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Abstract— In this contribution, a novel soft-output Ant
Colony Optimization (ACO) based Multi-User Detector (MUD)
is proposed for the synchronous Direct-Sequence Code-Division-
Multiple-Access (DS-CDMA) uplink. The foraging behaviour of
the ant colony in nature motivates the employment of reduced-
search ACO-based MUDs, which are capable of approaching
the optimum Maximum Likelihood (ML) MUD’s performance
at the cost of a computational complexity, which maybe as low
as that of the Mathched Filter (MF) based Single User Detector
(SUD). However, the previously proposed conventional ACO
based MUDs were unable to provide soft Log-Likelihood Ratio
(LLR) values for the channel decoder. Hence in this paper, we
present a novel soft-output ACO-MUD capable of delivering soft
LLRs, which allows a CDMA system to achieve a near-single-user
performance without any additional information feedback from
the channel decoder, even when the number of users supported
is as high as the number of chip in the spreading sequence. Our
numerical results show that at a BER of 10−3, the performance
of the currently known ACO-assisted state-of-the-art systems
can be improved by about 17dB with the aid of the proposed
soft-output ACO-MUD. More explicitly, the soft-output ACO-
MUD is capable of approaching the optimum performance of
the Bayesian detector, when K = 32 UL users are supported
with the aid of 31-chip Gold codes, while the complexity of the
former is only a fraction of 10−8 of the latter.

I. INTRODUCTION

Ant Colony Optimization (ACO) was inspired by studying
the foraging behavior of ants. It was first invoked by Colorni,
Dorigo and Maniezzo [1], [2] in 1991. This population-based
approach has recently been applied to a large number of
so-called Nondeterministic Polynomial (NP)-hard combinato-
rial optimization problems, such as the Traveling Salesman
Problem (TSP) [1], [3]–[5] and the Quadratic Assignment
Problem (QAP) [3], [4], [6], the Job-Shop Scheduling Problem
(JSP) [4], [7] as well as in the packet routing algorithms
of telecommunication networks [8]–[10]. These investigations
motivated its employment in near-Maximum Likelihood (ML)
Multi-User Detection (MUD) aided Multiple Access (MA)
systems [11]–[17].

The ACO framework defined by Marco [18] comprises a
number of algorithms, including the ‘ant system’ [1], [4], the
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‘ant colony system’ [5] and the ‘MAX-MIN ant system’ [3],
[19]. The authors of [15]–[17] employed the ‘ant colony
system’ [5], [20] to simplify the exhaustive search imposed
by the optimum ML detector, while approaching the Bit-Error-
Ratio (BER) performance of the latter. On the other hand, the
authors of [11]–[14] developed a slightly different near-ML
MUD. The ACO based MUD of both [15]–[17] and of [11]–
[14] are capable of achieving a lower BER as well as a lower
complexity than the Genetic Algorithm (GA)-based MUDs
of [21], [22]. The authors of [16], [17] achieved a near-ML
BER performance in the context of various Multi-Carrier (MC)
DS-CDMA systems employing 31-chip Gold codes as the T-
domain spreading sequence, while supporting K = 32 users.
The required number of FLoating point Operations Per Second
(FLOPS) was a factor of 108 lower than that of the ML MUD.

However, to the best of the authors’ knowledge, the ACO-
based MUD schemes found in the open literature at the time
of writing are only capable of providing hard-decision output
for the channel decoder. Against this background, in this
contribution we present a novel soft-output ACO-MUD and
quantify both its performance as well as its complexity in
a Turbo Convolutional (TC) coded CDMA UL system. We
will demonstrate that the DS-CDMA UL system exploiting the
ACO’s soft outputs is capable of outperforming its counterpart
based on hard-decision outputs, when K = 32 users are
supported using 31chip-Gold codes. Our simulation results
will demonstrate that the soft-output ACO assisted DS-CDMA
UL achieves a similar BER performance to that attained by
the Bayesian detector, while the complexity of the former one
is only a fraction of the latter.

The rest of this paper is organized as follows. The model
of the soft-output ACO assisted DS-CDMA UL system will
be characterized in Section II. The conventional ACO-MUD
is briefly reviewed in Section III. In Section IV, our new soft-
output ACO-MUD is detailed. Our simulation results will be
provided in Section V. Finally, we will conclude our discourse
in Section VI.

