The Behavioral Approach to Systems Theory

Paolo Rapisarda, Un. of Southampton, U.K. \&
Jan C. Willems, K.U. Leuven, Belgium

MTNS 2006
Kyoto, Japan, July 24-28, 2006

Lecture 1: General Introduction

Lecturer: Jan C. Willems

Questions

- What is a mathematical model, really?

Questions

- What is a mathematical model, really?
- How is this specialized to dynamics?

Questions

- What is a mathematical model, really?
- How is this specialized to dynamics?
- How are models arrived at?
- From basic laws: 'first principles' modeling
- Combined with interconnection:
tearing, zooming, \& linking
- From measured data: SYSID (system identification)

Questions

- What is a mathematical model, really?
- How is this specialized to dynamics?
- How are models arrived at?
- From basic laws: 'first principles' modeling
- Combined with interconnection:
tearing, zooming, \& linking
- From measured data: SYSID (system identification)
- What is the role of (differential) equations ?

Questions

- What is a mathematical model, really?
- How is this specialized to dynamics?
- How are models arrived at?
- From basic laws: 'first principles' modeling
- Combined with interconnection:
tearing, zooming, \& linking
- From measured data: SYSID (system identification)
- What is the role of (differential) equations ?
- Importance of latent variables

Static models

The seminal idea

Consider a 'phenomenon'; produces 'outcomes', 'events'.
Mathematization: events belong to a set, \mathfrak{U}.

The seminal idea

Consider a 'phenomenon'; produces 'outcomes', 'events'.
Mathematization: events belong to a set, \mathfrak{U}.
Modeling question: Which events can really occur ?
The model specifies: Only those in the subset $\mathfrak{B} \subseteq \mathfrak{U}$!

$$
\Rightarrow \Rightarrow \quad \text { a mathematical model, with behavior } \mathfrak{B} \Leftarrow \Leftarrow
$$

The seminal idea

Consider a 'phenomenon'; produces ‘outcomes', 'events’.
Mathematization: events belong to a set, \mathfrak{U}.
Modeling question: Which events can really occur ?
The model specifies: Only those in the subset $\mathfrak{B} \subseteq \mathfrak{U}$!

$$
\Rightarrow \Rightarrow \quad \text { a mathematical model, with behavior } \mathfrak{B} \Leftarrow \Leftarrow
$$

Before modeling: events in \mathfrak{U} are possible After modeling: only events in \mathfrak{B} are possible Sharper model \leadsto smaller \mathfrak{B}.

Examples

Gas law

Phenomenon: A balloon filled with a gas
ii Model the relation between volume, quantity, pressure, \& temperature !!

Examples

Gas law

Phenomenon: A balloon filled with a gas
ii Model the relation between volume, quantity, pressure, \& temperature !!

Event: (vol. V, quant. N, press. P, temp. T) $\leadsto \mathfrak{U}=\mathbb{R}_{+}^{4}$

Examples

Gas law

Phenomenon: A balloon filled with a gas
ii Model the relation between
 volume, quantity, pressure, \& temperature !!

Event: (vol. V, quant. N, press. P, temp. T) $\leadsto \mathfrak{U}=\mathbb{R}_{+}^{4}$

Charles A A Boyle

\leadsto model $\quad \frac{P V}{N T}=$ a universal constant $=: R$

$$
\Rightarrow \quad \mathfrak{B}=\left\{(T, P, V, N) \in \mathbb{R}_{+}^{4} \left\lvert\, \frac{P V}{N T}=R\right.\right\} \quad \Leftarrow \Leftarrow
$$

Examples

An economy Phenomenon: trading of a product
ii Model the relation between
price, sales \& production !!

Examples

An economy Phenomenon: trading of a product
ii Model the relation between price, sales \& production !!

Event: $($ price \boldsymbol{P}, demand $\boldsymbol{D}) \leadsto \mathfrak{U}=\mathbb{R}_{+}^{2}$
Typical model: $\mathfrak{B}=$ graph of a curve

Examples

An economy Phenomenon: trading of a product
ii Model the relation between
price, sales \& production !!
Event: (price \boldsymbol{P}, supply $\boldsymbol{S}) \sim \mathfrak{U}=\mathbb{R}_{+}^{2}$
Typical model: $\mathfrak{B}=$ graph of a curve

Examples

An economy Phenomenon: trading of a product
ii Model the relation between price, sales \& production !!

Event: (price P, demand D, supply S) $\leadsto \mathfrak{U}=\mathbb{R}_{+}^{3}$
$\mathfrak{B}=$ intersection of two graphs : \sim usually point(s)

Examples

An economy Phenomenon: trading of a product

ii Model the relation between
sales \& production !! Price only to explain mechanism

$$
\text { Event: }(\text { demand } D, \text { supply } S) \sim \mathfrak{U}=\mathbb{R}_{+}^{2}
$$

$\mathfrak{B}=$ intersection of two graphs : \sim usually point(s)

The price P becomes a 'hidden' variable. Modeling using 'hidden', 'auxiliary’, 'latent' intermediate variables is very common.

