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Abstract. We define a mathematical measure for the quantitative comparison of
probabilistic computational trust systems, and use it to compare a well-known
class of algorithms based on the so-called beta model. The main novelty is that
our approach is formal, rather than based on experimental simulation.

1 Introduction

Computational trust is an abstraction inspired by the human concept of trust which aims
at supporting decision-making by computational agents in the presence of unknown,
uncontrollable and possibly harmful entities and in contexts where the lack of reliable
information makes classical techniques useless. Such is for instance the case of open
networks and ubiquitous computing, where it is entirely unrealistic to assume a priori
level of understanding of the environment. Although it would be reductive to think of
computational trust as a technique limited to just security, the latter certainly provides
an important class of applications where, in general, access to resources is predicated
on control policies that depend on the trust relationships in act between their managers
and consumers.

As expected of an ineffable idea deeply linked with human emotions and experi-
ence, trust appears in computing in several very different forms, from description and
specification languages to middleware, from social networks and management of cre-
dential to human-computer interaction. These rely in different degrees on a variety of
underpinning mathematical theories, including e.g. logics, game theory, semantics, al-
gorithmics, statistics, and probability theory. We focus here on systems where trust in a
computational entity is interpreted as the expectation of certain future behaviour based
on behavioural patterns of the past, and concern ourselves with the foundations of such
probabilistic systems. In particular, we aim at establishing formal probabilistic models
for computational trust and their fundamental properties.

In the area of computational trust one common classification distinguishes between
‘probabilistic’ and ‘non-probabilistic’ models (cf. e.g. [1,12,13,[11] for the latter and
[6L116L[10L[14]] for the former). The non-probabilistic systems vary considerably and
need further classification (e.g., as social networks or cognitive); in contrast, the proba-
bilistic systems usually have common objectives and structure: they assume a particular
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(probabilistic) model for principal behaviour at the outset, and then put forward algo-
rithms for approximating such behaviour and thus making predictions. In such models
the trust information about a principal is typically information about its past behaviour,
its history. Histories do not immediately classify principals as ‘trustworthy’ or ‘untrust-
worthy,” as ‘good’ or ‘bad;’ rather, they are used to estimate the probability of poten-
tial outcomes arising in a next interaction with an entity. Probabilistic models (called
‘game-theoretical’ by Sabater and Sierra [[L6]) rely on Gambetta’s view of trust [7]:

“ ..trust is a particular level of the subjective probability with which an agent
assesses that another agent or group of agents will perform a particular action,
both before he can monitor such action (or independently of his capacity ever
to be able to monitor it) and in a context in which it affects his own action.”

The contribution of this paper is inspired by such a predictive view of trust, and fol-
lows the Bayesian approach to probability theory as advocated in e.g. [8] and exploited
in works such as [13L16,[17]]. In particular, we borrow ideas from information theory to
measure the quality of the behaviour-approximation algorithms and, therefore, suggest
a formal framework for the comparison of probabilistic models.

Bayesian analysis consists of formulating hypotheses on real-world phenomena of
interest, running experiments to test such hypotheses, and thereafter updating the hy-
potheses —if necessary— to provide a better explanation of the experimental observa-
tions, a better fit of the hypotheses to the observed behaviours. By formulating it in
terms of conditional probabilities on the space of interest, this procedure is expressed
succinctly in formulae by Bayes’ Theorem:

Prob(@ | X) x< Prob(X | @) - Prob(0O).

Reading from left to right, the formula is interpreted as saying: the probability of the
hypotheses @ posterior to the outcome of experiment X is proportional to the likelihood
of such outcome under the hypotheses multiplied by the probability of the hypotheses
prior to the experimentﬂ In the present context, the prior @ will be an estimate of the
probability of each potential outcome in our next interaction with principal p, whilst
the posterior will be our amended estimate after one such interaction took place with
outcome X.

It is important to observe here that Prob(@ | X) is in a sense a second order notion,
and we are not interested in computing it for any particular value of @. Indeed, as @
is the unknown in our problem, we are interested in deriving the entire distribution in
order to compute its expected value, and use it as our next estimate for .

In order to make this discussion concrete, let us focus on a model of binary outcomes,
which is very often used in practice. Here @ can be represented by a single probability
©,, the probability that principal p will behave benevolently, i.e., that an interaction
with p will be successful. In this case, a sequence of n experiments X = X;---X, is a
sequence of binomial (Bernoulli) trials, and is modelled by a binomial distribution

Prob(X consists of k successes) = @’[‘,(1 - @p)”’k.

