The Behavioral Approach to Systems Theory

Paolo Rapisarda, Un. of Southampton, U.K. \&

Jan C. Willems, K.U.Leuven, Belgium

MTNS 2006
Kyoto, Japan, July 24-28, 2006

Lecture 4: Bilinear and quadratic differential forms

Lecturer: Paolo Rapisarda

Part I: Basics

Outline

Motivation and aim

Definition

Two-variable polynomial matrices

The calculus of B/QDFs

Dynamics and functionals in systems and control
Instances: Lyapunov theory, performance criteria, etc.
Linear case \Longrightarrow quadratic and bilinear functionals.

Dynamics and functionals in systems and control

Instances: Lyapunov theory, performance criteria, etc.
Linear case \Longrightarrow quadratic and bilinear functionals.

Usually: state-space equations, constant functionals.
However, tearing and zooming state space eq.s

Dynamics and functionals in systems and control

Instances: Lyapunov theory, performance criteria, etc.
Linear case \Longrightarrow quadratic and bilinear functionals.

Usually: state-space equations, constant functionals.
However, tearing and zooming state space eq.s
¡High-order differential equations!
...involving also latent variables...

Example : a mechanical system

Example : a mechanical system

$m_{1} m_{2} \frac{d^{4}}{d t^{4}} w_{1}+\left(k_{1} m_{1}+k_{2} m_{1}+k_{1} m_{2}\right) \frac{d^{2}}{d t^{2}} w_{1}+k_{1} k_{2} w_{1}=0$

Example : a mechanical system

$m_{1} m_{2} \frac{d^{4}}{d t^{4}} w_{1}+\left(k_{1} m_{1}+k_{2} m_{1}+k_{1} m_{2}\right) \frac{d^{2}}{d t^{2}} w_{1}+k_{1} k_{2} w_{1}=0$
¿Stability, stored energy, conservation laws?

Aim

An effective algebraic representation of bilinear and quadratic functionals of the system variables and their derivatives:

Operations/properties of functionals
 I
 algebraic operations/properties of representation

...a calculus of these functionals!

Outline

Motivation and aim

Definition

Two-variable polynomial matrices

The calculus of B/QDFs

Bilinear differential forms (BDFs)

$$
\begin{aligned}
& \boldsymbol{\Phi}:=\left\{\boldsymbol{\Phi}_{\boldsymbol{k}, \ell} \in \mathbb{R}^{\boldsymbol{w}_{1} \times \boldsymbol{w}_{2}}\right\}_{\boldsymbol{k}, \ell=0, \ldots, L} \\
& L_{\Phi}: \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathbf{w}_{1}}\right) \times \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathbf{w}_{2}}\right) \rightarrow \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}) \\
& \boldsymbol{L}_{\boldsymbol{\Phi}}\left(\boldsymbol{w}_{1}, \boldsymbol{w}_{2}\right):=\left[\begin{array}{lll}
\boldsymbol{w}_{1}^{\top} & \frac{d w_{1} \top}{d t} & \ldots
\end{array}\right]\left[\begin{array}{ccc}
\Phi_{0,0} & \Phi_{0,1} & \ldots \\
\Phi_{1,0} & \Phi_{1,1} & \ldots \\
\vdots & \vdots & \ldots \\
\boldsymbol{\Phi}_{k, 0} & \Phi_{k, 1} & \ldots \\
\vdots & \vdots & \ldots
\end{array}\right]\left[\begin{array}{l}
w_{2} \\
\frac{d w_{2}}{d t} \\
\vdots
\end{array}\right] \\
& =\sum_{k, \ell}\left(\frac{d^{k}}{d t^{k}} \boldsymbol{w}_{1}\right)^{\top} \boldsymbol{\Phi}_{k, \ell}\left(\frac{d^{\ell}}{d t^{\ell}} \boldsymbol{W}_{2}\right)
\end{aligned}
$$

Quadratic differential forms (QDFs)

$\boldsymbol{\Phi}:=\left\{\boldsymbol{\Phi}_{\boldsymbol{k}, \ell} \in \mathbb{R}^{\mathbf{w} \times \boldsymbol{w}}\right\}_{\boldsymbol{k}, \ell=0, \ldots, L}$ symmetric, i.e. $\boldsymbol{\Phi}_{\boldsymbol{k}, \ell}=\boldsymbol{\Phi}_{\ell, \boldsymbol{k}}^{\top}$

$$
\begin{aligned}
& \boldsymbol{Q}_{\boldsymbol{\Phi}}: \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathbf{u}}\right) \rightarrow \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}) \\
& \begin{aligned}
\boldsymbol{Q}_{\boldsymbol{\Phi}}(\boldsymbol{w}) & :=\left[\begin{array}{lll}
\boldsymbol{w}^{\top} & \frac{d w^{\top}}{d t} & \ldots
\end{array}\right]\left[\begin{array}{ccc}
\Phi_{0,0} & \boldsymbol{\Phi}_{0,1} & \ldots \\
\Phi_{1,0} & \boldsymbol{\Phi}_{1,1} & \ldots \\
\vdots & \vdots & \ldots \\
\boldsymbol{\Phi}_{k, 0} & \boldsymbol{\Phi}_{k, 1} & \ldots \\
\vdots & \vdots & \ldots
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{w} \\
d \boldsymbol{w} \\
d t \\
\vdots
\end{array}\right] \\
& =\sum_{k, \ell=0}^{L}\left(\frac{d^{k}}{d t^{k}} \boldsymbol{w}\right)^{\top} \boldsymbol{\Phi}_{k, \ell}\left(\frac{d^{e}}{d t^{e}} \boldsymbol{w}\right)
\end{aligned}
\end{aligned}
$$

Example: total energy in mechanical system

$\left[\begin{array}{llll}W_{1} & W_{2} & \frac{d}{d t} W_{1} & \frac{d}{d t} w_{2}\end{array}\right]\left[\begin{array}{cccc}\frac{1}{2} k_{1} & 0 & 0 & 0 \\ 0 & \frac{1}{2} k_{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} m_{1} & 0 \\ 0 & 0 & 0 & \frac{1}{2} m_{2}\end{array}\right]\left[\begin{array}{c}w_{1} \\ W_{2} \\ \frac{d}{d d} w_{1} \\ \frac{d}{d t} w_{2}\end{array}\right]$

Outline

Motivation and aim

Definition

Two-variable polynomial matrices

The calculus of B/QDFs

Two-variable polynomial matrices for BDFs

$$
\begin{gathered}
\left\{\boldsymbol{\Phi}_{k, \ell} \in \mathbb{R}^{w_{1} \times w_{2}}\right\}_{k, \ell=0, \ldots, L} \\
L_{\Phi}\left(w_{1}, w_{2}\right)=\sum_{k, \ell=0}^{L}\left(\frac{d^{k}}{d t^{k}} w_{1}\right)^{\top} \boldsymbol{\Phi}_{k, \ell} \frac{d^{\ell}}{d t^{\ell}} w_{2} \\
\boldsymbol{\Phi}(\zeta, \eta)=\sum_{k, \ell=0}^{L} \Phi_{k, \ell} \zeta^{k} \eta^{\ell}
\end{gathered}
$$