Examples

Newton's 2-nd law

Phenomenon: A moving mass

ii Model the relation between
force, mass, \& acceleration !!

Examples

Newton's 2-nd law

Phenomenon: A moving mass

ii Model the relation between force, mass, \& acceleration !!

Event: (force F, mass m, acceleration a)

$$
\leadsto \mathfrak{U}=\mathbb{R}^{3} \times \mathbb{R}_{+} \times \mathbb{R}^{3}
$$

Examples

Newton's 2-nd law

Phenomenon: A moving mass

ii Model the relation between force, mass, \& acceleration !!

Event: (force F, mass m, acceleration a)

$$
\leadsto \mathfrak{U}=\mathbb{R}^{3} \times \mathbb{R}_{+} \times \mathbb{R}^{3}
$$

Model due to Newton:

$$
F=m a
$$

$\Rightarrow \Rightarrow \quad \mathfrak{B}=\left\{(\boldsymbol{F}, \boldsymbol{m}, \boldsymbol{a}) \in \mathbb{R}^{\mathbf{3}} \times \mathbb{R}_{+} \times \mathbb{R}^{\mathbf{3}} \mid \boldsymbol{F}=\boldsymbol{m} \boldsymbol{a}\right\} \quad \Leftarrow \Leftarrow$

Examples

Newton's 2-nd law

Phenomenon: A moving mass

But, the aim of Newton's law is really:
ii Model the relation between
force, mass, \& position !!

Examples

Newton's 2-nd law

Phenomenon: A moving mass
But, the aim of Newton's law is really:
ii Model the relation between force, mass, \& position !!

Event: (force F, mass m, position q)

$$
F=m a, \quad a=\frac{d^{2}}{d t^{2}} q
$$

not 'instantaneous' relation between $F, m, q \leadsto$ dynamics
How shall we deal with this?

Dynamic models

Dynamical systems

Phenomenon produces 'events' that are functions of time
Mathematization: It is convenient to distinguish domain ('independent' variables) $\mathbb{T} \subseteq \mathbb{R}$ 'time-axis' co-domain ('dependent' variables) \mathbb{W} 'signal space'

Dynamical systems

Phenomenon produces 'events' that are functions of time
Mathematization: It is convenient to distinguish domain ('independent' variables) $\mathbb{T} \subseteq \mathbb{R}$ 'time-axis' co-domain ('dependent' variables) \mathbb{W} 'signal space'

A dynamical system :=

$$
\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B}) \quad \mathfrak{B} \subseteq(\mathbb{W})^{\mathbb{T}} \quad \text { the behavior }
$$

Dynamical systems

Phenomenon produces 'events' that are functions of time
Mathematization: It is convenient to distinguish domain ('independent' variables) $\mathbb{T} \subseteq \mathbb{R}$ 'time-axis' co-domain ('dependent' variables) \mathbb{W} 'signal space'

A dynamical system :=

$$
\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B}) \quad \mathfrak{B} \subseteq(\mathbb{W})^{\mathbb{T}} \quad \text { the behavior }
$$

$\mathbb{T}=\mathbb{R}, \mathbb{R}_{+}$, or interval in \mathbb{R} : continuous-time systems
$\mathbb{T}=\mathbb{Z}, \mathbb{N}$, etc.: discrete-time systems
Later: set of independent variables $=\mathbb{R}^{n}, n>1$, PDE's.

Dynamical systems

Phenomenon produces 'events' that are functions of time
Mathematization: It is convenient to distinguish domain ('independent' variables) $\mathbb{T} \subseteq \mathbb{R}$ 'time-axis' co-domain ('dependent' variables) \mathbb{W} 'signal space’

A dynamical system :=

$$
\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B}) \quad \mathfrak{B} \subseteq(\mathbb{W})^{\mathbb{T}} \quad \text { the behavior }
$$

$\mathbb{W}=\mathbb{R}^{\mathbf{w}}$, etc. lumped systems
$\mathbb{W}=$ finite: finitary systems
$\mathbb{T}=\mathbb{Z}$ or \mathbb{N}, \mathbb{W} finite: DES (discrete event systems)
$\mathbb{W}=$ function space: DPS (distributed parameter systems)

Dynamical systems

Phenomenon produces 'events' that are functions of time
Mathematization: It is convenient to distinguish domain ('independent' variables) $\mathbb{T} \subseteq \mathbb{R}$ 'time-axis' co-domain ('dependent' variables) \mathbb{W} 'signal space'

A dynamical system :=

$$
\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B}) \quad \mathfrak{B} \subseteq(\mathbb{W})^{\mathbb{T}} \quad \text { the behavior }
$$

\mathbb{W} vector space, $\mathfrak{B} \subset(\mathbb{W})^{\mathbb{T}}$ linear subspace: linear systems controllability, observability, stabilizability, dissipativity, stability, symmetry, reversibility, (equivalent) representations, etc.: to be defined in terms of the behavior \mathfrak{B}

THE BEHAVIOR IS ALL THERE IS!

