

The Behavioral Approach to Systems Theory

**Paolo Rapisarda, Un. of Southampton, U.K.
&
Jan C. Willems, K.U.Leuven, Belgium**

**MTNS 2006
Kyoto, Japan, July 24–28, 2006**

Lecture 5: Multidimensional systems

Lecturer: Paolo Rapisarda

Part I: Basics

Outline

Motivation and aim

Basic definitions

Examples

Elimination of latent variables

Controllability

Motivation

In many situations, system variables depend not only on time but also on **space**:

- Heat diffusion processes
- Electromagnetism
- Vibration of structures
- ...

¿How to incorporate these systems
in the behavioral framework ?

Aim

Develop a behavioral framework for systems described by Partial Differential Equations (PDEs).

Issues:

- **Definitions consistent with 1-D case and basic tenets of behavioral approach**
- **Calculus of representations**
- **System properties, B/QDFs, etc.**

Outline

Motivation and aim

Basic definitions

Examples

Elimination of latent variables

Controllability

Linear differential distributed systems

$$\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$$

\mathbb{T} : **independent variables**, $\mathbb{T} = \mathbb{R}^n$ with $n > 1$

\mathbb{W} : **external variables**, $\mathbb{W} = \mathbb{R}^w$

$\mathfrak{B} \subseteq (\mathbb{W})^{\mathbb{T}}$: **behavior, solution set of system
of linear, constant-coefficient PDEs**

$w \in \mathfrak{B} \implies w$ is compatible with the dynamics

The behavior

\mathcal{B} is a **n-D linear differential behavior** if it is

linear: $w_1, w_2 \in \mathcal{B} \Rightarrow \alpha_1 w_1 + \alpha_2 w_2 \in \mathcal{B} \quad \forall \alpha_1, \alpha_2 \in \mathbb{R};$

shift-invariant: $w \in \mathcal{B} \Rightarrow \sigma^x w \in \mathcal{B}$, where
 $x = (x_1, \dots, x_n)$ and

$$(\sigma^x w)(x'_1, \dots, x'_n) := w(x_1 + x'_1, \dots, x_n + x'_n)$$

differential: \mathcal{B} is solution set of a system of PDEs.

Notation: $\mathcal{B} \in \mathfrak{L}_n^w$

Outline

Motivation and aim

Basic definitions

Examples

Elimination of latent variables

Controllability

Vibrating membrane ($2 - D$ wave) equation

T (independent variables): $\mathbb{R} \times \mathbb{R}^2$

W (dependent variables): \mathbb{R}

$$\mathcal{B} := \{w \text{ satisfying } \rho_0 \frac{\partial^2 w}{\partial t^2} - \tau^2 \nabla^2 w = 0\}$$

ρ_0 = mass density; τ =magnitude of tensile force

Maxwell's equations

Set \mathbb{T} of independent variables: $\mathbb{R} \times \mathbb{R}^3$

Set \mathbb{W} of dependent variables: \mathbb{R}^{10}

$\mathcal{B} := \{(\vec{E}, \vec{B}, \vec{j}, \rho) \text{ satisfying Maxwell's equations}\}$

$$\nabla \cdot \vec{E} - \frac{1}{\varepsilon_0} \rho = 0$$

$$\nabla \times \vec{E} + \frac{\partial}{\partial t} \vec{B} = 0$$

$$\nabla \cdot \vec{B} = 0$$

$$c^2 \nabla \times \vec{B} - \frac{1}{\varepsilon_0} \vec{j} - \frac{\partial}{\partial t} \vec{E} = 0$$

n -variable polynomial matrices

$R \in \mathbb{R}^{n \times w}[\xi_1, \dots, \xi_n]$ induces

$$R\left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right)w = 0$$

a kernel representation of

$$\mathfrak{B} := \{w \in \mathfrak{C}^\infty(\mathbb{R}^n, \mathbb{R}^w) \mid R\left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right)w = 0\}$$

\mathfrak{C}^∞ solutions mainly (but not only!) for convenience...

Example: 2 – D wave equation

$\mathcal{B} = \{w \in \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}^1) \text{ satisfying } \rho_0 \frac{\partial^2 w}{\partial t^2} - \tau^2 \nabla^2 w = 0\}$

Here $n = 3$ (time, space), $w = 1$. Consequently,

$$R[\xi_t, \xi_x, \xi_y]$$

$$R(\xi_t, \xi_x, \xi_y) = \rho_0 \xi_t^2 - \tau^2 \xi_x^2 - \tau^2 \xi_y^2$$

$$\underbrace{(\rho_0 \frac{\partial^2}{\partial t^2} - \tau^2 \frac{\partial^2}{\partial x^2} - \tau^2 \frac{\partial^2}{\partial y^2})}_R(\frac{\partial}{\partial t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}) w = 0$$

Example: Maxwell's equations

$w = (\vec{E}, \vec{B}, \vec{j}, \rho) \in \mathfrak{C}^\infty(\mathbb{R}^4, \mathbb{R}^{10})$, 8 equations

$$R(\xi_t, \xi_x, \xi_y, \xi_z) = \begin{bmatrix} \xi_x & \xi_y & \xi_z & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\epsilon_0} \\ 0 & -\xi_z & \xi_y & \xi_t & 0 & 0 & 0 & 0 & 0 & 0 \\ \xi_z & 0 & -\xi_x & 0 & \xi_t & 0 & 0 & 0 & 0 & 0 \\ -\xi_y & \xi_x & 0 & 0 & 0 & \xi_t & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \xi_x & \xi_y & \xi_z & 0 & 0 & 0 & 0 \\ \xi_t & 0 & 0 & 0 & \xi_z & -\xi_y & \frac{1}{\epsilon_0} & 0 & 0 & 0 \\ 0 & \xi_t & 0 & -\xi_z & 0 & \xi_x & 0 & \frac{1}{\epsilon_0} & 0 & 0 \\ 0 & 0 & \xi_t & \xi_y & -\xi_x & 0 & 0 & 0 & \frac{1}{\epsilon_0} & 0 \end{bmatrix}$$

