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ABSTRACT

Our primary hypothesis is that it should be possible to
enrich data fusion by semantic processing, with wide
potential application. In order to achieve our aim we need
to represent the semantic data and enable reasoning about
it in a framework that can be aligned with data fusion.
Ontologies are most suited to this task as they allow for
rich representation of data structure; some approaches
include probabilistic representation. These can be aligned
with data fusion approaches, such as Bayesian, which can
fuse by including estimates of uncertainty. We shall
describe our initial approaches towards establishing our
hypothesis, including a survey of the enabling
technologies, a description of application data (acoustic
sensors, military scenario), and our new method of feature
selection for acoustic data fusion. We also explore the
semantic attributes and the representations that can be
deployed for enrichment purposes, showing how
ontologies can be used in this context. In these respects we
shall show how we can approach enrichment of data
fusion by semantic technologies, how this can capitalise
on the current stock of techniques, and illustrate the
potential benefits associated with this new approach.

I. INTRODUCTION

The need for data enrichment is manifest in the plethora of
approaches developed for data fusion. Essentially, data
fusion approaches aim to fuse descriptions that capture
different aspects of an artifact, so as to improve
classification capability. Our motivation here concerns
enriching the data, rather than the process; we seek to
augment data for classification purposes, rather than to
enhance decision making processes. Given that this
approach is being developed within the Information
Technology Alliance (ITA) our primary concern is
military data. Here the military data is from acoustic
sensors and this is used to classify vehicle type from data
supplied by autonomous sensors.

These data are acoustic signals from multiple sensor
sources. For fusion purposes, these signatures can be data
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and represented in different ways by transformation of the
source this essentially derives different invariance
attributes in the feature description. However, to classify
vehicles from such data still remains a difficult problem,
such as lower SNR, and complex ambient interferences.
The data can be enriched by semantic means, which
concerns intelligence and human derived descriptions. In
this way, the features can be better separated thereby
improving classification capability. The mechanism we are
using to effect this enrichment is by using ontologies, as
they are suited to representation and reasoning within
semantic data. There have been prior approaches to
ontological enrichment of data fusion processes, but these
have not been phrased in terms of enriching classification
capability.
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Fig. 1 Semantically-mediated data fusion

The framework of our approach is shown in Figure 1.
Here, we seek to classify the vehicle that generated the
sound recorded by microphones. In a conventional pattern
recognition framework, features are extracted from this
sensor data and these features are filtered according to
perceived information content, prior to use in
classification. We seek to enrich this process by semantic
data, which we shall represent using ontologies. These will
contribute to the data fusion processes which lead to the
combined and enriched decision.

In the next Section we describe the current stock of
approaches to (conventional) data fusion, including the
JDL data fusion model for completeness. We then
describe, in Section III, how ontologies can be used to



describe and reason within semantic data. Section IV
concerns feature subset selection, which we use to explore
the data space used within conventional data fusion. We
describe our exemplar application data in Section V,
together with the preliminary results we have obtained on
it in Section VI. These show that data fusion and feature
subset selection can be used to classify the data with
success. Further, we have defined semantic attributes that
can be associated with the data to explore the possibilities
of semantic enrichment.

II. DATA FUSION

A. JDL Data Fusion Model

The JDL data fusion model is the most widely adopted
functional model for data fusion. It was developed in 1985
by the U.S. Joint Directors of Laboratories (JDL) Data
Fusion Group [1] with several recent revisions proposed [2
,3, 4]. The JDL distinction among fusion ‘levels’ (they
may be heavily inter-related) provides an often useful
distinction among data fusion processes that relate to the

refinement of ‘object’, ‘situations’, ‘threats’ and
‘processes’ [1]:
e Level 0 - signal/feature assessment: semantic

annotation and processing of high-dimensional data sets;
guidance of information acquisition processes with
respect of epistemic constraints; facilitation of feature
extraction process using background knowledge, etc.