Two-variable polynomial matrices for BDFs

$$
\begin{gathered}
\left\{\boldsymbol{\Phi}_{k, \ell} \in \mathbb{R}^{w_{1} \times w_{2}}\right\}_{k, \ell=0, \ldots, L} \\
L_{\Phi}\left(w_{1}, w_{2}\right)=\sum_{k, \ell=0}^{L}\left(\frac{d^{k}}{d t^{k}} w_{1}\right)^{\top} \boldsymbol{\Phi}_{k, \ell} \frac{d^{\ell}}{d t^{\ell}} w_{2} \\
\boldsymbol{\Phi}(\zeta, \eta)=\sum_{k, \ell=0}^{L} \boldsymbol{\Phi}_{k, \ell} \zeta^{\star} \eta^{\ell}
\end{gathered}
$$

Two-variable polynomial matrices for BDFs

$$
\begin{gathered}
\left\{\boldsymbol{\Phi}_{k, \ell} \in \mathbb{R}^{w_{1} \times w_{2}}\right\}_{k, \ell=0, \ldots, L} \\
L_{\Phi}\left(w_{1}, w_{2}\right)=\sum_{k, \ell=0}^{L}\left(\frac{d^{k}}{d t^{k}} w_{1}\right)^{\top} \boldsymbol{\Phi}_{k, \ell} \frac{d^{\ell}}{d t^{\ell}} w_{2} \\
\Phi(\zeta, \eta)=\sum_{k, \ell=0}^{L} \Phi_{k, \ell} \zeta^{k} \eta^{\ell}
\end{gathered}
$$

2-variable polynomial matrix associated with L_{Φ}

Two-variable polynomial matrices for QDFs

$$
\left\{\boldsymbol{\Phi}_{k, \ell} \in \mathbb{R}^{\mathbf{w} \times w}\right\}_{\boldsymbol{k}, \ell=\mathbf{0}, \ldots, L} \text { symmetric }\left(\boldsymbol{\Phi}_{\boldsymbol{k}, \ell}=\boldsymbol{\Phi}_{\ell, k}^{\top}\right)
$$

$$
Q_{\Phi}(w)=\sum_{k, \ell=0}^{L}\left(\frac{d^{k}}{d t^{k}} w\right)^{\top} \Phi_{k, \ell} \frac{d^{\ell}}{d t^{\ell}} w
$$

$$
\boldsymbol{\Phi}(\zeta, \eta)=\sum_{k, \ell=0}^{L} \boldsymbol{\Phi}_{k, \ell} \zeta^{k} \eta^{\ell}
$$

symmetric: $\boldsymbol{\Phi}(\zeta, \eta)=\boldsymbol{\Phi}(\eta, \zeta)^{\top}$

Example: total energy in mechanical system

$$
Q_{E}\left(w_{1}, w_{2}\right)=\left[\begin{array}{llll}
w_{1} & w_{2} & \frac{d}{d t} w_{1} & \frac{d}{d t} w_{2}
\end{array}\right]\left[\begin{array}{cccc}
\frac{1}{2} k_{1} & 0 & 0 & 0 \\
0 & \frac{1}{2} k_{2} & 0 & 0 \\
0 & 0 & \frac{1}{2} m_{1} & 0 \\
0 & 0 & 0 & \frac{1}{2} m_{2}
\end{array}\right]\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\frac{d}{d} w_{1} \\
\frac{d}{d t} w_{2}
\end{array}\right]
$$

$$
E(\zeta, \eta)=\left[\begin{array}{cc}
\frac{1}{2} k_{1} & 0 \\
0 & \frac{1}{2} k_{2}
\end{array}\right]+\left[\begin{array}{cc}
\frac{1}{2} \zeta \eta & 0 \\
0 & \frac{1}{2} \zeta \eta
\end{array}\right]
$$

Historical intermezzo

Historical intermezzo

Historical intermezzo

Historical intermezzo

Lyapunov functionals ('80s)

Historical intermezzo

Lyapunov functionals ('80s)

Outline

Motivation and aim

Definition

Two-variable polynomial matrices

The calculus of B/QDFs

The calculus of B/QDFs

Using powers of ζ and η as placeholders,
B/QDF \leadsto two-variable polynomial matrix

The calculus of B/QDFs

Using powers of ζ and η as placeholders,
B/QDF \rightsquigarrow two-variable polynomial matrix

Operations
 and properties of B/QDF

algebraic operations/properties on two-variable matrix

Differentiation

$\Phi \in \mathbb{R}_{s}^{w \times w}[\zeta, \eta] . \Phi$ derivative of Q_{Φ} :

$$
\begin{aligned}
& Q_{\dot{\phi}}: \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \rightarrow \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}) \\
& Q_{\dot{\phi}}(w):=\frac{d}{d t}\left(Q_{\Phi}(w)\right)
\end{aligned}
$$

Differentiation

$\Phi \in \mathbb{R}_{s}^{w \times w}[\zeta, \eta] . \Phi$ derivative of Q_{Φ} :

$$
\begin{aligned}
& Q_{\dot{\phi}}: \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \rightarrow \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}) \\
& Q_{\dot{\phi}}(w):=\frac{d}{d t}\left(Q_{\phi}(w)\right)
\end{aligned}
$$

$$
\dot{\Phi}(\zeta, \eta)=(\zeta+\eta) \Phi(\zeta, \eta)
$$

Two-variable version of Leibniz's rule

Integration

$\mathfrak{D}\left(\mathbb{R}, \mathbb{R}^{\bullet}\right) \mathfrak{C}^{\infty}$-compact-support trajectories

$$
L_{\Phi}: \mathfrak{D}\left(\mathbb{R}, \mathbb{R}^{\mathbf{w}_{1}}\right) \times \mathfrak{D}\left(\mathbb{R}, \mathbb{R}^{\boldsymbol{w}_{\mathbf{2}}}\right) \rightarrow \mathfrak{D}(\mathbb{R}, \mathbb{R})
$$

$$
\begin{aligned}
& \int L_{\Phi}: \mathfrak{D}\left(\mathbb{R}, \mathbb{R}^{w_{1}}\right) \times \mathfrak{D}\left(\mathbb{R}, \mathbb{R}^{w_{2}}\right) \rightarrow \mathbb{R} \\
& \int L_{\Phi}\left(w_{1}, w_{2}\right):=\int_{-\infty}^{+\infty} L_{\Phi}\left(w_{1}, w_{2}\right) d t
\end{aligned}
$$

Analogous for QDFs

Part II: Applications

Outline

Lyapunov theory

Dissipativity theory

Balancing and model reduction

Nonnegativity and positivity along a behavior

$\boldsymbol{Q}_{\Phi} \xrightarrow{\mathfrak{B}} \mathbf{\geq}$ if $\boldsymbol{Q}_{\boldsymbol{\Phi}}(\boldsymbol{w}) \geq \mathbf{0} \forall \boldsymbol{w} \in \mathfrak{B}$

Nonnegativity and positivity along a behavior

$$
Q_{\Phi} \xrightarrow[\geq]{\mathcal{B}} 0 \text { if } Q_{\Phi}(w) \geq 0 \forall w \in \mathfrak{B}
$$

