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Abstract. A syntactic framework called SGSOS, for defining well-behaved Mar-
kovian stochastic transition systems, is introduced by analogy to the GSOS con-
gruence format for nondeterministic processes. Stochastic bisimilarity is guaran-
teed a congruence for systems defined by SGSOS rules. Associativity of parallel
composition in stochastic process algebras is also studied within the framework.

1 Introduction

Process algebras such as CCS [18] or CSP [5] are widely accepted as useful tools
for compositional modeling of nondeterministic, communicating processes. Their se-
mantics is usually described within the framework of Structural Operational Semantics
(SOS) [19], where labelled nondeterministic transition systems (LTSs) are defined by
induction on the syntactic structure of processes. Formalisms for SOS decriptions of
nondeterministic systems have been widely studied and precisely defined (see [1] for
a survey). In particular, several syntactic formats have been developed that guarantee
certain desirable properties of the induced systems, most importantly that bisimulation
is a congruence on them.

Stochastic process algebras have been deployed for applications in performance
evaluation, and more recently in systems biology, where the underpinning of labelled
continuous time Markov chains (CTMCs), and more generally stochastic processes,
is required rather than simple LTSs. Examples of such algebras include TIPP [11],
PEPA [15], EMPA [3], and stochasticπ-calculus [20]. Semantics of these calculi have
been given by variants of the SOS approach. However, in contrast with the case of non-
deterministic processes, SOS formalisms used here are not based on any general frame-
work for operational descriptions of stochastic processes, and indeed differ substantially
from one another. This is unfortunate, as such a framework would make languages eas-
ier to understand, compare, and extend. Specifically, a format for SOS descriptions
which guarantees the compositionality of stochastic bisimilarity, would make extend-
ing process algebras with new operators a much simpler task, liberating the designer
from the challenging and time-consuming task of proving congruence results.

In this paper we define such acongruence format, which we callSGSOS. First we
review existing approaches to the operational semantics of process algebras, concentrat-
ing on the examples of PEPA [15] and the stochasticπ-calculus [20]. As the operational
techniques used there seem hard to extend to a general format for well-behaved stochas-
tic specifications, we resolve to adapt a general theory of well-behaved SOS, based on
category theory and developed by Turi and Plotkin [24]. The inspiration for our ap-
proach comes directly from the work of F. Bartels [2], who used Turi and Plotkin’s
results to design a congruence format for probabilistic transition systems.



Standard operations of stochastic process algebras, as well as plenty of non-standard
but potentially useful ones, fall within our format. Exceptions are recursive definitions
and name-passing features of stochasticπ-calculus, which we leave for future work.

Within the SGSOS framework, we also investigate the issue ofassociativity of par-
allel compositionin stochastic process algebras, a design issue that, to our knowledge,
has been overlooked in the literature. We notice in fact that in the original definition of
stochasticπ-calculus, parallel composition fails to be associative up to stochastic bisim-
ilarity, and study conditions under which two forms of parallel composition, CSP-style
synchronization and CCS-style communication, are associative.

The structure of the paper is as follows. In§2 we recall previously studied ap-
proaches to operational semantics of nondeterministic and stochastic systems. In§3
the bialgebraic theory of well-behaved SOS is recalled. In§4 we adapt the theory to
obtain the SGSOS congruence format, with simple examples of GSOS specifications
following in §5. The associativity of parallel composition is studied in§6, and in§7 we
mention some directions of future work. Due to lack of space, all proofs are omitted in
this extended abstract.

2 Transition systems and process calculi

We begin our development by comparing two previously studied approaches to defining
SOS for Markovian process algebras with the well-known world of SOS for nondeter-
ministic systems such as CCS.

2.1 Nondeterministic systems and GSOS

A labelled transition system(LTS) is a triple
(
X,A,−→

)
, with X a set ofstates, A a set

of labelsand−→ ⊆ X × A× X a labelledtransition relation, typically writtenx
a
−→ y

for (x,a, y) ∈ −→. An LTS is image-finiteif for every x ∈ X and a ∈ A there are

only finitely manyy ∈ X such thatx
a
−→ y. In the context of Structural Operational

Semantics (SOS), LTS states are terms, and transition relations are defined inductively,
by means of inference rules. For example, in a fragment of CCS [18], processes are
terms over the grammarP ::= nil | a.P | P+ P | P ‖ P, and the LTS is induced from
the following rules:

a.x a . x

x1
a . y

x1+x2
a . y

x2
a . y

x1+x2
a . y

x1
a . y

x1‖x2
a . y‖x2

x2
a . y

x1‖x2
a . x1‖y

x1
a . y1 x2

ā . y2

x1‖x2
τ . y1‖y2

(1)

Plenty of operators can be defined formally by rules like these. Indeed, the above speci-
fication is an instance of a general framework for SOS definitions of LTSs (see e.g., [1]),
calledGSOSand defined formally as follows.

