Proceedings of the 17th International Symposium on Mathematical WeAl12.4
Theory of Networks and Systems, Kyoto, Japan, July 24-28, 2006

Takagi Interpolation Problem As Time Series Modeling

Osamu Kaneko and Paolo Rapisarda

Abstract—In this paper, we consider Takagi interpolation probelm, in which a rational function interpolating given complex
pairs with norm constraint have unstable poles, as time series modeling in a behavioral framework. Here we provide a new
equivalent condition for the solvability of this problem with respect to the most powerful unfalsified model with special
structure.
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. INTRODUCTION
In this paper we consider the following problem:

Problem 1: Let N distinct points); in the open right-half plane be given,
together withN vectorsv;, and let

I, 0
J;[ . _IJ 1)

Find the smalleskt: € N andY € RP*?P[¢], U € RP*™[¢] such that
) U, Y are left coprime;

) [ UN) =Y (\i) Jui=0,1<i<N;

) YUl < 13

) Y hask singularities in the right half-plane.

a
b
c
d

This problem is the vector version of tfi@kagi interpolation problenfin the following abbreviated witiTIP), first
studied in [17] as a generalization of the Nevanlinna-Pick interpolation problem (see [4], [12], [14], [16]), in which the
denominator (i.e.Y) interpolating the given data should be a Hurwitz polynomial

The TIP and the closely related Nudel'man problem have been posed and solved in several different ways in the
course of time: in the discrete-time case as in the original version [17] (see also [13]), in the context of interpolation
with rational matrix functions as in the book [4], with the generalized Beurling-Lax approach introduced in [5]. This
paper proposed a proof based on completely different foundations than the one already known. Here, we consider this
problem in the framework of exact modeling of time-series pioneered in [19], [20] and further developed in [1], [9], [3],
[16]. We show that this problem can be considered as that of computing a special representation of the Most Powerful
Unfalsified Model (see [20]), and that the constraints on the location of the roots of the determirtaranof on the
contractivity of Y =1U in the infinity-norm can be satified if one models, besides the {fiata V;), 1 <i < N}, also
their “dualized version”, a technique introduced in [2] and applied successfully in the context of exact identification in
[9], [16].

The paper assumes that the reader is familiar with the behavioral approach to systems and control (see [15] for a
thorough introduction) and, at least for some detail of the proofs, with quadratic differential forms (for more information
on this subject, see [22]). In order to make the paper as self-contained as possible, the basics of exact modeling and
the notion of Most Powerful Unfalsified Model (MPUM) are introduced in section Il. The main result of this paper
is in section Ill, where a new proof of the Takagi result is given, and a characterization of all solution to the TIP
is established. Some examples are given in section IV. Finally, in section V we discuss some further research topics
stemming from the work presented here.

Notation. In this paper we denote the sets of real numbers Ritland the set of complex numbers with The space

of n dimensional real vectors is denoted BY, and the space afi x n real matrices, byR™>*". If A € R™*"™, then

AT € R™*™ denotes its transpose. Whenever one of the two dimensions is not specified, & silleted; so that for
example,C**® denotes the set of complex matrices wittcolumns and an unspecified number of rows. In order to
enhance readability, when dealing with a vector spltavhose elements are commonly denoted withwe use the
notationR¥ (note the typewriter font type!); similar considerations hold for matrices representing linear operators on
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such spaces. If; € R***, i =1,...,r have the same number of columns,(cbl);—;,... , denotes the matrix

Ay

Ay
If H € C¥** is an Hermitian matrix, i.eH* := HT = Hthen we define its signature to be the ordered triple
sign(H) = (v—(H),v(H),v4+(H)), wherev_(H) is the number (counting multiplicities) of negative eigenvalues of
H, vo(H) is the multiplicity of the zero eigenvalue @&f, andv, (H) is the number (counting multiplicities) of positive
eigenvalues of.

