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Abstract— In this paper, we consider Takagi interpolation probelm, in which a rational function interpolating given complex
pairs with norm constraint have unstable poles, as time series modeling in a behavioral framework. Here we provide a new
equivalent condition for the solvability of this problem with respect to the most powerful unfalsified model with special
structure.
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I. I NTRODUCTION

In this paper we consider the following problem:

Problem 1: LetN distinct pointsλi in the open right-half plane be given,
together withN vectorsvi, and let

J :=
[

Im 0
0 −Ip

]
(1)

Find the smallestk ∈ N and Y ∈ Rp×p[ξ], U ∈ Rp×m[ξ] such that
(a) U , Y are left coprime;
(b)

[
U(λi) −Y (λi)

]
vi = 0, 1 ≤ i ≤ N ;

(c) ‖Y −1U‖∞ < 1;
(d) Y hask singularities in the right half-plane.

This problem is the vector version of theTakagi interpolation problem(in the following abbreviated withTIP), first
studied in [17] as a generalization of the Nevanlinna-Pick interpolation problem (see [4], [12], [14], [16]), in which the
denominator (i.e.,Y ) interpolating the given data should be a Hurwitz polynomial1.

The TIP and the closely related Nudel‘man problem have been posed and solved in several different ways in the
course of time: in the discrete-time case as in the original version [17] (see also [13]), in the context of interpolation
with rational matrix functions as in the book [4], with the generalized Beurling-Lax approach introduced in [5]. This
paper proposed a proof based on completely different foundations than the one already known. Here, we consider this
problem in the framework of exact modeling of time-series pioneered in [19], [20] and further developed in [1], [9], [3],
[16]. We show that this problem can be considered as that of computing a special representation of the Most Powerful
Unfalsified Model (see [20]), and that the constraints on the location of the roots of the determinant ofY and on the
contractivity ofY −1U in the infinity-norm can be satified if one models, besides the data{(λi,Vi), 1 ≤ i ≤ N}, also
their “dualized version”, a technique introduced in [2] and applied successfully in the context of exact identification in
[9], [16].

The paper assumes that the reader is familiar with the behavioral approach to systems and control (see [15] for a
thorough introduction) and, at least for some detail of the proofs, with quadratic differential forms (for more information
on this subject, see [22]). In order to make the paper as self-contained as possible, the basics of exact modeling and
the notion of Most Powerful Unfalsified Model (MPUM) are introduced in section II. The main result of this paper
is in section III, where a new proof of the Takagi result is given, and a characterization of all solution to the TIP
is established. Some examples are given in section IV. Finally, in section V we discuss some further research topics
stemming from the work presented here.
Notation. In this paper we denote the sets of real numbers withR, and the set of complex numbers withC. The space
of n dimensional real vectors is denoted byRn, and the space ofm× n real matrices, byRm×n. If A ∈ Rm×n, then
AT ∈ Rn×m denotes its transpose. Whenever one of the two dimensions is not specified, a bullet• is used; so that for
example,C•×n denotes the set of complex matrices withn columns and an unspecified number of rows. In order to
enhance readability, when dealing with a vector spaceR• whose elements are commonly denoted withw, we use the
notationRw (note the typewriter font type!); similar considerations hold for matrices representing linear operators on
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such spaces. IfAi ∈ R•×•, i = 1, . . . , r have the same number of columns, col(Ai)i=1,...,r denotes the matrix



A1

...
Ar




If H ∈ Cw×w is an Hermitian matrix, i.e.H∗ := H̄T = H,then we define its signature to be the ordered triple
sign(H) = (ν−(H), ν0(H), ν+(H)), whereν−(H) is the number (counting multiplicities) of negative eigenvalues of
H, ν0(H) is the multiplicity of the zero eigenvalue ofH, andν+(H) is the number (counting multiplicities) of positive
eigenvalues ofH.

The ring of polynomials with real coefficients in the indeterminateξ is denoted byR[ξ]; the set of two-variable
polynomials with real coefficients in the indeterminatesζ andη is denoted byR[ζ, η]. The space of alln×m polynomial
matrices in the indeterminateξ is denoted byRn×m[ξ], and that consisting of alln × m polynomial matrices in the
indeterminatesζ and η by Rn×m[ζ, η]. Given a matrixR ∈ Rn×m[ξ], we defineR∗(ξ) := RT (−ξ) ∈ Rm×n[ξ]. If R(ξ)
has complex coefficients, thenR∗(ξ) denotes the matrix obtained fromR by substituting−ξ in place ofξ, transposing,
and conjugating.

We denote withC∞(R,Rq) the set of infinitely often differentiable functions fromR to Rq.

