
ECSIAM-eprint14773 1/1

mc+www@ecs.soton.ac.uk - contact author http://eprints.ecs.soton.ac.uk/14773

Tabulator Redux: Writing Into the Semantic Web

T Berners-Lee1, J. Hollenbach1, Kanghao Lu1, J. Presbrey1, E. Pru d'ommeaux1, mc schraefel2

1. MIT CSAIL, Cambridge, MA, USA
2. Electronics and Computer Science, University of Southatmpton, UK

{timbl, eric} @w3.org; {prebrey, mc} @csail.mit.edu

Figure 1. The Tabulator. The first frame shows the Tabulator with an RDF source, the Open Linked Data Project open. The
second frame shows information within that source expanded, the third frame shows another source within that source expanded,
and finally, the last frame shows that the label of that source has been edited from “Music and artist data interlinked” to “Music

and artist data linked on the Semantic Web”

ABSTRACT
A first category of Semantic Web browsers were designed to
present a given dataset (an RDF graph) for perusal, in various
forms. These include mSpace, Exhibit, and to a certain extent
Haystack. A second category tackled mechanisms and display
issues around linked data gathered on the fly. These include
Tabulator, Oink, Disco, Open Link Software's Data Browser, and
Object Browser. The challenge of once that data is gathered, how
might it be edited, extended and annotated has so far been left
largely unaddressed. This is not surprising: there are a number of
steep challenges for determining how to support editing
information in the open web of linked data. These include the
representation of both the web of documents and the web of
things, and the relationships between them; ensuring the user is
aware of and has control over the social context such as licensing
and privacy of data being entered, and, on a web in which anyone
can say anything about anything, helping the user intuitively
select the things which they actually wish to see in a given
situation. There is also the view update problem: the difficulty of
reflecting user edits back through functions used to map web data
to a screen presentation. In the latest version of the Tabulator
project, described in this paper we have focused on providing the
write side of the readable/writable web.

Our approach has been to allow modification and addition of
information naturally within the browsing interface, and to relay
changes to the server triple by triple for least possible brittleness
(there is no explicit 'save' operation). Challenges which remain
include the propagation of changes by collaborators back to the
interface to create a shared editing system. To support writing
across (semantic) Web resources, our work has contributed
several technologies, including a HTTP/SPARQL/Update-based
protocol between an editor (or other system) and incrementally
editable resources stored in an open source, world-writable 'data
wiki'. This begins enabling the writable Semantic Web.

Categories and Subject Descriptors
H.5.4 Hypertext/Hypermedia; H.5.2 User Interfaces

General Terms
Documentation, Performance, Design, Security, Human Factors.

Keywords
Tabulator, semantic web, read/write, provenance.

ECSIAM-eprint14773 2/2

mc+www@ecs.soton.ac.uk - contact author http://eprints.ecs.soton.ac.uk/14773

1. INTRODUCTION
While the Semantic Web has been developed much as a data
integration technology for the last few years, it has lacked an
essential element which the hypertext WWW had from the start:
the immediate gratification for information providers of seeing the
results of their efforts on a screen. The viral spread of the HTML
web was largely powered by the process of seeing someone else's
web page, viewing the source, copying it with small changes, and
then having one's own page to show off to others immediately.
However, the first few years of semantic web development
focused on back-end technologies. What Semantic web data was
produced has been largely consumed off-line, and not generally
available to others. Worse still, this mode of working has left the
'web' out of 'Semantic Web': the identifiers used, while URIs,
have not been URIs which could be dereferenced to provide
useful information.

Recently, collections of offline or zipped RDF data have
increasingly been replaced by Linked Data. Linked Data is data
using RDF technology that (i) uses HTTP URIs to denote things;
(ii) provides useful information about a thing at that thing's URI;
and (iii) includes in that information other Linked Data URIs.

The Tabulator [4] was originally written as a linked data browser,
designed to provide the ability to navigate the web of linked
things without any domain-specific programing by the user or the
information provider. It has the inherent knowledge of a few
common global concepts such as time and geographical location
to give it the power of typical Web 2.0 applications such as on-
the-fly mapping and/or calendar mashups in those dimensions.
Using the Tabulator, anyone putting up, for example, a personal
FOAF [6] file, can see their own information on the screen, and
follow links from it to the FOAF descriptions of their friends, not
to mention their publications and projects. They become part of an
open social network. Since the inception of the Tabulator project,
a number of similar data browsers have emerged, including
Oink[13] Open Link Software's Data Browser [16], Object
Browser [15] and also a growing number of linked data projects
[14].

