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Abstract

Direct search (DS) methods are evolutionary algorithms used to solve constrained optimization problems. DS methods do not require
any information about the gradient of the objective function at hand, while searching for an optimum solution. One of such methods is
pattern search (PS) algorithm. This study presents a new approach based on a constrained pattern search algorithm to solve well-known
power system economic load dispatch problem (ELD) with valve-point effect. For illustrative purposes, the proposed PS technique has
been applied to various test systems to validate its effectiveness. Furthermore, convergence characteristics and robustness of the proposed
method has been assessed and investigated through comparison with results reported in literature. The outcome is very encouraging and
proves that pattern search (PS) is very applicable for solving power system economic load dispatch problem.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Scarcity of energy resources, increasing power genera-
tion cost and ever-growing demand for electric energy
necessitates optimal economic dispatch in today’s power
systems. The main objective of economic dispatch is to
reduce the total power generation cost, while satisfying var-
ious equality and inequality constraints. Traditionally in
ED problems, the cost function for generating units has
been approximated as a quadratic function.

A wide variety of optimization techniques have been
applied to solving economic load dispatch problems
(ELD). Some of these techniques are based on classical
optimization methods, while others use artificial intelli-
gence methods or heuristic algorithms. Many references
present the application of classical optimization methods,
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such as linear programming or quadratic programming,
to solve ELD problems [1,2]. Such classical optimization
methods are highly sensitive to staring points and often
converge to local optimum or diverge altogether. Linear
programming methods are fast and reliable, but have a dis-
advantage associated with the piecewise linear cost approx-
imation. Non-linear programming methods have known
problems of convergence and algorithmic complexity.
Newton based algorithms have difficulty with handling a
large number of inequality constraints [3]. Methods based
on artificial intelligence techniques, such as artificial neural
networks, have also been applied successfully and are
reported for example in [4,5]. Lately, many heuristic search
techniques, such as particle swarm optimization [3] and
genetic algorithms [6,7], have been considered in the con-
text of the ELD problems. Finally, hybrid methods have
been developed [8], where the conventional Lagrangian
relaxation approach, first order gradient method and
multi-pass dynamic programming are combined together.
In addition, authors in [9] have presented an alternative
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form of hybrid method to solve a valve-point ELD prob-
lem. In [9] deferential evolution (DE) was the primary opti-
mizer exploiting its global search capabilities, sequential
quadratic programming (SQP) was then employed to fine
tune the best solution provided by DE.

Recently, a particular family of global optimization
methods, introduced and developed by researchers in
1960 [10], has received a great attention, namely the direct
search methods. Direct search methods are simply struc-
tured to explore a set of points, around the current posi-
tion, looking for a point that has smaller objective value
than the current one. This family includes pattern search
(PS) algorithms, simplex methods (SM) (different from
the simplex used in linear programming), powell optimiza-
tion (PO) and others [11].

Direct search methods, as apposed to more standard
optimization methods, are often called derivative-free opti-
mization methods, as they do not require any information
about the gradient or higher derivatives of the objective
function to search for an optimal solution. Therefore direct
search methods may very well be used to solve non-contin-
ues, non-differentiable and multimodal, i.e. multiple local
optima, optimization problems. Since the economic dis-
patch is one such problem, then the proposed method
appears to be a good choice.

The main objective of this study is to introduce the use
of pattern search (PS) optimization technique to the subject
of power system economic load dispatch. In this paper, the
PS method has been employed to solve economic dispatch
problem with a valve-point effect. A valve-point effect is the
rippling effect added to the generating unit curve when each
steam admission valve in a turbine starts to open. More-
over, to assure accurate results for this model, an addi-
tional term representing the valve-point effect should be
added to the cost function [12]. The addition of the
valve-point effect poses a more challenging task to the pro-
posed method since it increases the non-linearity of the
search space as well as the number of local minima. (see
Fig. 1).

The paper is organized as follows: Section 2 introduces
the problem formulation. Section 3 presents a description
Generation

Cost

fuel cost curve with valve-point

fuel cost curve without valve-point

Fig. 1. The valve-point effect.
of the proposed PS algorithm. Analysis and test results
are presented in Section 4, followed by concluding remarks.

