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Dynamics and functionals in systems and control

Instances: Lyapunov theory, performance criteria, etc.

Linear case =⇒ quadratic and bilinear functionals.

Usually: state-space equations, constant functionals.

However, tearing and zooming =⇒ state space eq.s

¡High-order differential equations!

...involving also latent variables...
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Aim

An effective algebraic representation
of bilinear and quadratic functionals

of the system variables and their derivatives:

Operations/properties of functionals
m

algebraic operations/properties of representation

...a calculus of these functionals!
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Bilinear differential forms (BDFs)

Φ :=
{
Φk ,` ∈ Rw1×w2

}
k ,`=0,...,L

LΦ : C∞(R, Rw1) × C∞(R, Rw2) → C∞(R, R)

LΦ(w1, w2) :=
[
w>

1
dw1
dt

>
. . .

]


Φ0,0 Φ0,1 . . .
Φ1,0 Φ1,1 . . .

...
... · · ·

Φk ,0 Φk ,1 . . .
...

... · · ·


w2

dw2
dt
...



=
∑

k ,`

(
dk

dtk w1

)>
Φk ,`

(
d`

dt` w2

)



Quadratic differential forms (QDFs)

Φ :=
{
Φk ,` ∈ Rw×w

}
k ,`=0,...,L symmetric, i.e. Φk ,` = Φ>

`,k

QΦ : C∞(R, Rw) → C∞(R, R)

QΦ(w) :=
[
w> dw

dt
>

. . .
]


Φ0,0 Φ0,1 . . .
Φ1,0 Φ1,1 . . .

...
... · · ·

Φk ,0 Φk ,1 . . .
...

... · · ·


w

dw
dt
...



=
∑L

k ,`=0

(
dk

dtk w
)>

Φk ,`

(
d`

dt` w
)



Example: total energy in mechanical system

1
2

[
m1

(
d
dt

w1

)2

+ m2

(
d
dt

w2

)2
]

+
1
2

[
k1w2

1 + k2w2
2

]

[
w1 w2

d
dt w1

d
dt w2

] 
1
2k1 0 0 0
0 1

2k2 0 0
0 0 1

2m1 0
0 0 0 1

2m2




w1
w2

d
dt w1
d
dt w2


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Two-variable polynomial matrices for BDFs

{
Φk ,` ∈ Rw1×w2

}
k ,`=0,...,L

LΦ(w1, w2) =
L∑

k ,`=0

(
dk

dtk
w1)

> Φk ,`

d`

dt`
w2

Φ(ζ, η) =
∑L

k ,`=0 Φk ,` ζk η`

LΦ(w1, w2) =
L∑

k ,`=0

(
dk

dtk
w1)

> Φk ,`

d`

dt`
w2

Φ(ζ, η) =
∑L

k ,`=0 Φk ,` ζk η`

2-variable polynomial matrix associated with LΦ



Two-variable polynomial matrices for BDFs

{
Φk ,` ∈ Rw1×w2

}
k ,`=0,...,L

LΦ(w1, w2) =
L∑

k ,`=0

(
dk

dtk
w1)

> Φk ,`

d`

dt`
w2

Φ(ζ, η) =
∑L

k ,`=0 Φk ,` ζk η`

LΦ(w1, w2) =
L∑

k ,`=0

(
dk

dtk
w1)

> Φk ,`

d`

dt`
w2

Φ(ζ, η) =
∑L

k ,`=0 Φk ,` ζk η`

2-variable polynomial matrix associated with LΦ



Two-variable polynomial matrices for BDFs

{
Φk ,` ∈ Rw1×w2

}
k ,`=0,...,L

LΦ(w1, w2) =
L∑

k ,`=0

(
dk

dtk
w1)

> Φk ,`

d`

dt`
w2

Φ(ζ, η) =
∑L

k ,`=0 Φk ,` ζk η`

LΦ(w1, w2) =
L∑

k ,`=0

(
dk

dtk
w1)