Examples

Newton's 2-nd law

ii Model the relation between force \& position of a pointmass !!

Examples

Newton's 2-nd law

ii Model the relation between force \& position of a pointmass !!

Event: (force F (a f'n of time), position q (a f'n of time))

$$
\leadsto \mathbb{T}=\mathbb{R}, \mathbb{W}=\mathbb{R}^{3} \times \mathbb{R}^{3}
$$

Examples

Newton's 2-nd law

ii Model the relation between force \& position of a pointmass !!

Event: (force F (a f'n of time), position q (a f'n of time))

$$
\sim \mathbb{T}=\mathbb{R}, \mathbb{W}=\mathbb{R}^{3} \times \mathbb{R}^{3}
$$

Model:

$$
\begin{gathered}
F=m a, \quad a=\frac{d^{2}}{d t^{2}} q \\
\leadsto \quad \Sigma=\left(\mathbb{R}, \mathbb{R}^{3} \times \mathbb{R}^{3}, \mathfrak{B}\right)
\end{gathered}
$$

with
$\Rightarrow \Rightarrow \quad \mathfrak{B}=\left\{(F, q): \mathbb{R} \rightarrow \mathbb{R}^{3} \times \mathbb{R}^{3} \left\lvert\, F=m \frac{d^{2}}{d t^{2}} q\right.\right\} \Leftarrow \Leftarrow$

Examples

RLC circuit

Phenomenon: the port voltage and current, f'ns of time

Model voltage/current histories as a f'n of time!

Examples

RLC circuit

$$
\leadsto \quad \Sigma=\left(\mathbb{R}, \mathbb{R}^{2}, \mathfrak{B}\right)
$$

behavior \mathfrak{B} specified by:
Case 1: $\quad C R_{C} \neq \frac{L}{R_{L}}$
$\left(\frac{R_{C}}{R_{L}}+\left(1+\frac{R_{C}}{R_{L}}\right) C R_{C} \frac{d}{d t}+C R_{C} \frac{L}{R_{L}} \frac{d^{2}}{d t^{2}}\right) V=\left(1+C R_{C} \frac{d}{d t}\right)\left(1+\frac{L}{R_{L}} \frac{d}{d t}\right) R_{C} I$
Case 2: $\quad C R_{C}=\frac{L}{R_{L}}$

$$
\left(\frac{R_{C}}{R_{L}}+C R_{C} \frac{d}{d t}\right) V=\left(1+C R_{C}\right) \frac{d}{d t} R_{C} l
$$

\sim behavior all solutions $(V, I): \mathbb{R} \rightarrow \mathbb{R}^{2}$ of this ODE

Examples

input/output models

$$
y(t)=f(y(t-1), \cdots, y(t-n), u(t), u(t-1), u(t-n)), \quad w=\left[\begin{array}{l}
u \\
y
\end{array}\right]
$$

Differential equation analogue

$$
P\left(\frac{d}{d t}\right) y=P\left(\frac{d}{d t}\right) u, w=\left[\begin{array}{l}
u \\
y
\end{array}\right], P, Q: \text { polynomial matrices }
$$

or matrices of rational functions as in $y=G(s) u$

How shall we define the behavior with the rational f'ns ?

Examples

input/output models

State models

R.E. Kalman
$\frac{d}{d t} x=A x+B u, y=C x+D u ; \quad \frac{d}{d t} x=f \circ(x, u), y=h \circ(x, u)$
¿¿ What is the behavior of this system ??

Examples

input/output models

State models

$\frac{d}{d t} x=A x+B u, y=C x+D u ; \quad \frac{d}{d t} x=f \circ(x, u), y=h \circ(x, u)$
¿¿ What is the behavior of this system ??
In applications, we care foremost about i/o pairs u, y

$$
\begin{gathered}
\sim \quad \Sigma=(\mathbb{R}, \mathbb{U} \times \mathbb{Y}, \mathfrak{B}) \\
\mathfrak{B}=\{(u, y): \mathbb{R} \rightarrow \mathbb{U} \times \mathbb{Y} \mid \\
\exists x: \mathbb{R} \rightarrow \mathbb{X} \text { such that } x=f \circ(x, u), \boldsymbol{y}=\boldsymbol{h} \circ(x, u)
\end{gathered}
$$

So, here again, we meet auxiliary variables, the state x.

Latent variables

Latent variables

Auxiliary variables. We call them 'latent'. They are ubiquitous:

- states in dynamical systems
- prices in economics
- the wave function in QM
- the basic probability space Ω
- potentials in mechanics, in EM
- interconnection variables
- driving variables in linear system theory
- etc., etc.

