
Model Reduction for Controllable Systems

Ha B.M., P. Rapisarda, and H.L. Trentelman

Abstract— In the papers [1], [7] a new scheme for passivity-
preserving model reduction has been proposed. We have shown
in [2] that the approach can also be interpreted from a
dissipativity theory point of view, and we put forward two
procedures in order to compute a driving variable or output
nulling representation of a reduced order model for a given
behavior. In this paper we illustrate improved versions of both
algorithms, which produce a controllable reduced-order model.
The new algorithms are based on several original results of
independent interest.

I. INTRODUCTION

Recently, Antoulas (see [1]) and Sorensen (see [7]) have
presented a new technique and efficient numerical algorithms
in order to perform model reduction with passivity- and
stability preservation. In [2] we offered a different point
of view on their approach, using ideas from the behavioral
theory of dissipative systems, and we cast the methods of
Antoulas and Sorensen in a general framework for model
reduction, applicable also when the original system is not
passive. In our approach, one is given a system B of
McMillan degree n which is half-line dissipative with respect
to a given supply rate, and an integer 0 < k < n; the
goal is to obtain a reduced-order model B̂ of B, with
McMillan degree less than or equal to k, which is also half-
line dissipative with respect to Σ.

In [2] we illustrated an algorithm to obtain a driving-
variable representation of the reduced-order model. The
drawback of that procedure is that the reduced-order model
is not guaranteed to be controllable, and consequently it is
impossible to check its dissipativity. In this communication
we present a new algorithm to compute a reduced-order
model which is guaranteed to be controllable and dissipative.
Moreover, we present a new procedure in order to compute
an output-nulling representation of a reduced-order model.

Notation and background material. We denote by
C∞(R, Rw) the set of infinitely often differentiable func-
tions from R to Rw, with D(R, Rw) the subspace of
C∞(R, Rw) consisting of all compactly supported functions,
with Lloc

2 (R, Rw) the set of all Lebesgue measurable func-
tions w from R to Rw for which the integral

∫
Ω
‖w‖2dt is

finite for all compact sets Ω ⊂ R.
A subset B ⊂ Lloc

2 (R, Rw) defines a linear differential
system if there exists a polynomial matrix R ∈ Rw×w[ξ] such
that B = {w ∈ Lloc

2 (R, Rw) | R(d/dt)w = 0}. We denote
with Lw the set of linear differential systems with w external
variables.

We call B ∈ Lw controllable if for all w1, w2 ∈ B, there
exists a T ≥ 0 and a w ∈ B such that w(t) = w1(t) for t < 0
and w(t+T ) = w2(t) for t ≥ 0. We denote the controllable

elements of Lw by Lw
contr. The controllable part of a behavior

is defined as follows. Let B ∈ Lw. It can be shown that there
exists B′ ∈ Lw

contr,B
′ ⊂ B such that B′′ ∈ Lw

contr,B
′′ ⊂ B

implies B′′ ⊂ B′, i.e, B′ is the largest controllable sub-
behavior contained in B. Denote this system as Bcontr.

There are a number of important integer invariants asso-
ciated with behaviors. The integer invariants associated with
a linear differential behavior B are the number of inputs,
denoted m(B), the number of outputs, denoted p(B), and
the dimension of a minimal state variable for B, equivalently
called the McMillan degree of B and denoted with n(B).

Given a controllable linear differential behavior B ∈ Lw
contr

and Σ = Σ> ∈ Rw×w nonsingular, we define its Σ-
orthogonal complement B⊥Σ as

B⊥Σ := {w ∈ Lloc
2 (R, Rw) |

∫ +∞

−∞
w>Σ∆ dt = 0

for all ∆ ∈ B ∩D(R, Rw)}.

The Σ-orthogonal complement B⊥Σ is again an element of
Lw, and it is controllable, see section 10 of [11]. When Σ =
I , we simply write B⊥ and call it the orthogonal complement
of B.

II. STATIONARY TRAJECTORIES AND
DISSIPATIVE SYSTEMS

The notion of stationarity of a trajectory and that of
dissipativity of a system will play an important role in the
following, and we briefly review them now.

Definition 1: Let B ∈ Lw
contr, and Σ = Σ> ∈ Rw×w be

nonsingular. We call w ∈ B a stationary trajectory with
respect to Σ if the linear term in the variation ∆ ∈ B ∩
D(R, Rw) in the integral∫ +∞

−∞
[(w + ∆)>Σ(w + ∆)− w>Σw] dt

is the zero functional.
We denote the subset of stationary trajectories of B with
respect to Σ with the symbol B∗.