> Φk ,`

d`

dt`
w2

Φ(ζ, η) =
∑L

k ,`=0 Φk ,` ζk η`

2-variable polynomial matrix associated with LΦ



Two-variable polynomial matrices for QDFs

{
Φk ,` ∈ Rw×w

}
k ,`=0,...,L symmetric (Φk ,` = Φ>

`,k)

QΦ(w) =
L∑

k ,`=0

(
dk

dtk
w)> Φk ,`

d`

dt`
w

Φ(ζ, η) =
∑L

k ,`=0 Φk ,` ζk η`

symmetric: Φ(ζ, η) = Φ(η, ζ)>



Example: total energy in mechanical system

QE(w1, w2) =
[
w1 w2

d
dt w1

d
dt w2

] 
1
2 k1 0 0 0
0 1

2 k2 0 0
0 0 1

2 m1 0
0 0 0 1

2 m2




w1
w2

d
dt w1
d
dt w2



E(ζ, η) =

[1
2k1 0
0 1

2k2

]
+

[1
2ζη 0
0 1

2ζη

]
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The calculus of B/QDFs

Using powers of ζ and η as placeholders,

B/QDF ! two-variable polynomial matrix

Operations
and properties

of B/QDF
!

algebraic
operations/properties
on two-variable matrix



The calculus of B/QDFs

Using powers of ζ and η as placeholders,

B/QDF ! two-variable polynomial matrix

Operations
and properties

of B/QDF
!

algebraic
operations/properties
on two-variable matrix



Differentiation

Φ ∈ Rw×w
s [ζ, η].

•
Φ derivative of QΦ:

Q•
Φ

: C∞(R, Rw) → C∞(R, R)

Q•
Φ
(w) :=

d
dt

(QΦ(w))

•
Φ(ζ, η) = (ζ + η)Φ(ζ, η)

Two-variable version of Leibniz’s rule
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Integration

D(R, R•) C∞-compact-support trajectories

LΦ : D(R, Rw1) × D(R, Rw2) → D(R, R)

∫
LΦ : D(R, Rw1) × D(R, Rw2) → R∫
LΦ(w1, w2) :=

∫ +∞
−∞ LΦ(w1, w2)dt

Analogous for QDFs



Part II: Applications
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Nonnegativity and positivity along a behavior

QΦ

B

≥ 0 if QΦ(w) ≥ 0 ∀ w ∈ B

QΦ

B
> 0 if QΦ

B

≥ 0, and [QΦ(w) = 0] =⇒ [w = 0]

Prop.: Let B = kerR( d
dt ). Then QΦ

B

≥ 0 iff there exist
D ∈ R•×w[ξ], X ∈ R•×w[ζ, η] such that

Φ(ζ, η) = D(ζ)>D(η)︸ ︷︷ ︸
≥0 for all w

+ R(ζ)>X(ζ, η) + X(η, ζ)>R(η)︸ ︷︷ ︸
=0 if evaluated onB
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Lyapunov theory

B autonomous is asymptotically stable
if limt→∞ w(t) = 0 ∀ w ∈ B

B = kerR( d
dt ) stable ⇐⇒ det(R) Hurwitz

Theorem: B asymptotically stable iff

exists QΦ such that QΦ

B

≥ 0 andQ•
Φ

B
< 0
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Example
B = ker

(
d2

dt2 + 3 d
dt + 2

)
r(ξ) = ξ2 + 3ξ + 2

Choose Ψ(ζ, η) s.t. QΨ

B
< 0, e.g. Ψ(ζ, η) = −ζη;

Find Φ(ζ, η) s.t. d
dt QΦ(w) = QΨ(w) for all w ∈ B:

(ζ + η)Φ(ζ, η) = Ψ(ζ, η) + r(ζ)x(η) + x(ζ)r(η)︸ ︷︷ ︸
=0 on B

Φ(ζ, η) =
−ζη + (ζ2 + 3ζ + 2)1

6η + 1
6ζ(η2 + 3η + 2)

ζ + η

=
1
6
ζη +

1
3

> 0
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State-space case(
d
dt

Ix − A
)

x = 0 ; R(ξ) = ξIx − A

• Choose Q < 0;

• Solve polynomial Lyapunov equation

(ξIx − A)>P + P(ξIx − A) = −A>P − PA = Q

equivalent with matrix Lyapunov equation!