The ring of polynomials with real coefficients in the indeterminatés denoted byR[¢]; the set of two-variable
polynomials with real coefficients in the indeterminateandy is denoted byR[(, 7]. The space of alh x m polynomial
matrices in the indeterminatg¢ is denoted byR®**"[¢], and that consisting of alh x m polynomial matrices in the
indeterminateg andn by R**®[(,5]. Given a matrixR € R**®[¢], we defineR*(¢) := RT(—¢) € R™*2[¢]. If R(¢)
has complex coefficients, the®*(£) denotes the matrix obtained froR by substituting—¢ in place of¢, transposing,
and conjugating.

We denote withe¢>° (R, R?) the set of infinitely often differentiable functions frok to R?.

Il. THE MOSTPOWERFUL UNFALSIFIED MODEL

Letw; : R — RY,i=1,..., N, be given functions; for the purposes of this paper, we assumesthatt>(R, R")
for all i. Let M C 2(€")™ pe a class of models, the choice of which reflects the assumptions that the modeler wishes
to make on the structure of the phenomenon that produced thefor example linearity, time-invariance, etc.. In this
paper, we choosél = £* C 2¢7 B.RY) "the class ofinear differential behaviorsi.e. those that are the kernel of a
polynomial differential operator with constant coefficients. Formally, a%edf trajectories in¢>° (R, RY) is a linear
differential behavior if there exist® € R**™[{] such that

%:{weQZOO(R,RwHR(i)w:O} @)

where if R(¢) = Y1 Ri€?, with R; € R***, then

d d d*
R(> =Ry+Ri—+...+ Ry,

dt dt dtt’
Equivalently,*B is the set of solutions of a system of linear, constant-coefficient, differential equations. The representation
d
R = =0 3
(%) ©)

is called akernel representationf the behavior (2).
B € M is anunfalsified modefor the data set{w;};=1, .~ if w, € B for i =1,...,N. We call B* the Most
Powerful Unfalsified Mode{(MPUM) in M for the given data set, if it is unfalsified and moreover

[w; €B'i=1,...,N, B € M| = [B* C ¥

i.e. if it is the smallest behavior iM containing the data.
The time series that we consider in this paper@okynomial vector exponential functigrise. they are described by

k i
4

w(t) = g vj ﬁeacpA(t)
=1 7

wherev; € C*, 1 < j <k, andX € C. For the case of the model clag¥’ and vector-exponential time series, it can
be shown that the MPUM always exists and that it is unique (see [3]). Indeed;,l@t< i < N be vector-exponential
time series, and define

B* .= spafw; }. (4)

Observe thaBB* contains all trajectories;,1 < ¢ < N. On the other hand, any other unfalsified modelifi for the
data must contain their linear span, and therefore it must cof&jrin other words, such unfalsified model will “forbid
less” than®B*, and consequently is “less powerful” thasr.

Observe thathe MPUM of a finite set of polynomial vector exponential trajectories is always autonommus is a
finite dimensional subspace @f*. Equivalently, it can be represented as the kernel of a matrix polynomial differential
operatorR(%), with the property thafk is square and nonsingular as a polynomial matrix (see [15]).
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Of course, given trajectories, € € (R,RY), is is important to obtain a concrete representation of the MPBM
defined in (4), for example a kernel representation taking the form of (3). The following iterative algorithm to compute
a kernel representation of the MPU* for a given data sefv; exp,, }i=1,...v € €*(R,R") can be used (see [21]).
Define R_; := I, and proceed iteratively as follows féar=0,1,..., N. At stepk, define thek-th error trajectory

d
ek = Rp_1 <d ) v expy, = Rp_1(Ar)vk exp,, = erexpy,
t H—/

=€k

Now compute the polynomial matrix corresponding to a kernel representationthe MPUM forey, i.e.Ek(%)gk =0;
one possible choice faoEy, is given in [21]:

d d epel
E — Ly — Ak
k(ﬂ) dt " el
and defineRy, := EyRy_1. After N + 1 steps such algorithm producesuax w polynomial matrix Ry such that
Ry(%)w; =0 for 1 <4 < N, and moreover
d
B* =ker Ry ( )

dt

In order to see that this is indeed the case, it is useful to remember tRatdfR9:*9[¢] , i = 1,2 are two matrices
with the same number of columns, theear Rl(%) C ker Ry (%) if and only if there exists a polynomialy x ¢;
matrix I’ such thatR, = F R, (see [15]).
In the next section we will show that the algorithm illustrated above can be adapted to work in the case when the
data trajectories need to be “explained” by a model having specific metric- and stability constraints.