Their importance in applications merits formalization.

Latent variables

Latent variable model := $\left(\mathfrak{U}, \mathfrak{L}, \mathfrak{B}_{\text {full }}\right)$ with $\mathfrak{B}_{\text {full }} \subseteq(\mathfrak{U} \times \mathfrak{L})$
\mathfrak{U} : space of manifest variables
\mathfrak{L} : space of latent variables
$\mathfrak{B}_{\text {full }}$: 'full behavior'
$\mathfrak{B}=\left\{u \in \mathfrak{U} \mid \exists \ell \in \mathfrak{L}:(u, \ell) \in \mathfrak{B}_{\text {full }}\right\}:$ 'manifest behavior'.

Latent variables

Latent variable model := $\left(\mathfrak{U}, \mathfrak{L}, \mathfrak{B}_{\text {full }}\right)$ with $\mathfrak{B}_{\text {full }} \subseteq(\mathfrak{U} \times \mathfrak{L})$
\mathfrak{U} : space of manifest variables
\mathfrak{L} : space of latent variables
$\mathfrak{B}_{\text {full }}$: 'full behavior'
$\mathfrak{B}=\left\{u \in \mathfrak{U} \mid \exists \ell \in \mathfrak{L}:(u, \ell) \in \mathfrak{B}_{\text {full }}\right\}:$ 'manifest behavior'.
This is readily generalized to dynamical systems.
A latent variable dynamical system :=

$$
\left(\mathbb{T}, \mathbb{W}, \mathbb{L}, \mathfrak{B}_{\text {full }}\right) \text { with } \mathfrak{B}_{\text {full }} \subseteq(\mathbb{W} \times \mathbb{L})^{\mathbb{T}}
$$

etc.

Example

The price in our economic example

Example

RLC circuit

Model voltage/current histories as a f'n of time !
How do we actually go about this modeling?
Emergence of latent variables.

Example

RLC circuit

TEARING

Example

RLC circuit

ZOOMING

The list of the modules \& the associated terminals:

Module	Type	Terminals	Parameter
\boldsymbol{R}_{C}	resistor	$(1,2)$	in ohms
$\boldsymbol{R}_{\boldsymbol{L}}$	resistor	$(3,4)$	in ohms
\boldsymbol{C}	capacitor	$(5,6)$	in farad
\boldsymbol{L}	inductor	$(7,8)$	in henry
connector1	3-terminal connector	$(\mathbf{9 , 1 0 , 1 1)}$	
connector2	3-terminal connector	$(\mathbf{1 2 , 1 3 , 1 4)}$	

Example

RLC circuit

TEARING

The interconnection architecture:

Example

RLC circuit

Manifest variable assignment:

the variables

$$
V_{9}, I_{9}, V_{12}, l_{12}
$$

on the external terminals $\{9,12\}$, i.e,

$$
V_{a}=V_{9}, I_{a}=I_{9}, V_{b}=V_{12}, I_{b}=I_{12}
$$

The internal terminals are

$$
\{1,2,3,4,5,6,7,8,10,11,13,14\}
$$

The variables (currents and voltages) on these terminals are our latent variables.

Example

RLC circuit

Equations for the full behavior:

Faraday

Henry Coulomb

Modules	Constitutive equations	
R_{C}	$I_{1}+I_{2}=0$	$V_{1}-V_{2}=R_{C} I_{1}$
R_{L}	$I_{7}+I_{8}=0$	$V_{7}-V_{8}=R_{L} I_{7}$
C	$I_{5}+I_{6}=0$	$C \frac{d}{d t}\left(V_{5}-V_{6}\right)=I_{5}$
L	$I_{7}+I_{8}=0$	$V_{7}-V_{8}=L \frac{d}{d t} I_{7}$
connector1	$I_{9}+I_{10}+I_{11}=0$	$V_{9}=V_{10}=V_{11}$
connector2	$I_{12}+I_{13}+I_{14}=0$	$V_{12}=V_{13}=V_{14}$

Interconnection pair	Interconnection equations	
$\{10,1\}$	$V_{10}=V_{1}$	$I_{10}+I_{1}=0$
$\{11,7\}$	$V_{11}=V_{7}$	$I_{11}+I_{7}=0$
$\{2,5\}$	$V_{2}=V_{5}$	$I_{2}+I_{5}=0$
$\{8,3\}$	$V_{8}=V_{3}$	$I_{8}+I_{3}=0$
$\{6,13\}$	$V_{6}=V_{13}$	$I_{6}+I_{13}=0$
$\{4,14\}$	$V_{4}=V_{14}$	$I_{4}+I_{14}=0$