Integrating by parts the integral appearing in Definition 1
it can be verified that the linear term equals

2
∫ +∞

−∞
w>Σ∆ dt.

Consequently, the set of stationary trajectories of B with
respect to Σ is

B∗ = {w ∈ B |
∫ +∞

−∞
w>Σ∆ dt = 0

for all ∆ ∈ B ∩D(R, Rw)}
= B ∩B⊥Σ .
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This leads to the following characterization of B∗, which
relates the concept of stationarity with the notion of duality.
For a proof, see [6].

Proposition 2: Let B ∈ Lw
contr and let Σ = Σ> ∈ Rw×w be

nonsingular. Then B∗ ∈ Lw, and is given by

B∗ = B ∩B⊥Σ = B ∩ [ΣB]⊥.
We now give the definition of (strict-) dissipativity; for

a through treatment of the concept of dissipativity and its
consequences see [11].

Definition 3: Let B ∈ Lw
contr and let Σ = Σ> ∈ Rw×w be

nonsingular.
1) B is Σ − dissipative if and only if

∫
R w>Σwdt ≥ 0

for all w ∈ B ∩D(R, Rw);
2) B is strictly Σ− dissipative if and only if there exists

ε0 > 0 such that
∫

R w>Σwdt ≥ ε0

∫
R w>wdt for all

w ∈ B ∩D(R, Rw);
3) B is strictly Σ-dissipative on R− if there exists ε0 > 0

such that
∫

R− w>Σwdt ≥ ε0

∫
R− w>wdt for all w ∈

B ∩D(R−, Rw);
4) B is strictly Σ-dissipative on R+ if there exists ε0 > 0

such that
∫

R+
w>Σwdt ≥ ε0

∫
R+

w>wdt for all w ∈
B ∩D(R+, Rw);

Finally, we consider the consequences of strict half-line
dissipativity of B on the set of stationary trajectories Bast.

Proposition 4: Let B ∈ Lw
contr and let Σ = Σ> ∈ Rw×w be

nonsingular. Assume that B is strictly Σ-dissipative on R−
(or R+), then

1) B∗ coincides with the set of locally minimal trajecto-
ries, i.e. for w ∈ B∗∫ +∞

−∞
[(w + ∆)>Σ(w + ∆)− w>Σw] dt ≥ 0

for all ∆ ∈ B ∩D(R, Rw);
2) B∗ is an autonomous behavior;
3) n(B∗) = 2n(B).

III. PROBLEM FORMULATION
In this paper we illustrate procedures in order to solve the

following problem. Problem Let B ∈ Lw
contr be strictly half-

line dissipative on R− with respect to Σ, with Σ = Σ> ∈
Rw×w nonsingular. Let k < n(B) be given together with a
subbehavior B′ ⊂ [B∗]antistable such that n(B′) = k, where
[B∗]antistable is the anti-stable part of B∗. Find B̂ ∈ Lw

contr such
that

1) n(B̂) ≤ k;
2) B̂ is strictly dissipative on R− with respect to Σ;
3) The anti-stable part [B̂∗]antistable of B̂∗ is a subbehavior

of B′.
In the next sections we will solve this problem and

compute a driving-variable representation and output-nulling
representation of the reduced order behavior B̂.

IV. DRIVING VARIABLE REPRESENTATIONS
Let A ∈ Rn×n, B ∈ Rn×m, C ∈ Rw×n, D ∈ Rw×m be

constant real matrices. The equations

ẋ = Ax + Bv, w = Cx + Dv. (1)

represent the behavior

BDV (A,B,C, D) := {(w, x, v) | (1) hold}.

This behavior is called the full behavior represented by (1).
If we eliminate x and v, then we get the external behavior
defined by

BDV (A,B, C, D)ext := {w | ∃x, v such that
(w, x, v) ∈ BDV (A,B,C, D)}.

It is well-known that for any given B ∈ Lw there exist real
constant matrices A,B,C, D such that (see [8])

B = BDV (A,B, C, D)ext.

In this case we call BDV (A,B,C, D) a driving vari-
able representation of B. If n and m are minimal over
all such driving variable representations, then we call
BDV (A,B, C, D) a minimal driving variable representa-
tion. BDV (A,B,C, D)ext can be shown to be controllable
if and only if the pair (A,B) is controllable.