$Q_{\Phi} \stackrel{\mathfrak{Z}}{ }{ }^{0}$ if $Q_{\Phi} \stackrel{\mathcal{B}}{\geq} 0$, and $\left[Q_{\Phi}(w)=0\right] \Longrightarrow[w=0]$

Nonnegativity and positivity along a behavior

$$
Q_{\Phi} \xrightarrow{\mathfrak{B}} \mathbf{0} \text { if } Q_{\Phi}(w) \geq 0 \forall w \in \mathfrak{B}
$$

$$
Q_{\Phi} \stackrel{\mathfrak{B}}{>} 0 \text { if } Q_{\Phi} \xrightarrow{\mathfrak{B}} 0 \text {, and }\left[Q_{\Phi}(w)=0\right] \Longrightarrow[w=0]
$$

Prop.: Let $\mathfrak{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$. Then $Q_{\Phi} \geq \mathfrak{B} 0$ iff there exist $D \in \mathbb{R}^{\bullet \times w}[\xi], X \in \mathbb{R}^{\bullet \times w}[\zeta, \eta]$ such that
$\boldsymbol{\Phi}(\zeta, \eta)=\underbrace{\boldsymbol{D}(\zeta)^{\top} \boldsymbol{D}(\eta)}_{\geq 0 \text { tor all } w}+\underbrace{\boldsymbol{R}(\zeta)^{\top} \boldsymbol{X}(\zeta, \eta)+\boldsymbol{X}(\eta, \zeta)^{\top} \boldsymbol{R}(\eta)}_{=0 \text { if evaluated on } \mathfrak{B}}$

Lyapunov theory

\mathfrak{B} autonomous is asymptotically stable if $\lim _{t \rightarrow \infty} \boldsymbol{w}(\boldsymbol{t})=\mathbf{0} \forall \boldsymbol{w} \in \mathfrak{B}$
$\mathfrak{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$ stable $\Longleftrightarrow \operatorname{det}(R)$ Hurwitz

Lyapunov theory

\mathfrak{B} autonomous is asymptotically stable if $\lim _{t \rightarrow \infty} \boldsymbol{w}(t)=\mathbf{0} \forall \boldsymbol{w} \in \mathfrak{B}$
$\mathfrak{B}=\operatorname{ker} \boldsymbol{R}\left(\frac{d}{d t}\right)$ stable $\Longleftrightarrow \operatorname{det}(R)$ Hurwitz

Theorem: \mathfrak{B} asymptotically stable iff exists Q_{Φ} such that $Q_{\Phi} \stackrel{\mathfrak{B}}{\geq} 0$ and $Q_{\dot{\Phi}} \stackrel{\mathfrak{B}}{<} 0$

Example

$$
\mathfrak{B}=\operatorname{ker}\left(\frac{d^{2}}{d t^{2}}+3 \frac{d}{d t}+2\right) \quad \boldsymbol{r}(\xi)=\xi^{2}+3 \xi+2
$$

Example

$$
\mathfrak{B}=\operatorname{ker}\left(\frac{d^{2}}{d t^{2}}+3 \frac{d}{d t}+2\right) \quad \boldsymbol{r}(\xi)=\xi^{2}+3 \xi+2
$$

Choose $\Psi(\zeta, \eta)$ s.t. $Q_{\psi} \stackrel{\mathcal{B}}{<} \mathbf{0}$, e.g. $\Psi(\zeta, \eta)=-\zeta \eta ;$

Example

$$
\mathfrak{B}=\operatorname{ker}\left(\frac{d^{2}}{d t^{2}}+3 \frac{d}{d t}+2\right) \quad r(\xi)=\xi^{2}+3 \xi+2
$$

Choose $\Psi(\zeta, \eta)$ s.t. $Q_{\Psi} \stackrel{\mathfrak{B}}{<} 0$, e.g. $\Psi(\zeta, \eta)=-\zeta \eta$;
Find $\Phi(\zeta, \eta)$ s.t. $\frac{d}{d t} Q_{\Phi}(w)=Q_{\psi}(w)$ for all $w \in \mathfrak{B}$:

$$
(\zeta+\eta) \Phi(\zeta, \eta)=\Psi(\zeta, \eta)+\underbrace{r(\zeta) x(\eta)+x(\zeta) r(\eta)}_{=0 \text { on } \mathfrak{B}}
$$

Example

$$
\mathfrak{B}=\operatorname{ker}\left(\frac{d^{2}}{d t^{2}}+3 \frac{d}{d t}+2\right) \quad r(\xi)=\xi^{2}+3 \xi+2
$$

Choose $\Psi(\zeta, \eta)$ s.t. $Q_{\Psi} \stackrel{\mathfrak{F}}{<} 0$, e.g. $\Psi(\zeta, \eta)=-\zeta \eta$;
Find $\Phi(\zeta, \eta)$ s.t. $\frac{d}{d t} Q_{\Phi}(w)=Q_{\psi}(w)$ for all $w \in \mathfrak{B}$:

$$
\begin{aligned}
& (\zeta+\eta) \Phi(\zeta, \eta)=\Psi(\zeta, \eta)+\underbrace{r(\zeta) x(\eta)+x(\zeta) r(\eta)}_{=0 \text { on } \mathfrak{B}} \\
& \frac{d}{d t} Q_{\Phi}(w)=Q_{\Psi}(w) \text { for all } w \in \mathfrak{B}
\end{aligned}
$$

Example

$$
\mathfrak{B}=\operatorname{ker}\left(\frac{d^{2}}{d t^{2}}+3 \frac{d}{d t}+2\right) \quad r(\xi)=\xi^{2}+3 \xi+2
$$

Choose $\Psi(\zeta, \eta)$ s.t. $Q_{\psi} \stackrel{\mathfrak{B}}{<} 0$, e.g. $\Psi(\zeta, \eta)=-\zeta \eta$; Find $\Phi(\zeta, \eta)$ s.t. $\frac{d}{d t} Q_{\Phi}(w)=Q_{\psi}(w)$ for all $w \in \mathfrak{B}$:

$$
(\zeta+\eta) \Phi(\zeta, \eta)=\Psi(\zeta, \eta)+\underbrace{r(\zeta) x(\eta)+x(\zeta) r(\eta)}_{=0 \text { on } \mathfrak{B}}
$$

Equivalent to solving polynomial Lyapunov equation

$$
0=\Psi(-\xi, \xi)+\underset{\xi^{2}}{r(-\xi)} \underset{\xi^{2}-3 \xi+2}{r(\xi)} x\left(-\xi\left(\underset{\xi^{2}+3 \xi+2}{r(\xi)}\right.\right.
$$

$\sim x(\xi)=\frac{1}{6} \xi$

Example

$$
\mathfrak{B}=\operatorname{ker}\left(\frac{d^{2}}{d t^{2}}+3 \frac{d}{d t}+2\right) \quad r(\xi)=\xi^{2}+3 \xi+2
$$