$$R\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)w = 0$$

Linear differential latent variable distributed systems

$$\Sigma = (\mathbb{T}, \mathbb{W}, \mathbb{L}, \mathcal{B}_f)$$

\mathbb{L} : **latent variables**, $\mathbb{L} = \mathbb{R}^1$

$\mathcal{B}_f \subseteq \mathcal{L}_n^{w \times 1}$: **full behavior**

$$\{(\mathbf{w}, \ell) \mid \mathbf{R}\left(\frac{\partial}{\partial \mathbf{x}_1}, \dots, \frac{\partial}{\partial \mathbf{x}_n}\right)\mathbf{w} = \mathbf{M}\left(\frac{\partial}{\partial \mathbf{x}_1}, \dots, \frac{\partial}{\partial \mathbf{x}_n}\right)\ell\}$$

Linear differential latent variable distributed systems

$$\Sigma = (\mathbb{T}, \mathbb{W}, \mathbb{L}, \mathcal{B}_f)$$

\mathbb{L} : **latent variables**, $\mathbb{L} = \mathbb{R}^1$

$\mathcal{B}_f \subseteq \mathcal{L}_n^{w \times 1}$: **full behavior**

$$\{(\mathbf{w}, \ell) \mid R\left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right)\mathbf{w} = M\left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right)\ell\}$$

Σ induces $\Sigma_e = (\mathbb{T}, \mathbb{W}, \mathcal{B})$, the **manifest system**

\mathcal{B} : **manifest behavior**

$$\mathcal{B} := \{ \mathbf{w} \mid \exists \ell \text{ s.t. } (\mathbf{w}, \ell) \in \mathcal{B}_f \}$$

Maxwell's equations and latent variables

Dependent variables: (\vec{E}, \vec{j}, ρ) i.e. $\mathbb{W} = \mathbb{R}^7$

Latent variable: \vec{B} i.e. $\mathbb{L} = \mathbb{R}^3$

$\mathfrak{B}_f := \{(\vec{E}, \vec{j}, \rho, \vec{B}) \text{ satisfying Maxwell's equations}\}$

$\mathfrak{B} := \{(\vec{E}, \vec{j}, \rho) \mid \exists \vec{B} \text{ s.t. } (\vec{E}, \vec{j}, \rho, \vec{B}) \in \mathfrak{B}_f\}$

¿Is \mathfrak{B} also described
by linear, constant-coefficient PDE's?

Algebraic characterization of behaviors

Different n -variable polynomial matrices may represent the same behavior

$$\mathfrak{N}_{\mathfrak{B}} := \{r \in \mathbb{R}^{1 \times n}[\xi_1, \dots, \xi_n] \mid r\left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right)\mathfrak{B} = 0\}$$

Module of annihilators of \mathfrak{B}

$\langle R \rangle :=$ module generated by the rows of R .

Of course $[\mathfrak{B} = \ker(R)] \implies [\langle R \rangle \subseteq \mathfrak{N}_{\mathfrak{B}}]$;
for \mathcal{C}^∞ trajectories, also converse holds:

$$\langle R \rangle = \mathfrak{N}_{\mathfrak{B}}$$

Calculus of representations

\mathfrak{L}_n^w is one-one with $\{\text{modules of } \mathbb{R}^{1 \times w}[\xi_1, \dots, \xi_n]\}$:

- $\ker(R_1) = \ker(R_2)$ iff $\langle R_1 \rangle = \langle R_2 \rangle$
- $\ker(R_1) \subseteq \ker(R_2)$ iff $\langle R_1 \rangle \supseteq \langle R_2 \rangle$
- $\ker(R_1) \cap \ker(R_2) \rightsquigarrow \langle R_1 \rangle \cup \langle R_2 \rangle$

$\mathbb{R}[\xi_1, \dots, \xi_n]$ is not a Euclidean domain!

For example, no Smith form...

Outline

Motivation and aim

Basic definitions

Examples

Elimination of latent variables

Controllability

Elimination of latent variables

$$\mathcal{B}_f = \left\{ (\mathbf{w}, \ell) \mid \mathbf{R}\left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right) \mathbf{w} = \mathbf{M}\left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right) \ell \right\}$$

|

$$\pi_{\mathbf{w}}$$

↓

$$\mathcal{B} = \left\{ \mathbf{w} \mid \exists \ell \text{ s.t. } \mathbf{R}\left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right) \mathbf{w} = \mathbf{M}\left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right) \ell \right\}$$

¿ $\exists \mathbf{R}' \in \mathbb{R}^{n \times w}[\xi_1, \dots, \xi_n]$ s.t. $\mathcal{B} = \ker(\mathbf{R}'\left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right))$?

Yes! $\mathcal{B} \in \mathcal{L}_n^w$: follows from the Fundamental Principle

The Fundamental Principle for static equations

Given $M \in \mathbb{R}^{n \times n}$ and $y \in \mathbb{R}^n$, is there x s.t. $Mx = y$?

The Fundamental Principle for static equations

Given $M \in \mathbb{R}^{\bullet \times \bullet}$ and $y \in \mathbb{R}^{\bullet}$, is there x s.t. $Mx = y$?

Assume x exists, and consider

$$\mathfrak{N}_M := \{v \in \mathbb{R}^{\bullet} \mid v^T M = 0\}$$

Then

$$v \in \mathfrak{N}_M \Rightarrow v^T y = 0$$

The Fundamental Principle for static equations

Given $M \in \mathbb{R}^{n \times n}$ and $y \in \mathbb{R}^n$, is there x s.t. $Mx = y$?

Conversely, assume

$$v \in \mathfrak{N}_M \Rightarrow v^\top y = 0$$

for all $v \in \mathfrak{N}_M$. Then

$$(\text{Im}(M))^\perp \subseteq y^\perp$$

which implies

$$y \in \text{Im}(M)$$

i.e. the existence of x such that $Mx = y$.