II. T HE MOST POWERFUL UNFALSIFIED MODEL

Let wi : R → Rw, i = 1, . . . , N , be given functions; for the purposes of this paper, we assume thatwi ∈ C∞(R,Rw)
for all i. Let M ⊆ 2(Cw)R be a class of models, the choice of which reflects the assumptions that the modeler wishes
to make on the structure of the phenomenon that produced thewi’s: for example linearity, time-invariance, etc.. In this
paper, we chooseM = Lw ⊆ 2C∞(R,Rw), the class oflinear differential behaviors, i.e. those that are the kernel of a
polynomial differential operator with constant coefficients. Formally, a setB of trajectories inC∞(R,Rw) is a linear
differential behavior if there existsR ∈ R•×w[ξ] such that

B =
{

w ∈ C∞(R,Rw) | R
(

d

dt

)
w = 0

}
(2)

where if R(ξ) =
∑L

i=0 Riξ
i, with Ri ∈ R•×w, then

R

(
d

dt

)
= R0 + R1

d

dt
+ . . . + RL

dL

dtL
.

Equivalently,B is the set of solutions of a system of linear, constant-coefficient, differential equations. The representation

R

(
d

dt

)
w = 0 (3)

is called akernel representationof the behavior (2).
B ∈ M is an unfalsified modelfor the data set{wi}i=1,...,N if wi ∈ B for i = 1, . . . , N . We call B∗ the Most

Powerful Unfalsified Model(MPUM) in M for the given data set, if it is unfalsified and moreover

[wi ∈ B′, i = 1, . . . , N, B′ ∈M] =⇒ [B∗ ⊆ B′]

i.e. if it is the smallest behavior inM containing the data.
The time series that we consider in this paper arepolynomial vector exponential functions, i.e. they are described by

w(t) =
k∑

j=1

vj
tj

j!
expλ(t)

wherevj ∈ Cw, 1 ≤ j ≤ k, andλ ∈ C. For the case of the model classLw and vector-exponential time series, it can
be shown that the MPUM always exists and that it is unique (see [3]). Indeed, letwi, 1 ≤ i ≤ N be vector-exponential
time series, and define

B∗ := span{wi}. (4)

Observe thatB∗ contains all trajectorieswi,1 ≤ i ≤ N . On the other hand, any other unfalsified model inLw for the
data must contain their linear span, and therefore it must containB∗; in other words, such unfalsified model will “forbid
less” thanB∗, and consequently is “less powerful” thanB∗.

Observe thatthe MPUM of a finite set of polynomial vector exponential trajectories is always autonomous, i.e. it is a
finite dimensional subspace ofLw. Equivalently, it can be represented as the kernel of a matrix polynomial differential
operatorR( d

dt ), with the property thatR is square and nonsingular as a polynomial matrix (see [15]).
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Of course, given trajectorieswi ∈ C∞(R,Rw), is is important to obtain a concrete representation of the MPUMB∗

defined in (4), for example a kernel representation taking the form of (3). The following iterative algorithm to compute
a kernel representation of the MPUMB∗ for a given data set{vi expλi

}i=1,...,N ⊆ C∞(R,Rw) can be used (see [21]).
DefineR−1 := Iq and proceed iteratively as follows fork = 0, 1, . . . , N . At stepk, define thek-th error trajectory

εk := Rk−1

(
d

dt

)
vk expλk

= Rk−1(λk)vk︸ ︷︷ ︸
:=ek

expλk
= ek expλk

Now compute the polynomial matrix corresponding to a kernel representationEk of the MPUM forεk, i.e.Ek( d
dt )εk = 0;

one possible choice forEk is given in [21]:

Ek

(
d

dt

)
=

d

dt
Iw − λk

ekeT
k

‖ek‖2
and defineRk := EkRk−1. After N + 1 steps such algorithm produces aw × w polynomial matrixRN such that
RN ( d

dt )wi = 0 for 1 ≤ i ≤ N , and moreover

B∗ = ker RN

(
d

dt

)
.

In order to see that this is indeed the case, it is useful to remember that ifRi ∈ Rgi×q[ξ] , i = 1, 2 are two matrices
with the same number of columns, thenker R1( d

dt ) ⊆ ker R2

(
d
dt

)
if and only if there exists a polynomialg2 × g1

matrix F such thatR2 = FR1 (see [15]).
In the next section we will show that the algorithm illustrated above can be adapted to work in the case when the

data trajectories need to be “explained” by a model having specific metric- and stability constraints.

III. M AIN RESULT

We begin by showing that the Takagi interpolation problem can be cast in the framework of exact modeling developed
in [19], [20].

We associate to the data{(λi, vi)}i=1,...,N the set of vector-exponential trajectoriesvi expλi
; then it is easy to see

that requirement(a) is equivalent toker
[

U(λi) −Y (λi)
]

being controllable. Requirement(b) in the definition of
solution to the TIP is equivalent with

vi expλi
∈ ker

[
U( d

dt ) −Y ( d
dt )

]
, i = 1, . . . , N

The metric- and root location aspects of the solution to the TIP (see requirements(a) and(c) above) can be accommodated
in the MPUM framework, provided one constructs a special kernel representation for the MPUM associated to the
“dualized data”, which we now introduce.