While these developments have been satisfying, the authors were
concerned that the a major potential of the system was
unimplemented: the web of things, like much of the web of
documents, was a read-only web from the point of view of the
user. Given the goal of making the web in general a read-write
space, surely it was important that a linked data application allow
editing as well as browsing. Adding write functionality, however,
introduced a number of technical and user interaction design
challenges.

One challenge, faced by the read-only Tabulator and exacerbated
by the read-write requirement, is that the semantic web provide
an extra level of abstraction -- the graph of connected things --
above the web of documents which the web browser user is
familiar with. Those features which complicate things by
introducing dependencies or connections between otherwise clean
architectural layers we refer to as "Level-breakers". We explain
why they are needed to allow operation in both spaces where
necessary, for social reasons and in case of error. Another
challenge is to enable the selection, from an unbounded web of
which the system only aware of a small part, of relationships and

fields with which the user might express themselves. Also, there is
the View Update problem making it less than straightforward to
understand what affect and on which RDF document is implied by
a given user change to the display.

We will present and motivate these choices, and describe the
design and the underlying network protocol and sofware
architecture. We will describe a 'data wiki' space that allows
remote editing, and the technology used to support it on the server
side.

2. MOTIVATION:
Web of documents vs Graph of things
Let us explore some of the challenges behind writing in the
Semantic Web. The Semantic Web is two structures, at different
levels. There is a space, we call here the 'web', of directed,
untyped links between documents, and there is a space we call
here the 'graph', of directed, typed of relationships between the
things described by the documents. The goal of the project is that
the user of the interface should work effectively with co-workers
by exploring, analyzing, and collaboratively co-authoring the
shared graph of knowledge. We do this in a domain-independent
way so that the tool can be used on new fields without
programming.

Primarily, users read aggregated information in the graph of
interest, ignoring the fact that the data about them may have been
assimilated from many sources, possibly with inference. The
original tabulator experience demonstrated that secondarily (but
importantly) readers must also be able to determine the source
documents, and so understand the provenance of the data. The
reader can then ask questions such as: Who wrote this? Who is
maintaining it? Can I trust it? May I re-use it? and related social
questions. These attributes follow from the source of the data.
Just as, to trust a document on the web, one peeks at the domain
name of the web site, so to trust a statement in the graph, one
peeks at the URI of (and metadata about) the document. (We use
the term document, though the source may be the sort of thing
more often refered to as a store, and may be accessed using
SPARQL rather than a simple HTTP dereferencing. The same
social aspects of the information apply in either case.)

This peeking between levels breaks the consistency of the user
interface which would have been possible at a single level.
Simultaneously examining the data and the source of the data
produces a small but necessary inconsistency in the user interface.

This level-breaking is also necessary to make errors
understandable. Just as, when a web error occurs in a web
browser, the user checks the URI and may check the network
connectivity to the host, so the reader at the graph level must be
able to to understand what document or network operation
produced an error. A strength of web browsers, when compared
with many distributed systems built of RPC components, is that
they allow the user to understand the nature of network errors.
We therefore assumed that an editor of the graph must allow users
to understand the nature of errors at the document level and
below. One must be able to distinguish, for example, between
data which is missing in a file, files which have syntax errors, and
network errors which prevent us reading them at all.

The tabulator represents the document layer by coloured balls
near each concept. The color of the ball indicates the state
(unfetched, fetching, ok, error) of documents holding information
about the concept. Clicking or hovering over the balls allows
more interaction, and a cogwheel 'under the hood' icon allow

Tech report ECSIAMeprint-14773
Electronics and Computer Science, University of Southampton , UK
November, 2008

ECSIAM-eprint14773 3/3

mc+www@ecs.soton.ac.uk - contact author http://eprints.ecs.soton.ac.uk/14773

access to details of HTTP transactions, parsing, etc in case the
user needs to explore further.

