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Abstract— The classical approach for solving control prob-
lems is model based: first a model representation is derived from
given data of the plant and then a control law is synthesized
using the model and the control specifications. We present an
alternative approach that circumvents the explicit identification
of a model representation. The considered control problem is
finite horizon linear quadratic tracking. The results are derived
assuming exact data and the optimal trajectory is constructed
off-line.

I. INTRODUCTION

We consider a finite horizon linear quadratic tracking
problem that takes as input data a trajectory of the to-be-
controlled plant instead of an input/state/output representa-
tion. Such a formulation is considered to be closer to a real-
life control problem, because in practice one rarely has an
input/state/output representation but often has measurements
(i.e., an observed trajectory) of the plant. In addition, as
shown in this paper, our formulation gives more freedom
in the choice of the approach for solving the problem.

The classical approach for solving the control problem
is model based. First, a plant model is explicitly identified
from the data and, second, a controller that achieves the
desired specifications is synthesized using the model. Thus,
the control problem is split into two independent stages:

1) identification and
2) model-based synthesis.

The control objectives are not taken into account in the
identification part and once the model is computed from the
data, the data is not used in the synthesis of the controller.
Both system identification and controller synthesis are ma-
ture research areas, however, their interplay in solving the
overall problem from data to control has only recently been
addressed in a new field, called identification for control.

Identification for control aims to determine the “best”
model to be used with a given model-based synthesis method.
Presently, there are only partial results in solving this prob-
lem. In its full generality, the question what is the best model
for control seems to be as hard as the original problem that
aims to derive optimal control directly from the available
data.

An alternative to the model based paradigm is the deriva-
tion of the optimal control input or the optimal controller
directly from the data. This paradigm has also been explored
in the literature. Different authors call it with different names:
data-based, data-driven, unfalsified [1], [2], model-free [3],

[4], and model-less control. In this paper, we refer to the
direct construction of the control from data as data-driven
control.

Perhaps the first data-driven control method is the Ziegler-
Nichols procedure for tuning PID controllers. It is based,
however, on the plant step response, which is a very special
response. In addition, the method is graphical and does
not generalize to other control problems. A procedure for
deriving multivariable linear quadratic Gaussian controller,
using the plant impulse response, is proposed in [5]. Data-
driven synthesis methods using an arbitrary response are
proposed in [6] (linear quadratic regulation) and [7], [8]
(linear quadratic tracking).

In this paper we consider a data-driven finite horizon linear
quadratic tracking problem, where the given trajectory wd is
assumed to be exact and the plant B is assumed to be a
linear time-invariant system. (The more realistic but harder to
deal with situation when the data is perturbed will be treated
elsewhere.) In Section II, we present three solutions for this
problem. The first one is the classical model-based control
that first computes an input/state/output representation of
the plant and then synthesizes the controller by solving
the corresponding Riccati equation. The second approach
computes an impulse response representation of the plant
and then finds the optimal trajectory by solving a weighted
least squares problem. These approaches derive explicitly
a representation of the plant. The third approach computes
the optimal trajectory directly from the given data without
computing a representation of the plant. The idea is to project
the reference trajectory on the subbehavior B0 of the plant,
consisting of all zero initial conditions trajectories. Under
certain specified conditions, B0 can be computed from wd,
which makes the procedure implementable.

The idea behind the third approach is similar to the one
presented in [7], [8]. We give, however, sufficient conditions
under which B0 can be computed from wd. Such conditions
are missing in [7], [8]. Also we employ ideas from [9]
and [10], and derive a different algorithm for data-driven
control than the one suggested in [8]. In Section IV, we
show simulation examples that illustrate the equivalence
of the three approaches. In the conclusions we comment
about the suitability of the different algorithms for on-line
implementation and list some open questions.
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Preliminaries and notation

We use the behavioral language. A discrete-time dy-
namical system B is a subset of the signal space (Rw)N.
The integer w is the number of variables and the set of
natural numbers N is the time axis. We consider linear,
time-invariant, and finite dimensional systems, so that B

is a closed shift-invariant subspace of (Rw)N. In addition,
we assume that a trajectory w of B has an input/output
partition col(u,y). (In general one needs to permute the
variables in order to have the inputs as the first variables.)
B|[t1,t2] denotes the restriction of the behavior on the interval
[t1, t2], i.e.,

B|[t1,t2]:= {w ∈ (Rw)t2−t1 | there are wp and wf,

such that col(wp,w,wf) ∈ B }.