I1l. M AIN RESULT

We begin by showing that the Takagi interpolation problem can be cast in the framework of exact modeling developed
in [19], [20].

We associate to the dafd)\;,v;)}i—1,...n the set of vector-exponential trajectoriesexp, ; then it is easy to see
that requirementa) is equivalent toker [ U(X;) —Y'(\;) | being controllable. Requiremet) in the definition of
solution to the TIP is equivalent with

viexpy, Eker [ U(L) -Y(4)],i=1,...,N

The metric- and root location aspects of the solution to the TIP (see requirefagatsd(c) above) can be accommodated
in the MPUM framework, provided one constructs a special kernel representation for the MPUM associated to the
“dualized data”, which we now introduce.

Given the interpolation daté(\;, v;)}i=1,.. . n, We define

o= {v e C™P | v* Ju; = 0}

and thedual of v; exp,. as

v exp_y, = {vexp_jx, | v € v;'}

We also define thélualized dataD as
D := U1, n{viexp,, ,viexp_yx, } (5)

Finally, we define the notion dPick matrix associated with the dafg);, v;)}1<i<n. This is the Hermitian block-
matrix
vy Jv;

T{(M,vz’)}lg‘SN = |:W] ©

} 1<i,j<n

Now consider the following procedure:

Algorithm T
Define Ry := Ip1m;
Fori=1,... N
vj = R;_

Ulv

1
[5+A v = 0T,y (V)T Rica (6);

e end
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We now show that this algorithm produces a representation oM/ M for the dualized datd and we relate the
properties of this representation to those of the Pick matrix of the data.
Theorem 2:Assume that the Pick matrix (6) is invertible. Then the following statements are equivalent:

[1.] The Pick matrixT((x, v)}<icy = |5 _‘:KJ hask negative eigenvalues;
J1i,5=1,.

[2.] Algorithm T produces a kernel representauon of the MPUM for the dualized dat® skeffined in (5) induced
by a matrix of the form
R { -D* N ] (7)

Q P

whereD € R™*™[¢], N € R™*P[¢], Q € RP*™[¢], P € RP*P[¢] satisfy the following properties:
(a) D, P are nonsingular;
(b) QD — PN = 0;
(c) det(P) hask roots inC,;
(d) RJR* = R*JR = pp*J with p(¢) =TIV, (£ + \);
(€) |P7Qllw < 1;
(f) IN“P oo < 1.
Proof: Let us first prove(1) = (2). We will prove this by induction on the numbé¥ of vectorsv;.
For N = 1, partitionv; asv; = col(vi1,v12) with v1; € C™ andwv2 € CP, and consider the mod#; represented

in kernel form by

Ri(&) = (§+ M) pim — UlT—yi}UTJ (8)
Note that
(£ + A)viexpy, — i Tyt Vi JvLexpy, =
. v J
(M + A)viexpy, — Ul()\vllJrv/%l ) (v Jvy)expy, = 0.
Note also that ifi;- is a (m + p) x (m + p — 1) matrix such that InfiV;-) = v{-, there holds
d
(dt + M) Vitexp_x, — 1Ty, vlJV1 exp_x, = 0.

Thereforep,expy, € B, andvi- exp_x, € B1. In order to prove thaB, is the MPUM, observe that the determinant of
(8) has degrep+m, and thereforés; containsp+m independent trajectories. Since dimexp, Gvi-exp_5,) = m+p,
the claim is proved.

In order to prove that (8) satisfid2a) — (2f), partition it according to the partition af, = col(vy1, v12) as

_ (—Di§) Ny(©)
mi(©) = (Qll(g) —1%’1(5)>

(f + 5\1)[ ’U11T }Ull UllT{:i}UTQ
1 V12

9
—li2 {Ul}vll (E+ M), + 01Ty ©)

Observe thatD; and P; in (9) are row proper, and consequently nonsingugrD; — P,N; = 0 follows from
straightforward manipulations.

