
R. Meersman, Z. Tari, P. Herrero et al. (Eds.): OTM 2007 Workshops, Part I, LNCS 4805, pp. 125–135, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Semantically Resolving Type Mismatches in Scientific
Workflows

Kheiredine Derouiche and Denis A. Nicole

School of Electronics and Computer Science,
University of Southampton,

Highfield, Southampton, SO17 1BJ, UK
{kd05r,dan}@ecs.soton.ac.uk

Abstract. Scientists are increasingly utilizing Grids to manage large data sets
and execute scientific experiments on distributed resources. Scientific
workflows are used as means for modeling and enacting scientific experiments.
Windows Workflow Foundation (WF) is a major component of Microsoft’s
.NET technology which offers lightweight support for long-running workflows.
It provides a comfortable graphical and programmatic environment for the
development of extended BPEL-style workflows. WF’s visual features ease the
syntactic composition of Web services into scientific workflows but do nothing
to assure that information passed between services has consistent semantic
types or representations or that deviant flows, errors and compensations are
handled meaningfully. In this paper we introduce SAWSDL-compliant
annotations for WF and use them with a semantic reasoner to guarantee
semantic type correctness in scientific workflows. Examples from
bioinformatics are presented.

1 Introduction

Scientists often utilize computational tools and information repositories to conduct
their experiments. Such resources are being made available with programmatic access
in the form of Web services. This e-Science approach enables scientists and
researchers to work in collaboration. Grid computing builds infrastructures for e-
Science to support global distributed collaborative efforts [1]. Research and
development efforts within the Grid community have produced protocols, services,
and tools that address the challenges of the field. The Globus Toolkit [2] is an open
source set of services and software libraries that supports Grids and Grid applications.
UNICORE [3] is a system that offers a Uniform Interface to Computing Resources; it
defines a layered Grid architecture consisting of user, server and target system tier.
gLite [4] is a lightweight Grid middleware developed as part of the EGEE that
provides a full range of basic Grid services available for different scientific areas.
Scientists are ultimately interested in tools that allow them to bring together the power
of various computational and data resources, by developing and executing their own
scientific workflows. Resources are supplied by third parties and as such the
operations provided are often incompatible with each other. Resolving resource
mismatches requires the designer’s intervention, which can be a difficult and a

126 K. Derouiche and D.A. Nicole

time-consuming task for scientists. Another major problem is the inefficient handling
of failed workflows. Such complexities should be hidden by the scientific workflow
system from the user.

Web services provide the basis for distributed, service-oriented systems. Web
service standards such as WSDL provide syntactic descriptions of Web services
functionalities using XML Schemas to describe component types. They fail to capture
the semantics of complex scientific data. In this paper we propose an approach that
integrates semantics into a standard industrial workflow management system, thus
allowing the automatic detection and resolution of service mismatches in workflows
at design time.

The paper is organized as follows: In Section 2 we provide a general overview of
different workflow management systems. In Section 3 we briefly survey the enabling
technologies for Semantic Web services. In Section 4 we describe the semantic
annotations used to verify the compatibility of services during workflow composition.
In Section 5 we present our prototype tool and how it is used to detect and resolve
mismatches. In Section 6, we compare our work with existing approaches. Finally, in
Section 7 we close the paper by discussing our ongoing work and future directions.

2 Scientific Workflows

Scientific workflows are becoming an important mechanism for scientists to combine
scientific data management, analysis, simulation, and visualization tasks. Scientific
workflow’s characteristics and requirements partially overlap those of business
workflows. A detailed comparison, however, reveals some significant differences.
Business workflows operate on data that is usually stored and managed in databases,
e.g. as SQL tables. On the other hand, scientific workflows operate on large, complex,
and heterogeneous data. Scientific data is typically stored as large data files encoded
in different formats specific to a particular scientific field, e.g. the FASTA format [5]
used in bioinformatics to represent protein sequences. These data files maybe indexed
in SQL databases for management purposes. Scientific workflows can be
computationally intensive, and can produce complex data that is reused in other
workflows. Furthermore, business workflow modeling and execution approaches
often focus on control-flow and events, whereas scientific workflow systems tend to
have execution models that are much more dataflow-driven.

