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Motivation

In many situations, system variables depend not only
on time but also on space:

• Heat diffusion processes

• Electromagnetism

• Vibration of structures

• ...

¿How to incorporate these systems
in the behavioral framework ?



Aim

Develop a behavioral framework for systems
described by Partial Differential Equations (PDEs).

Issues:

• Definitions consistent with 1-D case
and basic tenets of behavioral approach

• Calculus of representations

• System properties, B/QDFs, etc.



Outline

Motivation and aim

Basic definitions

Examples

Elimination of latent variables

Controllability



Linear differential distributed systems

Σ = (T, W, B)

T: independent variables, T = Rn with n > 1

W: external variables, W = Rw

B ⊆ (W)T: behavior, solution set of system
of linear, constant-coefficient PDEs

w ∈ B =⇒ w is compatible with the dynamics



The behavior

B is a n-D linear differential behavior if it is

linear: w1, w2 ∈ B ⇒ α1w1 + α2w2 ∈ B ∀
α1, α2 ∈ R;

shift-invariant: w ∈ B ⇒ σxw ∈ B, where
x = (x1, . . . , xn) and

(σxw)(x ′
1, . . . , x ′

n) := w(x1+x ′
1, . . . , xn+x ′

n)

differential: B is solution set of a system of PDEs.

Notation: B ∈ Lw
n
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Vibrating membrane (2 − D wave) equation

T (independent variables): R × R2

W (dependent variables): R

B:= {w satisfying ρ0
∂2w
∂t2 − τ 2∇2w = 0}

ρ0= mass density; τ=magnitude of tensile force



Maxwell’s equations

Set T of independent variables: R × R3

Set W of dependent variables: R10

B := {(~E, ~B,~j, ρ) satisfying Maxwell’s equations}

∇ · ~E −
1
ε0

ρ = 0

∇ × ~E +
∂

∂t
~B = 0

∇ · ~B = 0

c2∇ × ~B −
1
ε0

~j −
∂

∂t
~E = 0



n-variable polynomial matrices

R ∈ R•×w[ξ1, . . . , ξn] induces

R( ∂
∂x1

, · · · , ∂
∂xn

)w = 0

a kernel representation of

B := {w ∈ C∞ (Rn, Rw) | R( ∂
∂x1

, · · · , ∂
∂xn

)w = 0}

C∞ solutions mainly (but not only!) for convenience...



Example: 2 − D wave equation

B = {w ∈ C∞ (
Rn, R1

)
satisfying ρ0

∂2w
∂t2

−τ 2∇2w = 0}

Here n = 3 (time, space), w = 1. Consequently,

R[ξt , ξx , ξy ]

R(ξt , ξx , ξy) = ρ0ξ
2
t − τ 2ξ2

x − τ 2ξ2
y

(ρ0
∂2

∂t2
− τ 2 ∂2

∂x2
− τ 2 ∂2

∂y2︸ ︷︷ ︸
R( ∂

∂t ,
∂
∂x , ∂

∂y )

)w = 0



Example: Maxwell’s equations

w = (~E, ~B,~j, ρ) ∈ C∞(R4, R10), 8 equations

R(ξt , ξx , ξy , ξz) =


ξx ξy ξz 0 0 0 0 0 0 1

ε0
0 −ξz ξy ξt 0 0 0 0 0 0
ξz 0 −ξx 0 ξt 0 0 0 0 0

−ξy ξx 0 0 0 ξt 0 0 0 0
0 0 0 ξx ξy ξz 0 0 0 0
ξt 0 0 0 ξz −ξy

1
ε0

0 0 0

0 ξt 0 −ξz 0 ξx 0 1
ε0

0 0

0 0 ξt ξy −ξx 0 0 0 1
ε0

0



R(
∂

∂t
,

∂

∂x
,

∂

∂y
,

∂

∂z
)w = 0



Linear differential latent variable distributed systems

Σ = (T, W, L, Bf )

L: latent variables, L = Rl

Bf ⊆ Lw×l
n : full behavior

{(w , `) | R(
∂

∂x1
, · · · ,

∂

∂xn
)w = M(

∂

∂x1
, · · · ,

∂

∂xn
)`}

Σ induces Σe = (T, W, B) , the manifest system

B: manifest behavior

B := {w | ∃` s.t. (w , `) ∈ Bf }
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Maxwell’s equations and latent variables

Dependent variables: (~E,~j, ρ) i.e. W = R7

Latent variable: ~B i.e. L = R3

Bf := {(~E,~j, ρ, ~B) satisfying Maxwell’s equations}
B := {(~E,~j, ρ) | ∃~B s.t. (~E,~j, ρ, ~B) ∈ Bf }

¿Is B also described
by linear, constant-coefficient PDE’s?