An algebraic signatureis a setΣ 3 f, g, . . . of operation symbolswith an arity
functionar : Σ → N, usually left implicit. The set of all terms overΣ with variables
from setX is denotedTΣX. In particular,TΣ0 is the set of closedΣ-terms.
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Fix a countably infinite setΞ 3 x, y, z, . . . of variables. AGSOS inference rule[4]
over a signatureΣ and a set of labelsA is an expression of the form{

xi j

a j
. y j

}
1≤ j≤k

{
xi l

bl/.
}
1≤i≤m

f(x1, . . . , xn) c . t
(2)

wheref ∈ Σ, n = ar(f), k,m ∈ N, i j , i l ∈ {1, . . . ,n}, a j ,bl , c ∈ A, t ∈ TΣΞ, xi and
y j ∈ Ξ are all distinct and no other variables occur in the termt. Expressions above the
horizontal line in a GSOS rule are called itspremises, and the expression below it is the
conclusion. A GSOS specificationis a set of GSOS rules; it isimage-finiteif it contains
only finitely many rules for eachf andc.

Every GSOS specificationΛ inducesan LTS
(
TΣ0,A,−→

)
, with the transition rela-

tion −→ defined by induction of the syntactic structure of the source states. For a term

s= f(s1, . . . , sn) ∈ TΣ0, one adds a transitions
c
−→ t for each substitutionσ : Ξ → TΣ0

such that for some ruler ∈ Λ as in (2), there isσxi = si , σt = t, andσ satisfiesall
premises ofr, meaning that for each premisex a . y there isσx

a
−→ σy, and for each

premisex a/. there is not ∈ TΣ0 for whichσx
a
−→ t.

An important property of the LTS induced byΛ is that bisimilarity on it is guaran-
teed to be a congruence with respect to the syntactic structure of states. This means that
GSOS is acongruence formatfor bisimilarity on LTSs. Moreover, it is easy to prove by
induction that the LTS induced by an image-finite GSOS specification is image-finite.

2.2 Stochastic systems

Just as nondeterministic process algebras are defined using labelled transition systems,
the semantics of stochastic processes is often provided by labelled continuous time
Markov chains (CTMCs). These are conveniently presented in terms of what we shall
call rated transition systems(RTSs), i.e., triples (X,A, ρ), whereX is a set of states,A
a set of labels andρ : X × A × X → R+0 is a rate function, equivalently presented as
an A-indexed family ofR+0 -valued matrices. The numberρ(x,a, y) is the parameter of
an exponential probability distribution governing the duration of the transition ofx to
y with labela (for more information and intuition on CTMCs and their presentation by

transition rates see e.g. [12, 15, 20]). For the sake of readability we will writeρ(x
a
−→ y)

instead ofρ(x,a, y), andx
a,r
−→ y will indicate thatρ(x

a
−→ y) = r. The latter notation

suggests that RTSs can be seen as a special kind ofA × R+0 -labelled nondeterministic
transition systems; more specifically, exactly those that are “rate-deterministic,” i.e.,

such that for eachx, y ∈ X anda ∈ A there exists exactly oner ∈ R+0 for which x
a,r
−→ y.

In the following we will considerimage-finiteprocesses, i.e. such that for eachx ∈ X
anda ∈ A there are only finitely manyy ∈ X such thatρ(x,a, y) > 0. For such processes,
the sum

ρa(x) =
∑
y∈X

ρ(x
a
−→ y) (3)

exists for eachx ∈ X anda ∈ A; it will be called theapparent rateof labela in statex.
Further,ρ(x

a
−→ y)/ρa(x) is called theconditional probabilityof the transitionx

a
−→ y.

It is the probability thatx makes the transition provided that it makes somea-transition.
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Various equivalence relations on states in RTSs have been considered. Of those,
the most significant isstochastic bisimilarity(called strong equivalence in [14], and
inspired by the notion of probabilistic bisimilarity from [17]), defined as follows. Given
an RTS with state spaceX, astochastic bisimulationis an equivalence relationR on X
such that wheneverx R y then for eacha ∈ A, and for each equivalence classC with
respect toR, ∑

z∈C

ρ(x
a
−→ z) =

∑
z∈C

ρ(y
a
−→ z).

Two states arebisimilar if they are related by some bisimulation. It is easy to check that
bisimilarity is itself an equivalence relation and indeed the largest bisimulation.

Due to the additional rate component present in transitions, the traditional approach
to SOS recalled in§2.1 is inadequate for modeling stochastic process calculi. Instead,
other variants of SOS have been used for this purpose. For a comparison with the fol-
lowing development, we recall two of these variants: the multi-transition system ap-
proach used for the stochastic calculus PEPA [14, 15], and the proved SOS approach of
stochasticπ-calculus [20–22].