2.1 The Writing Process
Whenconsidering writing, we expect the user to have social
concerns beyond and complimentary to those of reading: Who
will make sure this data is stored persistently? Who will be able to
read it? Will they be allowed to re-use it, and if so under what
terms? The challenge is to ensure that these questions are
answerable, but while providing the least possible distraction from
the primary purpose of the system.

Though the graph is an aggregation of many graphs from different
sources, a simple design of a semantic web editor would be to
allow the user to edit one graph at a time. This would obviate the
need for connections betwen graphs and documents. Several
single graph editors exist including RDFAuthor[21] and IsaViz
[17]. We considered two ways to apply this working model. One
was the model in which a given single document is selected for
editing, and changes are only allowed to be made to that graph of
that document. The interface becomes a single document editor,
effectively like an HTML document editor such as Amaya [2] in
normal editing mode. Another way is to allow the entire graph to
be browsed in a read only mode, but annotations made on it and
stored on a specific annotation document. This is like the Amaya
browser operating in annotation mode. Both modes are evidently
useful, and will be considered for future work, but did not, we
feel, meet the goal of allowing the user to operate at the abstract
level of the giant global graph.

Neither single-graph solution allows the granularity necessary for
the social questions of understanding the provenance and
controlling the destiny of data; nor do they scale across a web
where anyone must be able to buy, rent, borrow or be given
storage space under all kinds of arrangements in an open market.
We decided to allow users to edit data, even if derived from
multiple sources, as simply as if it were a single graph, making
changes to different documents throughout the web.

The interface to support this approach must therefore determine
where in the web to store a user's addition to the graph. The
algorithm we chose for deciding where to store a triple is as
follows:

• When a triple is modified, the new is stored in place of
the old.

• When a triple is added, it is stored in the same place as
the triple immediately above it in the property/value list.
Successive additions with the same subject will be
consistently written to the same place.

• If a statement is added to an item which has no other
statements, if it has a URI like x#y where x is the URI of
an editable document, then the triple is added to that
document.

In general when creating a new project from scratch, a user must
be able to define a new data file and its social properties.
Currently, 'user generated content' web sites such as Google
Groups, or Facebook, provide certain specific types of policy to
meet the given application. Other projects (PAW [8][9], W3C
ACL[22]) explore the explicit expression of policies by users.
The present work, though, does not provide such facilities,
concentrating for now on the editing support. Avoiding the
complexities of access control in this version, and out of interest

in the wiki model of open collaboration, we chose to open an
experimental area of URI space, as a form of data wiki 0[5]. This
is a space of data documents which anyone may edit as linked
data using the Tabulator or compatible client.

As a test site for Tabulator, for example, within the data wiki URI
space, any URI starting with http://dig.csail.mit.edu/2007/wiki
identifies a document which is deemed to exist. A fetch to a
document which has not been previously stored returns an empty
RDF document, flagged editable by an HTTP header. Any data
added to such a document causes the actual file to be created to
hold the data. looking up for example,
http://dig.csail.mit.edu/2007/wiki/foo/fruit#Apple, if
http://dig.csail.mit.edu/2007/wiki/foo/fruit does not exist, will
return no error, and an item 'Apple' with no data. Adding
information about Apple, such that it was a Class, would cause the
directory foo and hte file fruit to be created, and a triple
<http://dig.csail.mit.edu/2007/wiki/foo/frui
t#apple> rdf:type rdfs:Class. stored in it.

3. TABULATOR INTERFACES
 To review the basic interfaces provided by the tabulator for
editing, we recall that it is is designed to support two
interconnected user modes of operation, the exploration to see
what information is available, and the gathering of similar
subgraph patterns into tables for analysis typical of tabular
applications such as spreadsheets and financial packages. The
exploration is catered to by a mode in which a given thing is
presented using a table of predicate/object pairs. In the case that
the object is something about which more is known, the user may
recursively open a nested view of its property objects in turn. This
nested hierarchical form we refer to as outline mode (see Figure
1), by analogy with outline writing systems. This is strictly a tree
view, but like many trees views is used for what is in fact a graph,
and the same node can in principle be found more than once. The
icons chosen mimic the (Mac OS X) nested directory interface,
seeking an analogy with tree-like navigation aids in web sites
which actually have many cross-links, and hierarchical file
systems which have soft links.