The Fundamental Principle for static equations

Given $M \in \mathbb{R}^{n \times n}$ and $y \in \mathbb{R}^n$, is there x s.t. $Mx = y$?

There exists x
s.t. $Mx = y$

$v \in \mathfrak{N}_M \Rightarrow v^T y = 0$
for all $v \in \mathfrak{N}_M$

Now for polynomial differential operators...

The fundamental principle (Ehrenpreis-Palamodov)

Let $f \in \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}^f)$. There exists ℓ in $\mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}^1)$ s.t.

$$M\left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right)\ell = f$$

if and only if

$$n\left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right)f = 0$$

for all $n \in \{v \in \mathbb{R}^{1 \times \bullet}[\xi_1, \dots, \xi_n] \mid v \cdot M = 0\}$.

$\{v \in \mathbb{R}^{1 \times \bullet}[\xi_1, \dots, \xi_n] \mid v \cdot M = 0\}$:
left syzygy of M , a module

The fundamental principle and elimination

Exists ℓ s.t. $M\left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right)\ell = R\left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right)w$ IFF

$$n\left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right)R\left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right)w = 0$$

for all n in the left syzygy of M .

How: compute, e.g. with Gröbner bases, a generator matrix F for the left syzygy of M . Then $w \in \mathfrak{B}$ if and only if

$$(FR)\left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right)w = 0$$

Example: Maxwell's equations

Eliminating \vec{B} and ρ : compute left syzygy of

$$\begin{bmatrix} 0 & 0 & 0 & \frac{1}{\epsilon_0} \\ \xi_t & 0 & 0 & 0 \\ 0 & \xi_t & 0 & 0 \\ 0 & 0 & \xi_t & 0 \\ \xi_x & \xi_y & \xi_z & 0 \\ 0 & \xi_z & -\xi_y & 0 \\ -\xi_z & 0 & \xi_x & 0 \\ \xi_y & -\xi_x & 0 & 0 \end{bmatrix}$$

Leads to

$$\epsilon_0 \frac{\partial}{\partial t} \nabla \vec{E} + \nabla \vec{j} = 0$$

$$\epsilon_0 \frac{\partial^2}{\partial t^2} \nabla \vec{E} + \epsilon_0 c^2 \nabla \times \nabla \times \vec{E} + \frac{\partial}{\partial t} \vec{j} = 0$$

Outline

Motivation and aim

Basic definitions

Examples

Elimination of latent variables

Controllability

Image representations

$$w = M\left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right) \ell$$

From Fundamental Principle $\exists R^{\bullet \times \bullet}[\xi_1, \dots, \xi_n]$ s.t.

$$R\left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right) w = 0$$

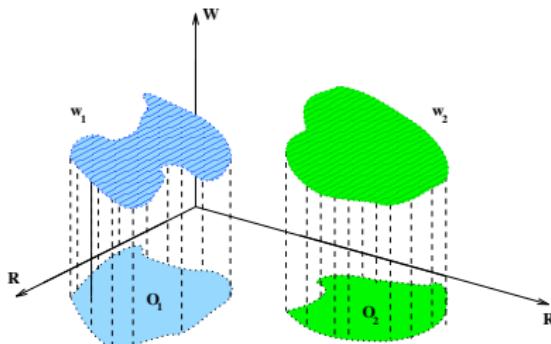
¿What kernels of polynomial
partial differential operators are also images?

Controllable systems

$\mathcal{B} \in \mathcal{L}_n^w$ is **controllable** if for every $w_1, w_2 \in \mathcal{B}$ and any open $O_1, O_2 \subseteq \mathbb{R}^n$ such that $\overline{O_1} \cap \overline{O_2} = \emptyset$, there exists $w \in \mathcal{B}$ such that

$$w|_{O_1} = w_1 \text{ and } w|_{O_2} = w_2$$

“Patching” of trajectories is key:

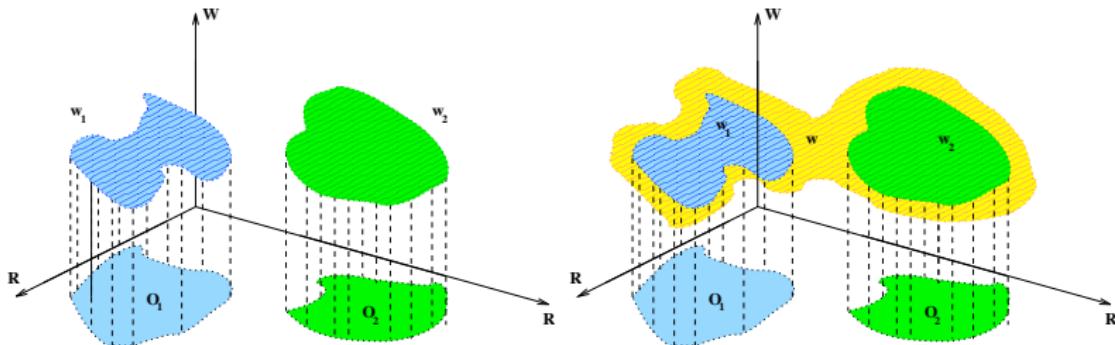


Controllable systems

$\mathcal{B} \in \mathcal{L}_n^w$ is **controllable** if for every $w_1, w_2 \in \mathcal{B}$ and any open $O_1, O_2 \subseteq \mathbb{R}^n$ such that $\overline{O_1} \cap \overline{O_2} = \emptyset$, there exists $w \in \mathcal{B}$ such that

$$w|_{O_1} = w_1 \text{ and } w|_{O_2} = w_2$$

“Patching” of trajectories is key:



Characterizations of controllable $n - D$ systems

Theorem: Let $\mathfrak{B} \in \mathfrak{L}_n^w$. The following statements are equivalent:

1. \mathfrak{B} is controllable;
2. \mathfrak{B} admits an image representation;
3. $\mathbb{R}^{1 \times w}[\xi_1, \dots, \xi_n]/\mathfrak{N}_{\mathfrak{B}}$ is torsion-free.

