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Abstract. A syntactic framework called SGSOS, for defining well-behaved Mar-

kovian stochastic transition systems, is introduced by analogy to the GSOS con-
gruence format for nondeterministic processes. Stochastic bisimilarity is guaran-
teed a congruence for systems defined by SGSOS rules. Associativity of parallel
composition in stochastic process algebras is also studied within the framework.

1 Introduction

Process algebras such as CCS [18] or CSP [5] are widely accepted as useful tools
for compositional modeling of nondeterministic, communicating processes. Their se-
mantics is usually described within the framework of Structural Operational Semantics
(SOS) [19], where labelled nondeterministic transition systems (LTSs) are defined by
induction on the syntactic structure of processes. Formalisms for SOS decriptions of
nondeterministic systems have been widely studied and precisely defined (see [1] for
a survey). In particular, several syntactic formats have been developed that guarantee
certain desirable properties of the induced systems, most importantly that bisimulation
is a congruence on them.

Stochastic process algebras have been deployed for applications in performance
evaluation, and more recently in systems biology, where the underpinning of labelled
continuous time Markov chains (CTMCs), and more generally stochastic processes,
is required rather than simple LTSs. Examples of such algebras include TIPP [11],
PEPA [15], EMPA [3], and stochastie-calculus [20]. Semantics of these calculi have
been given by variants of the SOS approach. However, in contrast with the case of non-
deterministic processes, SOS formalisms used here are not based on any general frame-
work for operational descriptions of stochastic processes, and indéedsdibstantially
from one another. This is unfortunate, as such a framework would make languages eas-
ier to understand, compare, and extend. Specifically, a format for SOS descriptions
which guarantees the compositionality of stochastic bisimilarity, would make extend-
ing process algebras with new operators a much simpler task, liberating the designer
from the challenging and time-consuming task of proving congruence results.

In this paper we define suchcangruence formatwhich we callSGSOSFirst we
review existing approaches to the operational semantics of process algebras, concentrat-
ing on the examples of PEPA [15] and the stochastialculus [20]. As the operational
techniques used there seem hard to extend to a general format for well-behaved stochas-
tic specifications, we resolve to adapt a general theory of well-behaved SOS, based on
category theory and developed by Turi and Plotkin [24]. The inspiration for our ap-
proach comes directly from the work of F. Bartels [2], who used Turi and Plotkin’s
results to design a congruence format for probabilistic transition systems.



Standard operations of stochastic process algebras, as well as plenty of non-standard
but potentially useful ones, fall within our format. Exceptions are recursive definitions
and name-passing features of stochasti@alculus, which we leave for future work.

Within the SGSOS framework, we also investigate the issuessbciativity of par-
allel compositiorin stochastic process algebras, a design issue that, to our knowledge,
has been overlooked in the literature. We notice in fact that in the original definition of
stochastier-calculus, parallel composition fails to be associative up to stochastic bisim-
ilarity, and study conditions under which two forms of parallel composition, CSP-style
synchronization and CCS-style communication, are associative.

The structure of the paper is as follows. §& we recall previously studied ap-
proaches to operational semantics of nondeterministic and stochastic systejs. In
the bialgebraic theory of well-behaved SOS is recalledi4rwe adapt the theory to
obtain the SGSOS congruence format, with simple examples of GSOS specifications
following in §5. The associativity of parallel composition is studie@@ and in§7 we
mention some directions of future work. Due to lack of space, all proofs are omitted in
this extended abstract.

2 Transition systems and process calculi

We begin our development by comparing two previously studied approaches to defining
SOS for Markovian process algebras with the well-known world of SOS for nondeter-
ministic systems such as CCS.