Several business environment workflow technologies have been developed to
support effective management of organizational processes. Efforts involved process
modeling, and workflow implementation and automation. Business Process Execution
Language for Web Services (BPEL4WS) 1.1 [6] is emerging to be an important
standard for workflow definition. It forms the basis of the forthcoming WS-BPEL 2.0
OASIS standard [7]. BPEL can be adapted for scientific and Grid services
orchestration; its limitations can be overcome by supporting standard technologies
such as WS-* specifications [8] [9].

There are several projects that aim to address different aspects of scientific
workflows. Taverna [10] provides a graphical interface for biologists and
bioinformaticians to build and execute scientific workflows in the Grid. It also
supports concurrency, making it suitable for tasks handling concurrent processing.

 Semantically Resolving Type Mismatches in Scientific Workflows 127

Windows Workflow Foundation (WF) [11] is a Microsoft technology, part of the
.NET Framework 3. The technology allows developers to define, execute, and
manage workflows. WF supports two types of workflows: sequential and state
machine. Workflows in WF comprise activities, typically implemented in a common
language runtime (CLR)-based programming language such a C# or Visual Basic®.
WF includes a set of general-purpose activities that cover most control flow
constructs. WF provides the developers with the ability to develop custom activities to
solve their domain-specific problems. Workflows can be designed using a visual
designer hosted in Visual Studio through a set of extensions. The workflow structure
can be alternatively declared in XAML, a new XML-based language. Although WF is
marketed as a tool for designing solutions to business problems, it can be easily
leveraged to develop workflows in scientific environment [12].

3 Semantic Web Services

Web services technologies aim to provide reliable, ubiquitous software
interoperability across platforms, across networks, and across organizations. Current
standard technologies for Web services such as the Web Services Description
Language (WSDL) [13] provide only a syntactic-level description of their
functionalities. Web services can be published and discovered through UDDI
descriptions, offering human oriented metadata that describes what the Web services
does, and which organization developed it. Early in 2006 IBM, SAP, and Microsoft
discontinued the UDDI Business Registry (UBR) project. The vendors are continuing
the support of UDDI standards in their products and services, e.g. Microsoft includes
UDDI services in Windows Server 2003. Web services can be invoked using common
communication protocols such as SOAP. However, the lack of machine readable
semantics necessitates human intervention for automated service discovery and
composition, thus restricting their usage in complex business domains.

Semantic Web services technology aims to enable the automation of service
discovery, composition, and invocation by augmenting Web services with rich formal
descriptions of their capabilities. The concept was proposed around 2001 [14], and the
field includes substantial efforts, such as the Web Ontology Language for Services
(OWL-S) [15], the Web Services Modeling Ontology (WSMO) [16], and Semantic
Annotations for Web Service Description Language (SAWSDL) [17].

4 Semantic Web Service Annotations

4.1 Semantic Annotations for Web Service Description Language

SAWSDL is a set of standards produced by the World Wide Web Consortium (W3C).
It is primarily based on the earlier work on WSDL-S [18]. It defines extension
attributes that can be applied to elements in both WSDL and XML Schema in order to
annotate WSDL interfaces, operations and their input and out messages. SAWSDL
semantic annotations are agnostic to the ontology or mapping language used, as long
as all the concepts can identified with URIs. SAWSDL provides two basic semantic
annotation constructs, Model References, and Schema Mappings.