Characterizations of controllable $n - D$ systems

Theorem: Let $\mathfrak{B} \in \mathfrak{L}_n^w$. The following statements are equivalent:

1. \mathfrak{B} is controllable;
2. \mathfrak{B} admits an image representation;
3. $\mathbb{R}^{1 \times w}[\xi_1, \dots, \xi_n]/\mathfrak{N}_{\mathfrak{B}}$ is torsion-free.

Controllability \equiv image representation!

Characterizations of controllable $n - D$ systems

Theorem: Let $\mathcal{B} \in \mathfrak{L}_n^w$. The following statements are equivalent:

1. \mathcal{B} is controllable;
2. \mathcal{B} admits an image representation;
3. $\mathbb{R}^{1 \times w}[\xi_1, \dots, \xi_n]/\mathfrak{N}_{\mathcal{B}}$ is torsion-free.

Controllability \equiv image representation!

Torsion-free property computable
via Gröbner bases

Part II: Combining dynamics and functionals

Outline

B- and QDFs for $n - D$ systems

The calculus of $n - D$ B/QDFs

Losslessness

Dissipativity

Example: vibrating string

$$\frac{\partial^2}{\partial t^2} w - c^2 \frac{\partial^2}{\partial x^2} w = 0$$

$$\frac{d}{dt} \left(\underbrace{\frac{1}{2} \left(\frac{\partial}{\partial t} w \right)^2}_{\text{kinetic energy}} + \underbrace{\frac{c^2}{2} \left(\frac{\partial}{\partial x} w \right)^2}_{\text{potential energy}} \right) = 0$$

¿How to formalize this in the behavioral setting?

Bilinear differential forms

$$L_\Phi : \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}^{w_1}) \times \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}^{w_2}) \rightarrow \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R})$$

$$L_\Phi(v, w) := \sum_{k, \ell} \left(\frac{d^k}{dx^k} w_1 \right)^\top \Phi_{k, \ell} \left(\frac{d^\ell}{dx^\ell} w_2 \right)$$

$$\mathbf{k} := (k_1, \dots, k_n) \in \mathbb{N}^n \qquad \ell := (\ell_1, \dots, \ell_n) \in \mathbb{N}^n$$

$$\frac{d^{\mathbf{k}}}{dx^{\mathbf{k}}} := \frac{\partial^{k_1 + \dots + k_n}}{\partial x_1^{k_1} \dots \partial x_n^{k_n}} \qquad \qquad \frac{d^{\ell}}{dx^{\ell}} := \frac{\partial^{\ell_1 + \dots + \ell_n}}{\partial x_1^{\ell_1} \dots \partial x_n^{\ell_n}}$$

$$\Phi_{k, \ell} \in \mathbb{R}^{w_1 \times w_2}$$

2n-variable polynomial representation

$$L_{\Phi}(v, w) := \sum_{k, \ell} \left(\frac{d^k}{dx^k} v \right)^\top \Phi_{k, \ell} \left(\frac{d^\ell}{dx^\ell} w \right)$$

$$k := (k_1, \dots, k_n) \in \mathbb{N}^n \quad \ell := (\ell_1, \dots, \ell_n) \in \mathbb{N}^n$$

$$\zeta := (\zeta_1, \dots, \zeta_n) \quad \eta := (\eta_1, \dots, \eta_n)$$

$$\sum_{k, \ell} \Phi_{k, \ell} \zeta^k \eta^\ell$$

Quadratic differential forms

$$Q_\Phi : \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}^w) \rightarrow \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R})$$

$$Q_\Phi(w) := \sum_{k,\ell} \left(\frac{d^k}{dx^k} w \right)^\top \Phi_{k,\ell} \left(\frac{d^\ell}{dx^\ell} w \right)$$

W.l.o.g. **symmetry**: $\Phi_{k,\ell} = \Phi_{k,\ell}^\top$

$$\sum_{k,\ell} \Phi_{k,\ell} \zeta^k \eta^\ell$$

2n-variable polynomial associated with Q_Φ

Outline

B- and QDFs for $n - D$ systems

The calculus of $n - D$ B/QDFs

Losslessness

Dissipativity

Divergence

Vector of QDFs (VQDF) $Q_\Phi = \text{col}(Q_{\Phi_i})_{i=1,\dots,n}$

$$(\text{div } (Q_\Phi))(w) := \frac{\partial}{\partial x_1} Q_{\Phi_1}(w) + \dots + \frac{\partial}{\partial x_n} Q_{\Phi_n}(w)$$

What 2n-variable polynomial corresponds to $\text{div } Q_\Phi$?

$$(\zeta_1 + \eta_1)\Phi_1(\zeta, \eta) + \dots + (\zeta_n + \eta_n)\Phi_n(\zeta, \eta)$$

Divergence

Vector of QDFs (VQDF) $Q_\Phi = \text{col}(Q_{\Phi_i})_{i=1,\dots,n}$

$$(\text{div } (Q_\Phi))(w) := \frac{\partial}{\partial x_1} Q_{\Phi_1}(w) + \dots + \frac{\partial}{\partial x_n} Q_{\Phi_n}(w)$$

¿What 2n-variable polynomial corresponds to $\text{div } Q_\Phi$?

$$(\zeta_1 + \eta_1)\Phi_1(\zeta, \eta) + \dots + (\zeta_n + \eta_n)\Phi_n(\zeta, \eta)$$

Divergence

Vector of QDFs (VQDF) $Q_\Phi = \text{col}(Q_{\Phi_i})_{i=1,\dots,n}$

$$(\text{div } (Q_\Phi))(w) := \frac{\partial}{\partial x_1} Q_{\Phi_1}(w) + \dots + \frac{\partial}{\partial x_n} Q_{\Phi_n}(w)$$

¿What 2n-variable polynomial corresponds to $\text{div } Q_\Phi$?

