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Issues

• What is a linear time-invariant differential system
(LTIDS) ?

• How are they represented?

• The annihilators

• Differential annihilators
• Rational annihilators

• Controllability, transfer functions, and image
representations

• Representations using proper stable rational functions
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LTIDS



The class of systems
We discuss the fundamentals of the theory of dynamical
systems

Σ = (R, Rw, B)

that are

1. linear, meaning (‘superposition’)

[[(w1, w2 ∈ B) ∧ (α, β ∈ R)]] ⇒ [[αw1 + βw2 ∈ B]]

2. time-invariant, meaning

[[(w ∈ B) ∧ (t ′ ∈ R)]] ⇒ [[σt ′
w ∈ B)]]

σt ′
: backwards t ′-shift: σt ′

w (t ) := w (t + t ′).

3. differential, meaning
B consists of the sol’ns of a system of diff. eq’ns.
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The class of systems
w variables: w1, w2, . . . ww,
up to n-times differentiated,
g equations. ;

Σw
j =1R0

1,j w j + Σw
j =1R1

1,j
d
dt

w j + · · · + Σw
j =1Rn

1,j
d n

dt n
w j = 0

Σw
j =1R0

2,j w j + Σw
j =1R1

2,j
d
dt

w j + · · · + Σw
j =1Rn

2,j
d n

dt n
w j = 0

...
...

...

Σw
j =1R0

g,j w j + Σw
j =1R1

g,j
d
dt

w j + · · · + Σw
j =1Rn

g,j
d n

dt n
w j = 0

Coefficients Rk : 3 indices!
i = 1, . . . , g : for the i -th differential equation,
j = 1, . . . , w : for the variable w j involved,
k = 1, . . . , n : for the order d k

dt k of differentiation.



The class of systems

In vector/matrix notation:

w =


w1
w2,

...
ww

 , Rk =


Rk

1,1 Rk
1,2 · · · Rk

1,w

Rk
2,1 Rk

2,2 · · · Rk
2,w

...
... · · ·

...
Rk

g,1 Rk
g,2 · · · Rk

g,w

 .

R0w + R1
d

dt
w + · · · + Rn

d n

dt n
w = 0,

with R0, R1, · · · , Rn ∈ Rg×w. With polynomial matrix

R(ξ) = R0 + R1ξ + · · · + Rnξn ∈ R [ξ]g×w

we obtain the mercifully short notation

R(
d

dt
)w = 0.
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Definition of the behavior
What shall we mean by the behavior of

R(
d

dt
)w = 0 ?

Solutions in C∞ (R, Rw)?
As many times differentiable as there appear derivatives ap-
pear in DE ?
Distributional solutions in Lloc(R, Rw)?
In Lloc

2 (R, Rw)?
Distributions?

The easy way out

B := {w ∈ C∞ (R, Rw) | R(
d

dt
)w (t ) = 0 ∀ t ∈ R}

Notation: B = ker(R( d
dt ))
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Notation

R [ξ] : polynomials with real coeff., indeterminate ξ

R [ξ]n×m: polynomial matrices

R [ξ]•×•: appropriate number of rows, columns

Lw, L•: linear differential systems

B ∈ Lw := (R, Rw, B) ∈ Lw; B = ker(R( d
dt ))

R(ξ) : rational f’ns with real coeff., indeterminate ξ

R(ξ)n×m: matrices of rat. f’ns

R(ξ)•×•: appropriate number of rows, columns



Rational symbols
We also want to give a meaning to

F (
d

dt
)w = 0

with F ∈ R(ξ)•×w, i.e. a matrix of rational functions .
What do we mean by a solution?

Define the behavior of this ‘diff. eq’n’ to be that of

Q(
d

dt
)w = 0

Whence ∈ L•.
One justification: Realize F as the t’f f’n of controllable sys-
tem

d

dt
x = Ax + Bu , y = Cx + D(

d

dt
)u .