If a behavior is strictly-dissipative, then there exists a
driving variable representation with some special properties.

Proposition 5: Let B ∈ Lw
contr be strictly Σ-dissipative,

Σ = Σ> ∈ Rw×w be nonsingular. Then, there exist con-
stant matrices A,B, C, D such that BDV (A,B,C, D) is a
minimal driving variable representation of B, with

1) (A,B) is controllable.
2) D>ΣD = I .
3) D>ΣC = 0.
Hence, for sake of simplicity and without loss of gen-

erality, in the rest of this paper we make the following
assumptions.

Assumption 1. BDV (A,B,C, D) is minimal.
Assumption 2. The pair (A,B) is controllable.
Assumption 3. D>ΣD = I .
Assumption 4. D>ΣC = 0.

A. Characterization of dissipative DV representations

We now characterize the dissipativity of systems repre-
sented in driving variable representation and find a way to
compute the stationary trajectories of these systems.

Proposition 6: Let Assumptions 1, 2, 3, 4 hold. Then the
following conditions are equivalent:

1. B is strictly dissipative on R− with respect to Σ.
2. The ARE

A>K + KA + KBB>K − C>ΣC = 0;

has unique solution X such that:
a) K > 0; and
b) A + BB>K is antistable;

Under the same assumptions, the two following conditions
are equivalent:

3. B is strictly dissipative on R+ with respect to Σ.
4. The ARE

A>K + KA + KBB>K − C>ΣC = 0;
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has unique solution K such that:
a) K < 0; and
b) A + BB>K is stable;

B. Stationary trajectories of driving variable representations

Let B ∈ Lw
contr be Σ-dissipative, Σ = Σ> ∈ Rw×w be

nonsingular. Let BDV (A,B, C, D) be a driving variable
representation of B.

In order to compute the stationary trajectories of B in
terms of the driving variable representation, we use the result
of Proposition 2. It can be shown that if BDV (A,B,C, D)
is a minimal driving variable representation of a controllable
behavior B, then (see [12]) BON (−A>, C>Σ, B>,−D>Σ)
is minimal output nulling representation of B⊥Σ (see Sec-
tion V for a definition of output nulling representation).
Consequently, the set of stationary trajectories of B can be
represented as follows:

B∗ = BDV (A,B,C, D)ext

∩ BON (−A>, C>Σ, B>,−D>Σ)ext. (2)

We define

BH(A,B,C, D) := BDV (A,B,C, D)ext

∩ BON (−A>, C>Σ, B>,−D>Σ)ext (3)

and we call it the Hamiltonian subbehavior of B. Indeed,
if assumptions 3, 4 hold then BH(A,B,C, D) is the au-
tonomous behavior generated by the Hamiltonian matrix, as
the following result shows.

Proposition 7: Let Assumptions 3, 4 hold. Then
BH(A,B,C, D) consists of those w ∈ Lloc

2 (R, Rw) for
which exist x, z ∈ Lloc

2 (R, Rn) such that[
ẋ
ż

]
=

[
A BB>

C>ΣC −A>

] [
x
z

]
w =

[
C DB> ] [

x
z

]
. (4)

The following result shows that we can use the Hamiltonian
subbehavior of B, in order compute the antistable part of
the set stationary trajectories.

Proposition 8: Let B ∈ Lw
contr, Σ = Σ> ∈ Rw×w be

nonsingular. Let BDV (A,B, C, D) be a driving variable
representation of B and satisfy assumption 1, 2, 3, 4. Then

1. B∗ is the external behavior of BH(A,B, C, D) given
in (4).

2. [B∗]antistable = span{CeΛutX1 + DB>eΛutY1}, where

X1 ∈ Rn×n, Y1 ∈ Rn×n are such that im(
[

X1

Y1

]
)

forms a basis for the set of right half-plane eigenvectors
of H , i.e.[

A BB>

C>ΣC −A>

] [
X1

Y1

]
=

[
X1

Y1

]
Λu,

with σ(Λu) = {λ1, . . . , λn}, λi ∈ σ(H)
⋂

C+, i =
1, . . . , n.