The user, then, explores sources by opening up related things,
occasionally refocusing by restarting a new tree at any given
point. The jump to analysis mode is made by selecting a number
of fields in outline mode, and pressing a "Find All" button. The
linked data graph is then searched for subgraphs matching the
given fields. The results form a table, and, if geospatial or time
coordinates are include in the columns, a map or a timeline
respectively. The jump back is made by selecting any item in the
analysis display and opening as a new outline mode display.

Note that whether exploring under user control in outline mode or
performing a graph-matching query, the Tabulator store looks up
the URIs of any objects which are opened in outline view, or
matched as part of a subgraph matching algorithm. It also looks
up any property and class, recursively, as ontologies help with
inference and user interface. All the data retrieved in this process
if kept in the local store.

The description of outline mode above is a slight simplification.
In fact, at each level, various styles of predicate/object table may
be available. These are called panes. If more than one is
available then they are stacked vertically and each may be turned
on an off by icon-decorated buttons. If only one is available, then
no icons are shown (see Figure 2).

ECSIAM-eprint14773 4/4

mc+www@ecs.soton.ac.uk - contact author http://eprints.ecs.soton.ac.uk/14773

Figure 2. On selecting the predicate/object list pane, it is

stacked above the already open pane.
A class has a special pane to list instances. A document may have
panes for inspecting the network transactions involved in fetching
it, its human-readable content, or its RDF content reserialized.
Other user interfaces for exploration used elsewhere include a
circles-and-arrows graph (IsaViz, Foafnaut, Object browser, etc),
which tend to be insufficiently compact on the screen for practical
quantities of data and property linked predicate/object tables
without outlining Oink, which tabulator supports as a special case.
The former could be used for selection of a subgraph query,
whereas the latter could not as only the arcs from a given node are
available on the screen at one time.

Other modes of analyzing similar datasets are many and varied,
and include the faceted browser of mSpace [20], Exhibit [7]
slideshows, photo contact sheets, and multidimensional
visualizations in the style of Tufte. These styles could all be used
just as well as the table, map and timeline modes of tabulator,
could link back just as easily to other start new explorations, and
indeed could be added as alternative views.

3.1 Types of Editing
Three forms of editing are possible in outline mode: the
modification of a object, the addition of a new object with an
existing predicate, and the addition of a new predicate/object pair
for an existing subject. Consider first the modification of an
object cell which contains a literal value. (Non-string datatypes
are not currently supported). Cell modification is done by clicking
once, or pressing Return, when a cell is highlighted. The field
becomes editable. Pressing return (etc) again causes the edit to be
committed to the appropriate destination.

3.1.1 Object Selection
If the object of the predicate/object pair in question is not a literal
value but something identified by a URI, then it may be selected
by name or by drag-and-drop. Following the goal of primarily
keeping the user at a the knowledge level rather than the

document level, it was felt that URIs should be not be seen or
typed. Whenever possible, the tabulator uses an apropriate name
for something instead of its URI. (Specifically, any suproperty of
rdfs:label is used, with preference for dc:title or foaf:name). To
refer to any thing, the user can, then, type in its name. An auto
completion dialog box allows selection of the appropriate object
without having to type the entire name. An alternative is to drag
an object from any object the tabulator view, or the URI icon from
any browser navigation bar or tabbed browsing tab. Note that in
both these cases, the system must have already have seen the thing
in question in some form. In various versions various hacks
allowed the expression of a URI explicitly if necessary, but in
general the modus operandi is to first get both things visible
somewhere before recording a relationship between them.

Figure 3. Addition of another developer. Selection of the

predicate cell causes the plus button to appear.
A special item in the dialog box is "New...". This makes up a URI
in the target document local namespace, one which the document
does not use already. This creates a new nested property/object
list (Figure 3), and the user is free to add more properties. Once a
suitable name has been added to its properties, the generated URI
is no longer visible. This creation of new nodes in a tree does
mimic outline writing aids, as the user can chose to offload
knowledge into the graph in any oder as it comes to mind,
compared to "Wizard" system of cascading forms, for example,
which force a certain sequence.