e Level 1 - Object assessment: improved certainty
estimates with respect to fused data; facilitation of entity
characterization in terms of implied features; support for
identity inference, etc.

e Level 2 - Situation assessment: knowledge-filtered
awareness, including support for contextual relevance
reasoning, information triage, and representation of
situation state.

e Level 3 - Impact assessment: support for rules-based
processing of situation-relevant data in relation to
decision support processes, e.g., automated mission
planning, threat assessment, battlefield planning, etc.

e Level 4 - Performance assessment: identification of
knowledge gaps/epistemic inadequacies and the
implementation of appropriate remedial actions;
provision of explanatory support to enable system
evaluation and validation of knowledge system
operation.

o Level 5 - User Refinement: adaptive determination of
who queries information and who has access to
information and adaptive data retrieval and display to
support cognitive decision making and actions given
social and political contexts.

Note that the levels were differentiated first on the basis of
types of estimation process, which typically relates to the
type of entity for which state is estimated. In general, the
benefit of this scheme of partitioning fusion functions into
these levels is due to the significant differences in the
types of input data, models, outputs, and interferences
applicable to problems at different levels.

B. Information flow across levels

Processing at each of these Data Fusion levels involves
batching the available data for fusion into a network of
fusion nodes where paradigmatically each fusion node
accomplishes

e Data preparation (data mediation, common formatting,
spatiotemporal alignment, and confidence
normalization);

e Data Association (generation, evaluation and selection
of association hypotheses; i.e. of hypotheses; i.e. of
hypotheses as to the applicability of specific data to
particular aspects of the state estimation problems);

e State Estimation and Prediction (estimating the
presence, attributes, inter-relationships, utility and
performance or effectiveness of entities of interest, as
appropriate to the data fusion node).

In all the fusion levels, the accuracy of the fused state
estimates tend to increase as large batches of data are
fused; however the cost and complexity of the fusion
process also increases. Thus, a knee-of-the-curve of
performance versus cost fusion node network is sought in
the system design and operation. As noted above, the data
fusion levels are not necessarily processed in order and
any one can be processed on its own or in combination
given the corresponding inputs and there is feedback
across Levels. The notion of inter-Level ‘informing’,
controlling, and exploitation can in fact become quite
complex in certain applications, and has similarities to the
complexities of peer-to-peer internetworking processes at
multiple levels of abstraction. In the course of one Level
informing another, there should be some sense of added
value, or utility, balancing the negative aspects of the
additional processing complexity and time delay of enable
such feedback. Moreover, the possibility of such feedback
raises concerns for maintaining consistency in inference
across levels.



C. Data Fusion Algorithms

In the typical military setting, there are various platforms
with sensors of different types. From such information, the
data fusion system needs to produce reasonable hypotheses
of the actual truth. Various mathematical techniques [5]
have been developed to deal with this problem, which
include:

e Bayesian methods, in which the degrees of belief are
represented by a prior, conditional, and a posteriori
probability. The typical techniques in this category are
the Kalman filter, Multi-Hypothesis Estimation (MHE)
filter, and the Joint Probabilistic Data Association
(JPDA) filter.

e Evidential methods encompass several models such as
the Dempster-Shafer theory [6] and transferable belief
theory [9]. In the framework of the Dempster-Shafer
theory information obtained from a source is represented
by the Basic Probability Assignment (BPA). Fusion of
independent and equally reliable basic probability
assignments is performed by the Dempster rule of
combination.

e Rough sets whose theory [14] deals with imprecision.
The basic concept of the rough sets theory is to replace
uncertain or imprecise information by two imprecise but
certain information: the lower and upper approximations.
The combination of imprecise information is realized by
applying the set theory to the approximations.

e Possibility and fuzzy methods. In the framework of
possibility theory, information obtained from a sensor is
represented by possibility distribution. The combination
rules can be based on t-norms and t-co-norms [5], the
fuzzy translation of the intersection and union, etc.