2. Problem formulation

The traditional formulation of the economic load dis-
patch problem is a minimization of summation of the fuel
costs of the individual dispatchable generators subject to
the real power balanced with the total load demand as well
as the limits on generators outputs. In mathematical form
the problem can be stated as:

F ¼
XN

i¼1

F iðP iÞ ð1Þ

The incremental fuel cost function of the generation units
with valve-point loading is represented as follows [6]:

F iðP iÞ ¼ aiP 2
i þ biP i þ ci þ jei � sinðfi � ðP giðminÞ � P iÞÞj

ð2Þ
Subject to

XN

i¼1

P gi ¼ P D þ P L ð3Þ

P giðminÞ < P gi < P giðmaxÞ ; i 2 N s ð4Þ

where F is the system overall cost function; N is the number
of generators in the system; di,bi,ci the constants of fuel
function of generator number i; ei, fi the constants of the
valve-point effect of generator number i; Pgi the active
power generation of generator number i; PD the total
power system demand; PL the total system transmission
losses; P giðminÞ the minimum limit on active power generation
of generator i; P giðmaxÞ the maximum limit on active power
generation of generator i; Ns the set of generators in the
system.

The sinusoidal term added to the fuel cost function
which models the valve-point effect introduces ripples to
heat-rate curve and therefore introducing more local min-
ima to the search space.

It should be noted that the system losses are ignored for
all test systems considered in this study for simplification
purposes.

3. Pattern search method

The pattern search (PS) optimization routine is an evo-
lutionary technique that is suitable to solve a variety of
optimization problems that lie outside the scope of the
standard optimization methods. Generally, PS has the
advantage of being very simple in concept, easy to imple-
ment and computationally efficient. Unlike other heuristic
algorithms, such as genetic algorithms [13,14], PS possesses
a flexible and well-balanced operator to enhance and adapt
the global and fine tune local search. A useful review of
direct search methods for unconstrained optimization is
presented in [11], where the authors give a modern perspec-
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tive on the classical family of derivative-free algorithms,
focusing on the development of direct search methods.

The pattern search (PS), algorithm proceeds by comput-
ing a sequence of points that may or may not approaches
to the optimal point. The algorithm starts by establishing
a set of points called mesh, around the given point. This
current point could be the initial starting point supplied
by the user or it could be computed from the previous step
of the algorithm. The mesh is formed by adding the current
point to a scalar multiple of a set of vectors called a pat-
tern. If a point in the mesh is found to improve the objec-
tive function at the current point, the new point becomes
the current point at the next iteration.

This maybe better explained by the following:
First, the pattern search begins at the initial point X0

that is given as a starting point by the user. At the first iter-
ation, with a scalar = 1 called mesh size, the pattern vectors
are constructed as [01], [10], [�1 0], and [0�1], they may be
called direction vectors. Then the pattern search algorithm
adds the direction vectors to the initial point X0 to compute
the following mesh points:

X 0 þ ½1 0�
X 0 þ ½0 1�
X 0 þ ½�1 0�
X 0 þ ½0 �1�

Fig. 2 illustrates the formation of the mesh and pattern vec-
tors. The algorithm computes the objective function at the
mesh points in the order shown.

The algorithm polls the mesh points by computing their
objective function values until it finds one whose value is
smaller than the objective function value of X0. If there is
such point, then the poll is successful and the algorithm sets
this point equal to X1.

After a successful poll, the algorithm steps to iteration 2
and multiplies the current mesh size by 2, (this is called the
expansion factor and has a default value of 2). The mesh at
iteration 2 contains the following points: 2*[10] + X1,
2*[01] + X1, 2*[�10] + X1and 2*[0�1] + X1. The algorithm
polls the mesh points until it finds one whose value is smal-
Fig. 2. PS mesh points and the pattern.
ler than the objective function value of X1. The first such
point it finds is called X2, and the poll is successful. Because
the poll is successful, the algorithm multiplies the current
mesh size by 2 to get a mesh size of 4 at the third iteration
because the expansion factor = 2.

Secondly, if iteration 3, (mesh size = 4), ends up being
unsuccessful poll, i.e. none of the mesh points has a smaller
objective function value than the value at X2, so the poll is
called an unsuccessful poll. In this case, the algorithm does
not change the current point at the next iteration. That is,
X3 = X2. At the next iteration, the algorithm multiplies the
current mesh size by 0.5, a contraction factor, so that the
mesh size at the next iteration is smaller. The algorithm
then polls with a smaller mesh size.

The pattern search optimization algorithm will repeat
the illustrated steps until it finds the optimal solution for
the minimization of the objective function. The algorithm
stops when any of the following conditions occurs:

• The mesh size is less than mesh tolerance.
• The number of iterations performed by the algorithm

reaches a predefined value.
• The total number of objective function evaluations per-

formed by the algorithm reaches a pre-set maximum
number of function evaluations.

