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Abstract

Nanosecond electric pulses generate nanopores in the interior membranes of cells and modulate cellular functions. Here, we used con-
focal microscopy and flow cytometry to observe Smith antigen antibody (Y12) binding to nuclear speckles, known as small nuclear ribo-
nucleoprotein particles (snRNPs) or intrachromatin granule clusters (IGCs), in Jurkat cells following one or five 10 ns, 150 kV/cm pulses.
Using confocal microscopy and flow cytometry, we observed changes in nuclear speckle labeling that suggested a disruption of pre-mes-
senger RNA splicing mechanisms. Pulse exposure increased the nuclear speckled substructures by ~2.5-fold above basal levels while the
propidium iodide (PI) uptake in pulsed cells was unchanged. The resulting nuclear speckle changes were also cell cycle dependent. These
findings suggest that 10 ns pulses directly influenced nuclear processes, such as the changes in the nuclear RNA-protein complexes.
Published by Elsevier Inc.
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Nanosecond electric pulses

We have been exploring a new nanosecond (ns) time
domain in cell biology. When cells are exposed to intense
(50-300 kV/cm) pulsed electric fields (PEFs) with rise times
faster than the time it takes for charges on the plasma
membrane to redistribute, the electric field can penetrate
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into the interior of the cell and organelles. If these fields
exceed the breakdown threshold of these membranes,
nanopores will form in the organelle membranes [1,2]. To
better understand the mechanism involved, mathematical
models for the cellular electropermeabilization due to
nsPEFs have been developed [3,4]. The resulting changes
in cellular structures and functions differ significantly from
traditional electroporation [microseconod to millisecond
pulsed electric fields (PEFs)] [1,5,6]. Increased permeabili-
zation of the plasma membrane, typically demonstrated
by measuring propidium iodide (PI) uptake, due to nsPEFs
was delayed compared to traditional electroporation [5,6],
indicating that it was an indirect effect. These nsPEFs


mailto:nc8u@virginia.edu
mailto:kschoenb@odu.edu

N. Chen et al. | Biochemical and Biophysical Research Communications 364 (2007) 220-225 221

induced cellular calcium release [7,8] and apoptosis in cells
[9,10] or tumors [11,12]. These effects appeared to be due to
the charging of interior organelle membranes and the ensu-
ing creation of nanopores. Furthermore, the extremely high
electric fields that these pulses induce in intracellular mem-
branes can cause related effects, such as conformational
changes of RNA-protein complexes, e.g. nuclear speckles,
and induce DNA structural changes, leading to functional
modulation of macromolecular structures. Using acridine
orange (AO), we showed that 10 or 60 ns PEFs affected
the DNA in the nuclei of HL-60 cells [5]. In addition to
the DNA damage observed in Jurkat cells and HL-60 cells
exposed to 60 ns, 60 kV/cm pulses [13], other nuclear func-
tions or organization may be impacted by nsPEFs, possibly
affecting the RNA-protein complexes and transcriptional
functions. However, methodology of the modulation of
nuclear processes by nsPEFs remains unknown and further
research may open future applications for this technology.

While previous studies with 10 or 60 ns pulses have dem-
onstrated effects on the nucleus of leukemia cells [5], we
further examine the consequence of applying intense
10 ns pulses on nuclear speckles in Jurkat cells, referred
to as small nuclear ribonucleoprotein particles (snRNPs)
in G1l-phase cells or interchromatin granule clusters (IGCs)
in M-phase cells. This study analyzes nuclear speckle
responses to intense, 10 ns pulses in Jurkat cells, possibly
leading to changes in the transcriptional sites and func-
tions. We confirmed the hypothesis that charging the
nuclear envelope caused nanopore formation in the nuclear
envelope and also changes to nuclear structures or sub-
nuclear organizations, such as disrupting pre-messenger
RNA splicing mechanisms, resulting in the accumulation
of speckles in the nucleus. Analyzing the response of
snRNPs by immuno-labeling will clarify how ultrashort
pulses cause DNA damage [13] and affect gene expression
[14].