In (a fragment of) PEPA, processes are terms over the grammar:

P ::= nil | (a, r).P | P+ P | PBC
L

P

wherea ranges over a fixed setA of labels,L over subsets ofA, andr overR+. Their
semantics is defined by inference rules:

(a, r).x a,r
. x

x1
a,r
. y

x1+x2
a,r
. y

x2
a,r
. y

x1+x2
a,r
. y

x1
a,r
. y

x1 BC
L
x2

a,r
. y BC

L
x2

x2
a,r
. y

x1 BC
L
x2

a,r
. x1 BC

L
y

(a < L)

x1
a,r1 . y1 x2

a,r2 . y2

x1 BC
L
x2

a,R
. y1 BC

L
y2

(a ∈ L)

(4)

wherea ∈ A andr, r1, r2,R ∈ R+ with Rdepending onr1, r2 according to an application-
specific formula (see below). Note that instead of a single parallel composition operator,
PEPA provides acooperation operatorBC

L
for each setL of labels. These operators are

based on CSP-style synchronisation [5] rather than CCS-style communication [18].
It turns out that the standard interpretation of the above rules as described in§2.1

would (among other things) contradict the intended meaning of the operator+ as a
stochastic choice, where a processP + P can perform the same transitions asP, with
twice the rates. In particular, the processesP andP+ P should not be stochastic bisim-
ilar. This is why the semantics of PEPA is given as amulti-transitionsystem labeled
with pairs (a, r) ∈ A × R+, which is a transition system whose transition relation is a
multiset of triples (x, (a, r), y). To define such a semantics for PEPA, the rules in (4) are
interpreted similarly as the GSOS rules in§2.1, where the multiplicity of a transition is
determined by counting all its different derivations. To obtain an RTS from the induced
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multi-transition system, one then discards multiplicities by summing up all their rates
in single rated transitions. Thus, for example, the process (a,3).nil + (a,3).nil in the
induced multi-transition systems has two identical transitions tonil with label (a,3),
whilst in the final RTS it can make a single transition tonil with labela and rate 6. For
more details of this construction, see [14].

The formula for calculatingRbased onr1 andr2 in the last rule of (4) depends on the
intended meaning of synchronisation. In applications to performance evaluation [14],
the formula

R= min(ρa(x1), ρa(x2)) ·
r1

ρa(x1)
·

r2

ρa(x2)
(5)

is a natural choice. We shall call it theminimal rate law, since in the resulting RTS, the
apparent rate ofa in P BC

L
Q (with a ∈ L) is the least of the apparent rates ofP andQ.

For applications to systems biology, where rates model concentrations of molecules, a
more convenient choice is

R= r1 · r2, (6)

which following [6] we call themass action law. The apparent rate ofa in P BC
L

Q
(with a ∈ L) here is the product of the corresponding apparent rates ofP andQ. For an
intuitive motivation for these and other similar formulae, see [13].

A different approach was used to define semantics of stochasticπ-calculus [20].
Since stochastic features of the calculus are independent from its name-passing aspects,
for simplicity we discuss it here on a fragment of the calculus that corresponds to a
stochastic version of CCS (see§2.1). Thus we consider, as processes, terms over the
grammar:

P ::= nil | (a, r).P | P+ P | P‖P

wherea ranges over a fixed setA of labels, andr overR+. For the semantics, the au-
thors of [20] decided to avoid multi-transition systems and rely on the standard process
of LTS induction from inference rules. For this, to model stochastic choice and commu-
nication accurately, they enriched transition labels substantially, equipping them with
encodings of derivations that lead to them. In thisproved operational semantics, our
“stochastic CCS” fragment of stochasticπ-calculus would be defined by:

(a, r).x (a,r)
. x

x1
θ . y

x1+x2
+1θ . y

x2
θ . y

x1+x2
+2θ . y

(7)

x1
θ . y

x1‖x2
‖1θ . y‖x2

x2
θ . y

x1‖x2
‖2θ . x1‖y

x1
θ1(a,r1)

. y1 x2
θ2(ā,r2)

. y2

x1‖x2
〈‖1θ1(a,r1),‖1θ2(ā,r2)〉,R

. y1‖y2

whereθ ranges overderivation proofs, e.g. represented by terms of the grammar:

θ = (a, r) | +1θ | +2θ | ‖1θ | ‖2θ | 〈‖1θ, ‖2θ〉,

and whereR depends onr1 andr2 according to the minimal rate law [20] or the mass
action law [22], as in PEPA.

These rules are then used to induce an LTS, which results in relatively complex
labels. To obtain an RTS, one then extracts more familiar labelsa ∈ A from proofs
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in the obvious way, by adding up rates of identical transitions. Thus, for example, the
processP = (a,3).nil+ (a,3).nil in the induced LTS can make two distinct transitions

P
+1(a,3)
−→ nil andP

+2(a,3)
−→ nil, and in the final RTS it can make a transition tonil with

labela and rate 6.
Although both the multi- and the proved-transition approaches work fine for the spe-

cific examples described above, it appears difficult to extend any of them to a general
framework for defining operational semantics for stochastic transition systems. Con-
sider for example the proved SOS approach of stochasticπ-calculus. As in the case of
GSOS for nondeterministic systems, a well-behaved semantic framework should guar-
antee that stochastic bisimilarity is a congruence for the induced RTS. This is the case
for our CCS example above, but it is easy to write examples where it fails; for example,
extend the CCS language with a unary operatorf with semantics defined by a rule:

x
+1θ . y

f(x) f+1θ . y

and see that, although (a,2).nil+nil andnil+(a,2).nil are stochastic bisimilar, they
are not so when put in contextf(−), since only the former process can make a step in
this context. Clearly, this is because the structure of a proof is inspected in the premise
of the rule. However, it would be wrong to forbid such inspection altogether, as it is
needed, e.g. in the communication rule for stochasticπ-calculus.