We now prove the claini2¢) on the number of zeros afet(P;) in the right half-plane. In order to do this, we make
some preliminary remark.

Consider that without loss of generality, we can multiply= col(vi1,v12) by a suitable constant in order to have
V{1011 — Vjov12 = £1. Then

_ V¥ V11 — v V12 _
_P, — )T Za1el o M127 12 —1
1(6) (& + A1), + via( N )" vl

(f + 5\1)[17 + ()\1 + 5\1)’1)12(:|:].)’UT2.

It is easy to see that given the structureRyf v € CP and A € C are such that?; (A\)v = 0 if and only if v is an
eigenvector ofy12(£1)v7,. Now sincevio(£1)v], is a dyad, it follows that € C? and\ € C are such thaP; (A\)v =0
if and only if v is either orthogonal to, or proportional 1g-. In the first case, the — 1 vectors orthogonal te,, are
easily seen to correspond ta\; as a singularity ofP; (¢). As for the other eigenvector af,,v},, observe that without
loss of generality it can be taken to be equaltg. Now two cases are possible. In the first ong, = 0, in which
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case the Pick matrix is positive; in this caset(P1) = (£ + A1)P, and the claim is proved. If;2 # 0, then lety be the
singularity ofdet(P;) corresponding to it, and write

0=P (v = (u+ A)viz + A1+ A)via(ED)vfv0

= (4 A)viz + (A1 4+ A1) (ED) |lvrz]Pvie.
Now assume that the Pick matrix equalsthen

p=—A— A1+ A)ora|?
which has negative real part, as we were to prove. If the Pick matrix eguglthen

p= =M+ A1+ A)org]?
and consequently

Re(n) = —Re(A1) + 2Re(Ay))|viz .
Sincevi v — viyv12 = —1, it follows ||via]|? = |lv11]|? + 1, and consequently
Re(p) = Re(A1)[—1 4 2([[on1[|* +1)] = Re(A1)(1 + 2[jvr1 [|*) > 0

as was to be proved. This concludes the proof of staterfBeint
We now prove(2d). Observe that

RiJRT = [(§+ M) Lpsm — 1 Ty 0T T [(—€ + X)L — Jon T, 0] =
(E + )\1)(—§ + )\1) — ()\1 + ;\1)U1T vl}vl + ()\1 + /\1)1}1T7}1}1}T =
(E+A)(=E+ M) (10)

The second equality df2d) can be proved analogously.

In order to prove(2e), observe that fron{2a) and (2b) follows that P, *Q; = N;D;*. Consequently, in order to
prove || P, 'Q1]lo0 < 1, it will suffice to prove thatDj (iw)D; (iw) — Ny (iw)N; (iw) > 0 for everyw € R. Note that
DiD, — NNy is the (1, 1)-block of R;JR; and, by property2e), on the imaginary axis it equals

(—iw + A1) (iw + A1) Lo,

which is positive definite for every € R. This impliesdet(D(iw)) # 0 V w € R and consequentlfP; ' Q1o < 1.
In order to prove claim2f), note thatVy (iw) Ny (iw) — P; (iw) Py (iw) is the (2, 2) block of Ry (iw)*J Ry (iw) and that
by (2e) this block is negative definite for alb € R.

This concludes the proof d2a) — (2f) for the representation (8) of the MPUM fdy = 1.

Let us now assume that the claifh) = (2) holds for a numbey of points to interpolate] < j < N — 1. In order
to prove the claim forV points we proceed as follows. We have shown above that there exists a represeRfatibn
the MPUM for viexpy, @ viexp_y, that satisfieg2a) — (2f). We will first find a congruence transformation on the
Pick matrix of the data which will make it easier to apply the inductive assumption. Then we will apply the inductive
assumption and conclude that a representalioof the MPUM for the errors satisfyinRa) — (2f) exists. Combining
the representations of the two MPUMs BSR; we obtain a representation of the MPUM fbx, and we will show that
it satisfies(2a) — (2f).