Given the interpolation data{(λi, vi)}i=1,...,N , we define

v⊥i := {v ∈ Cm+p | v∗Jvi = 0}
and thedual of vi expλi

as
v⊥i exp−λ̄i

:= {v exp−λ̄i
| v ∈ v⊥i }

We also define thedualized dataD as

D := ∪i=1,...,N{vi expλi
, v⊥i exp−λ̄i

} (5)

Finally, we define the notion ofPick matrix associated with the data{(λi, vi)}1≤i≤N . This is the Hermitian block-
matrix

T{(λi,vi)}1≤i≤N
:=

[
v∗i Jvj

λ̄i + λj

]

1≤i,j≤n

(6)

Now consider the following procedure:

Algorithm T
• DefineR0 := Ip+m;
• For i = 1, . . . , N
• v′i := Ri−1(λi)vi;

• Ri(ξ) :=
[
(ξ + λ̄i)Ip+m − v′iT

−1
{(λi,v′i)}(v

′
i)
∗J

]
Ri−1(ξ);

• end;
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We now show that this algorithm produces a representation of theMPUM for the dualized dataD and we relate the
properties of this representation to those of the Pick matrix of the data.

Theorem 2:Assume that the Pick matrix (6) is invertible. Then the following statements are equivalent:
[1.] The Pick matrixT{(λi,vi)}1≤i≤N

:=
[

v∗i Jvj

λ̄i+λj

]
i,j=1,...,n

hask negative eigenvalues;

[2.] Algorithm T produces a kernel representation of the MPUM for the dualized data setD defined in (5) induced
by a matrix of the form

R :=
[ −D∗ N∗

Q −P

]
(7)

whereD ∈ Rm×m[ξ], N ∈ Rm×p[ξ], Q ∈ Rp×m[ξ], P ∈ Rp×p[ξ] satisfy the following properties:
(a) D, P are nonsingular;
(b) QD − PN = 0;
(c) det(P ) hask roots inC+;
(d) RJR∗ = R∗JR = pp∗J with p(ξ) = ΠN

i=1(ξ + λ̄i);
(e) ‖P−1Q‖∞ < 1;
(f) ‖N∼P−1‖∞ < 1.

Proof: Let us first prove(1) ⇒ (2). We will prove this by induction on the numberN of vectorsvi.
For N = 1, partition v1 asv1 = col(v11, v12) with v11 ∈ Cm andv12 ∈ Cp, and consider the modelB1 represented

in kernel form by
R1(ξ) := (ξ + λ̄1)Ip+m − v1T

−1
{v1}v

∗
1J (8)

Note that

(
d

dt
+ λ̄1)v1expλ1 − v1T

−1
{v1}v

∗
1Jv1 expλ1

=

(λ1 + λ̄1)v1expλ1 − v1(
v∗1Jv1

λ1 + λ̄1
)−1(v∗1Jv1)expλ1 = 0.

Note also that ifV ⊥
1 is a (m + p)× (m + p− 1) matrix such that Im(V ⊥

1 ) = v⊥1 , there holds

(
d

dt
+ λ̄1)V ⊥

1 exp−λ̄1
− v1T

−1
{v1}v

∗
1JV ⊥

1 exp−λ̄1
= 0.

Therefore,v1expλ1 ∈ B1 andv⊥1 exp−λ̄1
∈ B1. In order to prove thatB1 is the MPUM, observe that the determinant of

(8) has degreep+m, and thereforeB1 containsp+m independent trajectories. Since dim(v1expλ1⊕v⊥1 exp−λ̄1
) = m+p,

the claim is proved.
In order to prove that (8) satisfies(2a)− (2f), partition it according to the partition ofv1 = col(v11, v12) as

R1(ξ) :=
(−D∗

1(ξ) N∗
1 (ξ)

Q1(ξ) −P1(ξ)

)

:=

(
(ξ + λ̄1)Im − v11T

−1
{v1}v

∗
11 v11T

−1
{v1}v

∗
12

−v12T
−1
{v1}v

∗
11 (ξ + λ̄1)Ip + v12T

−1
{v1}v

∗
12

)
(9)

Observe thatD1 and P1 in (9) are row proper, and consequently nonsingular.Q1D1 − P1N1 = 0 follows from
straightforward manipulations.

We now prove the claim(2c) on the number of zeros ofdet(P1) in the right half-plane. In order to do this, we make
some preliminary remark.

Consider that without loss of generality, we can multiplyv1 = col(v11, v12) by a suitable constant in order to have
v∗11v11 − v∗12v12 = ±1. Then

−P1(ξ) = (ξ + λ̄1)Ip + v12(
v∗11v11 − v∗12v12

λ1 + λ̄1
)−1v∗12

= (ξ + λ̄1)Ip + (λ1 + λ̄1)v12(±1)v∗12.