Algebraic characterization of behaviors

Different n-variable polynomial matrices may
represent the same behavior

NB := {r ∈ R1×w[ξ1, · · · , ξn] | r( ∂
∂x1

, · · · , ∂
∂xn

)B = 0}

Module of annihilators of B

< R >:= module generated by the rows of R.

Of course [B = ker(R)] =⇒ [< R >⊆ NB];
for C∞ trajectories, also converse holds:

< R >= NB



Calculus of representations

Lw
n is one-one with

{
modules of R1×w[ξ1, · · · , ξn]

}
:

• ker(R1) = ker(R2) iff < R1 >=< R2 >

• ker(R1) ⊆ ker(R2) iff < R1 >⊇< R2 >

• ker(R1) ∩ ker(R2) ; < R1 > ∪ < R2 >

R[ξ1, · · · , ξn] is not a Euclidean domain!

For example, no Smith form...



Outline

Motivation and aim

Basic definitions

Examples

Elimination of latent variables

Controllability



Elimination of latent variables

Bf =
{
(w , `) | R( ∂

∂x1
, · · · , ∂

∂xn
)w = M( ∂

∂x1
, · · · , ∂

∂xn
)`

}
|

πw

↓

B =
{

w | ∃` s.t. R( ∂
∂x1

, · · · , ∂
∂xn

)w = M( ∂
∂x1

, · · · , ∂
∂xn

)`
}

¿∃R′ ∈ R•×w[ξ1, · · · , ξn] s.t. B = ker(R′( ∂
∂x1

, · · · , ∂
∂xn

))?

Yes! B ∈ Lw
n: follows from the Fundamental Principle



The Fundamental Principle for static equations

¿ Given M ∈ R•×• and y ∈ R•, is there x s.t. Mx = y ?

There exists x

s.t. Mx = y
⇐⇒

v ∈ NM ⇒ vT y = 0

for all v ∈ NM

Now for polynomial differential operators...
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The fundamental principle (Ehrenpreis-Palamodov)

Let f ∈ C∞(Rn, Rf). There exists ` in C∞(Rn, Rl) s.t.

M(
∂

∂x1
, · · · ,

∂

∂xn
)` = f

if and only if

n(
∂

∂x1
, · · · ,

∂

∂xn
)f = 0

for all n ∈
{

v ∈ R1×•[ξ1, · · · , ξn] | v · M = 0
}

.{
v ∈ R1×•[ξ1, · · · , ξn] | v · M = 0

}
:

left syzygy of M , a module



The fundamental principle and elimination

Exists ` s.t. M( ∂
∂x1

, · · · , ∂
∂xn

)` = R( ∂
∂x1

, · · · , ∂
∂xn

)w IFF

n(
∂

∂x1
, · · · ,

∂

∂xn
)R(

∂

∂x1
, · · · ,

∂

∂xn
)w = 0

for all n in the left syzygy of M .

How: compute, e.g. with Gröbner bases, a generator
matrix F for the left syzygy of M . Then w ∈ B if and
only if

(FR)(
∂

∂x1
, · · · ,

∂

∂xn
)w = 0



Example: Maxwell’s equations

Eliminating ~B and ρ: compute left syzygy of
266666666664

0 0 0 1
ε0

ξt 0 0 0
0 ξt 0 0
0 0 ξt 0

ξx ξy ξz 0
0 ξz −ξy 0

−ξz 0 ξx 0
ξy −ξx 0 0

377777777775

Leads to

ε0
∂

∂t
∇~E + ∇~j = 0

ε0
∂2

∂t2
∇~E + ε0c2∇ × ∇ × ~E +

∂

∂t
~j = 0
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Image representations

w = M( ∂
∂x1

, · · · , ∂
∂xn

)`

From Fundamental Principle ∃ R•×•[ξ1, · · · , ξn] s.t.