Assume now that a representation (9) of the MPUNkfpfprl@vllexp,xl has been computed, satisfyifn)—(2f).
The error vectors associated to this model are

L= (i + M) — o1 Ty ol T, 2<i<N.

We now investigate the relationship of the signature of the Pick mdyix_ y := T, ), associated with{);, v;),
2 < < N, with the signature of the matriX; <;< . Note first that for2 <, 5 < N, the (z— 1,7 —1)-th block element
of Tcicn is
o v Juy 1
N+N NN
Easy computations show that (11) equals
(i + M)y + M)
i+ A

[(5\1 + )\1)’0; — v;‘Jvlelvf]J[()\j + 5\1)’[]]' — ’Ulel'UikJ’Uj}. (11)

v Juj —vof Ju Ty Mot Jv;. (12)

Ty bT
b Toci<n
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with b := COl(%)QSZ’SN, and defineA := diag((\; + A1))2<i<n. Observe that
1 0 1 T, %"A\ (T 0
(—Alel A) Tsisy (o A )7 0 ATserenA — AVTFTA (13)

We prove now that thé2, 2) block of (13) coincides with, _, ;. In fact, the(i, j)-th block of ATh<;« yA— AT, 5T A
equals - S
N+ M)+ A1) . 1o
)\il_)fj vy Juj — v Ju T} 1111]1)]»,
and, since thesi, j)-th block of Th<;<x is given by (12), this proves the claim.
Now observe that

sigNTh<i<n) = sigN(Ty<;< ) + Sign(T1)
Let signTi<;<n) = (v—,0,v4), and observe that
if sign(71) = (0,0,1) then signTy;<x) = (v—,0,v4 — 1);
if sign(7) = (1,0,0) then signTy<;<y) = (v— — 1,0,v4)

By inductive assumption we conclude that there exists a kernel represenfdtien R>*?[¢] of the MPUM for
{v}exp,,, v/t exp_5, }a<i<n Of the form
_D/* N/*
po ()

satisfying the propertie€a) — (2f) of the Theorem, and in particuld®c), i.e. P’ hasv_ — 1 (respectivelyv_) roots
in C if sign(7y) = (1,0,0) (respectively sigfily) = (0,0, 1)).
It is easily verified that the MPUM foD is represented by

(o %)=(o %) (o %) 4
We now show that (14) satisfigga) — (2f).
In order to prove(2a), we first show thatP is nonsingular. From (14) it follows that

—P=Q'N; +P'P, (15)
By inductive assumption’ and P; are nonsingular, and consequently
—(P)'PPt = (P)T'Q - Ny P A,

Conclude from the inductive assumption taP’)~*Q’||.. < 1 and that| Ny P; ||« < 1. It follows that(P")~'PP; "
is nonsingular on the imaginary axis, and consequeftlis also nonsingular on the imaginary axis, amdortiori
nonsingular inRP*?[¢].
We now show thatD is nonsingular. Note from (14) thdd = D; D’ + Qi N’. Observe from the formula (9) that
Q1 = —Ny, and consequentlp = D; D’ — Ny N'. Now use the contractivity aNlDfl and of N’(D’)~! to show in
a manner analogous to that used for the proof of the nonsingularify, dhat D is also nonsingular. This concludes
the proof of(2a).
Claim (2b) can be proved by a straightforward computation, using equation (14) and the inductive assumption.
We now prove(2¢), the claim regarding the number of roots&ft(P) in C,. Conclude from (15) that

_P—l _ Pfl((P/)_lQ/ . N1*P171 +Ip)_1(P/)_1

and consequently that
11 1 1
det(P)  det(Py) det((P")~1Q’ - Ny P! + 1)) det(P’)
Now recall that the winding number w9 of a function f defined on the imaginary axis and admitting a meromorphic
continuation inC_. satisfies

