emerge through
use (i.e., inter-agent communication related to structubject spaces) over
cultural time. Further, the poverty of stimulus encounddseth in reality and in
our simulations remains essential in the evolution of acstmed language, rather
than a ‘problem’ as in the Chomskyian tradition.

Although in this work, we have relaxed or removed some of tieakening
assumptions in the classical ILM, much remains to be donerd are still many
strong simplifications and abstractions concerning thereatf language and
communication utilised in our computer simulations. Onganant direction



for future work is to move towards acoustic (‘speech’) comination—having
agents produce and perceive sounds coupled to meaningygasssed by Worgan
and Damper (2007).
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