3. Let B′ ⊂ [B∗]antistable such that n(B′) = k. Then there
exist a permutation matrix Π such that X1Π and Y1Π

can be partitioned as X1Π = [X1
1 X2

1 ] and Y1Π =
[Y 1

1 Y 2
1 ] with X1

1 and Y 1
1 having k columns, such that[

A BB>

C>ΣC −A>

] [
X1

1 X2
1

Y 1
1 Y 2

1

]
=

[
X1

1 X2
1

Y 1
1 Y 2

1

] [
Λ11 Λ12

0 Λ22

]
︸ ︷︷ ︸

=:Λu

,

and B′ = span{CeΛ11tX1
1 + DB>eΛ11tY 1

1 }, with
σ(Λu) = {λ1, . . . , λn}, where λi ∈ σ(H)

⋂
C+,

i = 1, . . . , n.

Next, we will find a representation of B∗ for the general,
i.e. non-controllable case.

Proposition 9: Let B ∈ Lw, Σ = Σ> ∈ Rw×w be
nonsingular. Let BDV (A,B,C, D) be a non necessarily
controllable driving variable representation of B and satisfy
assumption 3, 4. Then

1. [Bcontr]∗ ⊆ BH(A,B,C, D), where BH(A,B,C, D)
is given in (4).

2. [Bcontr]∗antistable ⊆ span{CeΛutX1 + DB>eΛutY1}, where

X1 ∈ Rn×n, Y1 ∈ Rn×n are such that im(
[

X1

Y1

]
)

forms a basis for the set of right half-plane eigenvectors
of H , i.e.[

A BB>

C>ΣC −A>

] [
X1

Y1

]
=

[
X1

Y1

]
Λu,

with σ(Λu) = {λ1, . . . , λn}, λi ∈ σ(H)
⋂

C+, i =
1, . . . , n.

V. OUTPUT NULLING REPRESENTATIONS

Next, we talk about output nulling representations. Let
A ∈ Rn×n, B ∈ Rn×w, C ∈ Rp×n, D ∈ Rp×w be constant
real matrices. The equations

ẋ = Ax + Bw, 0 = Cx + Dw. (5)

represent the behavior

BON (A,B,C, D) := {(w, x) | (5) hold}.

This behavior is called the full behavior represented by (5).
If we eliminate x, then we get the external behavior defined
by

BON (A,B,C, D)ext := {w | ∃x such that
(w, x) ∈ BON (A,B,C, D)}.

It is well-known that for any given B ∈ Lw there exist real
constant matrices A,B,C, D such that (see [8])

B = BON (A,B,C, D)ext.

In this case we call BON (A,B,C, D) an output nulling
representation of B, and if n and p are minimal over all such
output nulling representations, then we call it a minimal one.

If B is strictly dissipative, then without loss of generality
we can make the following assumptions.

ThC12.2

5294



Proposition 10: Let B ∈ Lw
contr be strictly Σ-dissipative,

Σ = Σ> ∈ Rw×w be nonsingular and J =
block diag(Irow(D)−q,−Iq), where q is number of nega-
tive eigenvalues of Σ. Then, there exist constant matrices
A,B,C, D such that BON (A,B,C, D) is a minimal output
nulling representation of B, with

1) (A + FC,B + FD) controllable for all real matrices
F .

2) DΣ−1D> = J .
3) BΣ−1D> = 0.
Hence, for sake of simplicity and without loss of gener-

ality, we will use the following assumptions for our original
output nulling representation.

Assumption 5. BON (A,B, C, D) is a minimal repre-
sentation of B.
Assumption 6. (A+FC,B +FD) is controllable for
all real matrices F .
Assumption 7. DΣ−1D> = J .
Assumption 8. BΣ−1D> = 0.

In the following subsection we study how to characterize
the dissipativity of systems represented in output nulling
representation and how to compute the stationary trajectories
of these systems.

A. Characterization of dissipative ON representations

Let B ∈ Lw
contr, and consider an output nulling representa-

tion BON (A,B,C, D) of B.
Proposition 11: Let Assumptions 5, 6, 7, 8 hold,

Σ = Σ> ∈ Rw×w be nonsingular and J =
block diag(Irow(D)−q,−Iq), where q is number of negative
eigenvalues of Σ. Then the two following conditions are
equivalent:

1. B is strictly dissipative on R− with respect to Σ.
2. The ARE

AH + HA> −HC>JCH + BΣ−1B> = 0; (6)

has unique solution H such that:
a) H > 0; and
b) A> − C>JCH is stable;

Similarly, the two following conditions are equivalent:
3. B is strictly dissipative on R+ with respect to Σ.
4. The ARE

AH + HA> −HC>JCH + BΣ−1B> = 0;

has unique solution H such that:
a) H < 0; and
b) A> − C>JCH is antistable;

B. Stationary trajectories of output nulling representations

Let B ∈ Lw
contr be Σ-dissipative, Σ = Σ> ∈ Rw×w be

nonsingular and J = block diag(Irow(D)−q,−Iq), where q is
number of negative eigenvalues of Σ. Let BON (A,B,C, D)
be a output nulling representation of B.