(16)

wno(f) = (# zeros off in C,) — (# poles off in C,)
Observe that

1
wno
<det(a(P’>—1Q' “NyPCU 1,,))
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for 0 < a <1 is a continuous function af taking integer values, and consequently its value is independent Biis
and the contractivity of P')~Q’, Ny P; ! imply that

no ( ! —
det(a(P)~1Q - Ny P T +1,)
Now apply the logarithmic property of wiig to both sides of (16) and obtain

wnho (—de:()> = Wwno <det2Pl)> + wno <detiP’)> an

Now if sign(T1) = (0,0, 1) it follows that P, is Hurwitz, and consequently wr(

) =wno(det(,)) =0

et Py ) = 0. Moreover, in this case

S|gn(T2<l<N) (v—,0,v4 — 1) and by the inductive assumption we conclude that g@b;—,)) = —v_. In this case
det(P) has exactlyv_ unstable roots, as was to be proved. If $i6n = (1,0,0) then Wno(d 2 )> —1, and by

the inductive assumption Wr(om> —v_ + 1. It follows that Wno(

Claim (2d) follows easily from (14) and the inductive assumption.

In order to prove(2e), we show thatP*P — @Q*Q > 0 on the imaginary axis. Note tha&*P — Q*Q is the (2,2)
block-element of R* Rj JR1 R’. Using (2d), this element equals-p(iw)p*(iw) < 0 for all w € R. This implies
IP71Q|ls < 1. The proof of (2f) follows a similar argument, sinc& N* — P*P is the (2,2) block-element of
RiR™*JR'R;.

This concludes the proof dfl) = (2).

In order to prove the converse implication, we proceed by induction on the nuWh#rpoints to be interpolated,
showing that the model produced by the procedure is such that the number of unstable rdéet&Pofequals the
number of negative eigenvalues of the Pick maffixassociated with the data.

For N = 1, assume without loss of generality that = col(v11, v12) is such thatwi,vi; — viyv12 = £1. Consider
the model (8) and observe that

I t(P) —v_ and claim(2c¢) is proved.

S ’U’k V11 —Uﬁvlg 1
P, = (E+ M), 4 vy (1272,
1(€) (€ + M) Ip + via( I )" vt

= (5 + 5\1)[ + ()\1 + 5\ )Ulg(ﬂ:l)’UTQ

is Hurwitz if and only if the Pick matrixl} = ™ H is positive definite. The claim is thus proved far= 1. We now
assume the claim is true for all< j < N — 1 and we prove it forj = N.

In order to do this, consider first that the special representdifor the model forNV trajectories is obtained from the
model R; for v; exp,, and the modelR’ for the error trajectoriedi; (A\;)v; exp,,, 2 <i < N asR = R'R,;. Observe
that by inductive assumption, the Pick matrix of the error trajectories has as many negative eigenvalues as the number
of right half-plane singularities of thg2, 2) block-element ofR’.

We have shown in equation (17) that the number of right half-plane singulariti€s thie (2, 2) block-element ofR,
equals the number of such singularities of the corresponding block-elemétitpiis the number of such singularities
of P. Now observe thafy,,;,_,_,, the Pick matrix of the data, is congruent to the matrix on the right-hand side of
(13). The signature of this block-diagonal matrix equals the sum of the signature of the Pick Mafrixand that of
the Pick matrixTs_, . associated to the error trajectories. This completes the pro@f)of=- (1).

The special kernel representation of the MPUM Taidescribed in Theorem 2 allows us to characterize the solutions
of the TIP as follows.

Theorem 3:Assume that the Hermitian matrik; x, »,)}, .,y == [: ﬁf} ) is invertible and ha¢: negative
eigenvalues, and let (7) be the representation of the MPUNMDf@omputed W|tH"ATgor|than

Let U € RP*™[¢], Y € RP*P[¢] be left coprime. Therf U -Y | € RP*P+m)[¢] is a solution to the TIP with
det(Y) having k roots in C if and only if there existil, ®, F € R***[¢], with ®, F' Hurwitz, and||® 1| < 1,
such that