Materials and methods

Cell culture. Jurkat cells, a human T cell leukemia cell line [American
Type Culture Collection (ATCC), Manassas, VA], were grown in RPMI-
1640 medium (phenol red) containing 2 mM L-glutamine (ATCC, VA) and
supplemented with 10% fetal bovine serum (ATCC, VA), 100 U/ml pen-
icillin, and 100 pg/ml streptomycin (Sigma, St. Louis, MO), and were
maintained at 37 °C with 5% CO,. The cells used in our experiments
ranged between 30 and 50 passages. We verified that cell viability exceeded
90% daily and prior to all experiments by using trypan blue exclusion
(TBE) (0.4%) (Sigma).

Cell synchronization and cell cycle analysis. Jurkat cells were plated at a
density of 2.0 x 10° cells/10 ml fresh RPMI-1640 medium, as described
above, in a 100-mm tissue culture plate (Corning Inc.) and incubated
overnight at 37 °C with 5% CO,. Plates were incubated for an additional
24 h in the presence of 40 ng/ml nocodazole (Sigma) or 500 UM mimosine
(Sigma). Thereafter, the synchronized cells were washed once and fixed
before pulse application and at designated time points post-pulse in ice-
cold 100% ethanol for 30 min. Fixed cells were underplated with 500 pl of
ice-cold fetal bovine serum and spun at 1000 rpm for 5 min. Cells were
then washed in 1 ml PBS and spun at 1000 rpm for 5 min. RNase A
(125 pl) (Quiagen) was added to the cell pellets and incubated at 37 °C for
15 min. We added 125 pl of propidium iodide (PI) (62.5 pg) and incubated

the cells at room temperature for 30 min prior to flow cytometry analysis.
Cell samples were examined by flow cytometry (FACS Calibur) using
CellQuest Software with data analysis conducted using ModfitLT
software.

Administration of the intense nsPEFs. Synchronized Jurkat cells were
examined before pulse application and at designated time points post-
pulse by flow cytometry. We next loaded 450 ul of Jurkat cell suspension
(1 x 10° cells) containing the synchronizing drug into gene pulser®cuvettes
(Bio-Rad) with an electrode distance of 2 mm. The synchronized cell
suspension was exposed to one or five 10 ns, 150 kV/cm pulses with rise-
and fall-times of 1-2 ns. The pulses were generated by a Blumlein pulse
generator with an impedance of 10 Ohm. The Blumlein generator consists
of two transmission lines with equal length and impedance in series with
the load impedance matching the overall impedance of the two trans-
mission lines, 2Z,. More details can be found elsewhere [15].

The pulsed Jurkat cell suspensions containing the synchronizing drug
were continually incubated at 37 °C in 5% CO,. Cell viability was mea-
sured by TBE before pulsing and 10 min, 1 h, and 3 h after the pulse(s).
Plasma membrane permeability was examined by measuring PI uptake
post-pulse [5].

Nuclear speckles labeling by immunocytochemistry. Synchronized Jur-
kat cells at designated times post-pulse were washed once in PBS before
fixation. Cells were then fixed with 4% formaldehyde in cytoskeletal buffer
[CSK, 10 mM Pipes, pH 6.8, 300 mM sucrose, 100 mM NaCl, 3 mM
MgCl,, and 1 mM EGTA, (Sigma)] for 30 min. To improve antibody
penetration, the pulsed Jurkat cells were permeabilized by using 0.5%
Triton X-100 in CSK for 10 min. Nonspecific binding sites were blocked
with TBS-I buffer [10 mM Tris, pH 7.7, 150 mM NaCl, 3mM KCIl,
1.5 mM MgCl,, 0.05% vol/vol Tween 20, 0.1% BSA, 0.2% wt/vol glycine
(Sigma)] for 1 h. Y12 antibody (Abcam, Inc., MA) was diluted in TBS-I to
a 1:50 ratio and added to the cells, which were then incubated at 4 °C for
1 h. To remove unbound antibodies, cells were rinsed three times in PBS
with 0.05% Tween 20. The cells were then incubated with the second
antibody, 1:50 fluorescein (FITC) conjugated goat anti-mouse IgG
(Jackson ImmunoResearch Laboratories, Inc., PA), at 4 °C for 1 h. After
washing once, cell samples were passed through flow cytometry, and
coverslips were also mounted on slides for imaging by confocal
microscopy.