128 K. Derouiche and D.A. Nicole

There exist several tools and APIs that support SAWSDL specifications.
SAWSDL4J [19] is one such API implemented in Java allowing the development of
SAWSDL based applications. It extends the WSDL4J API for WSDL1.1.
Woden4SAWSDL is a WSDL 2.0 parser, based on Apache Woden. Semantic Tools
for Web Services by IBM alphaWorks are semantics-based eclipse plug-ins for Web
service discovery, and composition. The Web services are annotated using semantic
annotations from ontologies in WSDL-S format. The tool infers the ontological
similarities of the semantic annotations associated with Web service descriptions.
SAWSDL efforts are based on the WSDL-S approach. Radiant [20] is an eclipse
plug-in that supports the creation and publication of SAWSDL service interfaces. It
also allows adding annotations to existing service descriptions in WSDL through a
graphical interface. WSMO Studio is an open source environment for WSMO; it
features an SAWSDL editor for adding semantic annotations to WSDL documents.

4.2 Model References

SAWSDL introduces the attribute modelReference, a semantic model reference from
elements in WSDL or XML Schema to concepts in a semantic model (usually an
ontology or taxonomy) via URIs. Model references can be used on WSDL interfaces,
operations, message parts, and on XML Schema elements or types. Model references
can have many uses, they can provide a classification of a WSDL interface, what a
WSDL operation does, and define the semantics of the inputs and outputs of WSDL
operations.

XML Schema describe the content of a WSDL message. They define elements
associated with a message of a WSDL operation. Operations with parameters of
primitive data types such as double or string can have different meanings, since such
types tell very little about a the functionality of usage associated with an operation using
that type. Model reference annotation associates a semantically defined concept in, for
example an OWL ontology, with the corresponding unit of structure in XML Schema.
Allowing such annotations can provide value by helping verify type compatibility
between operations of connected services. Section 5.1 provides a more detailed
description on how the annotations are used to achieve type verification semantically.

4.3 Schema Mappings

The extension attributes liftingSchemaMapping and loweringSchemaMapping are
used to address post-discovery issues in using a Web service. These annotations
define a mechanism for specifying the structural mapping of XML Schema types to
and from an ontology; such mappings can be used during invocation, particularly if
mediation is required.

Lifting schema mappings specify how XML Schema types for WSDL type
definitions are transformed to a semantic model, whereas lowering schema mappings
define how data expressed in a semantic model are translated to data expressed in an
XML document. Both mapping mechanism are agnostic to ontology languages and
mapping languages; no restriction exists over the languages that can be used. Section
5.2 describes how the schema mapping annotations are used at runtime to resolve
structural mismatches between semantically matched types.

 Semantically Resolving Type Mismatches in Scientific Workflows 129

5 Semantic Annotations in Windows Workflow Foundation

5.1 Semantic Parameter Binding in Scientific Workflows

Scientific workflows can be regarded as data-driven workflows, where structured
activities whose parameters are compatible are connected using data links. However,
this compatibility is realized on a syntactic level only, if the service descriptions are
augmented with semantic annotations the compatibility will be ensured at the
semantic level as well.

In our approach we consider SAWSDL annotations to ensure parameter
compatibility in scientific workflows. The specifications build on existing Web
services standards using only extensibility elements. The annotation mechanisms are
independent of the semantic representation language. Model references are used to
annotate WSDL components and type definitions. Annotations for interfaces and
operations provide a high level description of the service capabilities. These
annotations are mainly intended to be used in service discovery, matching, and
composition. In our approach, we focus on message and type annotations, which
provide semantic descriptions on the types of operation parameters in scientific
workflows.

In WF, the concept of data links between activities is implemented in the
ActivityBind class. This class allows the flow of data from one activity to another
within a workflow, and it is achieved through binding activity members, such as fields
or properties. The mechanism used to validate the data binding of activity properties
relies on the assignability of their runtime types. One of the activities that WF
supports is an activity for invoking Web services. Web service parameters are
exposed as properties that need to be bound to properties within the workflow or
properties of other activities. In order to connect parameters in a semantic way, we
need to overcome the limitation of the WF approach of data binding validation. To
realise the semantic binding of service parameters, we introduce a Semantic Web
service to the WF activity library. Using the semantic annotations of parameter types
in the Web services, we can automate the binding process, and ensure that connected
parameters are semantically compatible at design time.