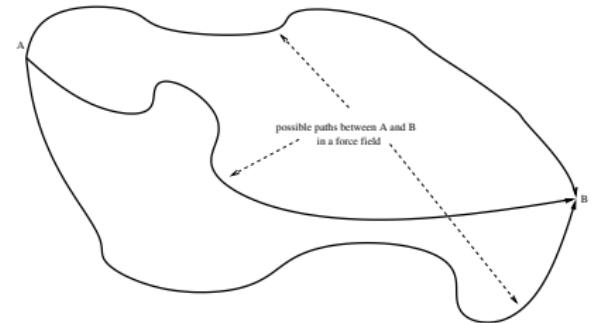
$$(\zeta_1 + \eta_1)\Phi_1(\zeta, \eta) + \dots + (\zeta_n + \eta_n)\Phi_n(\zeta, \eta)$$

Also denoted with $\text{div}(\Phi)$

Path independence

Let $\Omega \subseteq \mathbb{R}^n$ be closed and bounded.

$\int_{\Omega} Q_{\Phi}(w) dx$ is independent of path if it depends only on the values of w and its derivatives on $\partial\Omega$.



Theorem: The following statements are equivalent.

1. $\int_{\Omega} Q_{\Phi}$ path independent \forall closed bounded $\Omega \subseteq \mathbb{R}^n$
2. $\int Q_{\Phi} = 0$ (on compact support trajectories)
3. $\Phi(-\xi, \xi) = 0$
4. \exists VQDF $\Psi \in \mathbb{R}^{w \times w}[\zeta, \eta]^n$, s.t. $\operatorname{div}(\Psi) = \Phi$

Outline

B- and QDFs for $n - D$ systems

The calculus of $n - D$ B/QDFs

Losslessness

Dissipativity

Lossless systems

Supply rate Q_Φ : “energy” delivered to the system, positive when absorbed.

A controllable $\mathcal{B} \in \mathcal{L}_n^w$ is **lossless with respect to Q_Φ** if

$$\int Q_\Phi(w) dx = 0$$

for all $w \in \mathcal{B}$ of compact support.

$\int Q_\Phi$ is **net supply** over all \mathbb{R}^n (“time” and “space”).

Algebraic characterization

Theorem. Let $\mathcal{B} = \text{im}(M(\frac{d}{dx}))$. Let $\Phi \in \mathbb{R}^{w \times w}[\zeta, \eta]$, and define $\Phi'(\zeta, \eta) := M(\zeta)^\top \Phi(\zeta, \eta) M(\eta)$. The following statements are equivalent:

1. \mathcal{B} is lossless w.r.t. Q_Φ ;
2. $\int_{\Omega} Q_\Phi(w) dx$ is independent of path
for all bounded and closed $\Omega \subseteq \mathbb{R}^n$ and all $w \in \mathcal{B}$;
3. $\int Q_{\Phi'}$ is a path integral;
4. \exists VQDF Ψ s.t. for all (w, ℓ) s.t. $w = M(\frac{d}{dx})\ell$, holds

$$\text{div } (Q_\Psi)(w) = Q_{\Phi'}(\ell) = Q_\Phi(w)$$

Algebraic characterization

Theorem. Let $\mathfrak{B} = \text{im}(M(\frac{d}{dx}))$. Let $\Phi \in \mathbb{R}^{w \times w}[\zeta, \eta]$, and define $\Phi'(\zeta, \eta) := M(\zeta)^\top \Phi(\zeta, \eta) M(\eta)$. The following statements are equivalent:

1. \mathfrak{B} is **lossless** w.r.t. Q_Φ ;
2. $\int_{\Omega} Q_\Phi(w) dx$ is independent of path
for all bounded and closed $\Omega \subseteq \mathbb{R}^n$ and all $w \in \mathfrak{B}$;
3. $\int Q_{\Phi'}$ is a path integral;
4. \exists VQDF Ψ s.t. for all (w, ℓ) s.t. $w = M(\frac{d}{dx})\ell$, holds

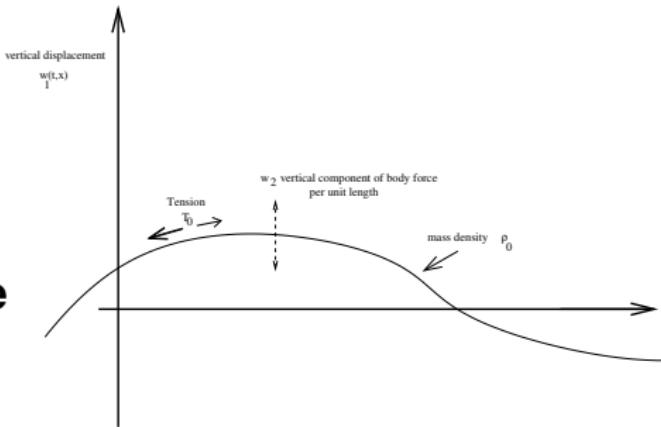
$$\text{div } (Q_\Psi)(w) = Q_{\Phi'}(\ell) = Q_\Phi(w)$$

conservation equation

Example: vibrating string

$$\rho_0 \frac{\partial^2}{\partial t^2} w_1 - T_0 \frac{\partial^2}{\partial x^2} w_1 = w_2$$

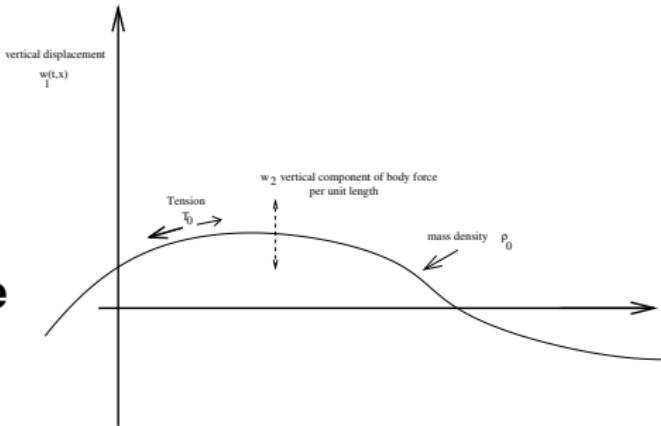
ρ_0 density, T_0 tension
 w_1 position, w_2 (vertical) force