In order to compute the stationary trajectories of B in
terms of the output nulling representation we use the result
of Proposition 2. It can be shown that if BON (A,B,C, D)

is a minimal output nulling representation of a controllable
behavior B, then BDV (−A>, C>, B>Σ−1,−Σ−1D>) is
minimal output nulling representation of B⊥Σ . Hence, the
set of stationary trajectories of the controllable system B
can be represented as

B∗ = BON (A,B, C, D)ext

∩ BDV (−A>, C>, B>Σ−1,−Σ−1D>)ext. (7)

We define

BH′(A,B, C, D) := BON (A,B,C, D)ext

∩ BDV (−A>, C>,Σ−1B>,−Σ−1D>)ext (8)

and we call it the Hamiltonian subbehavior of B; indeed,
if assumptions 7, 8 hold, then BH′(A,B,C, D) is the
autonomous behavior generated by the Hamiltonian matrix,
as the following result shows.

Proposition 12: Let Assumptions 7, 8 hold. Then
BH′(A,B,C, D) can be represented as the set of w ∈
Lloc

2 (R, Rw) for which exist x, z ∈ Lloc
2 (R, Rn) such that[

ẋ
ż

]
=

[
A B>Σ−1B

C>JC −A>

] [
x
z

]
w =

[
−Σ−1D>JC Σ−1B> ] [

x
z

]
. (9)

Proposition 12 points to how one can compute the anti-
stable part of the set stationary trajectories.

Proposition 13: Let B ∈ Lw
contr, Σ = Σ> ∈ Rw×w be

nonsingular and J = block diag(Irow(D)−q,−Iq), where q is
number of negative eigenvalues of Σ. Let BON (A,B,C, D)
be a output nulling representation of B satisfying assump-
tions 5, 6, 7, 8. Then

1. B∗ is the external behavior of BH′(A,B, C, D), given
in (9).

2. [B∗]antistable = span{Σ−1D>JCeΛutX1 +
Σ−1B>eΛutY1}, where X1 ∈ Rn×n, Y1 ∈ Rn×n

are such that im(
[

X1

Y1

]
) satisfies[

A B>Σ−1B
C>JC −A>

] [
X1

Y1

]
=

[
X1

Y1

]
Λu,

with σ(Λu) = {λ1, . . . , λn}, λi ∈ σ(H ′)
⋂

C+, i =
1, . . . , n.

3. For a given B′ ⊂ [B∗]antistable such that n(B′) = k,
there exists a permutation matrix Π such that X1Π =
[X1

1 X2
1 ], Y1Π = [Y 1

1 Y 2
1 ] where X1

1 and Y 1
1 have k

columns, such that[
A B>Σ−1B

C>JC −A>

] [
X1

1 X2
1

Y 1
1 Y 2

1

]
=

[
X1

1 X2
1

Y 1
1 Y 2

1

] [
Λ11 Λ12

0 Λ22

]
,

and

B′ = span{Σ−1D>JCeΛ11tX1
1 + Σ−1B>eΛ11tY 1

1 },

with Λu =
[

Λ11 Λ12

0 Λ22

]
, σ(Λu) = {λ1, . . . , λn},

where λi ∈ σ(H ′)
⋂

C+, i = 1, . . . , n.
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VI. MODEL REDUCTION

We can now describe the algorithms for solving the
problem stated in section III.