! We shall often omit the proportionality factor, as that is uniquely determined as the constant
that makes the right-hand side term a probability distribution. In fact, it equals Prob(X)™".
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It turns out that if the prior @ follows a B-distribution, say B(a,8) « 027 (1-0,)*"! of
parameters « and 3, then so does the posterior: viz., if X is an n-sequence of k successes,
Prob(O | X) is B(a+k, B+n—k), the B-distribution of parameters o +k and §+n—k. This
is a particularly happy circumstance when it comes to apply Bayes’ Theorem, because
it makes it straightforward to compute the posterior distribution and its expected value
from the prior and the observations; it is known in the literature as the condition that
the B-distribution family is a conjugate prior for the binomial trials.

In [14] we extend the framework from events with binary (success/failure) outcomes
to complex, structured outcomes: namely, the configurations of finite, confusion-free
event structures. In the new framework, our Bayesian analysis relies on observing se-
quences of event structure configurations —one event at the time— to ‘learn’ (i.e., esti-
mate) the probability of each configuration occurring as the outcome of the next com-
plex (sequence of elementary) interactions.

In this paper we illustrate our main technical results from [14], viz., the definition
of a formal measure expressing the quality of probabilistic computational trust systems
in various application environments. The measure is based on the so-called Kullback-
Leibler divergence [12]], also known as information divergence or relative entropy, used
in the information theory literature to measure the ‘distance’ from an approximation
to a known target probability distribution. Here we adapt it to measure how well an
computational trust algorithm approximates the ‘true’ probabilistic behaviours of com-
puting entities and, therefore, to provide a formal benchmark for the comparison of such
algorithms. As an illustration of the applicability of the theory, we present theoretical
results within the field, regarding a whole class of existing probabilistic trust algorithms.
To our knowledge, no such approach has been proposed previously (but cf. [4] for an
application of similar concepts to anonymity), and these presents the first formal results
ever in way of comparison of computational trust algorithms.

Structure of the paper. The paper is organised as follows. In §2] we make precise the
scenario illustrated informally in the Introduction, while in §3] we illustrate our results
on the formal of computational trust algorithms. We remand the reader to [14] for the
formal proofs. Finally, §4] reflects on some of the basic hypotheses of the probabilistic
models considered in the paper, and points forward to future research aimed at relaxing
them.

2 Bayesian Models for Trust

At the outset, Bayesian trust models are based on the assumption that principals behave
in a way that can profitably be approximated by fixed probabilities. Accordingly, while
interacting with principal p one will constantly experience outcomes as following an
immutable probability distribution @,,. Such assumption may of course be unrealistic
in several real-world scenarios, and we shall discuss in §dla research programme aimed
to lift it; for the moment however, we proceed to explore where such an assumption
leads us.

Our overall goal is to obtain an estimate of @, in order to inform our future policy
of interaction with p. Computational trust algorithms attempt to do this using Bayesian
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analysis on the history of past interactions with p. Let us fix a probabilistic model of
principal behaviour, that is a set of basic assumptions on the way principals behave,
say A, and then consider the behaviour of a single, fixed principal p. We shall focus
on algorithms for the following problem: let X be an interaction history xjx; - - x,
obtained by interacting n times with p and observing in sequence outcomes x; out of a
set {y1, ..., yx} of possible outcomes. A probabilistic computational trust algorithm, say
A, outputs on input X a probability distribution A(- | X) on the outcomes {yy, .. ., yi}-
That is, A satisfies:

k
A1 X) €011 (i=1,....k) D AGX) =1,
i=1

Such distribution is meant to approximate a @, under the hypotheses A. To make this
precise, let us assume that the probabilistic model A defines the following probabilities:

Prob(y; | X A) : the probability of “observing y; in the next interaction in the
model A, given the past history X;”
Prob(X | 2) : the a priori probability of “observing X in the model A.”

Now, Prob(- | X A) defines the ‘true’ distribution on outcomes for the next interac-
tion (according to the model); in contrast, A(- | X) aims at approximating it. We shall
now propose a generic measure to ‘score’ specific algorithms A against given proba-
bility distributions. The score, based on the so-called Kullback-Leibler divergence, is a
measure of how well the algorithm approximates the ‘true’ probabilistic behaviour of
principals.