An attempt is made to restrict the items in the dialog box to be
those appropriate for a given situation. As the tabulator currently
only has limited OWL inference, without disjoint classes, it is not
easy to establish that, say, a given document is not a candidate as
a friend of a person. In fact, we note, there are currently few
ontologies such as FOAF, which declare classes as being disjoint
with other classes in other ontologies.

Consider the addition of a new value to the predicate/object table,
using the same predicate. When this is possible, when the source
of the existing property/object statement is editable by the user, a
blue plus sign shows in the predicate cell whenever it is selected.
Clicking on this icon adds a new predicate/object pair, with the
same predicate and an object selected by the user as above.

3.1.2 Predicate Selection
Now consider the need to add a new fact to the property/object
table, with a predicate not currently in the table. For this purpose,
if there is an appropriate destination, a blue plus is displayed on
the left at the end of the whole table. Pressing this causes a new
pair to be added, prompting with an auto-completion box for the
predicate, and then selecting the object as above.

In object-oriented or frame-based systems, of course, there is a
finite set of slots for any type of (software) object. This is not so
in the Semantic Web, where RDFS and sometimes OWL
constraints exist, but "Anyone can say anything about anything"
remains effectively true at the user interface. The tabulator can
prompt from a list of all the predicares it has encountered in the
session,, in data or ontologies, to as with objects, the user must

ECSIAM-eprint14773 5/5

mc+www@ecs.soton.ac.uk - contact author http://eprints.ecs.soton.ac.uk/14773

explor enough to equip themseves with the necessary predicates
before using them to write. Often there is a large set of valid
predicates. Further, some consider it bad from to use RDFS'
domain and range constrints, preferring to OWL restrictions that
for example the friend of a person should be a person, but not
constraining a non-person from having a friend. This may lead to
greater re-sue of ontologies, but it also makes it more difficult to
unclutter the interface. In future work, we would like to add
inference to include awareness of disjoint classes.

An alternative design choice which we considered and, while
unimplemented is still appealing, is to provide a form which
prompts explicitly for the properties which similar objects in the
existing data currently loaded. While the user would always have
to be able to escape into use of new predicates, much data is
repetitions, and its entry would be optmized for. In an address
book, for example, one typically uses a small set of all the very
many properties one could in principle record about a person.

3.1.3 Editing in Table Mode
Recall that the table is formed by performing a query for a graph
pattern across the graph. Row insertion involves constructing a
new subgraph which will match the query template. The
destination store for each arc is copied from that of the arc for
(arbitrarily) the last row in the table. Therefore, if a table is made
from a join of several sources, they can all be updated by adding a
new row. The operation of cell value editing, as in outline mode,
involves removing a statement and inserting a replacement in the
same document.

4. NETWORK PROTOCOL FOR
WRITING
Driving the design of the network protocol to support writing has
been desire to create a web of editable resources, and to allow the
user to naturally interact with the data without having to set up
preferences such as 'up-load addresses' or 'publish location' which
are very typical of web hosting services. A subgoal therefore was
to make the system self-configuring. To this end, we send
updates to the URI of the destination document itself. We use two
protocols, the standard WevDav [23](not completely implemented
at time of writing) and a version of SPARQL/Update [19], the
Semantic Web query language, extended to allow update.1

An HTTP server may advertise that a given document is editable
by sending an HTTP header when the document was fetched. We
noticed that servers supporting WebDAV authoring often send a
non-standard header "MS-Author-Via: WebDAV". Feeling that
one big pile was, as it were, better than two little ones, we adapted
this to send "MS-Author-Via: SPARQL" when a server supported
incremental update by SPARQL.

Other systems, such as the HTTP PUT method or the WebDAV
protocol also communicate using the URI from which the
document was read. With these systems, though, a typical editing
session involves more or less off-line editing, followed by an
explicit save user action. This can result in lost data if the client
system crashes or is closed down before the edits can be written
back. While offline/sync systems such as IMAP clearly have their
advantages when disconnected, we decided to implement a real-

1 The update extension proposed in SPARUL and

SPARQL/UPDATE is not standardized but we derive comfort
from the fact that we successfully used the intersection of the
two current proposals.

time online system with small change granularity. The goal of a
user immersed in the community knowledge would ideally allow
direct update on all collaborator's screens, and so immediate
update was a step in the right direction.