Example: vibrating string

$$\rho_0 \frac{\partial^2}{\partial t^2} w_1 - T_0 \frac{\partial^2}{\partial x^2} w_1 = w_2$$

ρ_0 density, T_0 tension
 w_1 position, w_2 (vertical) force



$$R(\xi_t, \xi_x) = [\rho_0 \xi_t^2 - T_0 \xi_x^2 \quad -1]$$

Image representation $w = M(\frac{d}{dx})\ell$ induced by

$$M(\xi_t, \xi_x) := \begin{bmatrix} 1 \\ \rho_0 \xi_t^2 - T_0 \xi_x^2 \end{bmatrix}$$

Example: vibrating string

Supply rate is $\frac{\partial}{\partial t} \mathbf{w}_1 \cdot \mathbf{w}_2$, represented by

$$\frac{1}{2} [1 - \rho_0 \zeta_t^2 - T_0 \zeta_x^2] \begin{bmatrix} \mathbf{0} & \zeta_t \\ \eta_t & \mathbf{0} \end{bmatrix} \begin{bmatrix} 1 \\ \rho_0 \zeta_t^2 - T_0 \zeta_x^2 \end{bmatrix}$$

Example: vibrating string

$$\begin{aligned}\Phi(\zeta, \eta) &= \frac{1}{2} (\rho_0 \zeta_t^2 \eta_t - T_0 \zeta_x^2 \eta_t + \rho_0 \zeta_t \eta_t^2 - T_0 \zeta_t \eta_x^2) \\ &= (\zeta_t + \eta_t) \frac{1}{2} (\rho_0 \zeta_t \eta_t + T_0 \zeta_x \eta_x) \\ &\quad + (\zeta_x + \eta_x) \frac{1}{2} (-T_0 \zeta_t \eta_x - T_0 \eta_t \zeta_x)\end{aligned}$$

$$\begin{aligned}Q_\Phi(w_1) &= \frac{\partial}{\partial t} \left[\underbrace{\frac{1}{2} \rho_0 \left(\frac{\partial}{\partial t} w_1 \right)^2}_{\text{kinetic energy}} + \underbrace{\frac{1}{2} T_0 \left(\frac{\partial}{\partial x} w_1 \right)^2}_{\text{potential energy}} \right] \\ &\quad + \frac{\partial}{\partial x} \left[\underbrace{-\frac{1}{2} T_0 \left(\frac{\partial}{\partial x} w_1 \right) \left(\frac{\partial}{\partial t} w_1 \right)}_{\text{flux}} \right]\end{aligned}$$

Flux: infinitesimal tensile force times velocity (infinitesimal power) per unit time per unit length.

Outline

B- and QDFs for $n - D$ systems

The calculus of $n - D$ B/QDFs

Losslessness

Dissipativity

Dissipative systems

Let $\mathcal{B} \in \mathcal{L}_n^w$ be controllable, and let $\Phi \in \mathbb{R}^{w \times w}[\zeta, \eta]$.
 \mathcal{B} is dissipative w.r.t. Q_Φ if

$$\int Q_\Phi(w) dx \geq 0$$

for all $w \in \mathcal{B} \cap \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}^w)$ of compact support.

Dissipative systems

Let $\mathcal{B} \in \mathcal{L}_n^w$ be controllable, and let $\Phi \in \mathbb{R}^{w \times w}[\zeta, \eta]$.
 \mathcal{B} is dissipative w.r.t. Q_Φ if

$$\int Q_\Phi(w) dx \geq 0$$

for all $w \in \mathcal{B} \cap \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}^w)$ of compact support.

power

Dissipative systems

Let $\mathcal{B} \in \mathcal{L}_n^w$ be controllable, and let $\Phi \in \mathbb{R}^{w \times w}[\zeta, \eta]$.
 \mathcal{B} is dissipative w.r.t. Q_Φ if

$$\int Q_\Phi(w) dx \geq 0$$

for all $w \in \mathcal{B} \cap \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}^w)$ of compact support.

energy

Dissipative systems

Let $\mathcal{B} \in \mathfrak{L}_n^w$ be controllable, and let $\Phi \in \mathbb{R}^{w \times w}[\zeta, \eta]$.
 \mathcal{B} is dissipative w.r.t. Q_Φ if

$$\int Q_\Phi(w) dx \geq 0$$

for all $w \in \mathcal{B} \cap \mathfrak{C}^\infty(\mathbb{R}^n, \mathbb{R}^w)$ of compact support.

Energy goes **into** the system

Dissipative systems

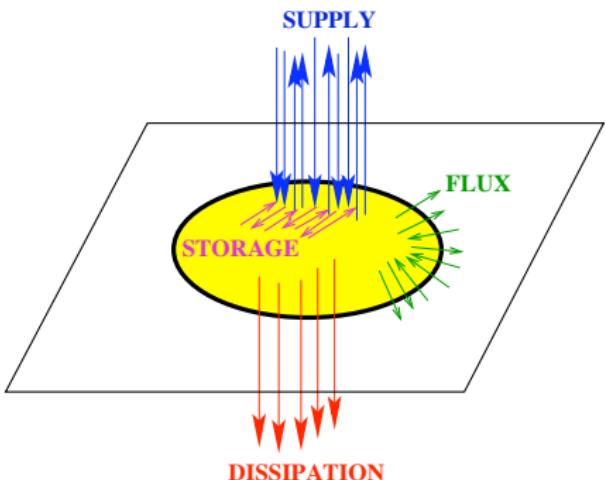
Let $\mathcal{B} \in \mathcal{L}_n^w$ be controllable, and let $\Phi \in \mathbb{R}^{w \times w}[\zeta, \eta]$.
 \mathcal{B} is dissipative w.r.t. Q_Φ if

$$\int Q_\Phi(w) dx \geq 0$$

for all $w \in \mathcal{B} \cap \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}^w)$ of compact support.