It is easy to see that given the structure ofP1, v ∈ Cp and λ ∈ C are such thatP1(λ)v = 0 if and only if v is an
eigenvector ofv12(±1)v∗12. Now sincev12(±1)v∗12 is a dyad, it follows thatv ∈ Cp andλ ∈ C are such thatP1(λ)v = 0
if and only if v is either orthogonal to, or proportional tov12. In the first case, thep− 1 vectors orthogonal tov12 are
easily seen to correspond to−λ̄1 as a singularity ofP1(ξ). As for the other eigenvector ofv12v

∗
12, observe that without

loss of generality it can be taken to be equal tov12. Now two cases are possible. In the first one,v12 = 0, in which
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case the Pick matrix is positive; in this casedet(P1) = (ξ + λ1)p, and the claim is proved. Ifv12 6= 0, then letµ be the
singularity ofdet(P1) corresponding to it, and write

0 = P1(µ)v12 = (µ + λ̄1)v12 + (λ1 + λ̄1)v12(±1)v∗12v12

= (µ + λ̄1)v12 + (λ1 + λ̄1)(±1)‖v12‖2v12.

Now assume that the Pick matrix equals1; then

µ = −λ̄1 − (λ1 + λ̄1)‖v12‖2

which has negative real part, as we were to prove. If the Pick matrix equals−1, then

µ = −λ̄1 + (λ1 + λ̄1)‖v12‖2

and consequently
Re(µ) = −Re(λ̄1) + 2Re(λ̄1))‖v12‖2.

Sincev∗11v11 − v∗12v12 = −1, it follows ‖v12‖2 = ‖v11‖2 + 1, and consequently

Re(µ) = Re(λ̄1)[−1 + 2(‖v11‖2 + 1)] = Re(λ̄1)(1 + 2‖v11‖2) > 0

as was to be proved. This concludes the proof of statement(2c).
We now prove(2d). Observe that

R1JR∗1 = [(ξ + λ̄1)Ip+m − v1T
−1
{v1}v

∗
1J ]J [(−ξ + λ1)Ip+m − Jv1T

−1
{v1}v

∗
1 ] =

(ξ + λ̄1)(−ξ + λ1)J − (λ1 + λ̄1)v1T
−1
{v1}v

∗
1 + (λ1 + λ̄1)v1T

−1
{v1}v

∗
1 =

(ξ + λ̄1)(−ξ + λ1)J. (10)

The second equality of(2d) can be proved analogously.
In order to prove(2e), observe that from(2a) and (2b) follows that P−1

1 Q1 = N1D
−1
1 . Consequently, in order to

prove ‖P−1
1 Q1‖∞ < 1, it will suffice to prove thatD∗

1(iω)D1(iω) − N∗
1 (iω)N1(iω) > 0 for everyω ∈ R. Note that

D∗
1D1 −N∗

1 N1 is the (1, 1)-block of R1JR∗1 and, by property(2e), on the imaginary axis it equals

(−iω + λ̄1)(iω + λ1)Im,

which is positive definite for everyω ∈ R. This impliesdet(D(iω)) 6= 0 ∀ ω ∈ R and consequently‖P−1
1 Q1‖∞ < 1.

In order to prove claim(2f), note thatN1(iω)N∗
1 (iω)−P ∗1 (iω)P1(iω) is the(2, 2) block of R1(iω)∗JR1(iω) and that

by (2e) this block is negative definite for allω ∈ R.
This concludes the proof of(2a)− (2f) for the representation (8) of the MPUM forN = 1.
Let us now assume that the claim(1) ⇒ (2) holds for a numberj of points to interpolate,1 ≤ j ≤ N − 1. In order

to prove the claim forN points we proceed as follows. We have shown above that there exists a representationR1 of
the MPUM for v1expλ1 ⊕ v⊥1 exp−λ̄1

that satisfies(2a) − (2f). We will first find a congruence transformation on the
Pick matrix of the data which will make it easier to apply the inductive assumption. Then we will apply the inductive
assumption and conclude that a representationR′ of the MPUM for the errors satisfying(2a)− (2f) exists. Combining
the representations of the two MPUMs asR′R1 we obtain a representation of the MPUM forD, and we will show that
it satisfies(2a)− (2f).

Assume now that a representation (9) of the MPUM forv1expλ1⊕v⊥1 exp−λ̄1
has been computed, satisfying(2a)−(2f).

The error vectors associated to this model are

v′i := (λi + λ̄1)vi − v1T
−1
1 v∗1Jvi, 2 ≤ i ≤ N.

We now investigate the relationship of the signature of the Pick matrixT ′2≤i≤N := T{(λi,v′i)} associated with(λi, v
′
i),

2 ≤ i ≤ N , with the signature of the matrixT1≤i≤N . Note first that for2 ≤ i, j ≤ N , the(i−1, j−1)-th block element
of T ′2≤i≤N is

v′∗i Jv′j
λ̄i + λj

=
1

λj + λ̄i
[(λ̄i + λ1)v∗i − v∗i Jv1T

−1
1 v∗1 ]J [(λj + λ̄1)vj − v1T

−1
1 v∗1Jvj ]. (11)

Easy computations show that (11) equals

(λ̄i + λ1)(λj + λ̄1)
λ̄i + λj

v∗i Jvj − v∗i Jv1T
−1
1 v∗1Jvj . (12)