3 Towards Comparing Probabilistic Trust-Based Systems

Closely related to Shannon’s notion of entropy, Kullback and Leibler’s information
divergence [12]] is a measure of the distance between two probability distributions. For
p = (p1,-...,pr) and g = (q1,...,qx) distributions on a set of k events, the Kullback-
Leibler divergence from p to ¢ is defined by

k
Dx(p 119) = ), piloga(pila-
i=1

Information divergence resembles a distance in the mathematical sense: it can be proved
that Dk satisfies Dkr(p || ¢) > 0, where the equality holds if and only if p = ¢; how-
ever, Dk fails to be symmetric. We adapt Dky. to score the distance between algorithms
by taking the its average over possible input sequences, as illustrated below.
For each n € N, let O" denote the set of interaction histories X - - - X,, of length n.
Define D, , the nth expected Kullback-Leibler divergence from A to A as:
Di (2| A) = Z Prob(X | A) - Dxr(Prob(- | X ) || A(- | X)),
XeO"
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Note that, for each possible input sequence X € 0", we evaluate the algorithm’s per-
formance as Dgp.(Prob(- | X ) || A(- | X)), i.e. we accept that some algorithms may
perform poorly on very unlikely training sequences X, whilst providing excellent re-
sults frequent inputs. Hence, we weigh the performance on each input X by the intrin-
sic probability of sequence X. In other terms, we compute the expected information
divergence for inputs of size n.

While Kullback and Leibler’s information divergence is a well-established measure
in statistics, to our knowledge measuring probabilistic algorithms via Dy, is new. Due
to the relation to Shannon’s information theory, one can interpret Dy, (4 || A) quanti-
tatively as the expected number of bits of information one would gain by knowing the
‘true’ distribution Prob(- | X A) on all training sequences of length n, rather than its
approximation A( - | X).

An example. In order to exemplify our measure, we compare the B-based algorithm of
Mui et al [13] with the maximum-likelihood algorithm of Aberer and Despotovic [5].
The comparison is possible as the algorithms share the same fundamental assumptions
that:

each principal’s behaviour is so that there is a fixed parameter @ that at each in-
teraction we have, independently of anything we know about other interactions,
probability O of ‘success’ and, therefore, probability 1 — @ of ‘failure.’

We refer to these as the S-model Ag. With s and f standing respectively for ‘success’
and ‘failure,” an n-fold experiment is a sequence X € {s, f}", for some n > 0. The
likelihood of X € {s, f}" is given by

Prob(X | 0 Ag) = 0"® (1 — @)X

where #,(X) denotes the number of occurrences x in X. Using A and B to denote
respectively the algorithm of Mui et al, and of Aberer and Despotovic, we have that:

ﬂ(S|X)= w and ﬂ(f|X): M’
n+2 +2
B(s| X) = #‘;X) and B(f | X) = @.

For each choice of ® € [0, 1] and each choice of training-sequence length n, we
can compare the two algorithms by computing and comparing Dg; (@ 4g || A) and
Dy, (05 || B).

Theorem 1. If ©® = 0 or © = 1, Aberer and Despotovic’s algorithm B from [5]] com-
putes a better approximation of the principal’s behaviour than Mui et al’s algorithm A
from [lI3|]. In fact, under the assumptions, B always computes the exact probability of
success on any possible training sequence.

The proof follows easily after observing that under the hypothesis on @ there is only
one n-sequence with non-zero probability, viz., either f” or s".
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Concerning the same comparison when 0 < @ < 1, it suffices to observe that 8
assigns probability O to s on input £ for all k > 1; this results in D (02 || B) = oo.
It follows that A provides a better approximation.

In order to explore the space of B-based algorithms further, we define a parametric
algorithm A, for € > 0, that encompasses both A and B:

#e(h) +
A(s| k) = % and Als ]| X) = %
Observe that Ay = B and A, = A.