Binding parameters semantically is based on reasoning over the ontological
concepts associated with parameter types. The reasoning process can perform
inferences leading to the recognition of semantic compatibility despite syntactic
differences. By exploiting the hierarchical structure of ontologies, the reasoning
mechanism can differentiate between two types of relations, equivalence and
subsumption. If no compatible possible binding is found for a particular parameter,
then it has to be manually bound.

Binding connects the parameters of composed Web services, e.g. serviceA and
serviceB. If the input parameters of serviceB require their values from the output
parameters of serviceA, the user has to manually bind the appropriate parameters
between the two services to enable the flow of data in this part of the workflow. If
some parameters are syntactically different, the user is not allowed to connect them.
Our mechanism will automatically bind an input parameter of serviceB to the
semantically compatible output parameter of serviceA. Semantic compatibility is
defined by the inferred relations resulting from the reasoning over associated semantic

130 K. Derouiche and D.A. Nicole

concepts. If serviceB’s input parameter is semantically equivalent to, or a subconcept
of serviceA’s input parameter, then a binding is established between the two.

5.2 Parameter Mapping at Execution Time

Model references operate at the semantic level to ensure compatible parameters are
correctly connected. In WF workflows, the task was accomplished using semantic
reasoning in order to automate the bindings of parameters. Compatible semantic
concepts can have syntactically different serializations. In order to resolve structural
mismatches between compatible parameters, the corresponding ontological concepts
need to be grounded to concrete data types. SAWSDL enables the annotation of the
type definitions of a Web service with schema mapping extension attributes. The
liftingSchemaMapping attribute defines how an XML data is transformed to semantic
data. On the other hand, loweringSchemaMapping attribute defines how data in a
semantic model is transformed to XML instance data.

When the WF workflow is executed, the appropriate schema mappings of
semantically connected parameters are used to resolve the type mismatch. Between
composed services, serviceA and serviceB, a set of parameters are semantically
bound. At execution time the evaluated value of serviceA’s output parameter is
serialized to the defined XML data and translated to the corresponding semantic data.
After a successful execution the semantic data is mapped to XML data that conforms
to the XML Schema definition of serviceB’s input parameter.

5.3 Integration and Implementation

WF’s extensibility features allows the development of custom activities to solve
domain-specific problems. We developed a new WF activity, called the Semantic
Web service (SWS) activity, which allows the semantic description of Web services
using SAWSDL documents. By integrating the SWS activity into the WF library, we
allow the composition of Semantic Web services and the semantic binding of
connected parameters. The implemented SWS activity extends the out-of-the-box
Web service activity. It can be generated using SAWSDL documents, as well as
WSDL documents.

The .NET framework provides standard .NET libraries for representing,
manipulating, reading and writing WSDL 1.1 documents. There is no current support
for WSDL 2.0 specifications, so we had to implement the SAWSDL specification for
WSDL 1.1 instead of WSDL 2.0. The SAWSDL specification was supported by an
implementation of an API that extends the provided WSDL 1.1 library. It currently
has full support for all SAWSDL specifications for WSDL 1.1, including model
reference annotations for WSDL components, such as operations and messages, as
well as XML Schema type definitions, such as XML elements and complex types.