Tabulator's collaborative editing protocol is based on a server-side
document store potentially shared by many clients following a
strategy of optimistic concurrency. When any edited field loses
user focus or is changed and deemed savable, Tabulator uses the
URI of the 'appropriate destination' document to be edited as
described above. It assembles an update message to send to the
document's server. At this point, the modified field is grayed out,
and locked for user input, so no conflicting changes can be made
before the update process completes. This graying out also serves
as feedback to the user that their changes are being saved.
Tabulator submits these statements in the body of the POST
request to the URI. When an acknowledgment is received from
the server (a "200 OK" HTTP response) confirming that the
change has been made to the document, the edited field will
unlock.

If on the other hand, an error occurs, the user is alerted with a
dialog box requiring acknowlegment, and the change in the user
interface is backed out. In a collaborative environment the error
could be a user-level concurrency error that incompatible changes
have been made to the same document. However, network errors,
server unavailability, and so on, may also have to be explained to
the user. The update message, and un-graying of the field is
performed assynchronously so that the user is free to perform
more editing, possibly with several modifications pending server
acknowledgment.

The protocol builds on HTTP and SPARQL with as little arbitrary
design as possible, so as to be as uncontentious as possible, in the
hopes of wide adoption. The idea of regarding each file on a web
server as being its own SPARQL endpoint is not the typical use,
in which a single SPARQL endpoint serves one large stores
possible containing many individual graphs from different files.
However, it is quite consistent with the SPARQL design. The
extensions used for update, INSERT and DELETE take a
syntactic form based on the existing CONSTRUCT production,
and so are not particularly novel. This update protocol design also
inherits useful functionalities of HTTP implemented by the client
browser. Document permissions can be implemented and access
can be limited as specifically as for any other URI on the web,
using the standard HTTP authentication mechanisms.

This is not perfect: it would be nice to distinguish between an
empty document and non-existent one in the HTTP response, but
we would have to have a way of saying that the 'Not Found' error
was not a serious error if you are writing. It is not obvious how
many hoops the user should be made to jump though to create a
new file, whether just to reference it, or confirm their intentions,
or specifically ask to create a new file with a given URI. HTTP
PUT could of course be used for creating a new file, though the
server does not currently support it.

Also, this approach should be extended into a collaborative
system: when concurrent editing occurs, a clash may occur, and
the response form the server (or the peer-peer system) be a series
of patches from other editiors, which will cause local user roll-
back. The roll-back has been implemented, but not the patch
distribution protocol.

ECSIAM-eprint14773 6/6

mc+www@ecs.soton.ac.uk - contact author http://eprints.ecs.soton.ac.uk/14773

4.1 Current Implementation
As stated, to explore the social assumptions of a wiki at the graph
level, we set up a sandbox for anyone to create new data by
deploying a data wiki. Any RDF data field could be uploaded to
the wiki, but of course it will be reserialized, losing any comment.
The system is designed to integrate very smoothly with a filestore-
based web server. thedata is all stored in RDF files. Setting up a
read/write access to an arbitrary file should not be complicated.

Figure 4. The client side is implemented in the asynchronous
Javascript environment of a Firefox extension. A local

provenance-aware triple store aches all RDF data seen in the
session. When a change is made, the editor uses the SPARQL-

Update client
In our implementation (Figure 4) we hold the data in each
document in a file in the file system, represented in the data wiki.
Since every update request is posted its respective document URI,
the server trivially locates the destination of the update request,
parses it, and attempts to apply the update. The DIG RDF wiki
runs Apache and PHP that parses out the update payload. It
instantiates an Algae RDF store, which reads the file's contents,
applies the update, and writes the file back to generate the
document's revised edition.

5. CHALLENGES / FUTURE WORK
While we have made good progress in enabling real-time editing
of semantic web resources, a number of challenges remain that are
part of our agenda for Tabulator.