As such, there is a selection of extant approaches to data
fusion. We need means to represent the semantic data, and
to enable reasoning in this space. Ontologies appear most
suited to this task, with the further advantage that they can
also be used to represent trust and uncertainty.

III. ONTOLOGIES

Ontologies are regarded as the basic building units and
integral parts for the semantic representation, as they
provide a reusable piece of knowledge about a specific
domain. The use of ontologies for the explication of
implicit and hidden knowledge is a possible approach to
overcome the problem of semantic heterogeneity.

Generally speaking, the semantic heterogeneity deals with
three types of concepts [7]: the semantically equivalent
concepts, the semantically unrelated concepts and the
semantically related concepts. In the first case, a model
uses different terms to refer the same concept; in the

second case, the same term may be used by different
systems to denote completely different concepts; and in
the last case, different classifications may be performed.

As the ontology development process becomes more
ubiquitous and collaborative, the difficulties in making
ontologies inter-operable become a serious problem. In
order to achieve effective semantic inter-operability in a
heterogeneous information system, the meaning of the
information that is interchanged has to be understood
across the systems. The domains covered by ontologies
have to be few, thus avoiding conflicts between useage of
the context.

Semantic conflicts occur whenever two contexts do not
use the same interpretation of the information. Goh
identifies three main causes for semantic heterogeneity [8]:

» Confounding conflicts occur when information items
seem to have the same meaning, but differ in reality,
e.g. due to different temporal context.

* Scaling conflicts occur when different reference systems
are used to measure a value.

* Naming conflicts occur when naming schemes of
information differ significantly.

In nearly all ontology-based integration approaches
ontologies used for the explicit description of the
information source semantics. A question that arises from
the use of ontologies for different purposes in the context
of information integration is about the nature of the used
ontologies.

The task of integrating heterogeneous information sources
put ontologies in context. They cannot be perceived as
standalone models of the world. They should rather be
seen as the glue that puts together information of various
kinds. Consequently, the relation of ontology to its
environment plays an essential role in information
integration. By the term mappings is understood the
connection of an ontology to other parts if the application
system. The two most important uses of mappings required
for information integration are mappings between
ontologies and the information they describe and mapping
between different ontologies used in a system. There are
further aspects to the use of ontologies, including the
representations of trust and uncertainty, but we shall not
explore these here.

We have yet to find any techniques developed to
understand the feature content of the semantic data, known
as feature subset classification for more conventional
measured data. As we can apply feature subset selection to
the data to be classified, we ought also to be able to
understand the semantic space better by applying similar
techniques there. As such, we shall move to techniques



which can be used to explore the data space in the next
Section.

IV. FEATURE SUBSET SELECTION

A. Traditional Approaches

Feature selection is a processing to choose a subset of
features or some combination of the input features that
best represent the original data under a certain criterion.
Data fusion can benefit from feature selection by
discarding some of the redundant information and
reducing dimensionality. Roughly speaking, the feature
selection methods may based on two approaches: (1). a
pre-processing  procedure, independently of the
classification algorithm; and (2) a performance indicators,
directly connected with the classification algorithms. Other
dimensionality reduction techniques include principal
component analysis, Fisher Discriminant Analysis, etc.

B. Information-based methods

Compared to the traditional methods, information-based
methods directly measure the information content of each
individual feature. If the measured information content is
related to the level of discriminatory capability, the feature
selection can be carried out by choosing those features
with the higher information content.

According to Shannon’s information theory, entropy
measures information content in terms of uncertainty, and
is defined by

H(A)=-)_ p(4)log p(A) (1)

Aea

where A is a random variable taking values in the set a
with probability distribution p(A4).