SAWSDL does not restrict the annotation mechanism to a specific ontology
representation language. OWL or RDF are two W3C recommended standards, widely
used as representation languages for ontologies, and by adopting these standards we
gained access to a wide range of existing domain models e.g. life sciences and
healthcare. Most importantly, annotation with semantic concepts allows performing
semantic reasoning on associated types to infer the compatibility of connected

 Semantically Resolving Type Mismatches in Scientific Workflows 131

parameters. Our choice also gave us access to Jena, an open source Semantic Web
framework for Java, providing a well supported API that fully supports OWL and
RDF. The framework has various internal reasoners, but also provides support for
external reasoners such as the Pellet reasoner. A few .NET libraries do exist for the
Semantic Web such as SemWeb and Redland libraries, they provide, however, only a
partial support. In order to integrate Jena’s and Pellet’s API into our C#
implementation of the SWS activity, we used IKVM. IKVM is an implementation of
Java for the .NET framework; it includes a Java Virtual Machine implemented in
.NET, a .NET implementation of the Java class libraries, and tools that enable Java
and .NET interoperability. IKVM provides a static compiler that converts Java API to
.NET Common Intermediate Language (CIL), producing .NET Dynamic-Link
Libraries (DLL), thus giving access to the needed Jena features. The semantic binding
mechanism connects Web service parameters at design time. Semantic annotations
associated with the parameter types are used in Jena to load the appropriate semantic
models; enabling inferencing using the Pellet reasoner.

SAWSDL defines schema mappings that overcome the structural mismatch
problem between related semantic models. No restriction exists on the choice of the
mapping language. However, to comply with our choice of OWL and RDF, we
decided to choose an XSLT and SPARQL combination to support the bidirectional
mapping between WSDL XSD elements and OWL concepts. The .NET framework
does provide libraries to support XML translations technologies such as the XSLT
and XQuery specifications. Semantic data, such as RDF graphs, is queried using
SPARQL, which is supported in Jena through a query engine. Using a compiled .NET
Jena library, the structural mismatches between semantically connected parameters
are resolved by executing the associated mappings at runtime.

5.4 Applying the Semantics to Scientific Workflows

In order to assess the value of the semantic annotations for Web services, and the
binding mechanism described here, we apply our proposed approach to Web services
from the domain of bioinformatics. A large number of public Web services are
available in bioinformatics. For example, the European Bioinformatics Institute (EBI)
provides several Web services that provide access to services, such as database
retrieval and similarity searches. Using the SAWSDL framework, we will be
annotating Web services with semantic concepts from ontologies in the
bioinformatics domain. ProPreO is a Proteomics data and process provenance
ontology, and it is listed at Open Biomedical Ontologies (OBO).

Most of the key data types in bioinformatics have multiple data representation. The
inputs and outputs of most bioinformatics operations are weakly typed. In most cases,
parameters are either defined as strings or arrays of strings. Annotating parameter
types with semantic concepts from bioinformatics ontologies will provide a strong
type system where operations from different Web services can be safely composed.

The workflow in Figure 1 is intended to perform a similarity searches over
biological sequences. It finds similar sequences to a given DNA sequence. It first
retrieves the DNA sequence from the DDBJ database1, and then it searches for similar

1 http://www.ddbj.nig.ac.jp

132 K. Derouiche and D.A. Nicole

Fig. 1. Automatic binding in a bioinformatics workflow

sequences using Blast. The GetFastaDDBJEntry is an operation from the GetEntry
Web service. It takes an accession number as input and returns the retrieved DNA
sequence of FASTA format from the database. This sequence, email and database are
inputs to invoke the BlastN operation from the WSWUBlast Web service, which
returns a jobID that can be used to retrieve the aligned DNA sequences. All the
parameters of the used operations are of type string, which is a primitive type that
tells little about the nature of the parameter. We therefore annotate the DNA sequence
with the DNASequence concept. Using our implemented Semantic Web service
activity we build the workflow in Figure 1. Our semantic mechanism attempts to
automatically bind the inputs of BlastN to compatible outputs of
GetFastaDDBJEntry. Since the parameters of the two operations are both annotated
with DNASequence, a data binding is automatically established between them. The
bound parameters are both of type string, so no translation is needed since no
structural mismatch exists.