σ denotes the backwards shift operator σw(t) = w(t +1).
The Hankel matrix with t block rows, composed of the

sequence w ∈ (Rw)T is denoted by

Ht1,t2(w) :=















w(1) w(2) · · · w(t2)
w(2) w(3) · · · w(t2 +1)
w(3) w(4) · · · w(t2 +2)

.

.

.

.

.

.

.

.

.

w(t1) w(t1 +1) · · · w(t1 + t2 −1)















. (1)

If the index t2 is skipped, it is assumed to have the maxi-
mal possible value T − t1 +1. The lower-triangular Toeplitz
matrix with t block rows, composed of the sequence h =
(

h(0),h(1), . . . ,h(t −1)
)

is denoted by

Tt(h) :=















h(0)
h(1) h(0)
h(2) h(1) h(0)

.

.

.

.

.

.

.

.

.

.

.

.

h(t −1) · · · · · · h(1) h(0)















. (2)

The integer n(B) is the order of B and l(B) is the lag
of B (i.e., the observability index of B). Throughout the
paper, m denotes the number of inputs and p the number of
output of B.

The time series u =
(

u(1), . . . ,u(T )
)

is persistently excit-
ing of order L if the Hankel matrix HL(u) is of full row rank.
“rowdim” denotes the number of block rows of a matrix or
vector, and A+ denotes the Moore-Penrose pseudoinverse of
the matrix A.

II. LINEAR QUADRATIC TRACKING

In a linear quadratic tracking problem the objective is to
choose the control inputs in such a way that the plant B

follows as close as possible in the sense of the quadratic
error criterion

J(wr,w) :=
Tr

∑
t=1

(

wr(t)−w(t)
)⊤

Φ
(

wr(t)−w(t)
)

, (3)

a given reference trajectory wr ∈ (Rw)Tr . In the definition of
the criterion J, Φ ∈R

w×w is a positive definite weight matrix
and Tr is the tracking horizon.

In the special case when the reference trajectory is the
zero trajectory, the tracking problem becomes the regulation
problem. In this case, the optimal tracking, aiming solely at
minimizing the criterion J(wr, ·) over all trajectories of B,
has a trivial solution—the zero trajectory. The regulation
problem is meaningful, when a nonzero initial condition is
specified for the plant B. Therefore, we will introduce initial
conditions specification in the general tracking problem.

In a representation free setting, we specify initial condition
by requiring the system to follow a given initial trajec-
tory wini ∈ (Rw)Tini . If wini ∈B is l(B) or more samples long,
following wini, the system has a uniquely determined final
state. This final state serves as an initial condition xini for the
tracking problem. (See (4) and (5), where the minimality of
the state representation and Tini ≥ l(B) ensure that the system
of equations for the initial state x(1) has a unique solution,
which determines a unique final state x(Tini +1) =: xini.)

The classical formulation of the tracking problem starts
with a given input/state/output representation of the sys-
tem B. In the context of data-driven tracking, we start
instead from a given trajectory wd ∈ (Rw)T of B, which
under the conditions of [11], uniquely specifies B. In the
solution of the data-driven tracking problem, we aim at
finding the optimal trajectory without explicitly computing a
representation (in particular an input/state/output representa-
tion) of B.

Problem 1 (Linear quadratic tracking). Given
1) a trajectory wd =

(

wd(1), . . . ,wd(T )
)

of a linear time-
invariant system B,

2) a reference trajectory wr =
(

wr(1), . . . ,wr(Tr)
)

,
3) an initial trajectory wini =

(

wini(1), . . . ,wini(Tini)
)

∈B,
4) a positive definite matrix Φ ∈ R

w×w,
find a trajectory of B that is optimal with respect to the
performance criterion J(wr, ·) (see (3)) and has as a prefix
the initial trajectory wini, i.e., solve the problem

min
wf

J(wr,wf) subject to col(wini,wf) ∈ B.

A. Solution using an input/state/output representation

The classical but indirect solution of Problem 1 is to
compute first a state space representation

σx = Ax+Bu, y = Cx+Du

of B from the data wd and then using (A,B,C,D) to compute
the optimal trajectory w∗

f . This is the well known model-
based approach that we summarize for completeness.