One may directly use the entropy as a criterion for feature
selection. However, by examining the definition of
entropy, it can be seen that entropy is calculated with
respect to the single variable 4, without reference to any
objective. Thus, the amount of information measured by
the entropy lacks a point of reference or benchmark. To
improve the entropy-based methods, it is logical to extend
the information measure to two variables: one for the
measured feature itself and the other for the class label that
is directly related to the classification objective. Mutual
Information (MI) provides a framework to measure the
similarity between two random variables, and was
introduced recently for feature selection [15].

Given two random variables 4 and B, with marginal
probability  distributions p(A4)and p(B), and joint
probability distribution p(A4, B) , MI is defined as:

p(4,B)

Aea,Beb

2)

From (2), it is not difficult to find that MI is related to
entropy by the following equations:

1(A,B)=H(A)+H(B)-H(A,B) 3)

where H(A) and H(B) are the entropies, and H (A4, B)
the joint entropy.

If we model each individual feature and the corresponding
class label as random variables, MI can be used to estimate
the dependency between the feature component and its
class category. This can be used to investigate how much
information a feature component contains about the class
label, and use it for feature selection (see Fig. 2). In this
way, we have approaches which can fuse data, and a new
approach to explore the feature space to determine potency
for classification capability.
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Fig. 2 Illustration of mutual information
VY. ACOUSTIC DATA

A. Data Description

We are testing our approaches based on an acoustic data
set provided by the U.S. Army Research Laboratory
(ARL). This data is most suited to our approach since it is
an active and challenging problem, and one which is suited
to semantic analysis. Essentially, the data reflects an
interest in automatic sentinels that can automatically
determine the presence of offensive vehicles. ARL has
conducted several experiments in tracking a convoy of
multiple targets using several spatially distributed sensor
arrays. Fig. 3(a) shows an example of the configuration of
a sensor array with six microphones placed at the vertices
of a hexagon with a radius of 4 ft.

The data from each sensor array is collected at a sampling
rate of 1024 samples per second. The raw data from each
microphone in a sensor array is recorded for classification.
After FFT, each second of acoustic signal is transformed
into 351 dimensional spectral data. Fig. 3(b) shows an
example of the location of six sensor arrays and a run test



around a prearranged track.
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Fig. 3 (a) Sensor array configuration and (b) Test track and
the positions of sensor arrays [16]

B. Semantic Representation

When considering how data is semantically represented,
four fundamental questions to ask are: (1) How is the
representation related to conceptual structures? (2) How is
the meaning of each data represented? (3) How are the
meanings of different data related to one another? With
few exceptions, existing theories of semantic have made
explicit claims concerning the representation of each
meaning and the relations among different word meanings,
while the relation between conceptual and semantic
structures is often left implicit, and the issue of whether
different principles are needed for representation of
different content domains is often neglected.

In this paper we use a method called Focused ontology
integration to represent the semantics within the data. This
method consisting of following steps:

1. Identify a limited number (3-5) of (existing) ontologies
close related to the problem

2. Find the places in the ontologies where they overlap;

3. Relate concepts that are semantically close via
equivalence and subsumption relations (aligning);

4. Check the consistency, coherency and non-redundancy
of the result.

Then we use this as the base to create more ontologies.

VI. ANALYSIS OF ACOUSTIC DATA

A. Semantic Analysis

The semantic enrichment of the data is done by identifying
semantic concept and relations appearing in the data and
from the data fusion. Of course this has a large coverage of
different ontological domain, based on the discussion in
section 3, we decided to focus on four type of ontologies

- a sensor ontology — semantic description of the
Sensors;

- a sequence ontology — semantic description of event
where sensor was tested;

- a data ontology — semantic description of data received
by the sensor; and

- a supporting ontology— semantic description of
concepts that would effect all three mentioned ontology.

These allow us to have a much improved description than
many of the previous research where semantic
representation and data fusion were used individually.

Results from data fusion are used to represent the entities
and properties contribute to the relationships between
them. For example, some important relationships include
“has a type of feature”, “is a kind of amplitude”, “has a

function as”, etc.