In a different scenario, the workflow can be modified to use to BlastP operation
instead, which finds similar sequences to a given protein sequence. Its input
parameter is of type string, and is annotated with the concept ProteinSequence.
Attempting the binding this time will fail since ProteinSequence is not a subclass or
an equivalent class of DNASequence.

6 Related Work

Several Grid workflow systems have been proposed and developed for defining,
managing, and executing scientific workflows [21]. Taverna is the workflow
management system for the myGrid project, which target bioinformatics workflows.
It uses a modeling language called Simple Conceptual Unified Flow Language
(SCUFL). Workflows in Taverna possess input and output data entries that can be

GetFastaDDBJEntry

database email

BlastN

accession

jobID

sequence

 Semantically Resolving Type Mismatches in Scientific Workflows 133

annotated with three types of metadata: a MIME type, a semantic type based on the
myGrid bioinformatics ontology, and a free textual description. A prototype extension
to the Taverna workbench has been developed in an attempt to detect different kinds
of mismatches between connected parameters in workflows. The prototype
implements a framework that defines layered ontologies to characterize parameter
mismatches and accordingly classifies them into several categories. An abstract
mapping approach is also proposed in order to resolve detected mismatches. The
approach does not define a practical mechanism that supports the grounding of
the semantic annotation to concrete data types to support workflow enactment. The
parameter mappings are defined as transformation functions between the connected
parameters, instead of annotations associated with the structural type of the parameter
and the corresponding semantic type. In Triana [22], data links are checked at design
time and connected parameters with incompatible data types are flagged with warning
messages. In the Kepler [23] system workflows are viewed as a composition of
components called actors. Communication between actors happens through interfaces
called ports. An object called a director defines how actors are executed and how they
communicate with each other. The system handles Web services and Grid services
incorporation into workflows, and eventually their invocation and execution. Kepler
supports the mapping of parameters that have a type mismatch, but the handled
mismatches are a subset of Taverna’s proposed extension. However, these mappings
do not make use of SPARQL to query semantic models, and instead rely solely on
XSLT and XQuery transformations.

Several efforts studied the applicability of BPEL to semantic workflows and Grid
environments. Emmerich et al., [24] present a case study where BPEL is used to
define scientific workflows, and ActiveBPEL is used as enactment engine for the
BPEL definitions. Dörnemann et al., [25] proposed an approach that extends BPEL
specification by introducing a new activity to handle the invocation of stateful
services. Custom activities, defined within a BPEL composition, cannot be reused
later in other workflow definitions. This makes workflow design a complicated task,
and with code repetition it makes the workflow unnecessarily large. On the other
hand, WF extensibility allows the definition of custom activities that can be reused
across different workflows. It also provides a visual designer that facilitates workflow
authoring and manipulation for the user. It allows the user to embed C# or Visual
Basic code in the workflow to implement simple actions. Compared to BPEL, WF is a
lightweight environment for defining, executing, and monitoring workflows.
However, neither BPEL nor WF supports checking the semantic compatibility of data
types between composed services within a workflow.

7 Future Work and Conclusions

In this paper we have showed how, using business target workflow solution, we can
develop fully qualified scientific workflows. Furthermore, we extended the
framework to support Semantic Web services and provided a mechanism that lets
users develop scientific workflows with no type mismatches by automating the data
binding between composed Web services. We have developed a prototype
implementation for the approach, and it is executable through Microsoft’s Visual

134 K. Derouiche and D.A. Nicole

Studio environment. Further optimizations are possible for the approach, which are
subject to further research.

Further development of this technology will allow us to ensure that workflows are
structured with appropriate compensations and exception handling to minimize
wasted computation in failed (deviant) workflows.