By assumption the data wd is an exact trajectory of the
unknown system B. Therefore, we are dealing with an exact
(deterministic) identification problem wd 7→ B. Sufficient
conditions for identifiability are (see [11]):

1) B is controllable,
2) ud is persistently exciting of order n(B)+ l(B)+1,

i.e., Hn(B)+l(B)+1(ud) is full rank.
(A)

Under these conditions, there are algorithms for exact identi-
fication, see [12, Chaper 2] and [10, Chapter 8], that compute
an input/state/output representation of the system B.
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Once the parameters (A,B,C,D) of a minimal in-
put/state/output representation of B are available we can
find the initial condition xini for the tracking problem that
is induced by the initial trajectory wini. This is an observer
design problem. Let col(yini,uini) be an input/output parti-
tioning of wini and let h be the impulse response of B, i.e.,

h(0) = D, h(t) = CAt−1B, for t = 1,2, . . . .

Then

yini =











C

CA
.

.

.

CATini−1











x(1)+TTini(h)uini (4)

defines a system of equations for the initial state x(1). This
system has a unique solution since by assumption wini is an
exact trajectory of B (existence) and (A,B,C,D) is a minimal
representation (uniqueness). The initial condition xini for the
tracking problem is equal to the final state x(Tini +1) of B,
following wini, i.e.,

xini = x(Tini +1) = CATinix(1)+
[

h(Tini −1) h(Tini −2) · · · h(0)
]

uini. (5)

Once the state space representation and the initial state are
available, Problem 1 becomes

min
x,u,y

Tr

∑
t=1

(

wr(t)−

[

u(t)
y(t)

])⊤

Φ

(

wr(t)−

[

u(t)
y(t)

])

subject to
x(t +1) = Ax(t)+Bu(t), x(1) = xini
y(t) = Cx(t)+Du(t), for t = 1, . . . ,Tr.

(6)

The solution leads to a difference Riccati equation that
depends only on the A,B,C,D matrices and a backward in
time recursion that depends on the reference signal wr and
the initial condition xini. The formulas for the continuous-
time case are given in [13, Theorem 1]. We were not able,
however, to find in the literature the solution for the discrete-
time tracking problem (6), so we give next the solution for
the finite-horizon linear quadratic regulation, i.e., for the
special case of wr = 0.

We can eliminate the variable y in (6) by substitution. This
gives the following linear quadratic regulation problem with
complete state information

min
x,u

Tr

∑
t=1

[

u(t)
x(t)

]⊤ [

I 0
D C

]⊤

Φ

[

I 0
D C

][

u(t)
x(t)

]

subject to x(t +1) = Ax(t)+Bu(t), x(1) = xini

for t = 1, . . . ,Tr.

(7)

Define the partitioning

Φ =:
[

Φu Φuy

Φyu Φy

]

.

The solution of (7) is (see, e.g., [14, Theorem 11.1])

x∗(t +1) = (A−BLt)x
∗(t), x(1) = xini,

w∗
f (t) =

[

−Lt

C−DLt

]

x∗(t),
(8)

where

Lt :=
(

B⊤St+1B+Φu +ΦuyD+D⊤Φ⊤
uy +D⊤ΦyD

)−1

×
(

B⊤St+1A+ΦuyC +D⊤ΦyC
)

(9)

and

St = A⊤St+1A+C⊤ΦyC−
(

B⊤St+1A+ΦuyC +D⊤ΦyC
)⊤

×
(

B⊤St+1B+Φu +ΦuyD+D⊤Φ⊤
uy +D⊤ΦyD

)−1

×
(

B⊤St+1A+ΦuyC +D⊤ΦyC
)

, STr = 0. (10)

In summary, an algorithm for solving Problem 1,
in the special case wr = 0, using an input/state/output
representation of the plant is:

1) wd
Identification [10, Algorithm 8.5]
−−−−−−−−−−−−−−−−−−→ (A,B,C,D)

2) (wini,A,B,C,D)
Observer (4) and (5)
−−−−−−−−−−−→ xini

3) (Φ,wr,xini,A,B,C,D)
Synthesis (8,9,10)
−−−−−−−−−→ w∗

f

Note 2. Algorithm 8.5 of [10] needs, in addition to the
data wd, an upper bound lmax for the system lag l(B).
The same is true for Algorithms 8.7 and 8.9 of [10] and
Algorithm 2 of [15], which are referred to later in this
paper. Although we do not write it explicitly, we do assume
that such an upper bound is given as part of the problem
formulation and is passed to the identification algorithms.