-D* N~
FIU =Y |=[1II1 -9 | 0 _p (18)
Proof: We first prove sufficiency. Let/ € RP*™[¢], Y € RP*P[¢] be given such that they are left coprime, and
(18) holds for somdl € RP*™[¢], & € RP*P[¢], F € RP*P¢] such that|® 1| < 1 and ®, F are Hurwitz.
Consider that?’ [ U -Y ] is a left multiple of a kernel representation of the MPUM r and consequently it is
unfalsified onD. It follows that
FO) [ UN) =Y(X) Jui =0,

1 < i < N. Conclude from the fact thak' is Hurwitz that this implies] U(X;)) —Y(X\;) Jv; =0,1<i < N, so
that [ U —Y ] is an unfalsified model fow; exp,,, 1 < i < N. The fact that|Y "'U| . < 1 follows from the
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J-unitariness of? and from the assumption tha® 11|, < 1. Finally, the claim on the number of roots &fin C.,
can be justified observing that
~FY =1IN* + ®P = &(® 'IIN*P' +1,)P

or equivalently
Y lFl = p Y@ iIN P 4 1)l
and consequentl
aHenty 1 11 1 1
det(F) det(Y)  det(®) det(P) det(®—TIN*P~1 + I,)

It follows from the fact that® and ' are Hurwitz that Wn()ﬁ(m) =0= wno(ﬁ@)). It follows from the fact that
@710l < 1 and that||P~!N*||« < 1, that wnqdet(q),lml,*P,lﬂp)) = (. Conclude that the number of roots of
det(Y) in C, equals the number of roots dit(P) in C_; the latter is exactlyt, the number of negative eigenvalues
of the Pick matrix of the data. Sufficiency is thus proved.

In order to prove necessity, we proceed as follows. Uet RP*™[¢], Y € RP*P[{] constitute a solution of the
TIP. ChooseF € RP*P[¢] so thatF [ U —Y | also models the trajectories"exp_5 , 1 < i < N besides the
trajectoriesv; exp,,, 1 < i < N. Observe that" can be chosen to be Hurwitz, sin¢eU -Y } already models
v;exp,,, 1 <i < N. Conclude from the fact tha’ [ U —Y | modelsD and from the fact that a representation of
the MPUM for D is given, that there exidl, ® € R***[¢] such that (18) holds. We now prove the claim regarding the
contractivity of ®'II and the Hurwitzianity of®.

Contractivity follows easily from the/-unitariness ofR and from the contractivity ot U, since

FT(—iw)(UT (—iw)U (iw) — )’jj(——iUJ)}’(iuJ))l7(icu)_
= (7 (—iw)(iw) — T (—iw)®(iw)) X, (—iw + ;) (iw — \;)

is negative definite for alb € R if and only if IT7 (—iw)(iw) — ®T (—iw)®(iw) < 0. The claim on the Hurwitzianity
of ¢ follows from 1 1 1 1 1

T det(F) det(Y)  det(®) det(P) det(® TIN*P~1 + I,

and consequently
1 1 1 1

wnol g W Gy = W ey TV Gy
~————
=0 =—k =—k
+wno( !
det(®@—ITIN*P-1 + I,)
=0
The proof of the Theorem is thus complete. [ ]

The following conclusion can be drawn easily from the results of Theorem 2 and Theorem 3.
Corollary 4: The smallestt for which the Takagi interpolation problem has a solution is the number of negative
eigenvalues of the Pick matrik;x, v,)}, << -

IV. EXAMPLES
Example 5:Consider the (frequency, vector) pairs

e =([4]) eam=(6[ 3]) = (o] 2]

corresponding to the Pick matrix

—_

_13 4 43
P e 1
a3 1 8
10 11 4

whose eigenvalues ar¥.7039, —2.78503, 0.00614669. We conclude that there exists a solution of the TIP with
unstable pole.
The model for the first point is
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As was to be expected from the fact that the Pick matrix correspondifg;t@;) is negative definite, thé2, 2) entry
has a singularity inC.
The vector corresponding to the first error trajectoryjs= R;v2, with corresponding kernel representation

, _ 357725 £ - 352920
Ry(€) = { L850 357 684?5 }
11687 11687

Conclude that a kernel representation of the MPUM for the first two trajectories and their duals is

18020 4005 2 24
— - S5 T¢ —255(50 + 163¢) }
R = R! R _ 899 899 5
Observe that th¢2, 2) entry of Ry has a positive and a negative real root, as was to be expected from the fact that the
2 x 2 principal submatrix of the Pick matrix has one negative7z736r;<2j one positive eigenvalue.