R(
∂

∂x1
, · · · ,

∂

∂xn
)w = 0

¿What kernels of polynomial
partial differential operators are also images?



Controllable systems
B ∈ Lw

n is controllable if for every w1, w2 ∈ B and
any open O1, O2 ⊆ Rn such that O1 ∩ O2 = ∅, there
exists w ∈ B such that

w|O1 = w1 and w|O2 = w2

“Patching" of trajectories is key:

O

1

W

R

R
1

w2

O2

w

W

R

R
1 O2
O

w1 w2w
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Characterizations of controllable n − D systems

Theorem: Let B ∈ Lw
n. The following statements are

equivalent:
1. B is controllable;
2. B admits an image representation;
3. R1×w[ξ1, · · · , ξn]/NB is torsion-free.

¡Controllability ≡ image representation!

Torsion-free property computable
via Gröbner bases
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Characterizations of controllable n − D systems

Theorem: Let B ∈ Lw
n. The following statements are

equivalent:
1. B is controllable;
2. B admits an image representation;
3. R1×w[ξ1, · · · , ξn]/NB is torsion-free.
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Torsion-free property computable
via Gröbner bases



Part II: Combining dynamics and functionals
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Example: vibrating string

∂2

∂t2
w − c2 ∂2

∂x2
w = 0

d
dt

 1
2

(
∂

∂t
w

)2

︸ ︷︷ ︸
kinetic energy

+
c2

2

(
∂

∂x
w

)2

︸ ︷︷ ︸
potential energy

 = 0

¿How to formalize this in the behavioral setting?



Bilinear differential forms

LΦ : C∞(Rn, Rw1) × C∞(Rn, Rw2) → C∞(Rn, R)

LΦ(v , w) :=
∑

k,`

(
dk

dxk w1

)>
Φk,`

(
d`

dx` w2

)

k := (k1, . . . , kn) ∈ Nn ` := (`1, . . . , `n) ∈ Nn

dk

dxk := ∂k1+...+kn

∂xk1
1 ···∂xkn

n

d`

dx` := ∂`1+...+`n

∂x`1
1 ···∂x`n

n

Φk,` ∈ Rw1×w2



2n-variable polynomial representation

LΦ(v , w) :=
∑

k,`

(
dk

dxk v
)>

Φk,`

(
d`

dx` w
)

k := (k1, . . . , kn) ∈ Nn ` := (`1, . . . , `n) ∈ Nn

ζ := (ζ1, . . . , ζn) η := (η1, . . . , ηn)

∑
k,` Φk,`ζ

kη`



Quadratic differential forms

QΦ : C∞(Rn, Rw) → C∞(Rn, R)

QΦ(w) :=
∑

k,`

(
dk

dxk w
)>

Φk,`

(
d`

dx` w
)

W.l.o.g. symmetry: Φk,` = Φ>
k,`

∑
k,` Φk,`ζ

kη`

2n-variable polynomial associated with QΦ
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Divergence

Vector of QDFs (VQDF) QΦ = col(QΦi)i=1,...,n

(div (QΦ)) (w) :=
∂

∂x1
QΦ1(w) + . . . +

∂

∂xn
QΦn(w)

¿What 2n-variable polynomial corresponds to div QΦ?

(ζ1 + η1)Φ1(ζ, η) + . . . + (ζn + ηn)Φn(ζ, η)

Also denoted with div(Φ)
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Path independence

Let Ω ⊆ Rn be closed and
bounded.∫
Ω

QΦ(w)dx is independent of
path if it depends only on the
values of w and its derivatives
on ∂Ω.

in a force field

B

A

possible paths between A and B

Theorem: The following statements are equivalent.