Browser integration. The integration of the tabulator data
browser-editor and the Firefox browser posed some technical
difficulties due to the assumptions that the Firefox design made.
The Firefox browser assumes that one document is displayed in
one window. As a matter of security, it makes sure that the URI
in the bar always matches that of the page being shown. This user
interface guarantee makes no sense when the URIs the user is
interested in are those of things in the graph, not items in the web.
This is one of the tensions between the user interfaces at the graph
and web level.

Updating Information. There are many ways in which the
existing implementation needs rounding out to have simply the

power that a conventional application: the handling of datatypes,
explicit or implicit; the implementation of offline working mode;
update using WebDav for those who need to source editable RDF
but have ISPs who do not support SPARQL (yet). The table view
should have the facilities of a typical spreadsheet. All views
should allow update, the map view and the time line view for
example should allow the dragging of objects whose coordinates
are editable. And so on.

Collaboration. Improving the collaborative aspects of the system
could involve the subscription by clients to streams of and
changes to any sources which currently affect the display seen by
the user. Peer-peer distribution on differences for editing of data
between local network neighbors without a common server would
be another possibility.

Predicates. We discussed above the need for better selection of
predicates and objects for user input. If the number of predicates
could be cut down to something of order 10, then a form (as a
tabulator pane) could be created for every new object, which
would mimic typical applications more easily. Obviously, the
provision of forms languages such as Xforms would allow
tailored user input experience, but we wanted in this project to
push the boundaries of what could be built up from ontologies,
with forms seeming to emphasize the application domain
boundaries which we had wished to disolve.

Social Policy. In the longer term, we are intersted in adding user
interfaces for creating an awareness of policy, in adding workflow
actions in the style of Papertrail[3]

UI/Usability. Just as there are two modes of data browsing,
exploration and analysis, there are also two modes of development
for a user interface. For a user-interface in a well-established
field, usability testing is done in order to determine whether the
user interaction can in fact be claimed to be optimal, or to
elucidate possible areas for improvement unnoticed by the
designers. Comparisons are made with comparable solutions to
find ways in which the given user interface could possibly be
improved. This is analysis mode. The alternative is exploration
mode, in which new field is being mapped out. There are few or
no comparable systems which perform the same task. The
motivation is often personal need of the developers; the list of
features requested and possible improvements is huge, and (if
open for writing) added to immediately by any new user. There
are no claims that the current interface optimal, only that much
opportunity exists for improvement. This latter is the
development mode of the Tabulator semantic web browser-editor.

Longer term developments we hope to pursue include the
prompt update of all users' displays when one user changes the
data, to make it a stronger collaborative tool. This will require
changes to the network protocols, and an upgrade of the local
store to a full Truth Maintenance System. We would like to allow
system sheets, possibly in the style of Fresnel (but for editing) to
define forms (tabulator panes) appropriate to different data
patterns.

6. Conclusion
Recent years have seen an explosion in user-generated content on
the web, which can be divided into two categories. On the one
hand, the blogs and wikis are human-readable content which
thrive by being linked together globally. On the other hand are the
social networking sites, where users add relationships between
people, but where linking is only site-wide. We set a goal to
create an editable data space not limited to a particular domain

ECSIAM-eprint14773 7/7

mc+www@ecs.soton.ac.uk - contact author http://eprints.ecs.soton.ac.uk/14773

(not just friends, photos or events), and linked across domains, to
break it open into a globally linked system linked across websites;
to make it collaboratively editable as a shared store of knowledge
and thus to bring about a step change in the power of an
individual.

We have shown that live semantic web editor is a non-trivial
design challenge, but capable of providing a collaborative editing
environment in at a level of abstraction above that of the web of
documents: the graph of things. Though the Tabulator prototype
lacks some usability features and polish, it demonstrates the
feasibility of direct editing of semantic web data across multiple
servers and interconnected domains of discourse. It does this
adapting many familiar interface metaphors from current hum
interface practice. Unlike in object oriented and frame-oriented
system, there is no fixed set of slots for each object for the user to
fill in. There are no forms: instead, we explored the balance
between ontology and existing data to help guide the user when
adding more data. Just as semantic web readers need to be aware
of the provenance of the data they read, and its social
implications, so writers must be aware of the destiny of the data
they write - and its social implications.