A. From B to reduced-order DV representation

ALGORITHM 1.
Input: B ∈ Lw

contr strictly Σ-dissipative on R−, an integer
0 ≤ k ≤ n(B) and a subbehavior B′ of [B∗]antistable.
Output: DV representation of B̂ ∈ Lw

contr solving Problem 1.
Step 1. Represent B with a driving variable representation
BDV (A,B,C, D) satisfying assumptions 1, 2, 3, 4.
Step 2. Compute X1 = [X1

1 X2
1 ], Y1 = [Y 1

1 Y 2
1 ] such that[

A BB>

C>ΣC −A>

] [
X1

1 X2
1

Y 1
1 Y 2

1

]
=

[
X1

1 X2
1

Y 1
1 Y 2

1

] [
Λ11 Λ12

0 Λ22

]
︸ ︷︷ ︸

=:Λu

,

and

[B∗]antistable = span{CeΛutX1 + DB>eΛutY1},

B′ = span{CeΛ11tX1
1 + DB>eΛ11tY 1

1 },

where σ(Λu) = {λ1, . . . , λn}, λi ∈ σ(H)
⋂

C+, i =
1, . . . , n.
Step 3. Compute the Cholesky factorization P>P = X>

1 Y1,
(with P is upper triangular matrix).
Comment: The factorization exists, since B ∈ Lw

contr is
strictly Σ-dissipative on R− (Proposition 6) and conse-
quently X>

1 Y1 is symmetric and positive definite.
Step 4. Define S = X1P

−1 = Y −>
1 P>.

Step 5. Compute

(Ā, B̄, C̄, D̄) = (S−1AS, S−1B,CS,D).

Step 6. Denote the truncation of (Ā, B̄, C̄, D̄) to the first k
component of the state with (Ā11, B̄1, C̄1, D̄). Denote

Btrunc := BDV (Ā11, B̄1, C̄1, D̄)ext

Step 7. Perform a Kalman decomposition to compute the
controllable part of Btrunc:

T−1Ā11T =
[

Â ∗
0 ∗

]
, T−1B̄1 =

[
B̂
0

]
,

C̄1T =
[

Ĉ ∗
]
, D̄ = D̂.

Step 8 Output

B̂ := [Btrunc]contr = BDV (Â, B̂, Ĉ, D̂)ext.

We now show that the model B̂ obtained from Algorithm 1
satisfies requirements 1)− 3) of Problem 1.

1) Since BDV (Â, B̂, Ĉ, D̂) may not be a minimal repre-
sentation of B̂, n(B̂) is less than or equal to the size of the
matrix Â ∈ Rk×k.

2) It is easy to see that BDV (Ā, B̄, C̄, D̄) is also a driving
variable representation of B. Consider the new Hamiltonian
matrix generated by (Ā, B̄, C̄, D̄)

H̄ :=
[

Ā B̄B̄>

C̄>ΣC̄ −Ā>

]
(10)

and the corresponding Hamiltonian system[
Ā B̄B̄>

C̄>ΣC̄ −Ā>

] [
X̄1

Ȳ1

]
=

[
X̄1

Ȳ1

]
Λu.

After using the transformation matrix S = X1P
−1 we have

X̄1 = S−1X1 = (PX−1
1 )X1 = P,

Ȳ1 = S>Y1 = (P−>X>
1 )Y1 = P−>P>P = P.

Hence, the new Hamiltonian system is[
Ā B̄B̄>

C̄>ΣC̄ −Ā>

] [
P
P

]
=

[
P
P

]
Λu. (11)

Note that since P is an upper triangular matrix, P =[
P11 P12

0 P22

]
, the Hamiltonian system (11) can be reduced

to [
Ā11 B̄1B̄

>
1

C̄>1 ΣC̄1 −Ā>11

] [
P11

P11

]
=

[
P11

P11

]
Λ11. (12)

¿From (12) it follows that the largest solution of ARE

Ā>11K̄ + K̄Ā11 + K̄B̄1B̄
>
1 K̄ − C̄>1 ΣC̄1 = 0 (13)

is K̄+ = P11P
−1
11 = I . Moreover, from (12) we also have

(Ā11 + B̄1B̄
>
1 )P11 = P11Λ11.

This implies that σ(Ā11+B̄1B̄
>
1 ) coincide with σ(Λ11) since

P11 is nonsingular, therefore σ(Ā11 + B̄1B̄
>
1 ) ⊂ C+, hence

Ā11 + B̄1B̄
>
1 I is antistable.