1.
∫
Ω

QΦ path independent ∀ closed bounded Ω ⊆ Rn

2.
∫

QΦ = 0 (on compact support trajectories)

3. Φ(−ξ, ξ) = 0

4. ∃ VQDF Ψ ∈ Rw×w[ζ, η]n, s.t. div (Ψ) = Φ
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Lossless systems

Supply rate QΦ: “energy" delivered to the system,
positive when absorbed.

A controllable B ∈ Lw
n is lossless with respect to QΦ if

∫
QΦ(w)dx = 0

for all w ∈ B of compact support.∫
QΦ is net supply over all Rn (“time" and “space").



Algebraic characterization

Theorem. Let B = im(M( d
dx )). Let Φ ∈ Rw×w[ζ, η], and

define Φ′(ζ, η) := M(ζ)>Φ(ζ, η)M(η). The following
statements are equivalent:

1. B is lossless w.r.t. QΦ;

2.
∫
Ω

QΦ(w)dx is independent of path
for all bounded and closed Ω ⊆ Rn and all w ∈ B;

3.
∫

QΦ′ is a path integral;

4. ∃ VQDF Ψ s.t. for all (w , `) s.t. w = M( d
dx )`, holds

div (QΨ)(w) = QΦ′(`) = QΦ(w)

conservation equation
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Example: vibrating string

ρ0
∂2

∂t2
w1 − T0

∂2

∂x2
w1 = w2

ρ0 density, T0 tension
w1 position, w2 (vertical) force

2

x

ρ
0

mass density

T0

Tension 

vertical displacement

w(t,x)
1

vertical component of body force
per unit length

w

R(ξt , ξx) =
[
ρ0ξ

2
t − T0ξ

2
x −1

]
Image representation w = M( d

dx )` induced by

M(ξt , ξx) :=

[
1

ρ0ξ
2
t − T0ξ

2
x

]
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Example: vibrating string
Supply rate is ∂

∂t w1 · w2, represented by

1
2

[
1 ρ0ζ

2
t − T0ζ

2
x

] [
0 ζt
ηt 0

] [
1

ρ0ζ
2
t − T0ζ

2
x

]

Φ(ζ, η) = 1
2

(
ρ0ζ

2
t ηt − T0ζ

2
xηt + ρ0ζtη

2
t − T0ζtη

2
x

)
= (ζt + ηt)

1
2(ρ0ζtηt + T0ζxηx)

+(ζx + ηx)
1
2(−T0ζtηx − T0ηtζx)

QΦ(w1) =
∂

∂t

1
2

ρ0

(
∂

∂t
w1

)2

︸ ︷︷ ︸
kinetic energy

+
1
2

T0

(
∂

∂x
w1

)2

︸ ︷︷ ︸
potential energy



+
∂

∂x

−
1
2

T0

(
∂

∂x
w1

) (
∂

∂t
w1

)
︸ ︷︷ ︸

flux


Flux: infinitesimal tensile force times velocity
(infinitesimal power) per unit time per unit length.
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Dissipative systems
Let B ∈ Lw

n be controllable, and let Φ ∈ Rw×w[ζ, η].
B is dissipative w.r.t. QΦ if∫

QΦ(w)dx ≥ 0

for all w ∈ B ∩ C∞(Rn, Rw) of compact support.

power energy
Energy is dissipated,

but local flow
can be negative.

¡Energy
must be

locally stored!

SUPPLY

DISSIPATION

FLUX

STORAGE
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¡Energy
must be

locally stored!
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Storage and dissipation functions

B represented as w = M
( d

dx

)
`, let Φ ∈ Rw×w[ζ, η].

VQDF Ψ = (Ψ1, . . . , Ψn) is storage function (flux) for B
w.r.t. QΦ if

div QΨ(`) ≤ QΦ(w)

∀ ` ∈ C∞(Rn, Rl) of compact support and (w , `) ∈ Bf .

∆ ∈ Rl×l[ζ, η] is dissipation function for B w.r.t. QΦ if

Q∆ ≥ 0 and
∫

Q∆(`) =

∫
QΦ(w)

∀ ` ∈ C∞(Rn, Rl) of compact support and (w , `) ∈ Bf .
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Characterizations of dissipativity

Theorem: Let B be controllable, and Φ ∈ Rw×w[ζ, η].
Then B admits an image representation w = M( d

dx )`
s.t. the following conditions are equivalent:

• B is dissipative w.r.t. QΦ (acting on w );
• ∃ a storage function QΨ (acting on `);
• ∃ a dissipation function Q∆ (acting on `).