Partition nowT1≤i≤N as (
T1 b̄T

b T2≤i≤N

)
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with b := col( v∗i Jv1

λ̄i+λ1
)2≤i≤N , and define∆ := diag((λ̄i + λ1))2≤i≤N . Observe that

(
1 0

−∆bT−1
1 ∆

)
T1≤i≤N

(
1 −T−1

1 b̄T ∆̄
0 ∆̄

)
=

(
T1 0
0 ∆T2≤i≤N ∆̄−∆bT−1

1 b̄T ∆̄

)
(13)

We prove now that the(2, 2) block of (13) coincides withT ′2≤i≤N . In fact, the(i, j)-th block of∆T2≤i≤N∆̄−∆bT−1
1 b̄T ∆̄

equals
(λ̄i + λ1)(λj + λ̄1)

λ̄i + λj
v∗i Jvj − v∗i Jv1T

−1
1 v∗1Jvj ,

and, since the(i, j)-th block of T2≤i≤N is given by (12), this proves the claim.
Now observe that

sign(T1≤i≤N ) = sign(T ′2≤i≤N ) + sign(T1)

Let sign(T1≤i≤N ) = (ν−, 0, ν+), and observe that

if sign(T1) = (0, 0, 1) then sign(T
′
2≤i≤N ) = (ν−, 0, ν+ − 1);

if sign(T1) = (1, 0, 0) then sign(T
′
2≤i≤N ) = (ν− − 1, 0, ν+)

By inductive assumption we conclude that there exists a kernel representationR′ ∈ R2×2[ξ] of the MPUM for
{v′i expλi

, v′⊥i exp−λ̄i
}2≤i≤N of the form

R′ =
(−D′∗ N ′∗

Q′ −P ′

)

satisfying the properties(2a)− (2f) of the Theorem, and in particular(2c), i.e. P ′ hasν− − 1 (respectivelyν−) roots
in C+ if sign(T1) = (1, 0, 0) (respectively sign(T1) = (0, 0, 1)).

It is easily verified that the MPUM forD is represented by
(−D∗ N∗

Q −P

)
:=

(−D′∗ N ′∗

Q′ −P ′

)(−D∗
1 N∗

1

Q1 −P1

)
(14)

We now show that (14) satisfies(2a)− (2f).
In order to prove(2a), we first show thatP is nonsingular. From (14) it follows that

−P = Q′N∗
1 + P ′P1 (15)

By inductive assumption,P ′ andP1 are nonsingular, and consequently

−(P ′)−1PP−1
1 = (P ′)−1Q′ ·N∗

1 P−1
1 + Ip

Conclude from the inductive assumption that‖(P ′)−1Q′‖∞ < 1 and that‖N∗
1 P−1

1 ‖∞ < 1. It follows that(P ′)−1PP−1
1

is nonsingular on the imaginary axis, and consequentlyP is also nonsingular on the imaginary axis, anda fortiori
nonsingular inRp×p[ξ].

We now show thatD is nonsingular. Note from (14) thatD = D1D
′ + Q∗1N

′. Observe from the formula (9) that
Q1 = −N1, and consequentlyD = D1D

′ −N∗
1 N ′. Now use the contractivity ofN1D

−1
1 and ofN ′(D′)−1 to show in

a manner analogous to that used for the proof of the nonsingularity ofP , that D is also nonsingular. This concludes
the proof of(2a).

Claim (2b) can be proved by a straightforward computation, using equation (14) and the inductive assumption.
We now prove(2c), the claim regarding the number of roots ofdet(P ) in C+. Conclude from (15) that

−P−1 = P−1
1 ((P ′)−1Q′ ·N∗

1 P−1
1 + Ip)−1(P ′)−1

and consequently that

− 1
det(P )

=
1

det(P1)
1

det((P ′)−1Q′ ·N∗
1 P−1

1 + Ip)
1

det(P ′)
(16)

Now recall that the winding number wno(·) of a functionf defined on the imaginary axis and admitting a meromorphic
continuation inC+ satisfies

wno(f) = (# zeros off in C+)− (# poles off in C+)

Observe that

wno

(
1

det(α(P ′)−1Q′ ·N∗
1 P−1

1 + Ip)

)
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for 0 ≤ α ≤ 1 is a continuous function ofα taking integer values, and consequently its value is independent ofα. This
and the contractivity of(P ′)−1Q′, N∗

1 P−1
1 imply that

wno

(
1

det(α(P ′)−1Q′ ·N∗
1 P−1

1 + Ip)

)
= wno(det(Ip)) = 0

Now apply the logarithmic property of wno(·) to both sides of (16) and obtain

wno

(
− 1

det(P )

)
= wno

(
1

det(P1)

)
+ wno

(
1

det(P ′)

)
(17)

Now if sign(T1) = (0, 0, 1) it follows that P1 is Hurwitz, and consequently wno
(

1
det(P1)

)
= 0. Moreover, in this case

sign(T
′
2≤i≤N ) = (ν−, 0, ν+ − 1) and by the inductive assumption we conclude that wno

(
1

det(P ′)

)
= −ν−. In this case

det(P ) has exactlyν− unstable roots, as was to be proved. If sign(T1) = (1, 0, 0) then wno
(

1
det(P1)

)
= −1, and by

the inductive assumption wno
(

1
det(P ′)

)
= −ν− + 1. It follows that wno

(
− 1

det(P )

)
= −ν− and claim(2c) is proved.