Energy is **dissipated**,
but local flow
can be negative.

Energy
must be
locally stored!



Storage and dissipation functions

\mathfrak{B} represented as $w = M \left(\frac{d}{dx} \right) \ell$, let $\Phi \in \mathbb{R}^{w \times w}[\zeta, \eta]$.

VQDF $\Psi = (\Psi_1, \dots, \Psi_n)$ is storage function (flux) for \mathfrak{B} w.r.t. Q_Φ if

$$\operatorname{div} Q_\Psi(\ell) \leq Q_\Phi(w)$$

$\forall \ell \in \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}^1)$ of compact support and $(w, \ell) \in \mathfrak{B}_f$.

Storage and dissipation functions

\mathfrak{B} represented as $w = M \left(\frac{d}{dx} \right) \ell$, let $\Phi \in \mathbb{R}^{w \times w}[\zeta, \eta]$.

VQDF $\Psi = (\Psi_1, \dots, \Psi_n)$ is **storage function (flux)** for \mathfrak{B} w.r.t. Q_Φ if

$$\operatorname{div} Q_\Psi(\ell) \leq Q_\Phi(w)$$

$\forall \ell \in \mathfrak{C}^\infty(\mathbb{R}^n, \mathbb{R}^1)$ of compact support and $(w, \ell) \in \mathfrak{B}_f$.

$\Delta \in \mathbb{R}^{1 \times 1}[\zeta, \eta]$ is **dissipation function** for \mathfrak{B} w.r.t. Q_Φ if

$$Q_\Delta \geq 0 \text{ and } \int Q_\Delta(\ell) = \int Q_\Phi(w)$$

$\forall \ell \in \mathfrak{C}^\infty(\mathbb{R}^n, \mathbb{R}^1)$ of compact support and $(w, \ell) \in \mathfrak{B}_f$.

Characterizations of dissipativity

Theorem: Let \mathcal{B} be controllable, and $\Phi \in \mathbb{R}^{w \times w}[\zeta, \eta]$. Then \mathcal{B} admits an image representation $w = M(\frac{d}{dx})\ell$ s.t. the following conditions are equivalent:

- \mathcal{B} is dissipative w.r.t. Q_Φ (acting on w);
- \exists a storage function Q_Ψ (acting on ℓ);
- \exists a dissipation function Q_Δ (acting on ℓ).

Also, the following **dissipation equality** holds:

$$\begin{aligned}\text{div } Q_\Psi(\ell) + Q_\Delta(\ell) &= Q_\Phi(w) \\ \text{div } \Psi(\zeta, \eta) + \Delta(\zeta, \eta) &= M(\zeta)^\top \Phi(\zeta, \eta) M(\eta)\end{aligned}$$

Example: damped vibrating string

$$\rho_0 \frac{\partial^2}{\partial t^2} w_1 - T_0 \frac{\partial^2}{\partial x^2} w_1 + \beta \frac{\partial}{\partial t} w_1 = w_2$$

$\beta > 0$ friction coefficient,
 w_1 position, w_2 (vertical) force

Unit 23. Resonator of 99 and the
Note, rubber, for the force factor
is the same as made with (11).

by time = $\frac{2\pi}{13}$
(the resonance was measured after
measured)

$$n = \frac{112.9 \times 0.2 \times 3}{6.2 \times 0 \times 6 \times 6} \sqrt{\frac{16.99 \times 3.76}{16.5 \times (6 + \frac{2.26 \times 9}{13})}} = 219.4$$

The error is very small, half a
octave. The difficulty of
making accurate measure-
ments is increased when the
note is high.

Double Resonance. Two modulated
rings were connected together, 9
the resonance is obtained by
the filter to one of them
the filter to the other.

$$\text{Apple in 8.06} = 3.84 \\ \text{Lod in 8.06} = 2.13 \\ \text{diam of one ring} = \frac{4}{5} \text{ inch} \\ \text{thicknes of plane} = \frac{1}{10} \text{ inch}$$

Example: damped vibrating string

$$\rho_0 \frac{\partial^2}{\partial t^2} w_1 - T_0 \frac{\partial^2}{\partial x^2} w_1 + \beta \frac{\partial}{\partial t} w_1 = w_2$$

$\beta > 0$ friction coefficient,
 w_1 position, w_2 (vertical) force

$$R(\xi_t, \xi_x) = [\rho_0 \xi_t^2 - T_0 \xi_x^2 + \beta \xi_t \quad -1]$$

Image representation $w = M(\frac{d}{dx})\ell$ induced by

$$M(\xi_t, \xi_x) := \begin{bmatrix} 1 \\ \rho_0 \xi_t^2 - T_0 \xi_x^2 + \beta \xi_t \end{bmatrix}$$

Unit 23. Resonator of J. C. Maxwell
What pitch for the piano strings
that were in use at that time?

ω_0 by estimation = $\frac{\pi}{13}$
(the resonance was measured with
measured)

$$\omega = \frac{11.29 \times 0.12 \times 3}{6.28 \times 6 \times \pi^2} \sqrt{\frac{16.99 \times 3.14}{16.99^2 + (6 + 24.96)^2}} = \frac{219.4}{16.99^2 \times 9.87^2} = 219.4$$

The error is very small, only a
few tones. The difficulty of
making accurate measurements
measured increased when the
notes are high.