Example

RLC circuit

All these eq'ns combined define a latent variable system in the manifest 'external' variables

$$
w=\left(V_{a}, I_{a}, V_{b}, I_{b}\right)
$$

with 'internal' latent variables

$$
\begin{gathered}
\ell=\left(V_{1}, I_{1}, V_{2}, I_{2}, V_{3}, I_{3}, V_{4}, I_{4}, V_{5}, I_{5}, V_{6}, I_{6}, V_{7}, I_{7},\right. \\
\left.V_{8}, I_{8}, V_{10}, I_{10}, V_{11}, I_{11}, V_{13}, I_{13}, V_{14}, I_{14}\right) .
\end{gathered}
$$

The manifest behavior \mathfrak{B} is given by

$$
\mathfrak{B}=\left\{\left(V_{a}, l_{a}, V_{b}, I_{b}\right): \mathbb{R} \rightarrow \mathbb{R}^{4} \mid \exists \ell: \mathbb{R} \rightarrow \mathbb{R}^{24} \ldots\right\}
$$

Example

RLC circuit

Elimination:

Case 1: $\quad C R_{C} \neq \frac{L}{R_{L}}$.

$$
\begin{gathered}
\left(\frac{R_{C}}{R_{L}}+\left(1+\frac{R_{C}}{R_{L}}\right) C R_{C} \frac{d}{d t}+C R_{C} \frac{L}{R_{L}} \frac{d^{2}}{d t^{2}}\right)\left(V_{a}-V_{b}\right)=\left(1+C R_{C} \frac{d}{d t}\right)\left(1+\frac{L}{R_{L}} \frac{d}{d t}\right) R_{C} I_{a} . \\
I_{a}+I_{b}=0
\end{gathered}
$$

Case 2: $\quad C R_{C}=\frac{L}{R_{L}}$.

$$
\begin{gathered}
\left(\frac{R_{C}}{R_{L}}+C R_{C} \frac{d}{d t}\right)\left(V_{a}-V_{b}\right)=\left(1+C R_{C} \frac{d}{d t}\right) R_{C} I_{a} \\
I_{a}+I_{b}=0
\end{gathered}
$$

Perhaps 'port' variables: $V=V_{a}-V_{b}, I=I_{a}=-I_{b}$

Example

RLC circuit

Note: the eliminated equations are differential equations! Does this follow from some general principle?

Algorithms for elimination?

The modeling of this RLC circuit is an example of tearing, zooming \& linking. It is the most prevalent way of modeling. See my website for formalization. Crucial role of latent variables.
Note: no input/output thinking; systems in nodes, connections in edges.

Controllability \& Observability

System properties

In this framework, system theoretic notions like
Controllability, observability, stabilizability,...
become simpler, more general, more convincing.

System properties

In this framework, system theoretic notions like
Controllability, observability, stabilizability,...
become simpler, more general, more convincing.

For simplicity, we consider only time-invariant, continuous-time systems with $\mathbb{T}=\mathbb{R}$
time-invariant $:=\llbracket \boldsymbol{w} \in \mathfrak{B} \rrbracket \Rightarrow \llbracket \boldsymbol{w}\left(\boldsymbol{t}^{\prime}+\cdot\right) \in \mathfrak{B} \forall \boldsymbol{t}^{\prime} \in \mathbb{R} \rrbracket$.

Controllability

The time-invariant system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$ is said to be

controllable

if for all $w_{1}, \boldsymbol{w}_{\mathbf{2}} \in \mathfrak{B} \exists w \in \mathfrak{B}$ and $\boldsymbol{T} \geq \mathbf{0}$ such that

$$
w(t)=\left\{\begin{array}{cc}
w_{1}(t) & t<0 \\
w_{2}(t-T) & t \geq T
\end{array}\right.
$$

Controllability : \Leftrightarrow legal trajectories must be 'patch-able', 'concatenable'.

Controllability

Controllability

Examples

$$
\frac{d}{d t} x=A x+B u ; \quad \frac{d}{d t} x=f \circ(x, u)
$$

with $\boldsymbol{w}=(x, u)$, controllable \Leftrightarrow 'state point' controllable.

Examples

$$
\frac{d}{d t} x=A x+B u ; \quad \frac{d}{d t} x=f \circ(x, u)
$$

with $\boldsymbol{w}=(x, u)$, controllable \Leftrightarrow 'state point' controllable.
likewise \Leftrightarrow with $\boldsymbol{w}=\boldsymbol{x}$

Examples

$$
\frac{d}{d t} x=A x+B u ; \quad \frac{d}{d t} x=f \circ(x, u)
$$

with $w=(x, u)$, controllable \Leftrightarrow 'state point' controllable.

RLC circuit

$$
\text { Case 2: } C R_{C}=\frac{L}{R_{L}}
$$

$$
\begin{gathered}
\left(\frac{R_{C}}{R_{L}}+C R_{C} \frac{d}{d t}\right)\left(V_{a}-V_{b}\right)=\left(1+C R_{C} \frac{d}{d t}\right) R_{C} I_{a} \\
I_{a}+I_{b}=0
\end{gathered}
$$

Assume also $R_{C}=R_{L}$. Controllable?
$V_{a}-V_{b}=R_{c} l_{a}+$ constant $\cdot e^{-\frac{t}{C R_{C}}}$. Not controllable.