Determination of nuclear speckles by flow cytometry. As described
above, the synchronized cells in M or G1 phase (1.5 x 10* cells) labeled
with Y12 antibody specific to nuclear speckles were acquired by using
FACS Calibur (Becton-Dickinson) flow cytometry. Data were analyzed
by CellQuest software for examining speckled cells.

Detection of nuclear speckles by confocal microscopy. Jurkat cells syn-
chronized to the M or G1 phase were exposed to 10 ns, 150 kV/cm pulses
and labeled with Y12 antibody specific to nuclear speckles at different time
points after exposure. Fifty thousand cells in 100 ul PBS, labeled with Y12
and FITC, were mounted and dried on slides with a Prolong®Antifade Kit
(Molecular Probes) for detecting the nuclear speckles by confocal
microscopy. Data were collected using an Olympus Fluoview FW 300
confocal scanning laser fluorescent microscope system (Japan) with high
contrast and highly improved resolution in the light axis direction, as
previously described [5].

Statistical analysis. We used SPSS Version 11.0 for Windows for sta-
tistical analysis and Student’s ¢-test to calculate the variance between the
speckles in pulsed and unpulsed cells. Differences were considered statis-
tically significant when P < 0.05. Data are presented as means + SEM.

Results

Using immune labeling, temporally, and spatially
resolved images of nuclear speckles generated by 10 ns
pulse-induced stimulation were measured by recording
intra-nuclear fluorescence of Jurkat cells caused by the bind-
ing of Y12 antibody with FITC to the nuclear speckles. We
examined the nuclear speckles before the pulse and at 10,
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60, and 180 min post-pulse. Nuclear speckles were detected
after pulsing by examining the cellular fluorescence corre-
sponding to the predicted molecular weight of Smith antigen
(Sm) using flow cytometry and confocal microscopy. To
assess cell cycle dependence, we synchronized the Jurkat cells
to M or G1 phase and quantitatively examined the nuclear
speckles in each phase by flow cytometry or confocal micros-
copy, respectively. Applying one or five 10 ns, 150 kV/cm
pulse(s) caused no PI uptake in all experiments.

Nanosecond pulses alter the nuclear speckles in mitotic phase
cells

To obtain the mitotic cells for analyzing the nuclear
speckles, we used nocodazole to synchronize the Jurkat
cells in M phase before pulse application. Nocodazole
blocks cell cycle progression in the G2-M phase by disrupt-
ing the mitotic spindle [16]. After 24 h of culturing with
40 ng/ml nocodazole, 95% of Jurkat cells were arrested in
M phase for all pulsed experiments. Applying a 10 ns,
150 kV/cm pulse to these synchronized Jurkat cells linked
the Y12 antibody to Smith antigen in nuclear speckles.
The number of speckles decreased immediately following
exposure then increased 3 h later compared to the unpulsed
cells (Fig. 1A). This suggests that nsPEFs induce functional
and conformational changes in nuclear subunits, such as
speckles, probably decreasing the number of transcription
factors in Jurkat cells within 1 h. However, exposing cells
in the mitotic phase to five consecutive 10 ns pulses imme-
diately and significantly increased the number of nuclear
speckled substructures. Fig. 1B shows the increased
FITC-fluorescence intensity in cells with Y12 antibody
bound to the speckled protein complexes. Applying five
pulses accelerated IGC formation, suggesting a cumulative
effect on stimulating nuclear speckled structure reorganiza-
tion and showing that applying more pulses promotes
rapid speckle formation.