Claim (2d) follows easily from (14) and the inductive assumption.
In order to prove(2e), we show thatP ∗P − Q∗Q > 0 on the imaginary axis. Note thatP ∗P − Q∗Q is the (2, 2)

block-element ofR∗′R∗1JR1R
′. Using (2d), this element equals−p(iω)p∗(iω) < 0 for all ω ∈ R. This implies

‖P−1Q‖∞ < 1. The proof of (2f) follows a similar argument, sinceNN∗ − P ∗P is the (2, 2) block-element of
R∗1R

′∗JR′R1.
This concludes the proof of(1) ⇒ (2).
In order to prove the converse implication, we proceed by induction on the numberN of points to be interpolated,

showing that the model produced by the procedure is such that the number of unstable roots ofdet(P ) equals the
number of negative eigenvalues of the Pick matrixT associated with the data.

For N = 1, assume without loss of generality thatv1 = col(v11, v12) is such thatv∗11v11 − v∗12v12 = ±1. Consider
the model (8) and observe that

P1(ξ) = (ξ + λ̄1)Ip + v12(
v∗11v11 − v∗12v12

λ1 + λ̄1
)−1v∗12

= (ξ + λ̄1)Ip + (λ1 + λ̄1)v12(±1)v∗12

is Hurwitz if and only if the Pick matrixT1 = ±1
λ1+λ̄1

is positive definite. The claim is thus proved forN = 1. We now
assume the claim is true for all1 ≤ j ≤ N − 1 and we prove it forj = N .

In order to do this, consider first that the special representationR for the model forN trajectories is obtained from the
modelR1 for v1 expλ1

and the modelR′ for the error trajectoriesR1(λi)vi expλi
, 2 ≤ i ≤ N asR = R′R1. Observe

that by inductive assumption, the Pick matrix of the error trajectories has as many negative eigenvalues as the number
of right half-plane singularities of the(2, 2) block-element ofR′.

We have shown in equation (17) that the number of right half-plane singularities ofP , the (2, 2) block-element ofR,
equals the number of such singularities of the corresponding block-element ofR′ plus the number of such singularities
of P1. Now observe thatT{vi}1≤i≤N

, the Pick matrix of the data, is congruent to the matrix on the right-hand side of
(13). The signature of this block-diagonal matrix equals the sum of the signature of the Pick matrixT{v1}, and that of
the Pick matrixT ′2≤i≤N associated to the error trajectories. This completes the proof of(2) =⇒ (1).

The special kernel representation of the MPUM forD described in Theorem 2 allows us to characterize the solutions
of the TIP as follows.

Theorem 3:Assume that the Hermitian matrixT{(λi,vi)}1≤i≤N
:=

[
v∗i Jvj

λ̄i+λj

]
i,j=1,...,n

is invertible and hask negative

eigenvalues, and let (7) be the representation of the MPUM forD computed with AlgorithmT .
Let U ∈ Rp×m[ξ], Y ∈ Rp×p[ξ] be left coprime. Then

[
U −Y

] ∈ Rp×(p+m)[ξ] is a solution to the TIP with
det(Y ) having k roots in C+ if and only if there existΠ, Φ, F ∈ R•×•[ξ], with Φ, F Hurwitz, and‖Φ−1Π‖∞ < 1,
such that

F
[

U −Y
]

=
[

Π −Φ
] [ −D∗ N∗

Q −P

]
(18)

Proof: We first prove sufficiency. LetU ∈ Rp×m[ξ], Y ∈ Rp×p[ξ] be given such that they are left coprime, and
(18) holds for someΠ ∈ Rp×m[ξ], Φ ∈ Rp×p[ξ], F ∈ Rp×p[ξ] such that‖Φ−1Π‖∞ < 1 and Φ, F are Hurwitz.
Consider thatF

[
U −Y

]
is a left multiple of a kernel representation of the MPUM forD, and consequently it is

unfalsified onD. It follows that
F (λi)

[
U(λi) −Y (λi)

]
vi = 0,

1 ≤ i ≤ N . Conclude from the fact thatF is Hurwitz that this implies
[

U(λi) −Y (λi)
]
vi = 0, 1 ≤ i ≤ N , so

that
[

U −Y
]

is an unfalsified model forvi expλi
, 1 ≤ i ≤ N . The fact that‖Y −1U‖∞ < 1 follows from the
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J-unitariness ofR and from the assumption that‖Φ−1Π‖∞ < 1. Finally, the claim on the number of roots ofY in C+

can be justified observing that
−FY = ΠN∗ + ΦP = Φ(Φ−1ΠN∗P−1 + Ip)P

or equivalently
−Y −1F−1 = P−1(Φ−1ΠN∗P−1 + Ip)−1Φ−1

and consequently

− 1
det(F )

1
det(Y )

=
1

det(Φ)
1

det(P )
1

det(Φ−1ΠN∗P−1 + Ip)

It follows from the fact thatΦ andF are Hurwitz that wno( 1
det(F ) ) = 0 = wno( 1

det(Φ) ). It follows from the fact that
‖Φ−1Π‖∞ < 1 and that‖P−1N∗‖∞ < 1, that wno( 1

det(Φ−1ΠN∗P−1+Ip) ) = 0. Conclude that the number of roots of
det(Y ) in C+ equals the number of roots ofdet(P ) in C+; the latter is exactlyk, the number of negative eigenvalues
of the Pick matrix of the data. Sufficiency is thus proved.