The third error trajectory is associated with the veatbr= | ,§43; |. It can be shown that a kernel representation

. . - 899
corresponding to this vector is induced by
, _ 3288520930 +€ 1811777072
r) = | T b |
457403109 457403109
Conclude that a kernel representation of the MPUM for the given daf, (§) R2(€), given by
70632200+ 14867334 —5924615¢24508791¢° —40(887836—605418£+4967£2)
508791 508791 ;
40(887836—605418£+4967£2) 70632200+ 148673346 —5924615¢24+508791£°

508791 508791

Observe that the roots of thg, 2) element ofR3 are2.27811, —6.9613 + 3.53247i.
Example 6:We solve a problem witn = 1 andp = 2. Consider the (frequency, vector) pairs

6 12 20
()\1,1}1) = 47 -7 (/\27’02) = 5, -9 ()\3,’1}3) = 5, —11
-1 —14 —17
which correspond to the Pick matrix
_67 _145 _ 712
_idbs a8 g
_f %y
5 11 6

This matrix has eigenvalues38.5789, 7.69355, 0.0020285. Consequently, we expect a representation of the MPUM
with a (1,1) block element having one singularity (i, .
The kernel representation corresponding to the first trajectory and its dual is

412 168 264
Zlz + g 165 202
Ties™ 1% s
8 sl ¢
67 67 67

Proceeding with the application of Algorithm T, we obtain as kernel representation of the MPUM a matrix (@h®se
block-element is

—172135092043763007528£ +607391445¢2+35405647¢> 330(—3178103244310493£+289807¢2)
35405647 2 35405647
330(—26518552+4320147£+289807¢2) —11040998520+4339543928£+647295195¢% 4+ 35405647£3
35405647 35405647

The determinant of such matrix is
—58053.9 — 17244.7¢ + 6638.14£2 + 3467.99¢% + 535.189¢* + 35.4375¢° + &6

which has roots in
—6,—5,—4,—11.3835 £ 8.83631:

and one in2.32962.
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V. CONCLUSIONS AND FURTHER WORK

In this paper we have given a new proof of Takagi's result about metric interpolation problems associated with a
non-sign-definite Pick matrix. Our approach consists essentially in the use of the interpolation as time-series modeling
framework introduced in [3] and further refined in [1], [9], [16]. The work presented in this paper is being extended in
several directions, most notably the following ones.

State-space formulas: The state-space case is a special case of the results presented in this paper; however, deriving
explicit state-space formulas is a task deserving interest in its own right. In this respect, see also [7].

Generalizations: The most pressing generalization of the results presented in this paper is a discussgubgpdce
version of the problem, in which the data involve subspages the sense that one looks for left copriffiec R?*P[¢],

U € RP*™[¢] with det(Y) having k singularities in the right half-plane and ~'U||., < 1, such that

[UN) =Y (N) Jo=0,

forallv e V;, 1 <i < N. See [16] for a discussion of the Nevanlinna interpolation problem from this point of view.
Applications: We are in the process of using the machinery illustrated in this paper in order to attack the problem of

stabilization with dissipative controllerformulated as follows. Lef be as in (1), and |e® be a controllable behavior.

Let B, be a stable, autonomous subspaceXofrepresenting the desired behavior after interconnection with some

controller €. Does there exist d-dissipative controlle such that¢ N9 = 9B,.? Assuming such a controller exists,

how many unstable poles does the transfer function associated with the controllable @drawe? It is expected that

the particular kernel representation obtained through Algorithm T can provide significant insight in the solution of this

problem. See also [6], [8], [10], [11], [18] for the use of interpolation methods in controller design.
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