The source of the problem is the richness of labels in the proved approach to SOS.
In [8], it is claimed that proofs as transition labels carry almost all information about
processes that is ever needed. Indeed, it appears they may sometimes carry excessive
information; in a well-behaved SOS framework they should only carry as much data as
required for the derivation of the intended semantics (here, an RTS), not a bit more.

The same criticism, though perhaps to a lesser extent, can be moved to the multi-
transition systems approach used in the semantics of PEPA, where transition multiplic-
ities are the superfluous data. In the process of multi-transition system induction, two
identical transitions of rate 3 are distinguished from a single transition of rate 6. As a
result, one can write specifications such as

x
a,r
. y

f(x) a,max(r,5)
. y

and see that, although processes (a,3).nil + (a,3).nil and (a,6).nil are stochastic
bisimilar, they are not so in the contextf(−). On the other hand, forbidding arbitrary
dependency of transition rates on subprocesses rates is hard to contemplate, since that
forms the very core of PEPA.

It may be possible to determine the exact range of constructs and formulas that must
be forbidden in the proved- or in the multi-transition approach in order to guarantee
that stochastic bisimilarity is compositional. Indeed, this approach has been used with
success in the related framework of probabilistic processes [16], where a well-behaved
version of the proved semantics is developed. In this paper, however, we take a more
principled approach and derive a formalism for stochastic operational semantics from
an abstract theory of congruence formats developed in [24] and applied to the case of
probabilistic transition systems in [2].
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3 An abstract approach to SOS

Our approach to a stochastic counterpart of the GSOS framework of§2.1 is based on
a categorical generalisation of GSOS, developed by Plotkin and Turi in [24]. In this
section we briefly recall that work; in the rest of the paper we develop a syntactic format
for stochastic SOS as an instance of the general framework.

3.1 Transition systems as coalgebras

The abstract study of well-behaved structural operational semantics is based on model-
ing the behaviour of processes via coalgebras, and their syntax via algebras. The orig-
inal motivating example is that of LTSs: for a fixed setA of labels, image-finite LTSs
can be seen as functionsh : X→ (PωX)A (here,Pω is the finite powerset construction),

along the correspondencey ∈ h(x)(a) if and only if x
a
−→ y. More generally, for any

covariant functorB on the categorySetof sets and functions, aB-coalgebrais a setX
(the carrier) and a functionh : X → BX (the structure). Thus image-finite LTSs are
coalgebras for the functor (Pω−)A.

A B-coalgebramorphismfrom ah : X→ BX to g : Y→ BY is a functionf : X→ Y
such that the equationg ◦ f = B f ◦ h holds. This notion provides a general coalgebraic
treatment of process equivalences: abisimulationon a coalgebrah : X → BX is a
binary relationQ ⊆ X × X such that for some coalgebra structureq : Q → BQ the
projectionsπ1, π2 : Q → X extend to a span of coalgebra morphisms fromq to h.
For example, forB = (Pω−)A, this span bisimulationspecializes to the well-known
notion of LTS bisimulation [18]. For more information about the coalgebraic approach
to process theory, see [23].

We now show how to view RTSs as coalgebras for a suitable functor onSet. Call a
function f : X→ R+0 finitely supportedif the set{x ∈ X | f (x) > 0} is finite. For any set
X, letRωX be the set of all finitely supported functions fromX toR+0 . This extends to a
functorRω onSet, with the actionRω f on function f : X→ Y defined by

Rω f (g)(y) =
∑

f (x)=y

g(x),

for g ∈ RωX andy ∈ Y. Sinceg is finitely supported the sum exists andRω f (g) is
finitely supported too. Functoriality ofRω is then easy to check.

Fix an arbitrary setA of labels. Coalgebras for the functor

BX = (RωX)A

are exactly image-finite rated transition systems as defined in§2.2. Indeed, a coalgebra
h : X→ BX is an image-finite RTS with statesX along the correspondence:

x
a,r
−→ y if and only if r = h(x)(a)(y).

This coalgebraic treatment of RTSs is justified by the following statement.

Proposition 1. Span bisimulations on (Rω−)A-coalgebras, when restricted to equiva-
lence relations, are exactly stochastic bisimulations as defined in§2.2.
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In the following, a technical property of the functor (Rω−)A will be useful:

Proposition 2. (Rω−)A preserves weak pullbacks.