Morphological changes in the nuclear speckled sub-
structures exposed to nsPEFs were significant and striking.
While applying 10 ns, 150 kV/cm pulses did not alter cell
viability by TBE, it caused FITC uptake to increase in
the M-phase cells during our measurements (3 h) compared
to the unexposed M-phase Jurkat cells. Applying five con-
secutive 10 ns, 150 kV/cm pulses caused a large fraction of
the pulsed cells (90%) to bind Y12 antibodies. This also
showed that FITC linked to the nuclear speckled structures
in cells at 3 h post-pulse (Fig. 2A). Only 20% of control
cells displayed FITC-fluorescence within 3 h, suggesting
that nsPEFs stimulated nuclear speckle reorganization
and substructure formation. Using Y12 antibody detec-
tion, nuclear speckles appeared as spots in the nucleus of
synchronized Jurkat cells in the M-phase of unpulsed cells.
Pulse exposure increased the size and number of speckled
subunits in the M-phase cells 10 min and 1 h after exposure
and created diffuse structures with bright fluorescence
throughout the nucleoplasm 3 h post-pulse, as viewed by
confocal microscopy (Fig. 2B). This demonstrated that
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Fig. 1. Flow cytometric quantitative analysis in the neuclear speckle
changes in M-phase Jurkat cells at 10, 60, and 180 min after the pulse(s) of
10ns, 150 kV/cm. Nuclear speckles were detected by intracellular
immuno-labeling with Y12 antibody, a specific nuclear speckle marker,
in Jurkat cells. Ninety-five percent of Jurkat cells were synchronized at M
phase by nocodazole treatment for 24 h. (A) A single pulse, (B) five
consecutive pulses. P value by Student’s test, two-tail of the log converted
values. Error bars are calculated using standard deviation.

IGC reorganization and accumulation was stimulated in
the mitotic cells, and, in fact, these nuclear RNA-protein
complexes showed conformational changes after pulse
application with this protocol.

Nanosecond pulses accelerate the aggregation of nuclear
speckles in interphase cells

We applied mimosine to block Jurkat cells at the early
synthesis phase because this chemically arrested the cells
in G1 phase before DNA replication [17]. Seventy percent
of Jurkat cells were arrested at the G1 phase by treating
them with 500 pM mimosine for 24 h prior to pulse appli-
cation. When Jurkat cells were synchronized in the Gl
phase with mimosine and exposed to a 10 ns, 150 kV/cm
pulse, their nuclear speckled fluorescence differed from that
of unexposed cells. Quantitative flow cytometric analysis
(Fig. 3A) showed the temporal decrease in cells with high
FITC-fluorescence after 10 min. This was followed by an
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Fig. 2. (A) Representative confocal microscopic images of Y12 antibody
binding to speckles in M-phase Jurkat cells unexposed (left) and 3 h (right)
after five consecutive pulses with 10 ns duration, 150 kV/cm electric field
(400x, merging image with FITC-Y12 uptake and brightfield illumina-
tion); (B) Typical confocal microscopic three-dimensional images of Y12
antibody binding to speckles in a Jurkat cell in M phase before, at 10 min,
1 h and 3 h after five consecutive 10 ns, 150 kV/cm pulses.

increase, with a possible delay in speckle function in Gl
cells with high fluorescence, 3 h after the pulse. However,
applying five 10 ns pulses with the same electric field
enhanced the speed and quantity of snRNP formation
(Fig. 3B). Compared with the control, the relative FITC-
fluorescence intensity increased 2.5-fold in the nuclear
speckled RNA-protein particles in G1 cells 1 h after five
consecutive 10ns, 150 kV/cm pulses. This also suggests
that nsPEF-induced speckled substructure aggregation is
a cumulative effect.

After applying five consecutive 10 ns, 150 kV/cm pulses,
the exposed cells with bright FITC-fluorescence demon-
strated Y12 antibody binding to the nuclear speckled
RNA-protein components in all pulsed cells 3 h post-pulse.
In the unpulsed control, less than 10% of cells with FITC-
fluorescence were detected on confocal microscopic images
by overlapping the bright field and FITC image (Fig. 4A).
Using confocal microscopy, images were acquired in multi-
ple sections. The nuclear speckle structures were observed
as clouds and increased in both size and number. They
aggregated in the nucleus of Jurkat cells in G1 phase after
applying five consecutive 10ns, 150kV/cm pulses
(Fig. 4B). These findings implied that the RNA—protein
complexes in the nucleus accumulated rapidly in interphase
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Fig. 3. Nuclear speckle changes in Jurkat cells at Gl phase by flow
cytometric quantitative analysis using Y12 antibody by applying 10 ns
pulse(s) with a 150 kV/cm electric field. Seventy percent Jurkat cells were
synchronized by mimosine for 24 h before pulsing in the pulsed protocol.
P values by Student’s test, two-tail of the log convert values. (A) A single
pulse, (B) five consecutive pulses. Error bars are calculated using standard
deviation.

Jurkat cells after exposure and showed the impact of
repeated pulses.