• Lyapunov functional is

x>(−P)x
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Dissipativity theory

supply
SYSTEM

Power is supplied

; energy is stored

RLC circuits Power V >I

Storage in capacitors and inductors

Mechanical system Power F >v + ( d
dt ϑ)>T

Potential+kinetic



Setting the stage

Controllable system

w = M( d
dt )` ; M(ξ)

Power (‘supply rate’)

QΦ(w) ; Φ(ζ, η)

QΦ(w) = QΦ(M( d
dt )`)

Φ′(ζ, η) := M(ζ)>Φ(ζ, η)M(η)

QΦ′ acts on free variable `, i.e. C∞
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Dissipation inequality

QΨ is storage function for the supply QΦ if

d
dt QΨ ≤ QΦ

Rate of storage increase ≤ supply

Q∆ is dissipation function for QΦ if

Q∆ ≥ 0 and
∫

Q∆dt =
∫

QΦdt

DISSIPATION

SUPPLY

STORAGE
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Dissipation inequality

QΨ is storage function for the supply QΦ if

d
dt QΨ ≤ QΦ

Rate of storage increase ≤ supply

Q∆ is dissipation function for QΦ if

Q∆ ≥ 0 and
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Characterizations of dissipativity

Theorem: The following conditions are equivalent:

•
∫ +∞

−∞ QΦ(`)dt ≥ 0 for all C∞ compact-support `;

• QΦ admits a storage function;

• QΦ admits a dissipation function

Also, storage and dissipation functions are one-one:

d
dt

QΨ = QΦ − Q∆

(ζ + η)Ψ(ζ, η) = Φ(ζ, η) − ∆(ζ, η)



Example: mechanical systems

M d2

dt2 q + D d
dt q + Kq = F

[
F
q

]
=

[
M d2

dt2 + D d
dt + K

I3

]
`

Φ(ζ, η) = 1
2(Mζ2 + Dζ + K )>η + 1

2ζ(Mη2 + Dη + K )

∆(ζ, η) = 1
2(D

> + D)ζη

Storage function

Ψ(ζ, η) =
Φ(ζ, η) − ∆(ζ, η)

ζ + η
=

1
2

Mζη +
1
2

K

Total energy
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`

Supply rate: power

F >
(

d
dt

q
)

=

(
M

d2

dt2
` + D

d
dt

` + K`

)> (
d
dt

`

)
corresponding to

Φ(ζ, η) =
1
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1
2
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M d2

dt2 q + D d
dt q + Kq = F

[
F
q

]
=

[
M d2

dt2 + D d
dt + K

I3

]
`

Φ(ζ, η) = 1
2(Mζ2 + Dζ + K )>η + 1

2ζ(Mη2 + Dη + K )

If dissipation inequality

Φ(ζ, η) = (ζ + η)Ψ(ζ, η) + ∆(ζ, η)

holds, then

Φ(−ξ, ξ) = −
1
2
ξ2(D> + D) = ∆(−ξ, ξ)

=⇒ ∆(ζ, η) =
1
2
(D> + D)ζη

Spectral factorization of Φ(−ξ, ξ) is key
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Example: mechanical systems
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A minimal and stable realization (A, B, C, D)
is balanced if exist σi ∈ R such that
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A>Σ + ΣA + C>C = 0

where Σ := diag(σ1, σ2, . . . , σn)
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Principal  Component  Analysis in Linear 
Systems:  Controllability,  Observability,  and 

Model  Reduction 
BRUCE C. MOORE 

Abstmct--Knlmnn’s minimal realization  theory  involves geometric o b  
jeds (controUabk, uuobsewable subspaces) which are snbject to stradural 
instability. SpedkaUy, arbitrarily small pertnrbations in a model may 
cause a change in the dimensions of the associated subspaces. This 
situation is manifested in  computatiooal diffiities which arise in attempts 
to apply textbmk algorithms for computing a minimal realization. 