To prove the above two results, proceed exactly as in [7] for the case of probabilistic
bisimulation and the corresponding behaviour functor.

3.2 Process syntax via algebras

In the context of SOS, processes typically are closed terms over some algebraic signa-
ture, i.e., a setΣ 3 f, g, . . . of operation symbols with an arity functionar : Σ → N.
Such a signature corresponds to a functorΣX =

∐
f∈Σ Xar(f) on Set, in the sense that a

model for the signature is exactly analgebrafor the functor, i.e., a setX (thecarrier)
and a functiong : ΣX→ X (thestructure).

The set of terms over a signatureΣ and a setX of variables is denoted byTΣX;
in particular,TΣ0 is the set of closed terms overΣ and it admits an obvious algebra
structurea : ΣTΣ0→ TΣ0 for thefunctorΣ corresponding to the signature. This is the
initial Σ-algebra. The constructionTΣ is also a functor, called thefree monadoverΣ.

3.3 SOS rules, distributive laws, bialgebras

In [24], Turi and Plotkin proposed an elegant treatment of well-behaved SOS at the level
of algebras and coalgebras. Their main motivating application was GSOS (see§2.1).
Turi and Plotkin observed (full proof provided later by Bartels [2]), that image finite
GSOS specifications are in an essentially one-to-one correspondence withdistributive
laws, i.e., natural transformations of the type

λ : Σ(Id × B) =⇒ BTΣ (8)

whereB = (Pω−)A is the behaviour functor used for modeling LTSs,Σ is the functor
corresponding to the given signature, andTΣ is the free monad overΣ. Informally, (8)
says that ‘structural’ combinations (Σ) of behaviours (B) are mapped to the behaviour
of terms (BTΣ), which is the essence of a SOS rule, with Id accounting for subterms that
stay idle in a transition. Moreover, anyλ as above gives rise to aB-coalgebra structure
hλ onTΣ0, defined by a “structural recursion theorem” (see [24] for details) as the only
functionhλ : TΣ0→ BTΣ0 such that:

hλ ◦ a = Ba] ◦ λX ◦ Σ〈id,hλ〉. (9)

The fact that bisimilarity on LTSs induced from GSOS specifications is guaranteed to
be a congruence, can be proved at the level of coalgebras and distributive laws:

Theorem 1 ([24], Cor. 7.5).If a functor B on Setpreserves weak pullbacks, then for
anyλ as in (8), span bisimilarity onhλ : TΣ0→ BTΣ0 is a congruence onTΣ0.

This result, together with Propositions 1 and 2, is the basis of our search for a
congruence format for stochastic systems.
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4 Stochastic GSOS

We now proceed to the main technical contribution of this paper: a complete characteri-
sation of distributive laws (8) for stochastic systems in terms of inference rules. To find
the characterisation, we closely follow the technique used by Bartels [2] for the case of
probabilistic transition systems.

Definition 1. An SGSOS rulefor a signatureΣ and a setA of labels is an expression of
the form: {

xi
a@rai .

}
a∈Di ,1≤i≤n

{
xi j

b j
. y j

}
1≤ j≤k

f(x1, . . . , xn) c@W . t
(10)

where

– f ∈ Σ andar(f) = n, with n, k ∈ N, and {i1, . . . , ik} ⊆ {1, . . . ,n};
– xi andy j are all distinct variables and no other variables appear int ∈ TΣΞ;

moreover, all variablesy j appear int;
– Di ⊆ A, c ∈ A andb j ∈ Di j ,
– W ∈ R+, rai ∈ R

+
0 , and moreoverrb j i j > 0, for j = 1, . . . , k.

A rule is triggeredby a tuple of real values (vai)a∈A,1≤i≤n if vai = rai for all 1 ≤ i ≤ n
and alla ∈ Di . A collection of rules is called anSGSOS specificationif for everyf ∈ Σ,
c ∈ A, every tuple (vai) triggers only finitely many rules withf andc in the conclusion.

In order to complete the definition of SGSOS we need describe how to derive an
RTS from an SGSOS specification. Intuitively, a rule as in (10) contributes to the rate
of a c-labeled transition fromf(s1, . . . , sn) if the apparent a-rates (see Eqn. (3)) of
the si match the correspondingrai; its contribution depends onW and onconditional

probabilitiesof a selectionsi j

b j
. u j of transitions from thesi . Formally:

Definition 2. Every SGSOS specificationΛ inducesa rated transition system(TΣ0,A, ρ),
with the rate functionρ defined by induction on the first argument as follows. For a term

s = f(s1, . . . , sn) ∈ TΣ0, assume thatρ(si
a
−→ u) has been defined for alli = 1, . . . ,n,

all a ∈ A and allu ∈ TΣ0; then, for anyc ∈ A andt ∈ TΣ0, defineρ(s
c
−→ t) as below.