2.1 Nondeterministic systems and GSOS

A labelled transition systerfLTS) is a triple(X, A, —), with X a set ofstates A a set

of labelsand— C X x A x X a labelledtransition relation typically written x LN y

for (x,a,y) € —. An LTS is image-finiteif for every x € X anda € A there are

only finitely manyy € X such thatx N y. In the context of Structural Operational
Semantics (SOS), LTS states are terms, and transition relations are defined inductively,
by means of inference rules. For example, in a fragment of CCS [18], processes are
terms over the grammd ::=nil |a.P | P+ P | P | P, and the LTS is induced from

the following rules:

Xy 2>y Xp 2>y
ax 2»x X1+Xy 2>y X1+xp 2>y
1)
a a a a
X1 —>y Xp—>y X1 —>y1 X2—> Y2
a a
x1/|x; — ylIx X1/|%; — Xq|ly x1llxp = y1lly2

Plenty of operators can be defined formally by rules like these. Indeed, the above speci-
fication is an instance of a general framework for SOS definitions of LTSs (see e.g., [1]),
calledGSOSand defined formally as follows.

An algebraic signaturds a setX > f,g,... of operation symbolsvith an arity
functionar : 2 — N, usually left implicit. The set of all terms over with variables
from setX is denotedl's X. In particular,Tx0 is the set of closed-terms.



Fix a countably infinite sef > x,y, z, ... of variables. AGSOS inference rulg]
over a signature’ and a set of label is an expression of the form

oA ) b
{le - yl}lsisk {Xll _'LD }1sism (2)
f(x1,...,%0) > t
wheref € X, n = ar(f), kme N, ij,ij € {1,...,n}, a;,b,c € A, t € Tz5, % and

y; € Z are all distinct and no other variables occur in the terfxpressions above the
horizontal line in a GSOS rule are called jiemisesand the expression below it is the
conclusion A GSOS specificatiois a set of GSOS rules; it image-finitef it contains
only finitely many rules for eacli andc.

Every GSOS specification inducesan LTS(Tx0, A, —), with the transition rela-
tion — defined by induction of the syntactic structure of the source states. For a term
s=f(sy,...,S) € Ts0,0ne adds a transitich— t for each substitution : = — T50
such that for some rule € A as in (2), there igrxj = §, ot = t, ando satisfiesall

premises of, meaning that for each premise2+ y there isox N oy, and for each

premisex 24> there is na € Tx0 for whichox 2t

An important property of the LTS induced byis that bisimilarity on it is guaran-
teed to be a congruence with respect to the syntactic structure of states. This means that
GSOS is a&ongruence formédor bisimilarity on LTSs. Moreover, it is easy to prove by
induction that the LTS induced by an image-finite GSOS specification is image-finite.

2.2 Stochastic systems

Just as nondeterministic process algebras are defined using labelled transition systems,
the semantics of stochastic processes is often provided by labelled continuous time
Markov chains (CTMCs). These are conveniently presented in terms of what we shall
call rated transition system@RTSs), i.e., triplesX, A, p), whereX is a set of state#

a set of labels and : X x Ax X — Rg is a rate function, equivalently presented as

an A-indexed family ofR}-valued matrices. The numbgefx, a,y) is the parameter of

an exponential probability distribution governing the duration of the transitiontof

y with labela (for more information and intuition on CTMCs and their presentation by
transition rates see e.g. [12, 15, 20]). For the sake of readability we will)m(p'(tea—> y)

. ar - . a .
instead ofo(x, a,y), andx — y will indicate thatp(x — y) = r. The latter notation
suggests that RTSs can be seen as a special kiAd<dk]-labelled nondeterministic
transition systems; more specifically, exactly those that are “rate-deterministic,” i.e.,
such that for eaclk,y € X anda € Athere exists exactly orrec R for which x B V.

In the following we will consideimage-finiteprocesses, i.e. such that for each X
anda € Athere are only finitely many € X such thap(x, a,y) > 0. For such processes,
the sum

pa(¥) = D" p(x = y) 3)

yeX
exists for eachx € X anda € A; it will be called theapparent rateof labela in statex.

Further,o(x LN Y)/pa(X) is called theconditional probabilityof the transitionx LN V.
It is the probability thak makes the transition provided that it makes s@atensition.