Discussion

Compared to traditional electroporation, nsPEFs pref-
erentially charge the membranes of subcellular organelles,
thereby inducing distinct effects on cellular structure and
function that are predominantly intracellular in nature
[1,2,5,8]. The resulting delayed plasma membrane perme-
abilization was likely secondary, arising due to subcellular
effects [2] rather than direct electroporation [18,19]. In pre-
vious confocal microscopic real time studies, we compared
the nuclear and plasma membrane effects of 10 and 60 ns
pulses of approximately the same energy [5]. We inter-
preted the specific changes of nuclear materials by AO fluo-
rescence as arising due to charging of the nuclear envelope.
They could also arise due to the interference of high electric
fields generated by nuclear envelope charging with nuclear
function, resulting in AO intercalation changes in DNA [5].
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Fig. 4. (A) Representative confocal microscopic images of Y12 antibody
binding to speckles in G1-phase Jurkat cells unexposed (left) and 180 min
(right) after five 10 ns, 150 kV/cm pulses. (B) Confocal microscopic three-
dimensional images of the snRNPs in a Jurkat cell in G1 phase before, at
10, 60, and 180 min after five consecutive 10ns, 150 kV/cm pulses.
Inmunolabeling used Y12 antibody binding to nuclear speckles.

In other studies, nsPEFs induced DNA damage that was
most likely a direct effect of the pulses [13] and affected cell
survival, clearly indicating that they can affect the nuclear
structures [5,13]. However, it remains unknown whether
nsPEFs might affect other charged nuclear functional sub-
structures. Since DNA is a heavily charged intracellular
component whose folded spiral structures are distributed
close to the nuclear envelope, we postulated that it may
be susceptible to nsPEFs [13].

In this study, we demonstrated that nsPEFs affected
nuclear speckles by disrupting or reorganizing the snRNP
formation in Jurkat cells. We further observed that this
interaction was cell cycle dependent. These changes in
nuclear RNA-protein complex components probably
reflect a disruption of RNA transcription mechanisms, thus
supporting our hypothesis. The results demonstrate that
10 ns pulses, which are shorter than the charging time of
the plasma membrane, altered sub-nuclear structures, per-
haps by inhibiting the RNA transcription mechanisms
resulting in the accumulation of snRNPs. Furthermore,
by using consecutive nsPEFs, it may be possible to modu-
late nuclear functions for controlling the RNA transcrip-
tion and gene expression mechanisms in the nucleus. This
study shows for the first time that nsPEFs altered nucleo-
plasm-protein complexes. These observed functional mod-

ifications in speckled RNA-protein complexes with Y12
antibodies as a specific speckle marker with FITC-fluores-
cence, could be explained by the electric field generated in
the boundary layer adjacent to the nuclear envelope
becoming sufficiently large to cause conformational
changes in RNA-protein complexes.

Nuclear speckles were tagged with the Y12 monoclonal
antibody (mADb) to Smith antigen (Sm), which recognizes
common core proteins of snRNPs involved in RNA pro-
cessing [20,21]. The Smith antigen precipitates the small
nuclear RNA, providing direct evidence that the Smith
antigen resides on RNA-protein complexes [20]. The
nuclear speckles are rich in pre-mRNA splicing factors
and are localized in the interchromatin regions in the nucle-
oplasm. These nuclear subunits are dynamic groups of
RNA and proteins, appearing as irregular, punctate struc-
tures that vary in size and shape. These speckles functioned
as assembly compartments that supplied splicing factors to
active transcription sites. Cell studies showed that the splic-
ing factors are recruited from speckles to transcription sites
[22]. Conversely, when transcription [23] or pre-mRNA
splicing [24] are inhibited, splicing factors accumulate in
enlarged, rounded speckles. The distribution of speckled
substructures can directly reflect the nuclear functional
changes, affecting active transcription sites and gene
expression. In this case, nsPEFs caused speckled subunit
accumulation, possibly indicating that nsPEFs inhibited
the active transcription sites that are related to gene expres-
sion with the RNA splicing factors accumulating predom-
inantly in enlarged, aggregated speckled structures. The
nsPEFs may also suppress cell growth. Enhanced gene
expression with active transcription sites generates abnor-
mal proteins, which can then stimulate cell proliferation.
The cells were not destroyed within our protocol’s time
span but there may be a functional change that is currently
being investigated.
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