Let us now study the expression Dy, (@ A || A,) as a function of €. It turns out
that for each @ # 1/2 and independently of n there is a unique € which minimises the
distance Dy, (O Ap || Ae). Furthermore, Di, (O 4p || Ae) is decreasing on the interval
(0, €] and increasing on the interval [€, o). (Note of course that D, (O 4p || Ae) — oo
when € — 0.) By definition, we have:

n

n\ . » O(n + 2e) (1-0)n+2e)
Dy, (64 &) = O(1-0)"Plog——=+(1 -O)log——————|.
k(O || A) Zo(l) (1-0) [ og == +(1-6)log ———
By differentiating Dy, (@ 4p || A.) with respect to epsilon, we obtain
d 2a = (n\ . | O (1-0)
~Zpn — _ i1 — n—i
de k(@ s | A) n+2e ;(i)@( ©) i+e+n—i+e ’

where @ = log e is a positive constant obtained when differentiating the function log. It
is proved in [[14] that € nullifies the derivative d Dy, (O Ap || A¢)/de if and only if

20(1 - 0O)
O+1/2 d = —.
1/ an € 2617
In addition to that, one can prove that in fact
d . 20(1 — O)
—D5, (OAg || A) <0 iff —_—
de @Al A9 <0 e <55
and d 20(1 - 9)
&DIVL(L(@ /IB || .7{6) >0 iff > m

Remarkably, these formulae are independent of n. We have thus the following result.

Theorem 2. For any © € [0,1/2) U (1/2,1] there exists € € [0, ) that minimises
Dk (O g || A,) simultaneously for all n; viz., € = 20(1 — 0)/(260 — 1%

Furthermore, Dg, (O A || A¢) is a decreasing function of € in the interval (0, €) and
increasing in (€, c0).

This means that unless the principal’s behaviour is completely unbiased, then there
exists a unique best Ag algorithm that outperforms all the others, for all n. If instead
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O = 1/2, then the larger the €, the better the algorithm. In fact, € tends to co as @ tends
to 1/2. Regarding A and B, an application of Theorem [2] tells us that the former is
optimal for @ = 1/2 + 1/ V12, whilst —as anticipated by Theorem [T} the latter is such
for® =0and O = 1.

We remark here that it is not so much the comparison of algorithms A and B that
interests us; rather, the message is that using formal probabilistic models enables such
mathematical comparisons and, more in general, to investigate properties of models and
algorithms.

4 Towards a Formal Model of Dynamic Behaviour

Our main motivation for this investigation is to put on formal grounds what we have
been seeing in the literature, with the ultimate aim to exploit a sharpened understanding
on systems and models. In our view, we succeeded in this to a comforting extent, by
presenting the first ever formal framework for the comparisons of computational trust
algorithms.

However, our probabilistic models must become more realistic. For example, the -
model of principal behaviour (which we consider to be state-of-the-art) assumes that
for each principal p there is a single fixed parameter @, so at each interaction, indepen-
dently of anything else we know, the probability of a ‘good” outcome is @, of the one of
‘bad’ outcome is 1 —@,,. One might argue that this is unrealistic for several applications.
In particular, the model allows for no dynamic behaviour, while in reality not only the
p is likely to change its behaviour in time, as its environmental conditions change, but
p’s behaviour in interactions with g is likely to depend on ¢’s behaviour in interactions
with p.

Some beta-based reputation systems attempt to deal with the first problem by in-
troducing so-called ‘forgetting factors.” Essentially this amounts to choosing a factor
0 <0 <1, and then each time the parameters («, ) of the pdf for @, are updated, they
are also scaled by ¢. In particular, when observing a single ‘good’ interaction, («, )
becomes (ad + 1, 86) rather than (e, 8). Effectively, this performs a form of exponential
‘decay’ on parameters. The idea is that information about old interactions is less rele-
vant than new information, as it is more likely to be outdated. This approach represents
a departure from the probabilistic beta model, where all interactions ‘weigh’ equally,
and in the absence of any mathematical explanation it is not clear what the exact ben-
efits of this bias towards newer information is. Regarding the second problem, to our
knowledge it has not yet been considered in the literature.

Let us point out some ideas towards refining such hypothesis an embracing the fact
that the behaviour of p depends on its internal state, which is likely to change over time.
Suppose we model p as a kind of Markov chain, a probabilistic finite-state system with n
states S = {1,2,...,n} and n? transition probabilities tij € 10, 1], with ’;.:1 tij = 1. After
each interaction, p changes state according to #: it takes a transition from state i to state
J with probability ;. Such state-changes are likely in our context to be unobservable: a
principal g does not know for certain which state principal p is in. All that g can observe,
now as before, is the outcome of its interactions with p; based on that, it must make
inferences on p’s likely state and future actions. If we accept the finite state assumption
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and the Markovian transition probabilities, we can then incorporate unobservable states
in the model by using so-called Hidden Markov Models [15].