II. SYSTEM DESCRIPTION

Fig. 1 shows the UpLink (UL) DS-CDMA system model,
where each of the K UL transmitters and the Base Station
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Fig. 1: Schematic of the soft-output ACO assisted DS-CDMA UL
transceiver, where K users are supported.

(BS) receiver employ a single transmit and receive antenna.
The kth user’s Nu-bit data sequence {uk[i]; i = 1, . . . , Nu}
is firstly channel encoded at a rate of Rc = Nu/Nc, yielding
the coded sequence {vk[i]; i = 1, . . . , Nc} having a length of
Nc bits. This sequence is then interleaved by the random bit-
interleaver π of Fig. 1, generating the interleaved bit sequence
{v′k[i]; i = 1, . . . , Nc}, which is then fed to a buffer having a
memory of Nc bits. As seen from Fig. 1, the signal processing
in the inner encoder and decoder is carried out on a bit-by-
bit basis. Therefore, we omit the bit index i for the sake of
brevity in these two components. The output of the buffer is
then spread employing a user-specific Ns-chip DS spreading
sequence waveform ck(t). Then, the DS spread signal will
be Binary-Phase-Shift-Keying (BPSK) modulated at a carrier
frequency f that is common for all the users. Thus the
transmitted signal of user k can be expressed as:

sk(t) =
√

2v′
kck(t) cos(2πft + φk), (1)

where each user is assumed to have a unity transmit power
and φk is the phase angle introduced in the carrier modulation
process. The modulated signal sk then propagates from the kth
MS’s UL transmit antenna to the BS’s receive antenna over a
single-path flat Rayleigh fading channel hk, which is assumed
to be constant over a symbol duration. During the nsth chip
duration, where we have ns = 1, . . . , Ns, the received signal
rns

is the superposition of the signals transmitted from the
K MSs, which is also contaminated by the Additive White
Gaussian Noise (AWGN). Thus, during a symbol interval,
the (Ns × 1)-element base-band equivalent received signal
vector corresponding to the signals received during the Ns

chip durations can be expressed as:

r = CHv′ + n, (2)

where we introduced the (Ns × 1)-element base-band equiv-
alent received signal vector r associated with the Ns chip
durations, the (K × K)-element complex-valued CHannel
Transfer Function (CHTF) matrix H, the (K × 1)-element
base-band equivalent transmitted signal vector v′ related to

the K users, the (Ns ×1)-element AWGN noise vector n and
the (Ns × K)-element Gold-code matrix C as follows:

r = [r1 r2 . . . rNs
]T , (3)

H = diag {[h1 h2 · · · hK ]} , (4)

v′ = [v′
1 v′

2 . . . v′K ]T , (5)

n = [n1 n2 . . . nNs
]T , (6)

C =




c11 c21 · · · cK1

c12 c22 · · · cK2

. . . . . .
. . . . . .

c1Ns
c2Ns

· · · cKNs


 . (7)

Note that each element in n has a mean of zero and a variance
of σ2

n. For simplicity, we assume that the CHTFs are perfectly
known at the BS. It can be shown that the Maximum-Ratio-
Combining (MRC) based Matched Filter’s (MF) output vector
corresponding to the K users can be expressed as:

y = (CH)Hr = HHCT CHv′ + HHCT n

= Rv′ + ñ, (8)

where we have:

y = [y1 y2 · · · yK ]T , (9)

R = HHCT CH. (10)

III. CONVENTIONAL ANT COLONY OPTIMIZATION BASED

MULTIUSER DETECTOR

In both the conventional or the proposed soft-output ACO-
based MUD designed for a BPSK modulated system support-
ing K users, there is a (2 ×K)-element so-called route table
portrayed as

1
2

1 2
v′

K = +1

v′
1 = −1

v′
2 = +1

v′
2 = −1 v′

K = −1

· · · K

· · ·
· · ·

v′
1 = +1

where each column represents the two legitimate values of a
specific user’s transmitted bit. Every trial vector v̂′

i comprising
K bits which are either +1 or −1 constitutes a possible route
that might be pursued by the artificial ants. The conventional
hard-output ACO-based MUD’s aim is to find the ML vector
without exhaustively searching over the 2K possible combi-
nations.

The searching processes of both ACO-based MUDs are
extended from an initial stage decided by the intrinsic affinity
derived from the MF output. This initial stage is then opti-
mized by updating the pheromone, which is derived from the
likelihood value of every route containing K columns or nodes
in the searching pool during each search iteration.