Sensor ontologies support concepts such as “If A receives
C from B”. In addition to the general properties used in
any ontology, certain actions apply especially to sensors.
The action, “detect,” is quite basic to sensors. Other verbs
are “identify” and “classify”. Semantic relationships
between actions play an important and often key role in
sensor-related concepts.

Sequence ontology contains spatial and temporal
information. For example, A may happen before B. X
could be detected. In this case X enables B because B
cannot occur without the existence X. It also implies that
X must occur BEFORE A.

The data ontologies are the most complete description of
the data fusion result. It totally depends on the algorithms
selected and how wide the semantic description will cover.

The supporting ontology contains information and
relations that is not clearly expressed in the last three
ontologies. We focus mainly on the environmental and
vehicle related classes and properties, such as weather,
weight and size.

B. Feature level fusion for acoustic data

In our new assessment of Ml-based feature selection for
acoustic data, we propose a feature-level fusion method by
combining two set of acoustic features. In details,
harmonic features are used to characterize the fundamental
frequency, and a group of key frequency components,
selected by MI, are used to reflect other useful acoustic
factors. Fusing these two set of features may provide a
more complete description about the vehicles’ acoustic
signatures, and improve the classification accuracy
accordingly. To keep the same dimensionality of feature
space, the fusion is devised by replacing the higher order
harmonics components with the same number of key
frequency components.



The harmonics are effective acoustic features. However,
the acoustic model for vehicles may be more complicated,
particularly in the area of non-harmonic features. Thus, an
acoustic signature S regarding a working vehicle can be
modelled as a combination of harmonic and other non-
harmonic components:

S=H(f,)+K(f;) (4)
In (4), the first term H(fo)zzihi,izl,z’...,M

denotes a set of harmonic features. The second term
K(f())zzjk(fj),j=1,2,---,N, f, # f, is a group of
features from the non-harmonic part. In this paper, we use
Sfj=L2-+,N to

components that are not related with the fundamental

indicate the key frequency

frequency f,, but are considered also containing useful

classification information.

Based on the vehicle-signatures’ model in (4), the fusion
can be implemented by combining information from both
harmonics and other key frequency components. In details,
we adopted a feature level fusion, where features from two
sources are concatenated together to form a new feature
vector, such as:

E={hhy e by k() k() k()Y (5)

Here we have K + L = M , and M is the dimensionality
of the pre-specified harmonics feature space. Other fusion
schemes, like those introduced in Section II, are also
applicable and will be discussed in the future. The fused
feature vectors now have the same dimensionality as the
harmonic features’, but with the L higher order harmonics
replaced by the same number of key frequency
components.

Experiments are carried out based on a multi-category
vehicles data set from ARL, USA [10, 16-17]. In the
experiments, half of data samples from each class were
randomly chosen to estimate the statistical parameters,
such as harmonic features’ means vector, covariance
matrix, and also mutual information. The remaining 50%
samples forms the testing set on which performance was
assessed.

Next, feature selection is carried out based on the methods
introduced in Section IV. Following the results in [16], the
harmonic number is chosen as 21. The dimensionality of
the feature vectors extracted by mutual information is
flexible, and the detailed number can be decided by the
computing resources.

Currently-popular support vector machines (SVMs) [18],
were chosen as the classifiers in these experiments because

they are less sensitive to the higher dimensional data.
Although SVMs are used here, other classification
algorithms, such as the Multivariate Gaussian classifier
[16], are also applicable. The kernel function used is an
inhomogeneous polynomial. The penalty parameter C is
tested between 10~ and 10° and polynomial order is tested
between 1 and 10 by a two fold validation procedure using
only training data. A polynomial of order 3 and C = 20
were finally found as the best values for this SVM.