A discrete Hidden Markov Model (HMM) is a tuple A = (S, 7, ¢, O, s) where S is a finite
set of states; n is a distribution on S, the initial distribution; t : § X S — [0, 1] is the
transition matrix, with 3, jes Lij = 1; finite set O is the set of possible observations; and
where s : § X O — [0, 1], the signal, assigns to each state j € S, a distribution s; on
observations, i.€., X ,c0 5j(0) = 1.

An example. Consider the HMM in Figure[Il This models a simple two-state process
with two possible observable outputs a and b. For example, this could model a channel
which can forward a packet or drop it. State 1 models the normal mode of operation,
whereas state 2 models operation under high load. Suppose that output a means ‘packet
forwarded’ and output b means ‘packet dropped.” Most of the time, the channel is in
state 1, and packets are forwarded with probability .95; occasionally the channel will
transit to state 2 where packets are dropped with probability .95. Although this example
is just meant to illustrate a simple HMM, we expect that by tuning their parameters Hid-
den Markov Models can provide an interesting model many of the dynamic behaviours
needed for probabilistic trust-based systems.

/\
< =2
25
m = 1 ) = 0
Bi(a) = .95 O = {a,b} By(a) = .05
By(b) = .05 By(b) = .95

Fig. 1. Example Hidden Markov Model

Consider now an observation sequence, & = a'’b? (that is ten a’s followed by two
b’s), which is reasonably probable in our model on Figure[Il The final fragment con-
sisting of two consecutive occurrences of b’s makes it likely that a state-change from 1
to 2 has occurred. Nevertheless, a simple counting algorithm, say 7, would probably

assign high probability to the event that a will happen next:

#.(ab?) + 1
H(a | h) = % = 11/14 ~ 80

However, if a state-change has indeed occurred, that probability would be as low as .05.

Suppose now exponential decay is used, e.g., as in the Beta reputation system [9],
with a factor of ¢ = .5. This means that the last observation weighs approximately the
same as the rest of the history; in such a case, the algorithm would adapt quickly, and
assign probability H(a | h) ~ .25, which is a much better estimate. However, suppose
that we now observe bb and then another a. Again this would be reasonably likely in
state 2, and would make a state-change to 1 probable in the model. The exponential
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forgetting would assign a high weight to a, but also a high weight to b, because the
last four observations were b’s. In a sense, perhaps the algorithm adapts ‘too quickly,
it is too sensitive to new observations. So, no matter what 9 is, it appears easy to de-
scribe situations where it does not reach its intended objective; our main point here is
the same as for our comparisons of computational trust algorithms in §3} that the un-
derlying assumptions behind a computational idea (e.g., the exponential decay) need to
be specified, and that formal models for principal’s behaviour (e.g., HMMs) may serve
the purpose, allowing precise questions on the applicability of the computational idea.

5 Conclusion

Our ‘position’ on computational trust research is that any proposed system should be
able to answer two fundamental questions precisely: What are the assumptions about
the intended environments for the system? And what is the objective of the system? An
advantage of formal probabilistic models is that they enable rigorous answers to these
questions.

Among the several benefits of formal probabilistic models, we have focussed on the
possibility to compare algorithms, say X and Y, that work under the same assumption
on principal behaviours. The comparison technique we proposed relies on Kullback and
Liebler’s information diverge, and consists of measuring which algorithm best approx-
imates the ‘true’ principal behaviour postulated by the model. For example, in order to
compare X and Y in the model A, we propose to compute and compare

DL (AlX) and D (A[l ).

Note that no simulations of algorithms X and Y are necessary; the mathematics provide
a theoretical justification —rooted in concepts from Information Theory— stating e.g.
that “in environment A, on average, algorithm X outperforms algorithm Y on training
sequences of length n.” Using our method we have successfully in shown a theoretical
comparison between two B-based algorithms well-known in the literature. Moreover,
we explored the entire space of B-based algorithms and illustrated constructively that for
each principal behaviour @, there exists a best approximating algorithm. Remarkably,
this does not depend on n, the length of the training sequence. More generally, another
type of property one might desire to prove using the notion of information diverge is
that lim,, ..o Dg; (4 ]| X) = 0, meaning that algorithm X approximates the true principal
behaviour to an arbitrary precision, given a sufficiently long training sequence.
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