Let Λc ⊆ Λ be the set of all those rules withf and c in the conclusion that are
triggered by the tuple of apparent ratesvai = ρa(si) – cf. (3). Note thatΛc is finite. To

calculate the value ofρ(s
c
−→ t), look at each ruleL ∈ Λc in turn and check whether

there exists a substitutionσ : Ξ → TΣ0 such thatσt = t andσxi = si for i = 1, . . . ,n.
Note that although many suchσmay exist, their values on eachy j coincide, since ally j

appear int. If σ exists, calculate thecontributionγL ∈ R
+
0 of L to ρ(s

c
−→ t) according

to the formula:

γL =W ·
k∏

j=1

ρ(si j

b j
−→ σy j)

ρb j (si j )

whereW, k, i j , b j andy j are determined by the shape of ruleL – cf. rule format (10).
Note that the quotient is well defined sinceρb j (si j ) = rb j i j > 0. If no suitableσ exist,

takeγL = 0. Finally, defineρ(s
c
−→ t) =

∑
L∈Λc
γL; the sum exists sinceΛc is finite.
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Notation 1. If in a rule as in (10), for somexi anda ∈ Di there is exactly onej for
which i j = i andb j = a, instead of the two premisesxi

a@rai . andxi
a . y j we shall

write simplyxi
a@rai . y j . Note that, unlike in the frameworks recalled in§2.2, such a

premise doesnot require that a transitionxi
a
−→ y j has raterai; instead,rai refers to the

apparentrateρa(xi). To avoid this confusion, @ is used in (10) instead of a comma.

It turns out that SGSOS specifications correspond to distributive laws (8) for the
behaviour functor used for modeling stochastic systems:

Theorem 2. For all signaturesΣ and label setsA, every SGSOS specificationΛ for
Σ andA determines a distributive lawλ : Σ(Id × (Rω)A) =⇒ (RωTΣ)A such thathλ :
TΣ0 → (RωTΣ0)A defined as in (9) coincides with the RTS induced byΛ. Moreover,
every such distributive lawΛ is defined by an SGSOS specification.

Corollary 1. Stochastic bisimilarity on RTSs induced by SGSOS specifications is al-
ways a congruence. (Proof: Combine Theorems 2 and 1 with Propositions 1 and 2.)

Although technically more involved, the correspondence between SGSOS and RTSs
is a perfect match for that for GSOS and LTSs, and lifts the benefits of congruence
formats to the equally more involved semantics of stochastic models. In§5 below we
shall illustrate that the format affords expressiveness, conciseness and elegance.

5 Examples of SGSOS

To illustrate the form of SGSOS specifications, we now present a few simple examples,
including operators present in stochasticπ-calculus or in PEPA, as well as some other
operators of potential interest.

Example 1 (atomic actions).A basic ingredient of most process calculi is prefixing
composition with atomic actions. To model stochastic systems, these actions are equip-
ped with basic rates. For the simplest nontrivial example of SGSOS, fix a setA of labels
and consider a language with syntax defined by the grammar:

P ::= nil | (a, r).P

wherea ranges overA andr overR+. The semantics ofnil is defined by the empty set
of rules, and the semantics of a unary operator (a, r). is defined by a single rule:

(a, r).x a@r . x

Thus, according to Definition 2, the processP = (a,2).(b,3).nil can make a unique

transitionP
a,2
−→ (b,3).nil in the transition system induced by the rules.

Example 2 (stochastic choice).Consider an extension of the language from Example 1
with a binary operatorP+ P with semantics defined by rules:

x1
a@r . y

x1+x2
a@r . y

x2
a@r . y

x1+x2
a@r . y

10



(note the use of Notation 1), for eacha ∈ A andr ∈ R+. Note that this is a well-defined
SGSOS specification. Although it contains uncountably many rules, for everya ∈ A
exactly two rules are triggered by every tuple of apparent rates. The rules define+ to
be the stochastic choice operator, as present e.g. in PEPA and stochasticπ-calculus.
In particular, according to Definition 2, in the stochastic transition system induced by
the rules, the processP = ((a,2).nil + (a,2).(b,1).nil) + (c,3).nil can make three

transitionsP
a,2
−→ nil, P

a,2
−→ (b,1).nil andP

c,3
−→ nil. Note, however, that the process

Q = (a,2).nil + (a,3).nil can only make one transitionQ
a,5
−→ nil. In particular,

processes (a,2).nil+ (a,3).nil and (a,5).nil are not only stochastic bisimilar, but can
actually make exactly the same outgoing transitions.

We remark that when compared to the existing literature, in all our examples the
expected semantics of the operators arises naturally from intuitive and elementary spec-
ifications, witness of the flexibility of the SGSOS format.