Choose $\Psi(\zeta, \eta)$ s.t. $Q_{\psi} \stackrel{\mathfrak{B}}{<} 0$, e.g. $\Psi(\zeta, \eta)=-\zeta \eta$;
Find $\Phi(\zeta, \eta)$ s.t. $\frac{d}{d t} Q_{\Phi}(w)=Q_{\psi}(w)$ for all $w \in \mathfrak{B}$:

$$
(\zeta+\eta) \Phi(\zeta, \eta)=\Psi(\zeta, \eta)+\underbrace{r(\zeta) x(\eta)+x(\zeta) r(\eta)}_{=0 \text { on } \mathfrak{B}}
$$

$$
\begin{aligned}
\Phi(\zeta, \eta) & =\frac{-\zeta \eta+\left(\zeta^{2}+3 \zeta+2\right) \frac{1}{6} \eta+\frac{1}{6} \zeta\left(\eta^{2}+3 \eta+2\right)}{\zeta+\eta} \\
& =\frac{1}{6} \zeta \eta+\frac{1}{3}>0
\end{aligned}
$$

State-space case

$$
\left(\frac{d}{d t} I_{\mathrm{x}}-A\right) x=0 \leadsto R(\xi)=\xi I_{\mathrm{x}}-A
$$

- Choose Q < 0;
- Solve polynomial Lyapunov equation

$$
\left(\xi I_{\mathbf{x}}-A\right)^{\top} P+P\left(\xi I_{\mathbf{x}}-A\right)=-A^{\top} P-P A=Q
$$

equivalent with matrix Lyapunov equation!

- Lyapunov functional is

$$
x^{\top}(-P) x
$$

Outline

Lyapunov theory

Dissipativity theory

Balancing and model reduction

Dissipativity theory

Power is supplied

\sim energy is stored

RLC circuits Power $\boldsymbol{V}^{\top} \boldsymbol{I}$

Storage in capacitors and inductors

Mechanical system Power $\boldsymbol{F}^{\top} \boldsymbol{v}+\left(\frac{d}{d t} \vartheta\right)^{\top} \boldsymbol{T}$
Potential+kinetic

Setting the stage

Controllable system
$w=M\left(\frac{d}{d t}\right) \ell \leadsto M(\xi)$
Power ('supply rate')
$Q_{\Phi}(w) \sim \Phi(\zeta, \eta)$

Setting the stage

Controllable system

$$
w=M\left(\frac{d}{d t}\right) \ell \sim M(\xi)
$$

Power ('supply rate')
$Q_{\Phi}(w) \sim \Phi(\zeta, \eta)$

$$
\begin{gathered}
Q_{\Phi}(w)=Q_{\Phi}\left(M\left(\frac{d}{d t}\right) \ell\right) \\
\Phi^{\prime}(\zeta, \eta):=M(\zeta)^{\top} \Phi(\zeta, \eta) M(\eta)
\end{gathered}
$$

$Q_{\Phi^{\prime}}$ acts on free variable ℓ, i.e. \mathfrak{C}^{∞}

Setting the stage

Controllable system

$$
w=M\left(\frac{d}{d t}\right) \ell \leadsto M(\xi)
$$

Power ('supply rate')
$Q_{\Phi}(w) \sim \Phi(\zeta, \eta)$

$$
\begin{gathered}
\boldsymbol{Q}_{\Phi}(w)=\boldsymbol{Q}_{\Phi}\left(M\left(\frac{d}{d t}\right) \ell\right) \\
\Phi^{\prime}(\zeta, \eta):=M(\zeta)^{\top} \Phi(\zeta, \eta) M(\eta)
\end{gathered}
$$

$Q_{\Phi^{\prime}}$ acts on free variable ℓ, i.e. \mathfrak{C}^{∞}

Dissipation inequality

Dissipation inequality

Q_{ψ} is storage function for the supply Q_{Φ} if

$$
\frac{d}{d t} Q_{\psi} \leq Q_{\Phi}
$$

Rate of storage increase \leq supply

Dissipation inequality

Q_{ψ} is storage function for the supply Q_{Φ} if

$$
\frac{d}{d t} Q_{\psi} \leq \boldsymbol{Q}_{\Phi}
$$

Rate of storage increase \leq supply
Q_{Δ} is dissipation function for Q_{Φ} if

$$
Q_{\Delta} \geq 0 \text { and } \int Q_{\Delta} d t=\int Q_{\Phi} d t
$$

Characterizations of dissipativity

Theorem: The following conditions are equivalent:

- $\int_{-\infty}^{+\infty} Q_{\Phi}(\ell) d t \geq 0$ for all \mathfrak{C}^{∞} compact-support ℓ;
- Q_{Φ} admits a storage function;
- Q_{Φ} admits a dissipation function

Also, storage and dissipation functions are one-one:

$$
\begin{aligned}
\frac{d}{d t} \boldsymbol{Q}_{\psi} & =\boldsymbol{Q}_{\Phi}-\boldsymbol{Q}_{\Delta} \\
(\zeta+\eta) \Psi(\zeta, \eta) & =\Phi(\zeta, \eta)-\Delta(\zeta, \eta)
\end{aligned}
$$

Example: mechanical systems

Example: mechanical systems

$\boldsymbol{M} \frac{d^{2}}{d t^{2}} \boldsymbol{q}+D \frac{d}{d t} \boldsymbol{q}+K \boldsymbol{q}=\boldsymbol{F} \quad\left[\begin{array}{l}\boldsymbol{F} \\ \boldsymbol{q}\end{array}\right]=\left[\begin{array}{c}M \frac{d^{2}}{d t^{2}}+D \frac{d}{d t}+\boldsymbol{K} \\ \boldsymbol{I}_{3}\end{array}\right] \ell$
Supply rate: power

$$
F^{\top}\left(\frac{d}{d t} q\right)=\left(M \frac{d^{2}}{d t^{2}} \ell+D \frac{d}{d t} \ell+K \ell\right)^{\top}\left(\frac{d}{d t} \ell\right)
$$

corresponding to

$$
\Phi(\zeta, \eta)=\frac{1}{2}\left(M \zeta^{2}+D \zeta+K\right)^{\top} \eta+\frac{1}{2} \zeta\left(M \eta^{2}+D \eta+K\right)
$$

Example: mechanical systems

$$
\begin{gathered}
\boldsymbol{M} \frac{d^{2}}{d t^{2}} \boldsymbol{q}+\boldsymbol{D} \frac{d}{d t} \boldsymbol{q}+\boldsymbol{K} \boldsymbol{q}=\boldsymbol{F} \quad\left[\begin{array}{l}
\boldsymbol{F} \\
\boldsymbol{q}
\end{array}\right]=\left[\begin{array}{c}
\left.\boldsymbol{M} \frac{d^{2}}{d t^{2}}+\underset{\boldsymbol{I}_{3}}{\boldsymbol{D} \frac{d}{d t}}+\boldsymbol{K}\right]
\end{array}\right] \ell \\
\boldsymbol{\Phi (\zeta , \eta) = \frac { 1 } { 2 } (\boldsymbol { M } \zeta ^ { 2 } + \boldsymbol { D } + \boldsymbol { K }) ^ { \top } \eta + \frac { 1 } { 2 } \zeta (\boldsymbol { M } \eta ^ { 2 } + D \eta + K)}
\end{gathered}
$$