In order to prove necessity, we proceed as follows. LetU ∈ Rp×m[ξ], Y ∈ Rp×p[ξ] constitute a solution of the
TIP. ChooseF ∈ Rp×p[ξ] so thatF

[
U −Y

]
also models the trajectoriesv⊥i exp−λ̄i

, 1 ≤ i ≤ N besides the
trajectoriesvi expλi

, 1 ≤ i ≤ N . Observe thatF can be chosen to be Hurwitz, since
[

U −Y
]

already models
vi expλi

, 1 ≤ i ≤ N . Conclude from the fact thatF
[

U −Y
]

modelsD and from the fact that a representation of
the MPUM forD is given, that there existΠ,Φ ∈ R•×•[ξ] such that (18) holds. We now prove the claim regarding the
contractivity ofΦ−1Π and the Hurwitzianity ofΦ.

Contractivity follows easily from theJ-unitariness ofR and from the contractivity ofY −1U , since

FT (−iω)(UT (−iω)U(iω)− Y T (−iω)Y (iω))F (iω)
= (ΠT (−iω)Π(iω)− ΦT (−iω)Φ(iω))ΠN

i=1(−iω + λ̄i)(iω − λi)

is negative definite for allω ∈ R if and only if ΠT (−iω)Π(iω)−ΦT (−iω)Φ(iω) < 0. The claim on the Hurwitzianity
of Φ follows from

− 1
det(F )

1
det(Y )

=
1

det(Φ)
1

det(P )
1

det(Φ−1ΠN∗P−1 + Ip)

and consequently

wno(
1

det(F )
)

︸ ︷︷ ︸
=0

+ wno(
1

det(Y )
)

︸ ︷︷ ︸
=−k

= wno(
1

det(Φ)
) + wno(

1
det(P )

)
︸ ︷︷ ︸

=−k

+wno(
1

det(Φ−1ΠN∗P−1 + Ip)︸ ︷︷ ︸
=0

The proof of the Theorem is thus complete.
The following conclusion can be drawn easily from the results of Theorem 2 and Theorem 3.
Corollary 4: The smallestk for which the Takagi interpolation problem has a solution is the number of negative

eigenvalues of the Pick matrixT{(λi,vi)}1≤i≤N
.

IV. EXAMPLES

Example 5:Consider the (frequency, vector) pairs

(λ1, v1) =
(

4,

[
6
−7

])
(λ2, v2) =

(
5,

[
12
−9

])
(λ3, v3) =

(
5,

[
20
−11

])

corresponding to the Pick matrix 

− 13

8 1 43
10

1 63
10

141
11

43
10

141
11

93
4




whose eigenvalues are30.7039, −2.78503, 0.00614669. We conclude that there exists a solution of the TIP with1
unstable pole.

The model for the first point is

R1(ξ) :=
[

340
13 + ξ 336

13
− 336

13 ξ − 340
13

]
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As was to be expected from the fact that the Pick matrix corresponding to(λ1, v1) is negative definite, the(2, 2) entry
has a singularity inC+.

The vector corresponding to the first error trajectory isv′2 := R1v2, with corresponding kernel representation

R′2(ξ) :=
[ − 357725

11687 + ξ − 352920
11687

352920
11687

357725
11687 + ξ

]

Conclude that a kernel representation of the MPUM for the first two trajectories and their duals is

R2(ξ) = R′2(ξ)R1(ξ) =
[ − 18020

899 − 4005
899 ξ + ξ2 − 24

899 (50 + 163ξ)
24
899 (−50 + 163ξ) − 18020

899 + 4005
899 ξ + ξ2

]

Observe that the(2, 2) entry of R2 has a positive and a negative real root, as was to be expected from the fact that the
2× 2 principal submatrix of the Pick matrix has one negative and one positive eigenvalue.

The third error trajectory is associated with the vectorv′3 :=
[

77672
899

23326
899

]
. It can be shown that a kernel representation

corresponding to this vector is induced by

R′3(ξ) :=
[ − 3288520930

457403109 + ξ 1811777072
457403109

− 1811777072
457403109

3288520930
457403109 + ξ

]

Conclude that a kernel representation of the MPUM for the given data isR′3(ξ)R2(ξ), given by
[

70632200+14867334ξ−5924615ξ2+508791ξ3

508791
−40(887836−605418ξ+4967ξ2)

508791
40(887836−605418ξ+4967ξ2)

508791
70632200+14867334ξ−5924615ξ2+508791ξ3

508791

]

Observe that the roots of the(2, 2) element ofR3 are2.27811, −6.9613± 3.53247i.
Example 6:We solve a problem withm = 1 andp = 2. Consider the (frequency, vector) pairs

(λ1, v1) =


4,




6
−7
−11





 (λ2, v2) =


5,




12
−9
−14





 (λ3, v3) =


5,




20
−11
−17







which correspond to the Pick matrix 

− 67

4 − 145
9 − 72

5
− 145

9 − 133
10 − 97

11
− 72

5 − 97
11 − 5

6




This matrix has eigenvalues−38.5789, 7.69355, 0.0020285. Consequently, we expect a representation of the MPUM
with a (1, 1) block element having one singularity inC+.