• The distance between the point found at one successful
poll and the point found at the next successful poll is less
than a set tolerance.

• The change in the objective function from one successful
poll to the next successful poll is less than a function
tolerance.

The above steps and how PS evolves are depicted by the
flow chart of Fig. 3. It should be noted that all the param-
eters involved in the pattern search optimization algorithm
can be pre-defined subject to the nature of the problem
being solved.

The PS operator gives the user a great deal of control
regarding the direction of the search. After conducting a
large number of experiments for many values of expansion
and contraction factor, the best combination was found to
be 2 and 0.5 respectively, giving an average best perfor-
mance of optimal speed of computation as well as the right
direction of the search.

3.1. Constraint handling

Many ideas have been suggested to insure that the solu-
tion will satisfies the constraint [15]. For example, the con-
straint can be augmented with the objective function using
Lagrange multipliers. In this way the size of the problem
will increase by introducing new parameters. In this study,
the pattern search (PS) method handles constraints by
using augmented Lagrangian to solve the non-linear con-
strained economic dispatch problem [16–19]. The variables’
bounds and linear constraints are handled separately from
non-linear constraints. Thus a sub-problem is formulated



Table 1
Generator loading and fuel cost determined by PS with total load demand
of 850 MW

Generator Generator production (MW)

Pg1 300.2663
Pg2 149.7331
Pg3 399.9996
R Pgi = 850 MW Total cost: $8234.05

Fig. 3. Flow chart of pattern search.

Table 2
Comparison of PS, GA and EP

Evolution
method

Mean
time (s)

Best
time (s)

Mean
cost ($)

Maximum
cost ($)

Minimum
cost ($)

GAB 35.80 32.46 – – 8234.08
GAF 24.65 23.03 – – 8234.07
CEP 20.46 18.35 8235.97 8241.83 8234.07
FEP 4.45 3.79 8234.24 8241.78 8234.07
MFEB 8.00 6.31 8234.71 8241.80 8234.08
IFEP 6.78 6.11 8234.16 8234.54 8234.07
PS 0.81 0.62 8352.41 8453.00 8234.05

Minimum Costs

8234.04
8234.04
8234.05
8234.05
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Fig. 4. Minimum cost comparison.
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Fig. 5. Best execution time comparison.
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and solved, (having the objective function and non-linear
constraint function), using the Lagrangian and the penalty
factors. Such sub-problem is minimized using a pattern
search method, where that the linear constraints and
bounds are satisfied. For more explanation on how PS han-
dles constraints refer to [18,20,21].

4. Numerical results

In order to asses the effectiveness and robustness of the
proposed pattern search method, several test cases of eco-
nomic load dispatch with valve-point effect have been con-
sidered. For simplicity, transmission losses are ignored in
all test cases (PL in Eq. (3) is set to zero). The non-linear
minimization problem formulation of all test cases has
been solved using the predefined function pattern search
incorporated in the GA&DS toolbox of Matlab [21]. This
function implements the pattern search algorithm
described in Section 3. Thus, cost coefficients of the fuel
cost and the combined objective function for the consid-
ered test cases were coded in Matlab environment.

Initially, several runs have been carried out with differ-
ent values of the key parameters of PS such as the initial
mesh size and the mesh expansion and contraction factors.
In this study, the mesh size and the mesh expansion and
contraction factor are selected as 1, 2 and 0.5, respectively.
In addition, a vector of initial points, i.e. X0, was randomly
generated (each initial point is bounded within the genera-
tors limits) to provide an initial guess for the PS to proceed.
As for the stopping criteria, all tolerances were set to 10�6
and the maximum number of iterations and function eval-
uations were set to 1000. All runs have been conducted on
a modest 1 GHz Pentium 3 processor with 256 MB of
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RAM laptop computer, so the comparisons of computing
times with those given in literature should be fair.

4.1. Case I: three-generating units

This test case consists of three generating units with qua-
dratic cost function combined with the effects of valve-
point loading. The units data (upper and lower bounds)
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Fig. 7. Convergence of PS mesh siz
along with the cost coefficients for the fuel cost (a,b,c,e,
and f) for the three generators with valve-point loading
are given in [6,22].