Example 3 (PEPA-style synchronisation).Extend the language from Example 2 with a
binary synchronisation operatorBC

L
for eachL ⊆ A, with semantics defined by a family

of rules:

x1
a@r . y

x1 BC
L
x2

a@r . y BC
L
x2

x2
a@r . y

x1 BC
L
x2

a@r . x1 BC
L
y

(11)

x1
b@r1 . y1 x2

b@r2 . y2

x1 BC
L
x2

b@W . y1 BC
L
y2

(12)

for eacha ∈ A \ L, b ∈ L, andr, r1, r2,W ∈ R+ such thatW = min(r1, r2). It is not
difficult to see that this, according to Definition 2, is the synchronisation operator of
PEPA where the minimal rate law (5) is used. As an example, consider processes:

P = (a,1).P1 + (a,3).P2 Q = (a,2).Q1 (13)

whereP1 , P2. Then the processPBC
{b}

Q, whereb , a, can make the transitions:

PBC
{b}

Q
a,1
−→ P1 BC

{b}
Q PBC

{b}
Q

a,3
−→ P2 BC

{b}
Q PBC

{b}
Q

a,2
−→ PBC

{b}
Q1.

On the other hand, the outgoing transitions fromPBC
{a}

Q are:

PBC
{a}

Q
a, 12
−→ P1 BC

{a}
Q1 PBC

{a}
Q

a, 32
−→ P2 BC

{a}
Q1.

Example 4 (CCS-style communication).Similarly, one can extend the language from
Example 2 with a CCS-style communication operator. AssumeA = A0 ∪ {ā | a ∈
A0} ∪ {τ} (denote¯̄a = a) and extend the language with a single binary operator‖, with
semantics defined by rules:

x1
a@r . y

x1 ‖ x2
a@r . y ‖ x2

x2
a@r . y

x1 ‖ x2
a@r . x1 ‖ y

(14)

x1
a@r1 . y1 x2

ā@r2 . y2

x1 ‖ x2
τ@W . y1 ‖ y2

(15)
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for eacha ∈ A and for eachr, r1, r2,W ∈ R+ such thatW = min(r1, r2). This, according
to Definition 2, is the communication operator of the original definition of stochastic
π-calculus [20], with the minimal rate law (5) used. For example, consider processesP,
Q as in (13). The processP ‖ Q can make the following transitions:

P ‖ Q
a,1
−→ P1 ‖ Q P ‖ Q

a,3
−→ P2 ‖ Q P ‖ Q

ā,2
−→ P ‖ Q1

P ‖ Q
τ, 12
−→ P1 ‖ Q1 P ‖ Q

τ, 32
−→ P2 ‖ Q1.

Alternatively, one could use the same rules withW = r1 · r2. This would correspond
to the semantics of parallel composition in the biological stochasticπ-calculus [22],
with the mass action law (6) used. For example, the processP ‖ Q above can then make
the following transitions:

P ‖ Q
a,1
−→ P1 ‖ Q P ‖ Q

a,3
−→ P2 ‖ Q P ‖ Q

ā,2
−→ P ‖ Q1

P ‖ Q
τ,2
−→ P1 ‖ Q1 P ‖ Q

τ,6
−→ P2 ‖ Q1.

Example 5.Several non-standard, yet meaningful stochastic operators can be defined
within the SGSOS format. For example, consider unary “catalyst” and “inhibitor” op-
eratorscata andinha for eacha ∈ A, which influence rates of process transitions;
they can be seen as stochastic counterparts of the restriction operator of CCS. Their
semantics is defined by the rules:

x
a@r . y

cata(x) a@2r . cata(y)

x
a@r . y

inha(x) a@r/2
. inha(y)

x
b@r . y

cata(x) b@r . cata(y)

x
b@r . y

inha(x) b@r . inha(y)

for eachr ∈ R+ anda,b ∈ A such thatb , a. For example, in the derived stochas-

tic transition system we find the transitioncata((a,2).nil)
a,4
−→ cata(nil). Since the

above rules conform to the SGSOS format, it is immediate that operatorscata andinha

preserve stochastic bisimilarity.
Another example is a binary operator !! of “unfair race parallel composition,” which

only allows transitions from processes with higher apparent rates than their competitors.
Formally, its semantics is defined by rules

x1
a@r1 . y x2

a@r2 .

x1!!x2
a@r1 . y!!x2

x1
a@r2 . x2

a@r1 . y

x1!!x2
a@r1 . x1!!y

for eacha ∈ A and r1, r2 ∈ R
+
0 such thatr1 > r2. For example, the processP =

((a,2).Q) !! ((a,3).T) has only one outgoing transitionP
a,3
−→ ((a,2).Q) !! T. Again,

stochastic bisimilarity is immediately compositional with respect to !!. This example
illustrates the fact that in the semantics of SGSOS operators, apparent rates (3) of sub-
processes can be tested, compared and used in an arbitrary fashion. This is in contrast
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with formats defined for probabilistic systems [2, 16], where probabilities of transitions
can be used in a very restricted manner. Note however that in SGSOS rates ofsingle
transitions of subprocesses cannot be used entirely freely. For example, it is not pos-
sible to write SGSOS semantics of a hypothetical unary operatoreven( ) that would
propagate transitions with even rates and suppress those with odd rates. Indeed, such an
operator would not preserve stochastic bisimilarity. However, one can define an SGSOS
operator that propagates only transitions with labels whose apparent rates are even.