Example: mechanical systems

$$
\begin{aligned}
& \boldsymbol{M} \frac{d^{2}}{d t^{2}} \boldsymbol{q}+\boldsymbol{D} \frac{d}{d t} \boldsymbol{q}+\boldsymbol{K} \boldsymbol{q}=\boldsymbol{F}
\end{aligned} \quad\left[\begin{array}{l}
\boldsymbol{F} \\
\boldsymbol{q}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{M} \frac{d^{2}}{d t^{2}}+\boldsymbol{\boldsymbol { I } _ { 3 }} \frac{d}{d t}+\boldsymbol{K}
\end{array}\right] \ell .
$$

$$
\Phi(\zeta, \eta)=(\zeta+\eta) \Psi(\zeta, \eta)+\Delta(\zeta, \eta)
$$

holds, then

$$
\begin{aligned}
\Phi(-\xi, \xi) & =-\frac{1}{2} \xi^{2}\left(D^{\top}+D\right)=\Delta(-\xi, \xi) \\
& \Longrightarrow \Delta(\zeta, \eta)=\frac{1}{2}\left(D^{\top}+D\right) \zeta \eta
\end{aligned}
$$

Spectral factorization of $\Phi(-\xi, \xi)$ is key

Example: mechanical systems

$$
\begin{aligned}
& \boldsymbol{M} \frac{d^{2}}{d t^{2}} \boldsymbol{q}+\boldsymbol{D} \frac{d}{d t} \boldsymbol{q}+\boldsymbol{K q}=\boldsymbol{F} \quad\left[\begin{array}{l}
\boldsymbol{F} \\
\boldsymbol{q}
\end{array}\right]=\left[\begin{array}{c}
\left.\boldsymbol{M} \frac{d^{2}}{d t^{2}}+\boldsymbol{D} \frac{d}{d t}+\boldsymbol{K}\right] \\
\boldsymbol{\boldsymbol { I } _ { 3 }}
\end{array}\right] \ell \\
& \Phi(\zeta, \eta)=\frac{1}{2}\left(\boldsymbol{M} \zeta^{2}+\boldsymbol{D} \zeta+\boldsymbol{K}\right)^{\top} \eta+\frac{1}{2} \zeta\left(M \eta^{2}+D \eta+\boldsymbol{K}\right) \\
& \Delta(\zeta, \eta)=\frac{1}{2}\left(\boldsymbol{D}^{\top}+\boldsymbol{D}\right) \zeta \eta
\end{aligned}
$$

Example: mechanical systems

$$
\begin{aligned}
& \boldsymbol{M} \frac{d^{2}}{d t^{2}} \boldsymbol{q}+\boldsymbol{D} \frac{d}{d t} \boldsymbol{q}+\boldsymbol{K q}=\boldsymbol{F} \quad\left[\begin{array}{l}
\boldsymbol{F} \\
\boldsymbol{q}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{M} \frac{d^{2}}{d t^{2}}+\boldsymbol{D} \frac{d}{d}+\boldsymbol{\boldsymbol { I } _ { 3 }}
\end{array}\right] \ell \\
& \boldsymbol{\Phi}(\zeta, \eta)=\frac{1}{2}\left(\boldsymbol{M} \zeta^{2}+\boldsymbol{D} \zeta+\boldsymbol{K}\right)^{\top} \eta+\frac{1}{2} \zeta\left(\boldsymbol{M} \eta^{2}+D \eta+K\right) \\
& \Delta(\zeta, \eta)=\frac{1}{2}\left(\boldsymbol{D}^{\top}+\boldsymbol{D}\right) \zeta \eta
\end{aligned}
$$

Storage function

$$
\Psi(\zeta, \eta)=\frac{\Phi(\zeta, \eta)-\Delta(\zeta, \eta)}{\zeta+\eta}=\frac{1}{2} M \zeta \eta+\frac{1}{2} K
$$

Total energy

Outline

Lyapunov theory

Dissipativity theory

Balancing and model reduction

Balancing

A minimal and stable realization (A, B, C, D) is balanced if exist $\sigma_{i} \in \mathbb{R}$ such that $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{\mathrm{n}}>0$ and moreover

$$
\begin{aligned}
& \boldsymbol{A} \boldsymbol{\Sigma}+\boldsymbol{\Sigma} \boldsymbol{A}^{\top}+\boldsymbol{B} \boldsymbol{B}^{\top}=\mathbf{0} \\
& \boldsymbol{A}^{\top} \boldsymbol{\Sigma}+\boldsymbol{\Sigma} \boldsymbol{A}+\boldsymbol{C}^{\top} \boldsymbol{C}=\mathbf{0}
\end{aligned}
$$

where $\Sigma:=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{\mathrm{n}}\right)$

Principal Component Analysis in Linear
Systems: Controllability, Observability, and Model Reduction anvec mooks

Balancing

A minimal and stable realization (A, B, C, D)
is balanced if exist $\sigma_{i} \in \mathbb{R}$ such that $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{\mathrm{n}}>0$ and moreover

$$
\begin{aligned}
& \boldsymbol{A} \boldsymbol{\Sigma}+\boldsymbol{\Sigma} \boldsymbol{A}^{\top}+\boldsymbol{B} \boldsymbol{B}^{\top}=\mathbf{0} \\
& \boldsymbol{A}^{\top} \boldsymbol{\Sigma}+\boldsymbol{\Sigma} \boldsymbol{A}+\boldsymbol{C}^{\top} \boldsymbol{C}=\mathbf{0}
\end{aligned}
$$

where $\Sigma:=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{\mathrm{n}}\right)$

Balancing \equiv choice of basis of state space diagonalizing the Gramians

Balancing

A minimal and stable realization (A, B, C, D)
is balanced if exist $\sigma_{i} \in \mathbb{R}$ such that $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{\mathrm{n}}>0$ and moreover

$$
\begin{aligned}
& \boldsymbol{A} \boldsymbol{\Sigma}+\boldsymbol{\Sigma} \boldsymbol{A}^{\top}+\boldsymbol{B} \boldsymbol{B}^{\top}=\mathbf{0} \\
& \boldsymbol{A}^{\top} \boldsymbol{\Sigma}+\boldsymbol{\Sigma} \boldsymbol{A}+\boldsymbol{C}^{\top} \boldsymbol{C}=\mathbf{0}
\end{aligned}
$$

where $\Sigma:=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{\mathrm{n}}\right)$

Balancing \equiv choice of basis of state space diagonalizing the Gramians
\equiv choice of state map！

The controllability Gramian \boldsymbol{K}

$$
p\left(\frac{d}{d t}\right) y=q\left(\frac{d}{d t}\right) u \quad\left[\begin{array}{l}
y \\
u
\end{array}\right]=\left[\begin{array}{l}
q\left(\frac{d}{d t}\right. \\
p\left(\frac{d}{d t}\right)
\end{array}\right] \ell
$$

where $\operatorname{GCD}(p, q)=1, p$ stable, $\operatorname{deg}(q) \leq \operatorname{deg}(p)=: n$