References

1. Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, San Francisco (1998)

2. The Globus Alliance. http://www.globus.org/
3. UNICORE. http://www.unicore.org/
4. EGEE > gLite. http://glite.web.cern.ch/glite/
5. FASTA Format Description. http://www.ncbi.nlm.nih.gov/blast/fasta.shtml
6. Andrews, T., Curbera, F., et al.: Business Process Execution Language for Web Services

Version 1.1. http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-
bpel.pdf

7. Barreto, C., Ballard, V., et al.: Web Services Business Execution Language Version 2.0,
Primer, OASIS (2007), http://www.oasis-open.org/committees/download.php/23964/wsbpel-
v2.0-primer.htm

8. Akram, A., Meredith, D., Allan, R.: Evaluation of BPEL to Scientific Workflows. In:
CCGRID, pp. 269–274. IEEE Computer Society, Los Alamitos (2006)

9. Tan, K.L.L., Turner, K.J.: Orchestrating Grid Services using BPEL and Globus Toolkit.
In: 7th Annual PostGraduate Symposium on the Convergence of Telecommunications,
Networking and Broadcasting, Liverpool (June 2006)

10. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T.,
Glover, K., Pocock, M., Wipat, A., Li, P.: Taverna: A Tool for the Composition and
Enactment of Bioinformatics Workflows. Bioinformatics 20(17), 3045–3054 (2004)

11. Windows Workflow Foundation (WF). http://wf.netfx3.com/
12. Paventhan, A., Takeda, K., Cox, S.J., Nicole, D.A.: Leveraging Windows Workflow

Foundation for Scientific Workflows in Wind Tunnel Applications. In: SciFlow 2006.
IEEE Workshop on Workflow and Data Flow for Scientific Applications, Atlanta, GA
(2006)

13. Chinnici, R., Moreau, J., Ryman, A., Weerawarana, S. (eds.): Web Services Description
Language (WSDL) Version 2.0 Part 1: Core Language, W3C Recommendation (26 June,
2007) www.w3.org/TR/wsdl20

14. McIlraith, S., Son, T.C., Zeng, H.: Semantic Web Services. IEEE Intelligent
Systems 16(2), 46–53 (2001)

15. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan,
S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K.: OWL-S:
Semantic Markup for Web Services, W3C Member Submission (November 2004),
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/

16. Lausen, H., Polleres, A., Roman, D.: Web Service Modelling Ontology (WSMO). W3C
Member Submission (2005), http://www.w3.org/Submission/WSMO/

17. Farrell, J., Lausen, H. (eds.): Semantic Annotations for WSDL and XML Schema, W3C
Proposed Recommendation (July 05, 2007), http://www.w3.org/TR/sawsdl/

18. Akkiraju, R., Farrell, J., et al.: Web Service Semantics – WSDL-S, W3C Member, Version
1.0. Submission (November 7, 2005), http://www.w3.org/Submission/WSDL-S/

 Semantically Resolving Type Mismatches in Scientific Workflows 135

19. SWASDL4J. http://knoesis.wright.edu/opensource/sawsdl4j/
20. Radiant. http://lsdis.cs.uga.edu/projects/meteor-s/downloads/index.php?page=1
21. Yu, J., Buyya, R.: A Taxonomy of Scientific Workflow Systems for Grid Computing.

SIGMOD Record 34(3), 44–49 (2005)
22. Taylor, I.J., Shields, M.S., Wang, I., Rana, O.F.: Triana Applications within Grid

Computing and Peer to Peer Environments. J. Grid Comput. 1(2), 199–217 (2003)
23. Ludascher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E.A., Tao,

J., Zhao, Y.: Scientific Workflow Management and the Kepler System. Concurrency and
Computation: Practice and Experience 18(10), 1039–1065 (2006)

24. Emmerich, W., Butchart, B., Chen, L., Wassermann, B., Price, S.L.: Grid Service
Orchestration using the Business Process Execution Language (BPEL). UCL-CS Research
Note RN/05/07 (June 07, 2005)

25. Dörnemann, T., Friese, T., Herdt, S., Juhnke, E., Freisleben, B.: Grid Workflow Modelling
Using Grid-Specific BPEL Extensions. In: Proceedings of German e-Science Conference,
Baden-Baden (2007)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