To avoid bias on random samplings, the testing was
repeated 10 times to allow an estimate of the error inherent
in this sampling process. The classification results based
on different feature sets are shown in Table 1. The first two
rows of Table I list the classification accuracy before
fusion, where the 21 dimensional harmonic features and
key frequency features are applied individually. It is seen
that the feature set represented by the key frequency
components is relatively weak.

The next two rows show the accuracy results after fusion.
In the third row, to keep the dimensionality as 21, 10

TABLE I
COMPARISON OF CLASSIFICATION RESULTS BASED ON
DIFFERENT FEATURE SETS
Feature set Mean Standard
accuracy (%)  deviation
Harmonics(21dim) 74.4 1.45
Key Freqs(21dim) 74.3 1.05
Harmonics(11dim)+ Key Freqs(10dim) 78.5 0.92
Harmonics(11dim)+ Key Freqs(21dim) 81.1 0.57

higher order harmonics are removed. The vacated space is
then replaced with the 10 features based on the key
frequency components. It can be seen that after this fusion,
the classification accuracy is improved from 74.4% to
78.5%. In the fourth row, if we add more key frequency
components (e.g., 21 dimensional key frequency
components) to the 11-dimensional harmonic features, the
classification accuracy can be further increased to 81.1%,
but at the cost of higher dimensionality (i.e., 32
dimensional feature space.

The accuracy values shown in Table II are overall
numbers, which can be seen as weighted results based on
all five individual classification accuracies. In this multi-
category vehicle data set, the number of testing set for
each vehicle is different due to their different running
speeds. A bias may occur if a method has preference to the
classes which have more numbers than others. Therefore,
we further list the classification accuracy for each
individual vehicle, labelled by V1 to V5 in Table II

The same 10 times random samplings are carried out, and
the (mean classification accuracy) + (standard deviations)
for each of the five vehicles are listed. From Table 11, it is



seen that for the case of the same dimensionality (21
features), the fusion method is consistently better than
other un-fused methods, in all five classes.

Though Table I and II confirmed the improvement of
classification accuracy by using the proposed feature-level

TABLEIII
COMPARISON OF CLASSIFICATION RESULTS (MEAN (%) + STD)
FOR EACH INDIVIDUAL TYPE OF VEHICLES; FUSION METHOD 1:
HARMONIC (11DIM) + KEY FREQS(10DIM); FUSION METHOD 2:
HARMONIC(11DIM)+ KEY FREQS(21DIM)

Vehicle  HARMONICS KEY FREQS FUSION 1 Fusion 2
types (21pIM) (21DpIM) (21DIM) (32dim)
V1 84.2%1.70 70.614.80 86.2+1.28 87.1+1.01
V2 78.7£1.06 83.4%0.87 82.840.80 85.71£0.88
V3 83.2%1.36 81.1%£1.27 83.8+0.88 84.9%0.53
V4 50.7£5.69 54.243.70 59.4%3.08 65.2%1.69
V5 65.411.92 66.912.06 73.5+2.33 76.4%1.50

fusion, it is also realized that the change of the vehicles’
velocity may affect the selected result by mutual
information. In this sense, the features represented by the
key frequency components are not as stable as the
harmonics, and a further research is undergoing to address
this problem.

VII. CONCLUSIONS AND FUTURE WORK

The case for enrichment of data fusion processes is quite
compelling, especially in military scenarios, and we look
forward to achieving this. Our target is to enrich
classification capability by augmenting data fusion
processes using semantic data. Our example application
concerns the identification of vehicles from autonomously-
sensed acoustic data. We have demonstrated that the
component technologies needed to enable our overall aims
are already sufficiently well developed for this task. In
this, data fusion can improve classification capability from
the acoustic data. Further, our new approach to feature set
selection by information content can improve potency in
the descriptions used, as here shown on the ARL data. We
have described how we will deploy the semantic
enrichment by using ontologies together with some of the
semantic attributes we intend to explore. In this way we
will enrich the results derived by data fusion and by
feature subset selection and we look forward to improving
the classification capability still further, by this new
approach.
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