Examples

$$
\frac{d}{d t} x=A x+B u ; \quad \frac{d}{d t} x=f \circ(x, u)
$$

with $w=(x, u)$, controllable \Leftrightarrow 'state point' controllable.

$$
p\left(\frac{d}{d t}\right) y=q\left(\frac{d}{d t}\right) u
$$

controllable $\Leftrightarrow p, q$ co-prime

Examples

$$
\frac{d}{d t} x=A x+B u ; \quad \frac{d}{d t} x=f \circ(x, u)
$$

with $\boldsymbol{w}=(x, u)$, controllable \Leftrightarrow 'state point' controllable.

$$
w=M\left(\frac{d}{d t}\right) \ell
$$

M a polynomial matrix, always has a controllable manifest behavior.

In fact, this characterizes the controllable linear time-invariant differentiable systems ('image representation').

Note emergence of latent variables, ℓ.

Examples

$$
w=M\left(\frac{d}{d t}\right) \ell
$$

M a polynomial matrix, always has a controllable manifest behavior. Likewise,

$$
w=F\left(\frac{d}{d t}\right) \ell
$$

F matrix of rat. f'ns has controllable manifest behavior. But we need to give this 'differential equation' a meaning.

Whence

$$
y=G\left(\frac{d}{d t}\right) u, \quad w=\left[\begin{array}{l}
u \\
y
\end{array}\right]
$$

is always controllable.

Observability

¿ Is it possible to deduce w_{2} from w_{1} and the model \mathfrak{B} ?

Observability

Consider the system $\boldsymbol{\Sigma}=\left(\mathbb{T}, \mathbb{W}_{1} \times \mathbb{W}_{2}, \mathfrak{B}\right)$. Each element of \mathfrak{B} hence consists of a pair of trajectories $\left(w_{1}, w_{2}\right)$:
w_{1} : observed;
w_{2} : to-be-deduced.

Observability

Consider the system $\Sigma=\left(\mathbb{T}, \mathbb{W}_{1} \times \mathbb{W}_{2}, \mathfrak{B}\right)$. Each element of \mathfrak{B} hence consists of a pair of trajectories $\left(w_{1}, w_{2}\right)$:
w_{1} : observed;
w_{2} : to-be-deduced.

Definition: w_{2} is said to be

observable from w_{1}

if $\llbracket\left(w_{1}, w_{2}^{\prime}\right) \in \mathfrak{B}$, and $\left(w_{1}, w_{2}^{\prime \prime}\right) \in \mathfrak{B} \rrbracket \Rightarrow \llbracket\left(w_{2}^{\prime}=w_{2}^{\prime \prime}\right) \rrbracket$, i.e., if on \mathfrak{B}, there exists a map $w_{1} \mapsto w_{2}$.

Observability

Consider the system $\Sigma=\left(\mathbb{T}, \mathbb{W}_{1} \times \mathbb{W}_{2}, \mathfrak{B}\right)$. Each element of \mathfrak{B} hence consists of a pair of trajectories $\left(w_{1}, w_{2}\right)$:
w_{1} : observed;
w_{2} : to-be-deduced.

Definition: w_{2} is said to be

observable from w_{1}

if $\llbracket\left(w_{1}, w_{2}^{\prime}\right) \in \mathfrak{B}$, and $\left(w_{1}, w_{2}^{\prime \prime}\right) \in \mathfrak{B} \rrbracket \Rightarrow \llbracket\left(w_{2}^{\prime}=w_{2}^{\prime \prime}\right) \rrbracket$,
i.e., if on \mathfrak{B}, there exists a map $w_{1} \mapsto W_{2}$.

Very often manifest = observed, latent = to-be-deduced. We then speak of an observable (latent variable) system.

Examples

$$
\frac{d}{d t} x=A x+B u, y=C x+D u ; \quad \frac{d}{d t} x=f \circ(x, u), y=h \circ(x, u)
$$

$$
\text { with } w_{1}=(u, y), w_{2}=x \text {, observable } \Leftrightarrow \text { 'state' observable. }
$$

Examples

Controllability of this system (referring to external terminal variables) is a well-defined question.

Observability is not! No duality on the system's level. Of course, there is a notion of \mathfrak{B}^{\perp}, and results connecting controllability of \mathfrak{B} to state observability of \mathfrak{B}^{\perp}.