Structural instabiity associated with geometric theories is not unique to 
control; it arises in the  theory of hear eqoatiors as well. In thif setting, 
ttse computational problems have been studied for decades and excellent 
tools have been developed for coping with the situation. One of the main 
goals of this paper is to Can attention to p&zipal component analysis 
(Hotelling, l933), and an algorithm (Golub and  Reinsch, 1970) for comput- 
i n g t h e ~ w h r e ~ ~ s ~ o l a m a t r i x . T o g e t b e r t h e y f o r m a  
powerful tool for coping with structural instability in dynamic system. 
As developed in this paper, principal mmponeot analysis is a technique 

for analyzing signals. (S ia r  value decomposition provides the computa- 
tional machinery.) For this reason, Kalman’s minimal realization theory is 
recast in t e m ~  of responses to injected signals. Application of the signal 
am@& to contrdlability and observabii leads to a eoordinate system in 
which the ‘’ininternally baland’  model tm special properties For asymp 
totically stable systems, this yields  working  approximations of X,, X;, the 
controllable  and  unobservable subspaces. It is proposed that a natural f i i  
s tepinmodelreductioniotoapplythemechanicsofminimal~oa 
* ~ w o r k i n g s n b s p a c e s .  

I. INTRODUCTION 

A COMMON and quite legitimate complaint directed 
toward multivariable control literature is that the 

apparent strength of the theory is not accompanied by 
strong numerical  tools. Kalman’s minimal  realization  the- 
ory [2], [3], for  example,  offers a beautifully  clear  picture 
of the structure of linear systems.  Practically  every  linear 
systems  text  gives a discussion of controllability, observa- 
bility, and minimal  realization. The associated  textbook 
algorithms are far from satisfactory, however,  serving 
mainly tp illustrate the  theory  with  textbook  examples. 

The problem  with textbook algorithms  for  minimal 
realization  theory  is that they are based on the literal 
content of the theory and cannot cope with structural 
discontinuities (commonly called “structural instabilities”) 
which  arise. Uncontrollability corresponds to the situation 
where a certain subspace (controllable subspace)  is  proper, 
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but arbitrarily small perturbations in an uncontrollable 
model  may  make the subspace technically not proper. 
Hence, for the perturbed model,’ the theory, taken liter- 
ally,  says that (assuming  observability) there is no lower 
order model  with the same impulse  response  matrix. There 
may  well  exist,  however, a lower order model  which  has 
effectively the same impulse response matrix. There is a 
gap  between  minimal realization theory and the problem 
of finding a lower order approximation, which we shall 
refer to as the  “model reduction problem.” 

The purpose of this paper is to show that there are some 
very  useful  tools  which can  be used  to  cope  with  these 
structural instabilities.  Specifically, the tools will be a p  
plied to the model reduction problem.  We shall draw 
heavily  from the work of others in statistics and computer 
science,  where  the problem of structural instability associ- 
ated with  geometric  theories has been studied intensely. 
Principal component analysis, introduced in statistics 
(1933) by  Hotelling [4], [ 5 ]  will be used  together  with the 
algorithm by Golub and Reinsch [6] (see [7] for working 
code) for computing the singular value decomposition of 
matrix.  Dempster [8] gives an excellent geometric treat- 
ment of principal component analysis as well as  an over- 
view  of its history. A thorough discussion of the singular 
value  decomposition and its history is  given in a recent 
paper by Klema and Laub [9]. There are excellent books 
[lo]-[ 151 within the area of numerical linear algebra which 
explain  how structural instabilities arise and are dealt with 
in the theory of linear equations. 

The material  given  in  Sections I1 and I11 of this paper is 
more  general than that appearing in the remaining sec- 
tions. In Section I1 minimal realization theory is reviewed 
from a “signal injection” viewpoint. The main advantage 
of this viewpoint  is that the relevant subspaces are char- 
acterized in terms of responses to injected signals rather 
than in  terms of the model parameters ( A ,  B, C ) .  The full 
power of the ability to’inject signals of various  types is not 
fully  exploited  in this paper. Section I11 contains very 
general  results  which are valid  whenever one is  trying to 
find approximate linear relationships that exist among a 
set of time  variables. In no other way  is linearity required. 
(See [16] for ideas about nonlinear applications.) 