6 Associative parallel composition for stochastic systems

In this section we address an issue in the original design of the stochasticπ-calculus [20],
which to our knowledge has not yet been addressed in the literature. Namely, if the
minimal rate law (5) is used in the definition (7), then the CCS-style communication
operator‖ is not associative up to stochastic bisimilarity. Indeed, consider processes

P1 = (a, r).nil P2 = (ā, r).nil
Q1 = (P1 ‖ P1) ‖ P2 Q2 = P1 ‖ (P1 ‖ P2).

Note thatra(P1) = r, ra(P1 ‖ P1) = 2r, andrā(P2) = rā(P1 ‖ P2) = r. This means
that, in the derived proved-transitions

Q1
〈‖1(a,r),(ā,r)〉,R1→ (nil ‖ P1) ‖ nil

Q2
〈(a,r),‖2(ā,r)〉,R2→ nil ‖ (P1 ‖ nil),

one hasR1 = min(2r, r) · r
2r ·

r
r =

r
2 andR2 = min(r, r) · r

r ·
r
r = r, hence in the resulting

RTS, processesQ1 andQ2 do the correspondingτ-transitions respectively with ratesr/2
andr. As a result, they are not stochastic bisimilar. On the other hand, the same operator
‖ with the rate calculation formula changed to the law of mass action (6), as in [22], is
associative. Moreover, CSP-style synchronisation as used in PEPA is associative for
both minimal rate and mass action laws.

In the following, we consider parallel composition within the framework of SGSOS
and characterise those rate formulas for which CCS-style communication and CSP-style
synchronisation operators are associative up to stochastic bisimilarity. It turns out that
the CSP-style composition gives much more freedom in the choice of rate formula.

6.1 CCS-style communication

Consider the language of Example 4, extending those of Examples 1 and 2. Two ver-
sions of the language were mentioned there, depending on the choice of the family of
rules of type (15) used in the semantics: one whereW = min(r1, r2) (theminimal rate
law) and one whereW = r1 · r2 (themass actionlaw). We will now characterise those
“laws” that give rise to an associative operator‖. More formally, we assume that for
each pairr1, r2 ∈ R

+
0 there is exactly one rule of the type (15) in our semantics for each

labela, and that, moreover, the numberW in the conclusion of the rules does not depend
ona; we can thus treat theW’s as a functionW : R+0 ×R

+
0 → R

+
0 . We then look for those

rate functionsW for which the operator|| is associative up to stochastic bisimilarity.
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As the following theorem shows, the choice ofW is severely limited: the mass action
law is essentially the only choice that makes‖ associative.

Theorem 3. In the situation described above,|| is associative up to stochastic bisimi-
larity if and only if W(r1, r2) = c · r1 · r2 for some constantc ∈ R+.

6.2 CSP-style synchronisation

Consider now the language of Example 3, extending those of Examples 1 and 2. Again,
assume that for each pairr1, r2 ∈ R

+
0 there is exactly one rule of the type (12) for each

labela, and that the numberW in the conclusion of the rules does not depend ona; thus,
as before, we have a functionW : R+0 × R

+
0 → R

+
0 . It turns out that, compared to§6.1,

one has considerably more freedom in choosingW so that each of the synchronisation
operatorsBC

L
is associative:

Theorem 4. In the situation described above, eachBC
L

is associative up to stochastic
bisimilarity if and only if W is associative, i.e.,W(r1,W(r2, r3)) = W(W(r1, r2), r3) for
all r1, r2, r3 ∈ R

+.

7 Conclusions and future work

We have definedSGSOS, a congruence format for structural operational descriptions of
discrete space, continuous time Markov chains. Stochastic bisimilarity is guaranteed to
be compositional on languages defined by SGSOS rules. Standard operators of Marko-
vian process algebras, such as prefixing, choice and various forms of synchronization,
as well as plenty of non-standard, yet potentially useful operators, are definable in SG-
SOS. The format arises naturally from the abstract theory of well-behaved operational
semantics, based on bialgebras and distributive law.

SGSOS is similar to formats for reactive probabilistic systems developed in [2, 16].
Apart from syntactic sugar, the most important difference is the treatment of apparent
rates, absent in the probabilistic setting. Rates of single transitions (and their condi-
tional probabilities) are treated in SGSOS just as probabilities of transitions are in [2,
16]. In [16], additional complication is necessary to cater forgenerativeprobabilistic
systems. The notions of reactive and generative RTSs coincide, and the additional com-
plexity is not needed in SGSOS.

This is only an initial study of a theory of well-behaved stochastic operational se-
mantics, and several research directions are left open. Look-ahead premises are not
allowed in SGSOS, unlike in the probabilistic formats of [16]. Recursive definitions or
the name-binding features of stochasticπ-calculus are not currently supported; to treat
the latter correctly, one should combine SGSOS with techniques from [10]. Also, non-
Markovian processes are not treated here, as a coalgebraic treatment of them is missing.
Process algebra for continuous-space Markov chains [9] is another possible direction.
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