B. Solution using an impulse response representation

Another approach is to compute the impulse response h

of B from the data wd and then using h to compute w∗.
Condition (A) is sufficient for being able to derive h from wd,
see [10, Section 8.6]. Moreover, there are algorithms for
doing this. Although this approach does not derive the
classical input/state/output representation of the system B

for computing w∗, it is not data driven either (the impulse
response is a representation of B).

Let the columns of O be n(B) linearly independent zero-
input trajectories of B. (Such a matrix can also be computed
from data, see [10, Section 8.8].) Any zero-input trajectory
of B can be written as Oxini, for some xini ∈ R

n. Define

h̃(0) = col
(

Im,h(0)
)

, and

h̃(t) = col
(

0m,h(t)
)

, for t = 1,2, . . . ,

where Im is the m×m identity matrix and 0m is the m×m

zero matrix. Then for any trajectory

w := col(wini,w f ) ∈ B|[1,Tini+Tr]

there is a corresponding initial condition xini and an input
sequence col(uini,uf), such that

[

wini
wf

]

= Ox(1)+TTini+Tr(h̃)

[

uini
uf

]

. (11)

(See (2) for the definition of T .) Define the partitionings
[

O1

O2

]

and TTini+Tr(h̃) =

[

T11 0
T21 TTr(h̃)

]

,
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that are conformable with the partitionings of col(wini,wf)
and col(uini,uf). The equations in (11) with left-hand-
side wini

wini = O1x(1)+T11uini (12)

are decoupled from the other equations and can be solved
independently in terms of the initial state x(1) and initial
input sequence uini. The remaining equations

wf = O2x(1)+T21uini +TTr(h̃)uf

specify wf in terms of the input uf. Define

wf,1 := O2x(1)+T21uini. (13)

Note that wf,1 is the free response of B, caused by the initial
trajectory wini (or equivalently by the initial condition xini),
i.e., it is of the form wf,1 = col(0,yf,1).

The optimal tracking problem becomes

min
uf

J
(

wr,wf,1 +TTr(h̃)uf
)

,

which is a standard weighted least squares problem. Its
solution is

u∗f =
(

T
⊤

Tr
(h̃)Φ̃TTr(h̃)

)−1
T

⊤
Tr

(h̃)Φ̃(wr −wf,1), (14)

where Φ̃ = diag(Φ, . . . ,Φ) ∈ R
Trw×Trw, so that

w∗
f = TTr(h̃)u∗f +wf,1. (15)

In summary, an algorithm for solving Problem 1, using
an impulse response representation of the plant is:

1) (wd,Tr)
[10, Algorithms 8.7 and 8.9]
−−−−−−−−−−−−−−−→ (h,O)

2) (wini,h,O)
(12,13)
−−−−→ wf,1

3) (Φ,wr,wf,1,h)
(14,15)
−−−−→ w∗

f

C. Data-driven solution

A third possibility, which gives a truly data-driven solu-
tion, is to project the trajectory wr −wf,1 on the zero initial
conditions subbehavior of B:

B0|[1,Tr]:=
{

w ∈ (Rw)Tr | col(0l(B)w×1,w) ∈ B|[1,l(B)+Tr]

}

.

The definition says that B0 consists of all trajectories of B

that when extended with l(B) zero samples are still trajecto-
ries of B. The l(B) trailing zero samples specify zero initial
conditions, so B0 is indeed the subspace of B consisting of
all zero initial conditions trajectories.

Theorem 3. Let W0 ∈ R
Trw×• be a matrix, such that

image
(

W0

)

= B0|[1,Tr].

Then the solution of Problem 1 is given by

w∗
f = W0

(

W⊤
0 Φ̃W0

)+
W⊤

0 Φ̃(wr −wf,1)+wf,1, (16)

where wf,1 is the free response of B, caused by the initial

trajectory wini and (·)+ is the Moore-Penrose pseudoinverse.