Double Resonance. Two identical
piano were connected together, 7
the resonance of one of them
was filled to one of them
the following:

$$\begin{aligned} \text{Apple in 8 oct.} &= 3.84 \\ \text{Lod in 8 oct.} &= 2.13 \end{aligned}$$

dimensions of one piano = $\frac{4}{5}$ width

thickness of piano = $\frac{1}{10}$ width

Example: damped vibrating string

$$\begin{bmatrix} \mathbf{w}_1 \\ \mathbf{w}_2 \end{bmatrix} = \begin{bmatrix} 1 \\ \rho_0 \frac{\partial^2}{\partial t^2} - T_0 \frac{\partial^2}{\partial x^2} + \beta \frac{\partial}{\partial t} \end{bmatrix} \ell$$

Supply rate is $\frac{\partial}{\partial t} \mathbf{w}_1 \cdot \mathbf{w}_2$, represented by

$$\frac{1}{2} (\rho_0 \zeta_t^2 \eta_t - T_0 \zeta_x^2 \eta_t + 2\beta \zeta_t \eta_t + \rho_0 \zeta_t \eta_t^2 - T_0 \zeta_t \eta_x^2) =: \Phi(\zeta_t, \zeta_x, \eta_t, \eta_x)$$

$\Phi(-\xi_t, -\xi_x, \xi_t, \xi_x) = -2\beta \xi_t^2 \Rightarrow$ dissipation rate is

$$\sqrt{2\beta} \zeta_t \sqrt{2\beta} \eta_t$$

Example: damped vibrating string

Simple algebra leads to the **storage function**

$$(\zeta_t + \eta_t) \frac{1}{2} (\rho_0 \zeta_t \eta_t + T_0 \zeta_x \eta_x) + (\zeta_x + \eta_x) \frac{1}{2} (-T_0 \zeta_t \eta_x - T_0 \eta_t \zeta_x)$$

corresponding to

$$\begin{aligned} & \frac{\partial}{\partial t} \left[\underbrace{\frac{1}{2} \rho_0 \left(\frac{\partial}{\partial t} w_1 \right)^2}_{\text{kinetic energy}} + \underbrace{\frac{1}{2} T_0 \left(\frac{\partial}{\partial x} w_1 \right)^2}_{\text{potential energy}} \right] \\ & + \frac{\partial}{\partial x} \left[\underbrace{-\frac{1}{2} T_0 \left(\frac{\partial}{\partial x} w_1 \right) \left(\frac{\partial}{\partial t} w_1 \right)}_{\text{flux}} \right] \end{aligned}$$

Factorization of multivariable polynomial matrices

$$Q_\Delta(\ell) \geq 0$$

$$\text{for all } \ell \in \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}^1) \iff \Delta(-\xi, \xi) = D(-\xi)^\top D(\xi)$$

of compact support

Factorization of multivariable polynomial matrices

$$Q_\Delta(\ell) \geq 0$$

$$\text{for all } \ell \in \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}^1) \iff \Delta(-\xi, \xi) = D(-\xi)^\top D(\xi)$$

of compact support

For $n = 1$, this is a **spectral factorization** problem, with known solvability conditions.

Factorization of multivariable polynomial matrices

$$Q_\Delta(\ell) \geq 0$$

for all $\ell \in \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}^1)$ $\iff \Delta(-\xi, \xi) = D(-\xi)^\top D(\xi)$

of compact support

For $n = 1$, this is a **spectral factorization** problem, with known solvability conditions.

Hilbert's 17th problem:

given $p \in \mathbb{R}[\xi_1, \dots, \xi_n]$,
write it as the sum-of-squares

$$p = p_1^2 + \dots + p_k^2$$

Factorization of multivariable polynomial matrices

$$Q_\Delta(\ell) \geq 0$$

for all $\ell \in \mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}^1)$ $\iff \Delta(-\xi, \xi) = D(-\xi)^\top D(\xi)$

of compact support

If $n > 1$, it is **not possible** in general to factorize with a polynomial D .

However, it is possible with D a **rational function**.

On the storage function

Storage function is **not unique**; in the damped vibrating string example, another choice is

$$\begin{aligned} & (\zeta_t + \eta_t) \frac{1}{2} (\rho_0 \zeta_t \eta_t - T_0 \zeta_x^2 - T_0 \eta_x^2 - T_0 \zeta_x \eta_x) \\ & + (\zeta_x + \eta_x) \frac{1}{2} (T_0 \zeta_t \zeta_x + T_0 \eta_t \eta_x) \end{aligned}$$

On the storage function

Storage function is **not unique**; in the damped vibrating string example, another choice is

$$(\zeta_t + \eta_t) \frac{1}{2} (\rho_0 \zeta_t \eta_t - T_0 \zeta_x^2 - T_0 \eta_x^2 - T_0 \zeta_x \eta_x) \\ + (\zeta_x + \eta_x) \frac{1}{2} (T_0 \zeta_t \zeta_x + T_0 \eta_t \eta_x)$$

Non-uniqueness of storage function arises from

- The non-uniqueness of $D(\xi)$ in the factorization of $\Delta(-\xi, \xi) = D(-\xi)^\top D(\xi)$;
- If $n > 1$, there is no one-one correspondence between storage- and dissipation function

On the storage function

Storage function is **not unique**; in the damped vibrating string example, another choice is

$$(\zeta_t + \eta_t) \frac{1}{2} (\rho_0 \zeta_t \eta_t - T_0 \zeta_x^2 - T_0 \eta_x^2 - T_0 \zeta_x \eta_x) \\ + (\zeta_x + \eta_x) \frac{1}{2} (T_0 \zeta_t \zeta_x + T_0 \eta_t \eta_x)$$

Storage function depends on **hidden latent variables**, that may be **nonobservable**.

Summary

- **Basic definitions for systems described by PDEs;**

Summary

- **Basic definitions for systems described by PDEs;**
- **Representation via polynomial matrices;**

Summary

- **Basic definitions for systems described by PDEs;**
- **Representation via polynomial matrices;**
- **The fundamental principle and the elimination of latent variables ;**

Summary

- **Basic definitions for systems described by PDEs;**
- **Representation via polynomial matrices;**
- **The fundamental principle and the elimination of latent variables ;**
- **Bilinear and quadratic differential forms;**

Summary

- **Basic definitions for systems described by PDEs;**
- **Representation via polynomial matrices;**
- **The fundamental principle and the elimination of latent variables ;**
- **Bilinear and quadratic differential forms;**
- **Dissipativity.**