In Section IV controllability and observability  analysis 
is  discussed.  Most of the effort is spent coming to grips 
with the problem of internal coordinate transformations. 
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ory [2], [3], for  example,  offers a beautifully  clear  picture 
of the structure of linear systems.  Practically  every  linear 
systems  text  gives a discussion of controllability, observa- 
bility, and minimal  realization. The associated  textbook 
algorithms are far from satisfactory, however,  serving 
mainly tp illustrate the  theory  with  textbook  examples. 

The problem  with textbook algorithms  for  minimal 
realization  theory  is that they are based on the literal 
content of the theory and cannot cope with structural 
discontinuities (commonly called “structural instabilities”) 
which  arise. Uncontrollability corresponds to the situation 
where a certain subspace (controllable subspace)  is  proper, 
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but arbitrarily small perturbations in an uncontrollable 
model  may  make the subspace technically not proper. 
Hence, for the perturbed model,’ the theory, taken liter- 
ally,  says that (assuming  observability) there is no lower 
order model  with the same impulse  response  matrix. There 
may  well  exist,  however, a lower order model  which  has 
effectively the same impulse response matrix. There is a 
gap  between  minimal realization theory and the problem 
of finding a lower order approximation, which we shall 
refer to as the  “model reduction problem.” 

The purpose of this paper is to show that there are some 
very  useful  tools  which can  be used  to  cope  with  these 
structural instabilities.  Specifically, the tools will be a p  
plied to the model reduction problem.  We shall draw 
heavily  from the work of others in statistics and computer 
science,  where  the problem of structural instability associ- 
ated with  geometric  theories has been studied intensely. 
Principal component analysis, introduced in statistics 
(1933) by  Hotelling [4], [ 5 ]  will be used  together  with the 
algorithm by Golub and Reinsch [6] (see [7] for working 
code) for computing the singular value decomposition of 
matrix.  Dempster [8] gives an excellent geometric treat- 
ment of principal component analysis as well as  an over- 
view  of its history. A thorough discussion of the singular 
value  decomposition and its history is  given in a recent 
paper by Klema and Laub [9]. There are excellent books 
[lo]-[ 151 within the area of numerical linear algebra which 
explain  how structural instabilities arise and are dealt with 
in the theory of linear equations. 

The material  given  in  Sections I1 and I11 of this paper is 
more  general than that appearing in the remaining sec- 
tions. In Section I1 minimal realization theory is reviewed 
from a “signal injection” viewpoint. The main advantage 
of this viewpoint  is that the relevant subspaces are char- 
acterized in terms of responses to injected signals rather 
than in  terms of the model parameters ( A ,  B, C ) .  The full 
power of the ability to’inject signals of various  types is not 
fully  exploited  in this paper. Section I11 contains very 
general  results  which are valid  whenever one is  trying to 
find approximate linear relationships that exist among a 
set of time  variables. In no other way  is linearity required. 
(See [16] for ideas about nonlinear applications.) 

In Section IV controllability and observability  analysis 
is  discussed.  Most of the effort is spent coming to grips 
with the problem of internal coordinate transformations. 
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I. INTRODUCTION 

A COMMON and quite legitimate complaint directed 
toward multivariable control literature is that the 

apparent strength of the theory is not accompanied by 
strong numerical  tools. Kalman’s minimal  realization  the- 
ory [2], [3], for  example,  offers a beautifully  clear  picture 
of the structure of linear systems.  Practically  every  linear 
systems  text  gives a discussion of controllability, observa- 
bility, and minimal  realization. The associated  textbook 
algorithms are far from satisfactory, however,  serving 
mainly tp illustrate the  theory  with  textbook  examples. 