The pattern search algorithm has been executed for 100
with different starting points to study its performance and
effectiveness. The solution of PS method and the execution
time for a 100 runs were compared with the outcome of
other evolutionary methods, for example Genetic
40 50 60 70
ation

ize: 1.5259e-005

 at iteration 8

e at iteration 9

e for the three-generating units.
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Table 3
Generator loading and fuel cost determined by PS with total load demand
of 1800 MW

Generator Generator production (MW)

Pg1 538.5587
Pg2 224.6416
Pg3 149.8468
Pg4 109.8666
Pg5 109.8666
Pg6 109.8666
Pg7 109.8666
Pg8 109.8666
Pg9 109.8666
Pg10 77.4666
Pg11 40.2166
Pg12 55.0347
Pg13 55.0347

R Pgi = 1800 MW Total cost: $17969.17
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Fig. 9. Minimum cost comparison case II.
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Fig. 10. Best execution time comparison case II.

Table 4
Comparison of PS, GA and EP

Evolution
method

Mean
time (s)

Best
time (s)

Mean
cost ($)

Maximum
cost ($)

Minimum
cost ($)

CEP 294.96 293.41 18190.32 18404.04 18048.21
FEP 168.11 166.43 18200.79 18453.82 18018.00
MFEP 317.12 315.98 18192.00 18416.89 18028.09
IFEP 157.43 156.81 18127.06 18267.42 17994.07
PS 5.88 1.65 18088.84 18233.52 17969.17
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Algorithm (GA) and Evolutionary Programming (EP),
applied to the same test system in [22]. This experimenta-
tion compares the performance of PS with the other meth-
ods in terms of dispatching cost and convergence speed.
Table 1 shows the optimal solutions determined by PS
for the three units, while the execution time and cost com-
parison are shown in Table 2. The definition of the various
methods (GAB, GAF, etc) may be found in [22].

All methods give a similar ‘best’ solution, whereas
‘mean’ and ‘maximum’ costs differ. The PS algorithm is
significantly faster than methods described in [22].
Figs. 4 and 5 compare the results of the methods in
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terms of minimum cost and best execution time,
respectively.

The convergence of optimal solution using PS is shown
in Fig. 6, where only about 22 iterations were needed to
find the optimal solution. However, PS may be allowed
to continue the search in the neighborhood of the optimal
point to increase the confidence in the result. PS stops after
44 more iteration and returns the optimal value.
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Fig. 7 depicts the mesh size through out the convergence
process. It is apparent form the figure that the mesh size
decreases until the algorithm terminates, in this case at
mesh size 1.5259e-005 which is more that the giving as
stopping criteria, thus indicating that this particular run
did not terminate using the mesh size tolerance. Fig. 7
shows that for the first 8 iteration the poll was successful
since the mesh size keeps increasing as the algorithm had
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ize for the 13-generating units.
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Table 5
Generator loading and fuel cost determined by PS with total load demand of 10,500 MW

Generator Generator production
(MW)

Generator Generator production
(MW)

Generator Generator production
(MW)

Generator Generator production
(MW)

Pg1 110.8051 Pg11 168.8008 Pg21 523.2793 Pg31 189.9989
Pg2 110.8051 Pg12 168.8008 Pg22 523.2793 Pg32 189.9989
Pg3 97.40230 Pg13 214.7606 Pg23 523.2832 Pg33 189.9989
Pg4 179.7332 Pg14 304.5204 Pg24 523.2832 Pg34 164.8036
Pg5 92.70700 Pg15 394.2801 Pg25 523.2793 Pg35 164.8036
Pg6 140.0000 Pg16 394.2801 Pg26 523.2793 Pg36 164.8036
Pg7 259.6004 Pg17 489.2801 Pg27 10.00080 Pg37 109.9989
Pg8 284.6004 Pg18 489.2801 Pg28 10.00280 Pg38 109.9989
Pg9 284.6004 Pg19 511.2817 Pg29 10.00280 Pg39 109.9989
Pg10 130.0028 Pg20 511.2817 Pg30 87.80080 Pg40 511.2817

R Pgi = 10,500 MW Total cost: $121415.14

Table 6
Comparison of PS, GA and EP

Evolution
method

Mean
time (s)

Best
time (s)

Mean
cost ($)

Maximum
cost ($)

Minimum
cost ($)

CEP 1956.93 1955.20 124793.48 126902.89 123488.29
FEP 1039.16 1037.90 124119.37 127245.59 122679.71
MFEP 2196.10 2194.70 123489.74 124356.47 122647.57
IFEP 1167.35 1165.70 123382.00 125740.63 122624.35
PS 42.98 12.66 122332.65 125486.29 121415.14
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to expand the scope of the search. This is accomplished by
multiplying the current mesh size by the expansion factor,
in this study taken as 2. This scenario continued until iter-
ation number 8 when the mesh size reached 256. At itera-
tion number 9 the mesh size decreased by half due to
multiplying the current mesh size by the contracting factor,
indicating an unsuccessful poll in the previous iteration.
This process continues until reaching one of the termina-
tion criteria.