If W0 defines a basis for B0|[1,Tr], then the pseudoinverse

in (16) can be replaced by inverse.

Proof: Any zero initial conditions trajectory w =
col(u,y) ∈ (Rw)Tr is of the form w = TTr(h̃)u. Therefore,

B0|[1,Tr]= image
(

TTr(h̃)
)

= image
(

W0
)

.

Consider the space W = (Rw)Tr with inner product defined
by 〈w1,w2〉 = w⊤

1 Φ̃w2. The projector on B0|[1,Tr] in W is

TTr(h̃)
(

T
⊤

Tr
(h̃)Φ̃TTr(h̃)

)−1
T

⊤
Tr

(h̃)Φ̃

= W0
(

W⊤
0 Φ̃W0

)+
W⊤

0 Φ̃.

Then (16) follows from (14,15).
Theorem 3 is based on the fact that the optimal solution

w∗
f depends only on the subspace B0|[1,Tr], the metric, given

by the weight matrix Φ, and the free response wf,1, initiated
by wini, and not on the particular basis of B0|[1,Tr]. In (14,15),
we used as a basis for B0|[1,Tr] the columns of the Toeplitz
matrix TTr(h̃) constructed from the impulse response of B.
Suppose, however, that we are able to find from the given
data wd another basis W0 for B0. Then the optimal trajectory
would be given by (16). In addition, the free response wf,1
can be computed directly from the data wd, using the data
driven simulation algorithm of [15], so we would completely
circumvent the need to compute the impulse response h. A
procedure for construction of a matrix W0 which columns
span B0 is given in the next section.

In summary, a data-driven algorithm for solving Problem 1
is:

1) (wd,Tr)
Section III, Algorithm 1
−−−−−−−−−−−−−→W0

2) (wini,wd,Tr)
[15, Algorithm 2]
−−−−−−−−−→ wf,1

3) (Φ,wr,wf,1,W0)
(16)
−−→ w∗

f

III. COMPUTATION OF A BASIS FOR B0

Under the assumptions of Theorem 1 from [11]:

1) B controllable,
2) wd ∈ B|[1,T ], and
3) ud persistently exciting of order lmax +Tr +n(B)),

we have that

image
(

Hlmax+Tr(wd)
)

= B|[1,lmax+Tr].

(See (1) for the definition of H .) Therefore, any lmax +Tr-
samples long trajectory of B can be constructed as a linear
combination of the columns of Hlmax+Tr(wd),

w ∈ B|[1,lmax+Tr] ⇐⇒ there is g ∈ R
T−lmax−Tr+1

such that w = Hlmax+Tr(wd)g. (17)

Assuming that lmax ≥ l(B), see Note 2, the first lmax

samples of w (referred to as the “past”) can be used to set
up initial conditions for the remaining response (referred to
as the “future”). From (17) and the definition of B0|[1,Tr] it
follows that

w ∈ B0|[1,Tr] ⇐⇒ there is g ∈ R
T−lmax−Tr+1

,

such that col(0lmaxw×1,w) = Hlmax+Tr(wd)g.
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Next we introduce some notation. Define the Hankel
matrices from the input and the output

U := Hlmax+T r(ud), Y := Hlmax+T r(yd)

and their past/future partitionings

U =:
[

Up

Uf

]

, Y =:
[

Yp

Yf

]

,

where rowdim(Up) = rowdim(Yp) =lmax and rowdim(Uf) =
rowdim(Yf) = Tr. Permuting the equations of the system

Hlmax+Tr(wd)g = col(0lmaxw×1,w)

we have the equivalent system








Up

Yp

Uf
Yf









g =









0lmaxm×1

0lmaxp×1

u

y









.

Given an arbitrary input vector u, we can compute the
corresponding output vector y, such that col(u,y) ∈ B0 as
follows:

1) solve the system of equations for g




Up

Yp

Uf



g =





0lmaxm×1

0lmaxp×1

u





2) define y = Yf g.
This gives us a procedure for computing an element of B0.

In order to compute a set of generators for B0|[1,Tr],
we need to compute at least dim(B0|[1,Tr]) = Trm linearly
independent elements of B0|[1,Tr]. This can be done as
outlined in Algorithm 1.