Consider ‘output nulling’ behavior

d

dt
x = Ax + Bw , 0 = Cx + D(

d

dt
)w .

This equals Q(
d

dt
)w = 0
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Elimination



Problem
Assume (w1, w2) governed by

R1(
d

dt
)w1 = R2(

d

dt
)w2

R1, R2 ∈ R [ξ]•×•. Behavior B. Obviously B ∈ L•

Define the ‘projection’

B1 := {w1 | ∃ w2 such that (w1, w2) ∈ B}

Does B1 belong to L• ?

Theorem: It does indeed, also with R1, R2 ∈ R (ξ)•×•.

Algorithms?
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Examples

The input/output behavior of

d

dt
x = Ax + Bu , y = Cx + Du .

Every B ∈ L• admits such a representation w ∼=
[
u
y

]
.

Also representation

P(
d

dt
)y = Q(

d

dt
)u , w ∼=

[
u
y

]
.

The manifest behavior of

R(
d

dt
)w = M(

d

dt
)`, R, M ∈ R (ξ)•×•

Any combination of variables in a signal flow graph with
rational t’f f’ns in the edges, is an LTIDS.

The port behavior of a circuit with (a finite number) linear re-
sistors, capacitors, inductors, transformers, and gyrators.

Expect this to be a particular situation for LTIDS – but also
holds for linear constant coefficient PDE’s.
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The annihilators



Polynomial annihilators
Let B ∈ Lw, and n ∈ R [ξ]1×w.

Call n a polynomial annihilator of B :⇔

n(
d

dt
)w = 0 ∀ w ∈ B, i.e. iff n(

d

dt
)B = 0.

Denote the set of annihilators by N
R[ξ]
B .

The term consequence is also used.

Easy: N
R[ξ]
B is an R [ξ]-module.

Theorem:

1. Let B = ker(R( d
dt )). Then N

R[ξ]
B is the R [ξ]-module

generated by the rows of R.

2. There is a 1:1 relation between Lw and the submodules
of R [ξ]1×w, the correspondence being

B 7→ N
R[ξ]
B submodule 7→ {w | n( d

dt )w = 0 ∀n ∈ submodule }
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Properties of Polynomial Annihilators

Every submodule of R [ξ]1×w is finitely generated .
Number of generators ≤ w.

R1(
d
dt )w = 0 and R2(

d
dt )w = 0 define the same system iff

∃ F1, F2 such that R2 = F1R1, R1 = F2R2

R( d
dt )w = 0 has minimal number of rows among all kernel

representations of same behavior iff R has full row rank.

R1(
d
dt )w = 0 and R2(

d
dt )w = 0 are minimal kernel repr. of

the same system iff ∃ unimodular F such that R2 = FR1.

; canonical forms, etc.

Basically, therefore, polynomial kernel representations are
unique up to unimodular pre-multiplication
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Examples

p(
d

dt
)w = 0 p ∈ R [ξ]

Polynomial annihilators: q ∈ R [ξ] with p as a factor: R [ξ] p .

Canonical form: p monic.

There are also non-minimal representations, e.g.

p1(
d
dt )w = 0

p2(
d
dt )w = 0

with GCD( p1, p2)=p .

Exercise: What are the consequences of d
dt w = Aw ?



Proof of elimination thm
‘Fundamental principle’ . When is the equation

F (x ) = y y given , x unknown

solvable? In particular, when is

F (
d

dt
)x = y

solvable?

The fundamental principle and the elimination theorem also
hold for linear constant coefficient PDE’s!

Palamodov Malgrange
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F (
d

dt
)x = y

solvable? Obvious necessary condition:

N ◦ F = 0 ⇒ N(y ) = 0

Is this also sufficient, for a ‘small’ set of N ’s? For example,
for F a matrix. Then easy to see n.a.s.c. for solvability:

n ∈ R•, nF = 0 ⇒ ny = 0

The fundamental principle and the elimination theorem also
hold for linear constant coefficient PDE’s!