Examples

Equations for the full behavior:

Faraday Ohm

Henry Coulomb

Modules	Constitutive equations	
R_{C}	$I_{1}+I_{2}=0$	$V_{1}-V_{2}=R_{C} I_{1}$
R_{L}	$I_{7}+I_{8}=0$	$V_{7}-V_{8}=R_{L} l_{7}$
C	$I_{5}+I_{6}=0$	$C \frac{d}{d t}\left(V_{5}-V_{6}\right)=I_{5}$
L	$I_{7}+I_{8}=0$	$V_{7}-V_{8}=L_{d} \frac{d}{d t} I_{7}$
connector1	$I_{9}+I_{10}+I_{11}=0$	$V_{9}=V_{10}=V_{11}$
connector2	$I_{12}+I_{13}+I_{14}=0$	$V_{12}=V_{13}=V_{14}$

Interconnection pair \quad Interconnection equations

$\{10,1\}$	$V_{10}=V_{1}$	$I_{10}+I_{1}=0$
$\{11,7\}$	$V_{11}=V_{7}$	$I_{11}+I_{7}=0$
$\{2,5\}$	$V_{2}=V_{5}$	$I_{2}+I_{5}=0$
$\{8,3\}$	$V_{8}=V_{3}$	$I_{8}+I_{3}=0$
$\{6,13\}$	$V_{6}=V_{13}$	$I_{6}+I_{13}=0$
$\{4,14\}$	$V_{4}=V_{14}$	$I_{4}+I_{14}=0$

Examples

All these eq'ns combined define a latent variable system in the manifest variables

$$
w=\left(V_{a}, I_{a}, V_{b}, I_{b}\right)
$$

with latent variables

$$
\begin{gathered}
\ell=\left(V_{1}, I_{1}, V_{2}, I_{2}, V_{3}, I_{3}, V_{4}, I_{4}, V_{5}, I_{5}, V_{6}, I_{6}, V_{7}, I_{7},\right. \\
\left.V_{8}, I_{8}, V_{10}, I_{10}, V_{11}, I_{11}, V_{13}, I_{13}, V_{14}, I_{14}\right) .
\end{gathered}
$$

The manifest behavior \mathfrak{B} is given by

$$
\mathfrak{B}=\left\{\left(V_{a}, I_{a}, V_{b}, I_{b}\right): \mathbb{R} \rightarrow \mathbb{R}^{4} \mid \exists \ell: \mathbb{R} \rightarrow \mathbb{R}^{24} \ldots\right\}
$$

Are the latent variables observable from the manifest ones?
$\Leftrightarrow \quad C R_{C} \neq L / \boldsymbol{R}_{L}$

Examples

$$
p\left(\frac{d}{d t}\right) y=q\left(\frac{d}{d t}\right) u
$$

u is observable from $\boldsymbol{y} \Leftrightarrow \boldsymbol{q}=$ non-zero constant (no zeros).

A controllable linear time-invariant differential system always has an observable 'image' representation

$$
w=M\left(\frac{d}{d t}\right) \ell
$$

In fact, this again characterizes the controllable linear time-invariant differentiable systems.

Kalman definitions

Special case: classical Kalman definitions for

$$
\frac{d}{d t} x=f \circ(x, u), \quad y=h \circ(x, u)
$$

R.E. Kalman

Kalman definitions

Special case: classical Kalman definitions for

$$
\frac{d}{d t} x=f \circ(x, u), \quad y=h \circ(x, u) .
$$

controllability: variables = (input, state)

If a system is not (state) controllable, why is it? Insufficient influence of the control? Or bad choice of the state?

Kalman definitions

Special case: classical Kalman definitions for
$\frac{d}{d t} x=f \circ(x, u), y=h \circ(x, u)$.
controllability: variables = (input, state)

R.E. Kalman

If a system is not (state) controllable, why is it?
Insufficient influence of the control?
Or bad choice of the state?
observability: \sim observed = (input, output), to-be-deduced = state.
Why is it so interesting to try to deduce the state, of all things? The state is a derived notion, not a 'physical' one.

Stabilizability

The system $\Sigma=\left(\mathbb{T}, \mathbb{R}^{\mathbf{w}}, \mathfrak{B}\right)$ is said to be stabilizable if, for all $\boldsymbol{w} \in \mathfrak{B}$, there exists $\boldsymbol{w}^{\prime} \in \mathfrak{B}$ such that

$$
w(t)=w^{\prime}(t) \text { for } t<0 \text { and } w^{\prime}(t) \underset{t \rightarrow \infty}{\longrightarrow} 0
$$

Stabilizability

The system $\Sigma=\left(\mathbb{T}, \mathbb{R}^{\mathbf{w}}, \mathfrak{B}\right)$ is said to be stabilizable if, for all $\boldsymbol{w} \in \mathfrak{B}$, there exists $\boldsymbol{w}^{\prime} \in \mathfrak{B}$ such that

$$
w(t)=w^{\prime}(t) \text { for } t<0 \text { and } w^{\prime}(t) \underset{t \rightarrow \infty}{\longrightarrow} 0
$$

Stabilizability $: \Leftrightarrow$ legal trajectories can be steered to a desired point.