Algorithm 1 Block computation of a basis for B0|[1,Tr]

Input: ud, yd, lmax, and Tr.
1: Solve the system of equations for G





Up

Yp

Uf



G =





0lmaxm×Trm

0lmaxp×Trm

HTr,Trm(ud)





.

2: Compute Y0 = Yf G.
Output: a basis col

(

HTr,Trm(ud),Y0
)

for B0|[1,Tr].

Due to the persistency of excitation of ud, the Han-
kel matrix HTr,Trm(ud) is full rank and the computed
responses, given by the columns of col

(

HTr,Trm(ud),Y0
)

,
are linearly independent. Therefore, a desired matrix W0,
such that image(W0) = B0|[1,Tr], can be obtained from
col

(

HTr,Trm(ud),Y0
)

by permutation of the rows.

Note 4. Algorithm 1 corresponds to the block algorithm
of [9] for the computation of the impulse response. It requires
persistency of excitation of order lmax + Tr + n(B) for ud.
A recursive version of Algorithm 1, derived along the lines
of the recursive algorithm of [9] for the computation of the
impulse response, however, requires persistency of excitation
for ud of order lmax +n(B)+1. Note that this is the same
condition that is required for identifiability of B.

IV. SIMULATION EXAMPLES

The aim of the simulation examples, shown in this section,
is to illustrate numerically the equivalence of the three
methods for data-driven control, presented in the paper. The
to-be-controlled plant B is a linear time-invariant system of
order n= 2, with m= 1 input and p= 1 output. It is induced
by the transfer function

H̄(z) =
(z−0.7847)(z+1.17)

z2 −1.615z+0.6972
.

The data wd, used by the algorithms, is a random trajectory
of B with T = 200 samples. It is the same in all simulations.
A reference trajectory wr with Tr samples and an initial
trajectory wini with Tini = l(B) = 2 samples are chosen as
follows:

• Experiment 1: data-driven regulation Tr = 30

wr = 0 and wini = (1,1),

• Experiment 2: data-driven step tracking Tr = 60

ur = 0, yr(t) =

{

0, for t = 1,2 . . . ,30,

1, for t = 31,52, . . . ,60,

and wini = (1,1).
In both experiments, Φ is the 2×2 identity matrix.

In the first experiment the three methods compute the same
optimal trajectory, see Figure 1. The corresponding optimal
value of the cost functional is J(0,w∗

f ) = 1.1139.

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t

u
∗ f

5 10 15 20 25 30
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t

y∗ f

Fig. 1. First experiment: wr dotted line, w∗
f solid line.

In the second experiment, we compare only the second
and the third approach. (We do not have the solution of the
general tracking problem by the input/state/output approach.)
The two solutions coincide and are shown on Figure 2.
The corresponding optimal value of the cost functional is
J(wr,w

∗
f ) = 2.1034.
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V. CONCLUSIONS

We considered a finite horizon linear quadratic tracking
problem, where the given data is assumed exact, and pre-
sented three solutions to the problem. All solutions need the
same basic assumptions: 1) the plant B is controllable, and
2) an input component of the given trajectory is persistently
exciting of order n(B) + l(B) + 1. The solution given by
the input/state/outout approach, however, is in the form of
a feedback, while the other solutions compute off-line the
optimal trajectory. In [5] a procedure for computing the
optimal controller from the impulse response of the plant
is described, however, the question “How to compute the
optimal controller directly from data?” is yet unsolved.

Another important issue that we did not discuss is “How
to compute the optimal trajectory or the optimal controller
recursively?” In [9] a procedure for recursive computation of
the impulse response is presented. Combined with recursive
least squares for computing the optimal trajectory, given
by (16), we obtain a recursive algorithm. Recursive imple-
mentation of the algorithm, however, does not necessarily
imply suitability for on-line implementation. The algorithm
should in addition be causal, i.e., operating in real time it
should use only past data.

Apart from the on-line implementation, another important
issue is to adapt the methods, to “work well” with perturbed
data. In this paper a restrictive assumption is that the given
trajectory of the plant is exact and the plant is a low-order
linear time-invariant system. In practice, the data is noisy
and the plant is likely to be nonlinear and time-varying. This
makes it necessary to modify the algorithms in order to allow
for approximation. The final goal of this work is to obtain
approximate recursive algorithms for data-driven control.
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