Palamodov Malgrange



Proof of elimination thm
In particular, when is

F (
d

dt
)x = y

solvable? N.a.s.c. for linear diff. eq’ns:

n(
d

dt
)F (

d

dt
) = 0 ⇒ n(

d

dt
)y = 0

These n ’s form a R [ξ]-module: n(ξ) such that n(ξ)F (ξ) = 0.
Computable!

For what w ’s is R( d
dt )w = M( d

dt )` solvable for `?

Iff nM = 0 ⇒ n( d
dt )R( d

dt )w = 0.

; condition R′( d
dt )w = 0: elim’ion th’m + algorithm.

The fundamental principle and the elimination theorem also
hold for linear constant coefficient PDE’s!

Palamodov Malgrange
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The fundamental principle and the elimination theorem also
hold for linear constant coefficient PDE’s!

Palamodov Malgrange



Rational Annihilators
Let B ∈ Lw, and n ∈ R (ξ)1×w.

Call n a rational annihilator of B :⇔

n(
d

dt
)w = 0 ∀w ∈ B, i.e. iff n(

d

dt
)B = 0.

Note what this means:
n = p−1

[
q1 q2 · · · qw

]
; p, q1, q2, . . . , qw co-prime

:⇔ q1(
d
dt )w1 + q2(

d
dt )w2 + · · · + qw(

d
dt )ww = 0 ∀w ∈ B.

Denote the set of rational annihilators by N
R(ξ)
B .

Theorem:

1. Let B = ker(R( d
dt )). Then N

R(ξ)
B is the R [ξ]-module

generated by the rows of R.

2. There is a 1:1 relation between Lw and the R [ξ]
submodules of R (ξ)1×w, the correspondence being

B 7→ N
R(ξ)
B submodule 7→ {w | n( d

dt )w = 0 ∀n ∈ submodule }

Not a nice thm: refers to submodules of a vector space!
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B .

Theorem:

1. Let B = ker(R( d
dt )). Then N

R(ξ)
B is the R [ξ]-module

generated by the rows of R.

2. There is a 1:1 relation between Lw and the R [ξ]
submodules of R (ξ)1×w, the correspondence being

B 7→ N
R(ξ)
B submodule 7→ {w | n( d

dt )w = 0 ∀n ∈ submodule }

Not a nice thm: refers to submodules of a vector space!



Examples

p(
d

dt
)w = 0 p ∈ R [ξ]

Rational annihilators:
n1

n2
∈ R (ξ) with n1, n2 co-prime, and

with p a factor of n1.

p(
d

dt
)w1 = q(

d

dt
)w2 p, q ∈ R [ξ]

Rational annihilators:
n1

n2

[
p −q

]
,

with n1, n2 ∈ R [ξ], co-prime, and with n2, p, q co-prime.

In the special case that p, q are co-prime, this is actually the

R (ξ)-vector space generated by
[
p −q

] ∼=
[
1 −

q

p

]
!

Why do we get a subspace instead of just a module?
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Controllability & Stabilizability



Controllability
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Stabilizability

Stabilizability :⇔
legal trajectories can be steered to a desired point.

w’

w

0

W

time



Tests

Theorem:
B = ker(R( d

dt )), R ∈ R [ξ]•×• is controllable ⇔

R(λ) has the same rank for all λ ∈ C

Same result for rational symbols, but care should be taken
in defining rank drop in situations where the symbol has
zeros and poles in common points of the complex plane.

Example 1: d
dt x = Ax + Bu , dim(x ) = n is controllable iff

rank(
[
λIn − A B

]
) = n for all λ ∈ C.

Example 2: y = G( d
dt )u , w =

[
u
y

]
is always controllable.
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Tests

Theorem:
B = ker(R( d

dt )) ∈ Lw, R ∈ R [ξ]•×• is stabilizable ⇔

R(λ) has the same rank for all λ with Re(λ) ≥ 0

Same result for rational symbols, but care should be taken
in defining rank drop in situations where the symbol has
zeros and poles in common points of the complex plane.