The problem  with textbook algorithms  for  minimal 
realization  theory  is that they are based on the literal 
content of the theory and cannot cope with structural 
discontinuities (commonly called “structural instabilities”) 
which  arise. Uncontrollability corresponds to the situation 
where a certain subspace (controllable subspace)  is  proper, 
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but arbitrarily small perturbations in an uncontrollable 
model  may  make the subspace technically not proper. 
Hence, for the perturbed model,’ the theory, taken liter- 
ally,  says that (assuming  observability) there is no lower 
order model  with the same impulse  response  matrix. There 
may  well  exist,  however, a lower order model  which  has 
effectively the same impulse response matrix. There is a 
gap  between  minimal realization theory and the problem 
of finding a lower order approximation, which we shall 
refer to as the  “model reduction problem.” 

The purpose of this paper is to show that there are some 
very  useful  tools  which can  be used  to  cope  with  these 
structural instabilities.  Specifically, the tools will be a p  
plied to the model reduction problem.  We shall draw 
heavily  from the work of others in statistics and computer 
science,  where  the problem of structural instability associ- 
ated with  geometric  theories has been studied intensely. 
Principal component analysis, introduced in statistics 
(1933) by  Hotelling [4], [ 5 ]  will be used  together  with the 
algorithm by Golub and Reinsch [6] (see [7] for working 
code) for computing the singular value decomposition of 
matrix.  Dempster [8] gives an excellent geometric treat- 
ment of principal component analysis as well as  an over- 
view  of its history. A thorough discussion of the singular 
value  decomposition and its history is  given in a recent 
paper by Klema and Laub [9]. There are excellent books 
[lo]-[ 151 within the area of numerical linear algebra which 
explain  how structural instabilities arise and are dealt with 
in the theory of linear equations. 

The material  given  in  Sections I1 and I11 of this paper is 
more  general than that appearing in the remaining sec- 
tions. In Section I1 minimal realization theory is reviewed 
from a “signal injection” viewpoint. The main advantage 
of this viewpoint  is that the relevant subspaces are char- 
acterized in terms of responses to injected signals rather 
than in  terms of the model parameters ( A ,  B, C ) .  The full 
power of the ability to’inject signals of various  types is not 
fully  exploited  in this paper. Section I11 contains very 
general  results  which are valid  whenever one is  trying to 
find approximate linear relationships that exist among a 
set of time  variables. In no other way  is linearity required. 
(See [16] for ideas about nonlinear applications.) 

In Section IV controllability and observability  analysis 
is  discussed.  Most of the effort is spent coming to grips 
with the problem of internal coordinate transformations. 
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The controllability Gramian K
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dt )y = q( d

dt )u
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=
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In our framework: let ` ∈ C∞(R, R). Then QK is QDF
such that
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)`′
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where `′ ∈ C∞(R+, R) is such that `′
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Balanced state maps

State map X( d
dt ) is balanced if

• If `k is such that X(`k)(0) is the k-th canonical
basis vector, then

QK (`k)(0) =
1

QW (`k)(0)

‘difficult to reach ⇐⇒ difficult to observe’

• QW (`1)(0) ≥ QW (`2)(0) ≥ . . . ≥ QW (`n)(0) > 0

or equivalently

0 < QK (`1)(0) ≤ QK (`2)(0) ≤ . . . ≤ QK (`n)(0)

‘first who contributes most’
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Balancing with QDFs
Linear algebra =⇒ there is basis {xb

i ∈ Rn−1[ξ]}i=1,...,n
and σi ∈ R such that σ1 ≥ σ2 ≥ . . . σn such that

W (ζ, η) =
∑n

i=1 σixb
i (ζ)xb

i (η) K (ζ, η) =
∑n

i=1
1
σi

xb
i (ζ)xb

i (η)

Then
X b(ξ) := col(xb

i (ξ))i=1,...,n

is balanced state map.

(Classical) balanced state space representation: solve[
ξX b(ξ)

q(ξ)

]
=

[
Ab Bb
Cb Db

] [
X b(ξ)
p(ξ)

]
Model reduction by balancing follows
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Summary

• Working with functionals at most natural level;

• Two-variable polynomial representation;

• Operations/properties in time domain
; algebraic operations;

• Differentiation, integration, positivity;

• Lyapunov theory, dissipativity, model reduction
by balancing.
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