Detectability

¿ Is it possible to deduce w_{2} asymptotically from w_{1} ?

Detectability

¿ Is it possible to deduce w_{2} asymptotically from w_{1} ?
Definition: w_{2} is said to be

detectable from w_{1} if

$\llbracket\left(w_{1}, w_{2}^{\prime}\right) \in \mathfrak{B}$, and $\left(w_{1}, w_{2}^{\prime \prime}\right) \in \mathfrak{B} \rrbracket$

$$
\Rightarrow \llbracket\left(w_{2}^{\prime}-w_{2}^{\prime \prime}\right) \rightarrow 0 \text { for } t \rightarrow \infty \rrbracket
$$

Summary

Btw

- A model is not a map, but a relation.

Btw

- A model is not a map, but a relation.
- A flow

$$
\frac{d}{d t} x=f(x) \text { with or without } y=h(x)
$$

is a very limited model class.
$~$ closed dynamical systems.

Btw

- A model is not a map, but a relation.
- A flow is a very limited model class.
\sim closed dynamical systems.
- An open dynamical system is not an input/output map .

Heaviside

Wiener

Nyquist

Bode

Btw

- A model is not a map, but a relation.
- A flow is a very limited model class.
\sim closed dynamical systems.
- An open dynamical system is not an input/output map .
- input/state/output systems, although still limited, are the first class of suitably general models

R.E. Kalman

Btw

- A model is not a map, but a relation.
- A flow is a very limited model class.
\leadsto closed dynamical systems.
- An open dynamical system is not an input/output map.
- input/state/output systems, although still limited, are the first class of suitably general models
- Behaviors, including latent variables, are the first suitable general model class for physical applications and modeling by tearing, zooming, and linking

Summary

- A mathematical model = a subset

Summary

- A mathematical model = a subset
- A dynamical system =a behavior
= a family of trajectories

Summary

- A mathematical model = a subset
- A dynamical system =a behavior
= a family of trajectories
- Latent variables are ubiquitous in models

Summary

- A mathematical model = a subset
- A dynamical system =a behavior
= a family of trajectories
- Latent variables are ubiquitous in models
- Important properties of dynamical systems
- Controllability : concatenability of trajectories
- Observability : deducing one trajectory from another
- Stabilizability : driving a trajectory to zero

Summary

- A mathematical model = a subset
- A dynamical system =a behavior
= a family of trajectories
- Latent variables are ubiquitous in models
- Important properties of dynamical systems
- Controllability : concatenability of trajectories
- Observability : deducing one trajectory from another
- Stabilizability : driving a trajectory to zero
- The behavior is all there is. All properties in terms of the behavior. Equivalence, representations also.

Stochastic models

We only consider deterministic models. Stochastic models:

Laplace
there is a map P (the 'probability')

$$
P: \mathfrak{A} \rightarrow[0,1]
$$

with \mathfrak{A} a ' σ-algebra' of subsets of \mathfrak{U}.
$\boldsymbol{P}(\mathfrak{B})=$ 'degree of certainty' (relative frequency, propensity, plausibility, belief) that outcomes are in \mathfrak{B}; \cong the degree of validity of \mathfrak{B} as a model.

Stochastic models

We only consider deterministic models. Stochastic models: there is a map P (the 'probability')

$$
P: \mathfrak{A} \rightarrow[0,1]
$$

with \mathfrak{A} a ' σ-algebra' of subsets of \mathfrak{U}.
$\boldsymbol{P}(\mathfrak{B})=$ 'degree of certainty' (relative frequency, propensity, plausibility, belief) that outcomes are in \mathfrak{B}; \cong the degree of validity of \mathfrak{B} as a model.

Determinism: P is a ' $\{0,1\}$-law'

$$
\mathfrak{A}=\left\{\varnothing, \mathfrak{B}, \mathfrak{B}^{\text {complement }}, \mathfrak{U}\right\}, \boldsymbol{P}(\mathfrak{B})=1 .
$$

Fuzzy models

L. Zadeh

Fuzzy models: there is a map μ ('membership f'n')

$$
\mu: \mathfrak{U} \rightarrow[0,1]
$$

$\mu(x)=$ 'the extent to which x belongs to the model's behavior'.

Fuzzy models

Fuzzy models: there is a map μ ('membership f'n')

$$
\mu: \mathfrak{U} \rightarrow[0,1]
$$

$\mu(x)=$ 'the extent to which x belongs to the model's behavior'.

Determinism: μ is 'crisp':

$$
\begin{gathered}
\text { image }(\mu)=\{0,1\}, \\
\mathfrak{B}=\mu^{-1}(\{1\}):=\{x \in \mathfrak{U} \mid \mu(x)=1\}
\end{gathered}
$$

Every 'good' scientific theory is prohibition: it forbids certain things to happen... The more a theory forbids, the better it is.

Replace 'scientific theory' by 'mathematical model' !