The controllability Gramian K

$$
p\left(\frac{d}{d t}\right) y=q\left(\frac{d}{d t}\right) u \quad\left[\begin{array}{l}
y \\
u
\end{array}\right]=\left[\begin{array}{l}
q\left(\frac{d}{d d}\right) \\
p\left(\frac{d}{d t}\right)
\end{array}\right] \ell
$$

where $\operatorname{GCD}(p, q)=1, p$ stable, $\operatorname{deg}(q) \leq \operatorname{deg}(p)=: n$
In state-space framework, K is defined as

$$
\inf _{u} \int_{-\infty}^{0} u(t)^{2} d t=: x_{0}^{\top} K x_{0}
$$

where u is such that $x(-\infty) \leadsto x(0)=x_{0}$

The controllability Gramian K

$$
p\left(\frac{d}{d t}\right) y=q\left(\frac{d}{d t}\right) u \quad\left[\begin{array}{l}
y \\
u
\end{array}\right]=\left[\begin{array}{l}
q\left(\frac{d}{d d}\right) \\
p\left(\frac{d}{d t}\right)
\end{array}\right] \ell
$$

where $\operatorname{GCD}(p, q)=1, p$ stable, $\operatorname{deg}(q) \leq \operatorname{deg}(p)=: n$
In our framework: let $\ell \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R})$. Then Q_{K} is QDF such that

$$
\inf _{\ell^{\prime}} \int_{-\infty}^{0}\left(p\left(\frac{d}{d t}\right) \ell^{\prime}\right)^{2} d t=: Q_{K}(\ell)(0)
$$

where $\ell^{\prime} \in \mathfrak{C}^{\infty}\left(\mathbb{R}_{+}, \mathbb{R}\right)$ is such that $\ell_{[[0,+\infty)}^{\prime}=\ell_{[00,+\infty)}$

The controllability Gramian K

$$
p\left(\frac{d}{d t}\right) y=q\left(\frac{d}{d t}\right) u \quad\left[\begin{array}{l}
y \\
u
\end{array}\right]=\left[\begin{array}{l}
q\left(\frac{d}{d d}\right) \\
p\left(\frac{d}{d t}\right)
\end{array}\right] \ell
$$

where $\operatorname{GCD}(p, q)=1, p$ stable, $\operatorname{deg}(q) \leq \operatorname{deg}(p)=: n$
In our framework: let $\ell \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R})$. Then Q_{K} is QDF such that

$$
\inf _{\ell^{\prime}} \int_{-\infty}^{0}\left(p\left(\frac{d}{d t}\right) \ell^{\prime}\right)^{2} d t=: Q_{K}(\ell)(0)
$$

where $\ell^{\prime} \in \mathfrak{C}^{\infty}\left(\mathbb{R}_{+}, \mathbb{R}\right)$ is such that $\ell_{[[0,+\infty)}^{\prime}=\ell_{[00,+\infty)}$
¿How to compute $K(\zeta, \eta)$?

Computation of $\boldsymbol{K}(\zeta, \eta)$

$$
\inf _{\ell^{\prime}} \int_{-\infty}^{0}\left(p\left(\frac{d}{d t}\right) \ell^{\prime}\right)^{2} d t=: Q_{K}(\ell)(0)
$$

Computation of $\boldsymbol{K}(\zeta, \eta)$

$$
\inf _{\ell^{\prime}} \int_{-\infty}^{0}\left(p\left(\frac{d}{d t}\right) \ell^{\prime}\right)^{2} d t=: Q_{K}(\ell)(0)
$$

Since $p(-\xi) p(\xi)=p(\xi) p(-\xi)$, exists $K \in \mathbb{R}[\zeta, \eta]$ s.t.

$$
p(\zeta) p(\eta)-p(-\zeta) p(-\eta)=(\zeta+\eta) K(\zeta, \eta)
$$

Computation of $\boldsymbol{K}(\zeta, \eta)$

$$
\inf _{\ell^{\prime}} \int_{-\infty}^{0}\left(p\left(\frac{d}{d t}\right) \ell^{\prime}\right)^{2} d t=: Q_{K}(\ell)(0)
$$

Since $p(-\xi) p(\xi)=p(\xi) p(-\xi)$, exists $K \in \mathbb{R}[\zeta, \eta]$ s.t.

$$
p(\zeta) p(\eta)-p(-\zeta) p(-\eta)=(\zeta+\eta) K(\zeta, \eta)
$$

Consequently,
$\int_{-\infty}^{0}\left(p\left(\frac{d}{d t}\right) \ell^{\prime}\right)^{2} d t=\int_{-\infty}^{0}\left(p\left(-\frac{d}{d t}\right) \ell^{\prime}\right)^{2} d t+Q_{K}\left(\ell^{\prime}\right)(0)$
minimized for the ℓ^{\prime} in ker $p\left(-\frac{d}{d t}\right)$ with the given initial conditions.

Computation of $\boldsymbol{K}(\zeta, \eta)$

$$
\inf _{\ell^{\prime}} \int_{-\infty}^{0}\left(p\left(\frac{d}{d t}\right) \ell^{\prime}\right)^{2} d t=: Q_{K}(\ell)(0)
$$

Since $p(-\xi) p(\xi)=p(\xi) p(-\xi)$, exists $K \in \mathbb{R}[\zeta, \eta]$ s.t.

$$
p(\zeta) p(\eta)-p(-\zeta) p(-\eta)=(\zeta+\eta) K(\zeta, \eta)
$$

Computation of $\boldsymbol{K}(\zeta, \eta)$

$$
\inf _{\ell^{\prime}} \int_{-\infty}^{0}\left(p\left(\frac{d}{d t}\right) \ell^{\prime}\right)^{2} d t=: Q_{K}(\ell)(0)
$$

Since $p(-\xi) p(\xi)=p(\xi) p(-\xi)$, exists $K \in \mathbb{R}[\zeta, \eta]$ s.t.

$$
p(\zeta) p(\eta)-p(-\zeta) p(-\eta)=(\zeta+\eta) K(\zeta, \eta)
$$

Highest power of ζ and η in K is $n-1$
$\Longrightarrow Q_{K}$ is quadratic function of $\frac{d^{i} \ell}{d t i}, j=0, \ldots, n-1$

Computation of $\boldsymbol{K}(\zeta, \eta)$

$$
\inf _{\ell^{\prime}} \int_{-\infty}^{0}\left(p\left(\frac{d}{d t}\right) \ell^{\prime}\right)^{2} d t=: Q_{K}(\ell)(0)
$$

Since $p(-\xi) p(\xi)=p(\xi) p(-\xi)$, exists $K \in \mathbb{R}[\zeta, \eta]$ s.t.

$$
p(\zeta) p(\eta)-p(-\zeta) p(-\eta)=(\zeta+\eta) K(\zeta, \eta)
$$

Highest power of ζ and η in K is $n-1$
$\Longrightarrow Q_{K}$ is quadratic function of $\frac{d^{i} \ell}{d t t}, j=0, \ldots, n-1$
Q_{K} is quadratic function of the state:
for every state map $X\left(\frac{d}{d t}\right)$ there exists K_{X} such that

$$
Q_{K}(\ell)=\left(X\left(\frac{d}{d t}\right) \ell\right)^{\top} K_{X}\left(X\left(\frac{d}{d t}\right) \ell\right)
$$

The observability Gramian W

$$
p\left(\frac{d}{d t}\right) y=q\left(\frac{d}{d t}\right) u \quad\left[\begin{array}{l}
y \\
u
\end{array}\right]=\left[\begin{array}{l}
q\left(\frac{d}{d}\right) \\
p\left(\frac{d}{d t}\right)
\end{array}\right] \ell
$$

where $\operatorname{GCD}(p, q)=1, p$ stable, $\operatorname{deg}(q) \leq \operatorname{deg}(p)$