The kernel representation corresponding to the first trajectory and its dual is



412
67 + ξ 168

67
264
67

− 168
67

72
67 + ξ − 308

67
− 264

67 − 308
67 − 216

67 + ξ




Proceeding with the application of Algorithm T, we obtain as kernel representation of the MPUM a matrix whose(2, 2)
block-element is[

−1721350920+3763007528ξ+607391445ξ2+35405647ξ3

35405647
330(−31781032+4310493ξ+289807ξ2)

35405647
330(−26518552+4320147ξ+289807ξ2)

35405647
−11040998520+4339543928ξ+647295195ξ2+35405647ξ3

35405647

]

The determinant of such matrix is

−58053.9− 17244.7ξ + 6638.14ξ2 + 3467.99ξ3 + 535.189ξ4 + 35.4375ξ5 + ξ6

which has roots in
−6,−5,−4,−11.3835± 8.83631i

and one in2.32962.
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V. CONCLUSIONS AND FURTHER WORK

In this paper we have given a new proof of Takagi’s result about metric interpolation problems associated with a
non-sign-definite Pick matrix. Our approach consists essentially in the use of the interpolation as time-series modeling
framework introduced in [3] and further refined in [1], [9], [16]. The work presented in this paper is being extended in
several directions, most notably the following ones.

State-space formulas: The state-space case is a special case of the results presented in this paper; however, deriving
explicit state-space formulas is a task deserving interest in its own right. In this respect, see also [7].

Generalizations: The most pressing generalization of the results presented in this paper is a discussion of thesubspace
version of the problem, in which the data involve subspacesVi, in the sense that one looks for left coprimeY ∈ Rp×p[ξ],
U ∈ Rp×m[ξ] with det(Y ) havingk singularities in the right half-plane and‖Y −1U‖∞ < 1, such that

[
U(λi) −Y (λi)

]
v = 0,

for all v ∈ Vi, 1 ≤ i ≤ N . See [16] for a discussion of the Nevanlinna interpolation problem from this point of view.
Applications: We are in the process of using the machinery illustrated in this paper in order to attack the problem of

stabilization with dissipative controllers, formulated as follows. LetJ be as in (1), and letB be a controllable behavior.
Let Bdes be a stable, autonomous subspace ofB representing the desired behavior after interconnection with some
controllerC. Does there exist aJ-dissipative controllerC such thatC ∩B = Bdes? Assuming such a controller exists,
how many unstable poles does the transfer function associated with the controllable part ofC have? It is expected that
the particular kernel representation obtained through Algorithm T can provide significant insight in the solution of this
problem. See also [6], [8], [10], [11], [18] for the use of interpolation methods in controller design.
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[5] Ball, J.A. and Helton, J.W., “A Beurling-Lax theorem for the Lie groupU(m, n) which contains most classical interpolation”,J. Operator

Theory, vol. 9, pp. 107-142, 1983.
[6] Cevik, M.K.K. and J.M. Schumacher, “Regulation as an interpolation problem”,Linear Algebra Appl., vol. 253, pp. 311-340, 1997.
[7] Gohberg, I. and V. Olshevsky, “Fast state space algorithms for matrix Nehari and Nehari-Takagi interpolation problems”,Integral Equations and

Operator Theory, vol. 20, pp. 44-83, 1994.
[8] Ghosh, B.K., “Transcendental and interpolation methods in simultaneous stabilization and simultaneous partial pole placement problems”,SIAM

J. Contr. Opt., vol. 24, pp. 1091-1109, 1986.
[9] Kaneko, O. and P. Rapisarda, “Recursive exactH∞-identification from impulse-response measurements”,System and Control Letters, vol. 49,

pp. 323-334, 2003.
[10] Kimura, H., “Robust stabilizability for a class of transfer functions”,IEEE Transactions on Automatic Control, vol. 29, pp. 788-793, 1984.
[11] Kimura, H., “Conjugation, interpolation and model matching inH∞”, Int. J. Control, vol. 49, pp. 269-307, 1989.
[12] Nevanlinna, R., “̈Uber beschr̈ankte Funktionen, die in gegeben Punkten vorgeschrieben Werte annehmen”,Ann. Acad. Sci. Fenn. Ser. A 1 Mat.

Dissertationes, vol. 13, 1919.
[13] Nudelman, A.A., “A generalization of classical interpolation problems”,Soviet Math. Doklady, vol. 23, pp. 125-128, 1981.
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