Example 1: d
dt x = Ax + Bu , dim(x ) = n is stabilizable iff

rank(
[
λIn − A B

]
) = n for all λ with Re(λ) ≥ 0.

Example 2: y = G( d
dt )u , w =

[
u
y

]
is always controllable,

and hence stabilizable.
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Subspaces of annihilators
Characterization of controllability in terms of the structure
of rational annihilators:
Theorem:

1. B ∈ Lw is controllable iff its rational annihilators N
R(ξ)
B

form an R (ξ)-subspace of R (ξ)1×w.

2. There is a one-to-one relation between the controllable
systems in Lw and the R (ξ)-subspaces of R (ξ)1×w.

The system
P(

d

dt
)y = Q(

d

dt
)u

is equal to

y = G(
d

dt
)u with G = P−1Q

iff controllable (i.e., P, Q left co-prime:
[
P Q

]
left prime.

Transfer functions deal with controllable systems (only) .
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Kernels and images

Each element of L• is by definition the kernel of a linear
constant coefficient differential operator, i.e.

[[ B ∈ L• ]] :⇔ [[ ∃R ∈ R [ξ]•×• such that B = ker(R(
d

dt
)) ]]

Consider the manifest behavior of

w = M(
d

dt
)`, i.e. B = im(M(

d

dt
))

By the elimination theorem im(M( d
dt )) ∈ L•.

Easy: ∃B ∈ L• that do not admit image representation.

What system theoretic property characterizes image repr.?

Controllability !!
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Image Representation

Theorem: The following are equivalent for B ∈ Lw:

1. it is controllable

2. ∃ M ∈ R [ξ]•×• such that B is the manifest behavior of

w = M(
d

dt
)`

3. ∃ M ∈ R (ξ)•×• such that B is the manifest behavior of

w = M(
d

dt
)`

Controllable iff ∃ image representation. B = im(M( d
dt )).

But be careful to interpret this in the rational case: M( d
dt )

is then a one-to-many ‘map’.

We may assume WLOG these image repr. observable .
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Controllable part
The controllable part of B ∈ Lw is defined as the largest
controllable system B′ ∈ Lw with B′ ⊆ B.

Two i/o systems have the same t’f f’n iff they have same
controllable part.

Transfer functions deal with controllable parts only.

The R (ξ)-span of the rows of R in R( d
dt )w = 0 define the

rational annihilators of the controllable part.
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Prime representations



Primes in rings
A ring is closed under addition and multiplication.

Matrices, uni-modularity, etc.

Let R be a ring. A matrix M ∈ R•×• is left prime if M =

FM ′ ⇒ F is unimodular.

The matrices M1, M2, . . . , Mn, ∈ Rm×• are said to be
left coprime if

[
M1 M2 · · · Mn

]
is left prime.

There is an enormous zoology of rings with all sorts of
properties...



Other rings

Consider

1. R [ξ]: polynomials

2. R (ξ): rational functions

3. R (ξ)proper : proper rational

4. R (ξ)proper/stable: proper (Hurwitz) stable rational

These are all rings, with R (ξ) as field of fractions.
R (ξ)proper/stable is an Euclidean domain ⇒ Bézout.
Matrices. Primeness, unimodularity, factorization, etc.

Every B ∈ Lw admits by definition a ‘kernel repr.’ over

R [ξ] i.e., ∃ R ∈ R [ξ]•×• such that B = ker(R( d
dt )).

How about the other rings? Should we care? Yes! Youla
parametrization, dist. between systems, robustness, etc.
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Ring representations
Relation between system properties and
prime representability over various rings.

Theorem: Refers to ‘kernel repr.’ with rational symbols.