During the nth iterative search stage invoked by the ACO-
MUD, the node v′k = +1 or −1 is selected with a probability
of [1]:

p
(n)
k,v′

k
=

τ
(n)α
k,v′

k
ηβ

k,v′
k∑

j∈{+1,−1} τ
(n)α
k,j ηβ

k,j

, (11)
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where τ
(n)
k,v′

k
represents the pheromone related to the node v′

k =
b ∈ {+1,−1} during the nth iteration, while ηk,v′

k
represents

the intrinsic affinity of the node. Furthermore, α and β are
parameters of the ACO algorithm as defined in [15]–[17].

The searching process ends at the Neth iteration, if all the
vectors in the search pool of the current iteration become
identical or if we reached Ne = N , where N is the maximum
number of affordable search iterations. The hard-output of
the ACO-MUD is then the specific vector having the highest
likelihood value in all the search pools created throughout the
Ne iterations. If we assume that there are M number of ants,
then the maximum number of likelihood value estimations is
N · M , which is only a small fraction of 2K , encountered in
the ML detector, especially when K is high.

For more details on the conventional ACO based MUD, the
interested readers are referred to [15]–[17].

IV. SOFT-OUTPUT ANT COLONY OPTIMIZATION BASED

MULTIUSER DETECTOR

The hard decision criterion should be based on selecting the
signal corresponding to the trial vector v̂′

i maximizing the a
posteriori probability p(v̂′

i|r,H) based on the observation of
the received signal vector r at the BS and the CHTF matrix
H. Using Bayes’ rule, the a posteriori probability may be
expressed as [27]:

P (v̂′
i|r,H) =

p(r|v̂′
i,H)P (v̂′

i)
p(r)

, i = 1, 2, . . . , 2K , (12)

where p(r|v̂′
i,H) is the conditional Probability Density Func-

tion (PDF) of the observed received signal vector r, given that
v̂′

i was transmitted via the DS-CDMA multiuser UL channel
H, and P (v̂′

i) is the a priori probability of the ith K-user bit-
combination considered. Therefore, the soft-bit value or the
Log-Likelihood Ratio (LLR) associated with the kth user can
be formulated as [28]:

Lk = ln
P (v′

k = +1|r,H)
P (v′

k = −1|r,H)
. (13)

Note that the probability of P (v′k = b ∈ {+1,−1}|r,H) is
given by the sum of the probabilities P (v̂′|r,H) for all those
vectors v̂′ ∈ Vb, for which the kth bit is b. Thus Eq. (13) can
be further expressed as:

Lk = ln

∑
v̂′∈V+1

P (v̂′|r,H)∑
v̂′∈V−1

P (v̂′|r,H)
. (14)

The denominator of Eq. (12) may be expressed as [27]:

p(r) =
2K∑
i=1

p(r|v̂′
i,H)P (v̂′

i), (15)

which is independent of the particular K-bit-combination
transmitted or for the specific K-bit string i = 1, . . . , 2K being
considered. Furthermore, if the a priori probabilities P (v̂′

i) are
equal for all the K-bit strings i = 1, 2, . . . , 2K , Eq. (13) can
be further expressed as:

Lk = ln

∑
v̂′∈V+1

p(r|v̂′,H)∑
v̂′∈V−1

p(r|v̂′,H)
. (16)

Note that in Eq. (2), r is a random sample of the
Ns-dimensional multi-variate complex Gaussian distribution,
where the vector of mean value is CHv′, and the (Ns ×Ns)-
dimensional covariance matrix Rn is given by [29]:

Rn = E{nnH} = σ2
nI, (17)

where I is the identity matrix. The noise encountered at
the BS during the different the chip durations is assumed
to be uncorrelated. Hence, the above-mentioned multi-variate
complex Gaussian distribution can be described by [30]:

p(r|v̂′,H) =
exp

{−(r − CHv̂′)HRn
−1(r − CHv̂′)

}
√

2π|Rn|Ns
.