The system works. Its greatest value we feel is as a basis for other
things. We encourage others to experiment with different styles
of client and of server built to the same HTTP/SPARQL network
protocol. We hope to tackle many of the large set of request for
enhancement. A hope is that it will become sufficiently intuitive
for, say, a spreadsheet user to use effectively. Already at this
stage, though, we feel that the feasibility of this architecture has
been conclusively demonstrated. We have resolved a number of
design questions. We have created an application-independent
architecture in which application-specific features can be
smoothly blended. We demonstrate that there is no good reason
why the semantic web should not be collaboratively writable, such
that the fusion of the ideas of humanity and machine-processable
knowledge of machines becomes ever closer.

7. ACKNOWLEDGMENTS
8. REFERENCES
[1] Algae How To. http://www.w3.org/1999/02/26-

modules/User/Algae-HOWTO.html
[2] Amaya. http://www.w3.org/Amaya/
[3] Berners-Lee, T. PaperTrail

http://www.w3.org/DesignIssues/PaperTrail.

[4] Berners-Lee, T. Chen, Y., Chilton, L., Connolly, D.,
Dhanaraj, R., Hollenbach, J., Lerer, A., Sheets, D. Tabulator:
Exploring and Analyzing linked data on the Semantic Web.
SWUI06 Workshop at ISWC06, Athens, Georgia.

[5] Cunningham, Ward and Leuf, Bo (2001): The Wiki Way.
Quick Collaboration on the Web. Addison-Wesley

[6] Friend of a Friend (FOAF) http://www.foaf-project.org/.

[7] Huynh, D. Exhibit http://simile.mit.edu/exhibit/.
[8] Kagal, L, Berners-Lee, T., Connolly, D., Weitzner, D. Using

Semantic Web Technologies for Policy Management on the
web. AAAI 2006.

[9] Kagal, L, Berners-Lee, T., Connolly, D., Weitzner, D. Self-
describing Delegation Networks for the Web, IEEE
Workshop on Policy for Distributed Systems and Networks
(POLICY 2006).

[10] Karger, David R., Bakshi, K., Huynh, D., Quan, D., and
Sinha, V. Haystack: A General Purpose Information
Management Tool for End Users of Semistructured Data.
Conference on Innovative Database Research (CIDR) , 2005:
13--26.

[11] Karger, D. and schraefel, m.c.. The Pathetic Fallacy of RDF.
SWUI06 Workshop at ISWC06, Athens, Georgia.

[12] Kolovski, V, Katz, Y, Hendler, J., Weitzner, D. Berners-Lee,
T. Towards a Policy-Aware Web},The Semantic Web and
Policy Workshop at ISWC,2005.

[13] Lassila, O: "Browsing the Semantic Web", 17th International
Conference on Database and Expert Systems Applications
(DEXA'06), 5th International Workshop on Web Semantics,
pp.365-369, Krakow (Poland), September 2006.

[14] Linked Data Project. http://linkeddata.org.

[15] Object Browser.
http://webseitz.fluxent.com/wiki/ObjectBrowser.

[16] Open Link Software's Data Browser.
http://demo.openlinksw.com/DAV/JS/rdfbrowser/index.html.

[17] Pietriga, E. IsaViz. http://www.w3.org/2001/11/IsaViz/.
[18] Prud'hommeaux,E., Seaborne, A., eds, SPARQL Query

Language for RDF http://www.w3.org/TR/rdf-sparql-query/.

[19] Seaborne, A., Manjunath, G. SPARQL/Update: A Language
for Updating RDF Graphs. Version2: 2007-08-09.
http://jena.hpl.hp.com/~afs/SPARQL-Update.html.

[20] schraefel, m. c., Smith, D. a., Owens, A., Russell, A., Harris,
C. and Wilson, M. L. (2005) The evolving mSpace platform:
leveraging the Semantic Web on the Trail of the Memex. In
Proceedings of Hypertext, 2005, Salzburg.

[21] Steer, D. RDFAuthor.
http://rdfweb.org/people/damian/RDFAuthor/

[22] W3C ACL System. http://www.w3.org/2001/04/20-
ACLs.

[23] Whitehead, Jr., E. J. "World Wide Web Distributed
Authoring and Versioning (WEBDAV) -- An Introduction."
ACM StandardView, Vol 5., No. 1, March 1997, p. 3-8.