The observability Gramian W

$$
p\left(\frac{d}{d t}\right) y=q\left(\frac{d}{d t}\right) u \quad\left[\begin{array}{l}
y \\
u
\end{array}\right]=\left[\begin{array}{l}
q\left(\frac{d}{d d}\right) \\
p\left(\frac{d}{d t}\right)
\end{array}\right] \ell
$$

where $\operatorname{GCD}(p, q)=1, p$ stable, $\operatorname{deg}(q) \leq \operatorname{deg}(p)$
In state-space framework, W is defined as

$$
\int_{0}^{+\infty} y(t)^{2} d t=: x_{0}^{\top} W x_{0}
$$

where y is the free response emanating from $x(0)=x_{0}$

The observability Gramian W

$$
p\left(\frac{d}{d t}\right) y=q\left(\frac{d}{d t}\right) u \quad\left[\begin{array}{l}
y \\
u
\end{array}\right]=\left[\begin{array}{l}
q\left(\frac{d}{d d}\right) \\
p\left(\frac{d}{d t}\right)
\end{array}\right] \ell
$$

where $\operatorname{GCD}(p, q)=1, p$ stable, $\operatorname{deg}(q) \leq \operatorname{deg}(p)$
In our framework: let $\ell \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R})$. Then Q_{w} is

$$
Q_{W}(\ell)(0):=\int_{0}^{+\infty}\left(q\left(\frac{d}{d t}\right) \ell^{\prime}\right)^{2} d t
$$

where $\ell^{\prime} \in \mathfrak{C}^{\infty}\left(\mathbb{R}_{+}, \mathbb{R}\right)$ is such that

- $\ell_{\mid(-\infty, 0]}^{\prime}=\ell_{\mid(-\infty, 0]}$
- $p\left(\frac{d}{d t}\right) \ell^{\prime}=0$ on \mathbb{R}_{+}
- $\left(\boldsymbol{q}\left(\frac{d}{d t}\right) \ell^{\prime}, \boldsymbol{p}\left(\frac{d}{d t}\right) \ell^{\prime}\right) \in \mathfrak{B}$

The observability Gramian W

$$
p\left(\frac{d}{d t}\right) y=q\left(\frac{d}{d t}\right) u \quad\left[\begin{array}{l}
y \\
u
\end{array}\right]=\left[\begin{array}{l}
q\left(\frac{d}{d d}\right) \\
p\left(\frac{d}{d t}\right)
\end{array}\right] \ell
$$

where $\operatorname{GCD}(p, q)=1, p$ stable, $\operatorname{deg}(q) \leq \operatorname{deg}(p)$
In our framework: let $\ell \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R})$. Then Q_{w} is

$$
Q_{W}(\ell)(0):=\int_{0}^{+\infty}\left(q\left(\frac{d}{d t}\right) \ell^{\prime}\right)^{2} d t
$$

where $\ell^{\prime} \in \mathfrak{C}^{\infty}\left(\mathbb{R}_{+}, \mathbb{R}\right)$ is such that

- $\ell_{\mid(-\infty, 0]}^{\prime}=\ell_{\mid(-\infty, 0]}$
- $p\left(\frac{d}{d t}\right) \ell^{\prime}=0$ on \mathbb{R}_{+}
- $\left(\boldsymbol{q}\left(\frac{d}{d t}\right) \ell^{\prime}, \boldsymbol{p}\left(\frac{d}{d t}\right) \ell^{\prime}\right) \in \mathfrak{B}$
¿How to compute $W(\zeta, \eta)$?

Computation of $W(\zeta, \eta)$

$$
Q_{w}(\ell)(0):=\int_{0}^{+\infty}\left(q\left(\frac{d}{d t}\right) \ell^{\prime}\right)^{2} d t
$$

Computation of $W(\zeta, \eta)$

$$
Q_{W}(\ell)(0):=\int_{0}^{+\infty}\left(q\left(\frac{d}{d t}\right) \ell^{\prime}\right)^{2} d t
$$

Since p is Hurwitz, there exists solution $f \in \mathbb{R}[\xi]$ to

$$
p(-\xi) f(\xi)+f(-\xi) p(\xi)=q(-\xi) q(\xi)
$$

Computation of $\boldsymbol{W}(\zeta, \eta)$

$$
Q_{W}(\ell)(0):=\int_{0}^{+\infty}\left(q\left(\frac{d}{d t}\right) \ell^{\prime}\right)^{2} d t
$$

Since p is Hurwitz, there exists solution $f \in \mathbb{R}[\xi]$ to

$$
p(-\xi) f(\xi)+f(-\xi) p(\xi)=q(-\xi) q(\xi)
$$

Define W from

$$
(\zeta+\eta) W(\zeta, \eta)=q(\zeta) q(\eta)-[p(\zeta) f(\eta)+f(\zeta) p(\eta)]
$$

Computation of $W(\zeta, \eta)$

$$
Q_{W}(\ell)(0):=\int_{0}^{+\infty}\left(q\left(\frac{d}{d t}\right) \ell^{\prime}\right)^{2} d t
$$

Since p is Hurwitz, there exists solution $f \in \mathbb{R}[\xi]$ to

$$
p(-\xi) f(\xi)+f(-\xi) p(\xi)=q(-\xi) q(\xi)
$$

Define W from

$$
(\zeta+\eta) W(\zeta, \eta)=q(\zeta) q(\eta)-[p(\zeta) f(\eta)+f(\zeta) p(\eta)]
$$

Computation of $W(\zeta, \eta)$

$$
Q_{W}(\ell)(0):=\int_{0}^{+\infty}\left(q\left(\frac{d}{d t}\right) \ell^{\prime}\right)^{2} d t
$$

Since p is Hurwitz, there exists solution $f \in \mathbb{R}[\xi]$ to

$$
p(-\xi) f(\xi)+f(-\xi) p(\xi)=q(-\xi) q(\xi)
$$

Define W from

$$
(\zeta+\eta) W(\zeta, \eta)=q(\zeta) q(\eta)-[p(\zeta) f(\eta)+f(\zeta) p(\eta)]
$$

then

$$
Q_{w}(\ell)(0)=\int_{0}^{+\infty}\left(q\left(\frac{d}{d t}\right) \ell\right)^{2} d t
$$

for all $\ell \in \operatorname{ker} p\left(\frac{d}{d t}\right)$

Computation of $\boldsymbol{W}(\zeta, \eta)$

$$
Q_{W}(\ell)(0):=\int_{0}^{+\infty}\left(q\left(\frac{d}{d t}\right) \ell^{\prime}\right)^{2} d t
$$

Since p is Hurwitz, there exists solution $f \in \mathbb{R}[\xi]$ to

$$
p(-\xi) f(\xi)+f(-\xi) p(\xi)=q(-\xi) q(\xi)
$$

Define W from

$$
(\zeta+\eta) W(\zeta, \eta)=q(\zeta) q(\eta)-[p(\zeta) f(\eta)+f(\zeta) p(\eta)]
$$

Q_{w} is quadratic function of the state:
for every state map $X\left(\frac{d}{d t}\right)$ there exists W_{X} such that

$$
Q_{w}(\ell)=\left(x\left(\frac{d}{d t}\right) \ell\right)^{\top} W_{X}\left(x\left(\frac{d}{d t}\right) \ell\right)
$$