It is worth mentioning that the mean and the maximum
costs are higher than those of the other methods, and this is
a certain drawback of the performance of PS in this test.
Moreover, it has been observed that the algorithm is quite
sensitive to the initial (starting) point and how far it is from
the global optimal solution. Fig. 8 illustrates the sensitivity
of PS where a hundred solutions were obtained by PS with
different initial values. The optimal solution has been
reached a number of times for initial points around run
number 80. The total execution time for the 100 runs was
80.75 s. Other quality answers occurred for runs between
32–40 and 84–100. However, there were also several less
successful results as illustrated in Fig. 8.

4.2. Case II: 13-generating units

This test case consists of 13-generating units with qua-
dratic cost function combined with the effects of valve-
point loading. The units data (upper and lower bounds)
along with the cost coefficients for the fuel cost (a,b,c,e,
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and f) for the 13 generators with valve-point loading are
given in [22,23].

The pattern search algorithm has been executed 50 times
with different starting points and similar comparisons as
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for Case I are summarized by Tables 3 and 4. The results
for all the ‘EP’ methods are taken from [22,21].

In this case the PS method outperforms all other algo-
rithms in terms of all costs: minimum, mean and maxi-
mum, while at the same time offering significant saving in
computing times (see Figs. 9 and 10).

The convergence of the PS algorithm is shown in
Fig. 11. As before, the search continues beyond the 70 iter-
ations (when the optimal solution has been reached) to
improve the confidence in the result. A total of 122 itera-
tions have been performed.

The dynamics of the mesh size is depicted by Fig. 12. As
before, the initial polling is successful leading to mesh size
increases, whereas subsequently the mesh size is being
reduced (with the exception of iterations 11 and 23) indicat-
ing unsuccessful polls. As in Case I, the termination criteria
for the mesh size has not been reached.

Although the PS has achieved the ‘best’ optimum only
on three occasions out of 50 runs (see Fig. 13), the overall
minimum and mean costs are still better than those
obtained by other methods. The total execution time for
50 runs is 294.06 s, which is comparable to just one run
using the other techniques.

4.3. Case III: 40-generating units

This test case consists of 40 generating units with qua-
dratic cost function combined with the effects of valve-
point loading, with full data given in [22,24]. The pattern
search algorithm has been executed for a hundred times
with different starting points and results and comparisons
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ation

alue: 121415.14

r the 40-generating units.
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with other methods are given in Tables 5 and 6,
respectively.

Figs. 14 and 15 shows the comparison of costs and best
time for all methods.

Figs. 16–18 show the convergence of the objective func-
tion, changes to mesh size and quality of the optimum
depending on the starting point. The tendencies and the
properties of the algorithm are similar to those observed
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Fig. 18. Objective function values f
when studying Case II. Overall, the PS method provides
the best minimum and mean costs of all the methods com-
pared at significant savings of computational effort. These
short computing times allow for more cases to be studied
with the aim of increasing the confidence in the final
solution.

The way that PS works is that after each successful pole
(finding a lower objective function value for the mesh
50 60 70 80 90 100
er of Run

or 100 different starting points.
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points) the algorithm expands the mesh size to assure that
there are no lower objective functions for other points in
the region. Referring to the figures that show the mesh sizes
it can be observed that the PS may reach a very large mesh
size around the current point just to prevent the method
from becoming stuck in a local minimum or a saddle point.
For example, in Fig. 17, PS goes to 256 in many iterations
rejecting all local minimums and saddle points.
5. Conclusions

This paper introduces a new approach based on pattern
search (PS) optimization to study the power system eco-
nomic dispatch with valve-point effect, which is formulated
as a constrained optimization problem. The proposed
method has been applied to three test cases. When com-
pared with evolutionary programming (EP), and in one
case also with a genetic algorithm (GA), the analysis results
have demonstrated that PS outperforms the other methods
in terms of reaching a better optimal solution and signifi-
cant reduction of computing times. On the other hand,
the PS is more sensitive to the initial guess and appears
to rely on how close the given initial point is to the global
solution. This makes the PS method possibly more suscep-
tible to getting trapped in local minima. However, the
much improved speed of computation allows for additional
searches to be made to increase the confidence in the solu-
tion. It should also be noted that GA and EP methods nor-
mally start with a population of starting points, rather than
a single initial point like the PS, thus require even more
computational effort. Overall, the PS algorithm has been
shown to be very helpful in studying optimization prob-
lems in power systems.
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