Also, the following dissipation equality holds:

div QΨ(`) + Q∆(`) = QΦ(w)

div Ψ(ζ, η) + ∆(ζ, η) = M(ζ)>Φ(ζ, η)M(η)



Example: damped vibrating string

ρ0
∂2

∂t2
w1 −T0

∂2

∂x2
w1+β

∂

∂t
w1 = w2

β > 0 friction coefficient,
w1 position, w2 (vertical) force

R(ξt , ξx) =
[
ρ0ξ

2
t − T0ξ

2
x + βξt −1

]
Image representation w = M( d

dx )` induced by

M(ξt , ξx) :=

[
1

ρ0ξ
2
t − T0ξ

2
x + βξt

]
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Example: damped vibrating string

[
w1
w2

]
=

[
1

ρ0
∂2

∂t2 − T0
∂2

∂x2 + β ∂
∂t

]
`

Supply rate is ∂
∂t w1 · w2, represented by

1
2

(
ρ0ζ

2
t ηt − T0ζ

2
xηt + 2βζtηt + ρ0ζtη

2
t − T0ζtη

2
x

)
=: Φ(ζt , ζx , ηt , ηx)

Φ(−ξt , −ξx , ξt , ξx) = −2βξ2
t =⇒ dissipation rate is

√
2βζt

√
2βηt



Example: damped vibrating string

Simple algebra leads to the storage function

(ζt +ηt)
1
2(ρ0ζtηt +T0ζxηx)+(ζx +ηx)

1
2(−T0ζtηx −T0ηtζx)

corresponding to

∂

∂t

1
2

ρ0

(
∂

∂t
w1

)2

︸ ︷︷ ︸
kinetic energy

+
1
2

T0

(
∂

∂x
w1

)2

︸ ︷︷ ︸
potential energy



+
∂

∂x

−
1
2

T0

(
∂

∂x
w1

) (
∂

∂t
w1

)
︸ ︷︷ ︸

flux





Factorization of multivariable polynomial matrices

Q∆(`) ≥ 0

for all ` ∈ C∞(Rn, Rl)

of compact support

⇐⇒ ∆(−ξ, ξ) = D(−ξ)>D(ξ)

If n > 1, it is not possible in general to factorize with
a polynomial D.

However, it is possible with D a rational function.
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Q∆(`) ≥ 0

for all ` ∈ C∞(Rn, Rl)

of compact support

⇐⇒ ∆(−ξ, ξ) = D(−ξ)>D(ξ)

For n = 1, this is a spectral factorization problem, with
known solvability conditions.

Hilbert’s 17th problem:

given p ∈ R[ξ1, . . . , ξn],
write it as the sum-of-squares

p = p2
1 + . . . + p2

k

If n > 1, it is not possible in general to factorize with
a polynomial D.

However, it is possible with D a rational function.
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On the storage function

Storage function is not unique; in the damped vibrat-
ing string example, another choice is

(ζt + ηt)
1
2
(ρ0ζtηt − T0ζ

2
x − T0η

2
x − T0ζxηx)

+(ζx + ηx)
1
2
(T0ζtζx + T0ηtηx)

Storage function depends on hidden latent variables,
that may be nonobservable.
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(ζt + ηt)
1
2
(ρ0ζtηt − T0ζ

2
x − T0η

2
x − T0ζxηx)

+(ζx + ηx)
1
2
(T0ζtζx + T0ηtηx)

Non-uniqueness of storage function arises from

• The non-uniqueness of D(ξ) in the factorization of
∆(−ξ, ξ) = D(−ξ)>D(ξ);

• If n > 1, there is no one-one correspondence
between storage- and dissipation function

Storage function depends on hidden latent variables,
that may be nonobservable.
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Summary

• Basic definitions for systems described by PDEs;

• Representation via polynomial matrices;

• The fundamental principle and the elimination
of latent variables ;

• Bilinear and quadratic differential forms;

• Dissipativity.
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