Balanced state maps

State map $X\left(\frac{d}{d t}\right)$ is balanced if

Balanced state maps

State map $X\left(\frac{d}{d t}\right)$ is balanced if

- If ℓ_{k} is such that $X\left(\ell_{\mathrm{k}}\right)(0)$ is the k -th canonical basis vector, then

$$
Q_{K}\left(\ell_{\mathrm{k}}\right)(0)=\frac{1}{Q_{W}\left(\ell_{\mathrm{k}}\right)(0)}
$$

'difficult to reach \Longleftrightarrow difficult to observe'

Balanced state maps

State map $X\left(\frac{d}{d t}\right)$ is balanced if

- If ℓ_{k} is such that $X\left(\ell_{\mathrm{k}}\right)(0)$ is the k -th canonical basis vector, then

$$
Q_{K}\left(\ell_{\mathrm{k}}\right)(0)=\frac{1}{Q_{W}\left(\ell_{\mathrm{k}}\right)(0)}
$$

'difficult to reach \Longleftrightarrow difficult to observe'

- $Q_{w}\left(\ell_{1}\right)(0) \geq Q_{w}\left(\ell_{2}\right)(0) \geq \ldots \geq Q_{w}\left(\ell_{n}\right)(0)>0$ or equivalently
$0<\boldsymbol{Q}_{K}\left(\ell_{1}\right)(0) \leq Q_{K}\left(\ell_{2}\right)(0) \leq \ldots \leq Q_{K}\left(\ell_{\mathrm{n}}\right)(0)$
'first who contributes most'

Balancing with QDFs

Linear algebra \Longrightarrow there is basis $\left\{x_{i}^{b} \in \mathbb{R}_{n-1}[\xi]\right\}_{i=1, \ldots, n}$ and $\sigma_{i} \in \mathbb{R}$ such that $\sigma_{1} \geq \sigma_{2} \geq \ldots \sigma_{n}$ such that

$$
W(\zeta, \eta)=\sum_{i=1}^{n} \sigma_{i} x_{i}^{b}(\zeta) x_{i}^{b}(\eta) \quad K(\zeta, \eta)=\sum_{i=1}^{n} \frac{1}{\sigma_{i}} x_{i}^{b}(\zeta) x_{i}^{b}(\eta)
$$

Balancing with QDFs

Linear algebra \Longrightarrow there is basis $\left\{x_{i}^{b} \in \mathbb{R}_{n-1}[\xi]\right\}_{i=1, \ldots, n}$ and $\sigma_{i} \in \mathbb{R}$ such that $\sigma_{1} \geq \sigma_{2} \geq \ldots \sigma_{n}$ such that

$$
W(\zeta, \eta)=\sum_{i=1}^{n} \sigma_{i} x_{i}^{b}(\zeta) x_{i}^{b}(\eta) \quad K(\zeta, \eta)=\sum_{i=1}^{n} \frac{1}{\sigma_{i}} x_{i}^{b}(\zeta) x_{i}^{b}(\eta)
$$

Balancing with QDFs

Linear algebra \Longrightarrow there is basis $\left\{x_{i}^{b} \in \mathbb{R}_{n-1}[\xi]\right\}_{i=1, \ldots, n}$ and $\sigma_{i} \in \mathbb{R}$ such that $\sigma_{1} \geq \sigma_{2} \geq \ldots \sigma_{n}$ such that

$$
W(\zeta, \eta)=\sum_{i=1}^{n} \sigma_{i} x_{i}^{b}(\zeta) x_{i}^{b}(\eta) \quad K(\zeta, \eta)=\sum_{i=1}^{n} \frac{1}{\sigma_{i}} x_{i}^{b}(\zeta) x_{i}^{b}(\eta)
$$

Then

$$
X^{b}(\xi):=\operatorname{col}\left(x_{i}^{b}(\xi)\right)_{i=1, \ldots, n}
$$

is balanced state map.

Balancing with QDFs

Linear algebra \Longrightarrow there is basis $\left\{x_{i}^{b} \in \mathbb{R}_{n-1}[\xi]\right\}_{i=1, \ldots, n}$ and $\sigma_{i} \in \mathbb{R}$ such that $\sigma_{1} \geq \sigma_{2} \geq \ldots \sigma_{n}$ such that

$$
W(\zeta, \eta)=\sum_{i=1}^{n} \sigma_{i} x_{i}^{b}(\zeta) x_{i}^{b}(\eta) \quad K(\zeta, \eta)=\sum_{i=1}^{n} \frac{1}{\sigma_{i}} x_{i}^{b}(\zeta) x_{i}^{b}(\eta)
$$

Then

$$
X^{b}(\xi):=\operatorname{col}\left(x_{i}^{b}(\xi)\right)_{i=1, \ldots, n}
$$

is balanced state map.
(Classical) balanced state space representation: solve

$$
\left[\begin{array}{c}
\xi X^{b}(\xi) \\
q(\xi)
\end{array}\right]=\left[\begin{array}{ll}
A_{b} & B_{b} \\
C_{b} & D_{b}
\end{array}\right]\left[\begin{array}{c}
X^{b}(\xi) \\
p(\xi)
\end{array}\right]
$$

Balancing with QDFs

Linear algebra \Longrightarrow there is basis $\left\{x_{i}^{b} \in \mathbb{R}_{n-1}[\xi]\right\}_{i=1, \ldots, n}$ and $\sigma_{i} \in \mathbb{R}$ such that $\sigma_{1} \geq \sigma_{2} \geq \ldots \sigma_{n}$ such that
$W(\zeta, \eta)=\sum_{i=1}^{n} \sigma_{i} x_{i}^{b}(\zeta) x_{i}^{b}(\eta) \quad K(\zeta, \eta)=\sum_{i=1}^{n} \frac{1}{\sigma_{i}} x_{i}^{b}(\zeta) x_{i}^{b}(\eta)$
Then

$$
X^{b}(\xi):=\operatorname{col}\left(x_{i}^{b}(\xi)\right)_{i=1, \ldots, n}
$$

is balanced state map.
(Classical) balanced state space representation: solve

$$
\left[\begin{array}{c}
\xi X^{b}(\xi) \\
q(\xi)
\end{array}\right]=\left[\begin{array}{cc}
A_{b} & B_{b} \\
C_{b} & D_{b}
\end{array}\right]\left[\begin{array}{c}
X^{b}(\xi) \\
p(\xi)
\end{array}\right]
$$

Model reduction by balancing follows

Summary

- Working with functionals at most natural level;

Summary

- Working with functionals at most natural level;
- Two-variable polynomial representation;

Summary

- Working with functionals at most natural level;
- Two-variable polynomial representation;
- Operations/properties in time domain \sim algebraic operations;

Summary

- Working with functionals at most natural level;
- Two-variable polynomial representation;
- Operations/properties in time domain \leadsto algebraic operations;
- Differentiation, integration, positivity;

Summary

- Working with functionals at most natural level;
- Two-variable polynomial representation;
- Operations/properties in time domain \leadsto algebraic operations;
- Differentiation, integration, positivity;
- Lyapunov theory, dissipativity, model reduction by balancing.