1. B ∈ L• iff it admits a kernel representation with R in
and left prime over R (ξ)proper .

2. B ∈ L• is stabilizable iff it admits a kernel repr. with R
in and left prime over R (ξ)proper/stable.

3. B ∈ L• is controllable iff it admits a kernel
representation with R ∈ R [ξ]•×• left prime over R [ξ].

M. Vidyasagar



Unitary Representation
To close this lecture, a result on unitary representations.

Consider B ∈ Lw, controllable. Define B2 = B∩L2(R, Rw).
B2 is a closed linear subspace of L2(R, Rw).

Are there kernel or image representations that are adapted
to this Hilbert space structure?

B (controllable) admits a rational kernel representation

R(
d

dt
)w = 0

with R proper stable, left prime, and norm preserving.

Idea of proof: start with minimal pol. repr. R( d
dt )w = 0.

Consider the polynomial matrix factorization equation

R>(−ξ)R(ξ) = F>(−ξ)F (ξ).

Take Hurwitz sol’n H. Define the rational kernel repr.

G(
d

dt
)w = 0 with G = RH−1



Unitary Representation
G ∈ R (ξ)•×•, and consider the system

f2 = G(
d

dt
)f1, with f1, f2 ∈ L2(R, R•).

Is this a map f1 7→ f2?
If G is proper, no poles on the imaginary axis, then f2 =
G( d

dt )f1 defines a bounded linear operator from

f1 ∈ L2(R, R•) 7→ f2 ∈ L2(R, R•).

Norm preserving (:⇔ ||f1||2 = ||f2||2) iff

G>(−iω)G(iω) = I ∀ω ∈ R.

B (controllable) admits a rational kernel representation

R(
d

dt
)w = 0

with R proper stable, left prime, and norm preserving.

Idea of proof: start with minimal pol. repr. R( d
dt )w = 0.

Consider the polynomial matrix factorization equation

R>(−ξ)R(ξ) = F>(−ξ)F (ξ).

Take Hurwitz sol’n H. Define the rational kernel repr.

G(
d

dt
)w = 0 with G = RH−1



Unitary Representation

B (controllable) admits a rational kernel representation

R(
d

dt
)w = 0

with R proper stable, left prime, and norm preserving.

B (controllable) also admits a rational image representation

w = M(
d

dt
)`

with M proper stable, right prime, and norm preserving.

Idea of proof: start with minimal pol. repr. R( d
dt )w = 0.

Consider the polynomial matrix factorization equation

R>(−ξ)R(ξ) = F>(−ξ)F (ξ).

Take Hurwitz sol’n H. Define the rational kernel repr.

G(
d

dt
)w = 0 with G = RH−1
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Summary

• LTIDS = linear, time-invariant, differential. Behavior
defined as sol’ns of constant coeff. diff. eqn’s.
Or with rational symbols.

• Closed under +, ∩, projection (elimination) , rational
operators, etc.

• Annihilators: polynomial and rational.

• Controllability ⇔ image representation.

• Math. characterization of Lw:
• 1:1 relation between Lw and R [ξ]-submodules
• 1:1 relation between Lw

controllable and R (ξ)-subspaces

• ∃ various more refined rational representations
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Discrete time systems

What changes for discrete time systems??

Ring
• for T = N also R [ξ]

• for T = Z instead R(ξ, ξ−1). This implies some
differences.

All major thms remain valid, mutatis mutandis.

There is a
nice, ‘higher level’, definition of a linear time-invariant dis-
crete time system.

Take T = N. The following are equivalent.
• B linear, shift-inv., closed (pointwise conv.)
• B linear, time-inv., complete (‘prefix determined’)

:= [[ w ∈ B ]] ⇔ [[ w[t0,t1] ∈ B[t0,t1] ∀t0, t1 ∈ N ]]

• ∃ R ∈ R [ξ]•×• (or ∈ R (ξ)•×•) such that:

B = {w : N → R• | R(σ)w = 0 }

• and the many more traditional representations
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