Consider the following ARE

Â>K̂ + K̂Â + K̂B̂B̂>K̂ − Ĉ>ΣĈ = 0 (14)

Since (Â, B̂, Ĉ, D̂) is obtained from (Ā11, B̄1, C̄1, D̄) using
the Kalman decomposition, it is easy to see that the solution
of ARE (14) is the (1, 1)-block matrix of the solution of
ARE (13). It follows that I is a solution of (14). Moreover,
since

Ā11 + B̄1B̄
>
1 I =

[
Â + B̂B̂>I ∗

0 ∗

]
it follows that Â11 + B̂1B̂

>
1 I is antistable. Now use Propo-

sition 6 in order to conclude that B̂ is strictly Σ-dissipative
on R−.

3) It follows from Proposition 9 that

B̂∗ = [[Btrunc]contr]∗ ⊆ BH(Ā11, B̄1, C̄1, D̄).

Now note that since D̄>ΣD̄ = I and D̄>ΣC̄1 = 0, the
conditions of Proposition 7 are satisfied. Consequently

[B̂∗]antistable ⊆ [BH(Ā11, B̄1, C̄1, D̄)]antistable

= span{[C̄1 + D̄B̄>
1 ]P11e

Λ11t}
= B′.

Hence, [B̂∗]antistable ⊆ B′. This proves item 3, and concludes
our proof about the correctness of the algorithm.
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B. From B to reduced-order ON representation

ALGORITHM 2.
Input: B ∈ Lw

contr strictly Σ-dissipative on R−, an integer
0 ≤ k ≤ n(B) and a subbehavior B′ of [B∗]antistable.
Output: ON representation of B̂ ∈ Lw

contr solving Problem 1.
Step 1. Represent B by a output nulling representation
BON (A,B,C, D) satisfying assumptions 5, 6, 7, 8.
Step 2. Compute X1 = [X1

1 X2
1 ], Y1 = [Y 1

1 Y 2
1 ] such that[

A B>Σ−1B
C>JC −A>

] [
X1

1 X2
1

Y 1
1 Y 2

1

]
=

[
X1

1 X2
1

Y 1
1 Y 2

1

] [
Λ11 Λ12

0 Λ22

]
︸ ︷︷ ︸

=:Λu

,

and

[B∗]antistable = span{Σ−1D>JCeΛutX1 + Σ−1B>eΛutY1},

B′ = span{Σ−1D>JCeΛ11tX1
1 + Σ−1B>eΛ11tY 1

1 },

where σ(Λu) = {λ1, . . . , λn}, λi ∈ σ(H ′)
⋂

C+, i =
1, . . . , n.
Step 3. Compute the Cholesky factorization P>P = X>

1 Y1,
(with P an upper triangular matrix).
Comment: The factorization exists, since B ∈ Lw

contr is
strictly Σ-dissipative on R− (Proposition 6) and conse-
quently X>

1 Y1 is symmetric and positive definite.
Step 4. Compute S = X1P

−1 = Y −>
1 P>.

Step 5. Compute

(Ā, B̄, C̄, D̄) := (S−1AS, S−1B,CS,D).

Step 6. Let (Ā11, B̄1, C̄1, D̄) denote the truncation of
(Ā, B̄, C̄, D̄) to the first k components of the state, and let

Btrunc := BON (Ā11, B̄1, C̄1, D̄)ext

Step 7. Find an output injection transformation H to compute
the controllable part of Btrunc:

Ā11 + HC̄1 =
[

Â ∗
0 ∗

]
, B̄1 + HD̄ =

[
B̂
0

]
,

C̄1 =
[

Ĉ ∗
]
, D̄ = D̂.

where (Â+FĈ, B̂+FD̂) is controllable for all real matrices
F .
Step 8. Output

B̂ := [Btrunc]contr = BON (Â, B̂, Ĉ, D̂)ext.

The proof of the correctness of Algorithm 2 follows an
argument analogous to that used in proving the correctness
of Algorithm 1, and is omitted.

VII. CONCLUSIONS

The main results of this paper are Algorithms 1 and 2
for the computation of a driving-variable or output-nulling
representation of a reduced-order controllable behavior con-
taining a specified subset of the set of stationary trajectories
of a given system.

We envision these two algorithms as part of a general
scheme for dissipativity-preserving model reduction which,
starting from a controllable and dissipative behavior B
represented in DV, ON, state-space, kernel- or image form,
produces any of these representations for a controllable and
dissipative reduced-order behavior whose set of stationary
trajectories contains a specified subset of the set of stationary
trajectories of the original system. Research is being carried
out in order to compute a kernel- or image representation of
the reduced-order model.
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