(18)

By substituting Eq. (17) into Eq. (18), we have [27]:

p(r|v̂′,H) =
1√

2πσ2
n

Ns
exp

{
− 1

2σ2
n

‖r − CHv̂′‖2

}
. (19)

The previously mentioned likelihood value D(v̂′) associated
with the vector v̂′ is derived from the Euclidean distance ‖r−
CHv̂′‖2 and is formulated as [27]:

D(v̂′) = 2�{
v̂′Hy

} − v̂′HRv̂′. (20)

Thus, Eq. (16) can be further expressed as:

Lk = ln

∑
v̂′∈V+1

1√
2πσ2

n

Ns
exp

{
− 1

2σ2
n

‖r − CHv̂′‖2

}

∑
v̂′∈V−1

1√
2πσ2

n

Ns
exp

{
− 1

2σ2
n

‖r − CHv̂′‖2

} .

(21)

To avoid the exponentially increasing computational complex-
ity, the sums in the numerator and denominator of Eq. (21)
are replaced by their most dominant term, i.e. by the highest
term, as suggested in [29], yielding:

Lk ≈ − 1
2σ2

n

(‖r − CHv̂′
+1‖2 − ‖r − CHv̂′

−1‖2
)
, (22)

where v̂′
b∈{+1,−1} represents the vector having the highest

likelihood value in the set Vb. For simplicity, the above
equation can also be expressed as:

Lk ≈ − 1
2σ2

n

(
v̂′

k · Ωk,v̂′
k
− v̂′

k · Ωk,−v̂′
k

)
, (23)

where v̂′
k represents the estimated value of the kth user’s

transmitted bit v′
k, v̂′

v̂′
k

denotes the vector having the highest
likelihood value in the set Vv̂′

k
and Ωk,v̂′

k
= ‖r − CHv̂′

v̂′
k
‖2

represents the Euclidean distance between a legitimate re-
ceived signal vector corresponding to a specific transmitted
signal vector appropriately rotated by the channel and the
actual received signal vector.

In order to calculate Ωk,±v̂′
k
, all the X (X � Ne · M )

number of mutually different vectors in the search pool are
divided into two groups according to the value of the kth bit
of every vector. However, under certain circumstances all the
X number of vectors may have the same value v̂′k at the kth
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bit position. In this case, an extra search iteration has to be
carried out, where the kth bit is fixed to −v̂′

k throughout the
search process.

Let us now characterize the achievable performance of the
SISO ACO-based MUD.

V. SIMULATION RESULT

The DS-CDMA UL modem used in our simulations em-
ployed Ns = 31-chip Gold codes to support K = 32 users.
The proposed soft-output ACO-based MUD was combined
with a half-rate Convolutional Code (CC) having a constraint-
length of Kc = 3. The simulation parameters are summarized
in Tab. I. For convenience, the common parameters shared by
the soft and the conventional ACO-based MUDs have the same
notations. For more details on the conventional hard-output
ACO-based MUD, the interested reader is referred to [17].

TABLE I: Basic simulation parameters used in Section V.

CC
parameters

Modem BPSK
Code rate 1/2
Constraint length 3
Octal generator polynominal (031, 027)

SISO-
ACO

parameters

Initial pheromone τ = 0.01

Evaporation rate ρ = 0.5

Number of ants M = 10

Number of iterations N = 10

Weight of pheromone α = 1

Weight of intrinsic affinity β = 6

Weight for the elite ant σ = 8

Interleaver
parameters

Type random
size 104 bits

Fig. 2 shows that the DS-CDMA UL supporting K = 32
users with the aid of Ns = 31-chip Gold codes is capable
of approaching the corresponding single-user system’s BER,
regardless, whether the soft-output or hard-output ACO-based
MUD is used. However, the soft-output ACO-assisted DS-
CDMA scheme shows a significant SNR improvement com-
pared to its hard-output ACO-assisted counterpart.

Fig. 3 shows that the complexity of the ACO-based MUD
is only a fraction of that of the ML or Bayesian detector,
again, regardless, whether hard- or soft-output aided detection
is used. More quantatively, when the number of users reaches
K = 32, the complexity of either the hard-output or the soft-
output ACO is a factor of 108 lower than that of the optimum
Bayesian detector.

VI. CONCLUSION

In conclusion, the proposed soft-output ACO-based MUD
is capable of approaching the single-user performance, when
combined with a 1/2-rate convolutional code, as seen for the
DS-CDMA UL supporting K = 32 users by employing 31-
chip Gold sequences. The complexity of the soft ACO-based
MUD based on Tab. I is a factor of 108 lower than that of the
Bayesian MUD.
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