Various equivalence relations on states in RTSs have been considered. Of those,
the most significant istochastic bisimilarity(called strong equivalence in [14], and
inspired by the notion of probabilistic bisimilarity from [17]), defined as follows. Given
an RTS with state space astochastic bisimulatiofs an equivalence relatidR on X
such that whenevex R ythen for eacha € A, and for each equivalence claSswith

respect taR,
a a
D P2 =) ply = D).

zeC zeC

Two states areisimilar if they are related by some bisimulation. It is easy to check that
bisimilarity is itself an equivalence relation and indeed the largest bisimulation.

Due to the additional rate component present in transitions, the traditional approach
to SOS recalled i§2.1 is inadequate for modeling stochastic process calculi. Instead,
other variants of SOS have been used for this purpose. For a comparison with the fol-
lowing development, we recall two of these variants: the multi-transition system ap-
proach used for the stochastic calculus PEPA [14, 15], and the proved SOS approach of
stochastier-calculus [20-22].

In (a fragment of) PEPA, processes are terms over the grammar:

P:::nil|(a,r).P|P+P|PB§1P

wherea ranges over a fixed sét of labels,L over subsets of\, andr overR*. Their
semantics is defined by inference rules:

(arnx&sx X1+x2 Loy X+x oy
ar ar
X1 —>Yy Xpg—>Yy L
ar ar (agl) (4)
x B x, 2y By,  x Hxp e x My
ar ar
X]—>y1 X2 —> Y2 (acl)

R
x1 B xp 2o yy By,

wherea e Aandr, ry, r, R € R* with Rdepending om, r, according to an application-
specific formula (see below). Note that instead of a single parallel composition operator,
PEPA provides @ooperation operatopd for each set. of labels. These operators are
based on CSP-style synchronisation [5] rather than CCS-style communication [18].
It turns out that the standard interpretation of the above rules as descrif2dLin
would (among other things) contradict the intended meaning of the operadsra
stochastic choicewhere a procesB + P can perform the same transitions Rswith
twice the rates. In particular, the procesBeandP + P should not be stochastic bisim-
ilar. This is why the semantics of PEPA is given amalti-transition system labeled
with pairs @,r) € Ax R", which is a transition system whose transition relation is a
multiset of triples &, (a, r), y). To define such a semantics for PEPA, the rules in (4) are
interpreted similarly as the GSOS rules§in 1, where the multiplicity of a transition is
determined by counting all its flierent derivations. To obtain an RTS from the induced



multi-transition system, one then discards multiplicities by summing up all their rates
in single rated transitions. Thus, for example, the proceas®).eil + (a, 3).nil in the
induced multi-transition systems has two identical transitionsifowith label @, 3),
whilst in the final RTS it can make a single transitiomtd with labela and rate 6. For
more details of this construction, see [14].

The formula for calculatingg based om; andr in the last rule of (4) depends on the
intended meaning of synchronisation. In applications to performance evaluation [14],

the formula
r2

(Xl) palx2)
is a natural choice. We shall call it timieinimal rate law since in the resulting RTS, the
apparent rate od in P B Q (with a € L) is the least of the apparent ratesRo&nd Q.

For applications to systems biology, where rates model concentrations of molecules, a
more convenient choice is

R = min(pa(x1), pa(x2)) - ®)

R= -1y, (6)

which following [6] we call themass action lawThe apparent rate afin P B Q
(with a € L) here is the product of the corresponding apparent ratesaoid Q. For an
intuitive motivation for these and other similar formulae, see [13].

A different approach was used to define semantics of stochasttculus [20].
Since stochastic features of the calculus are independent from its name-passing aspects,
for simplicity we discuss it here on a fragment of the calculus that corresponds to a
stochastic version of CCS (s€2.1). Thus we consider, as processes, terms over the
grammar:

P:=nil|(a,r).P|P+P| PP

wherea ranges over a fixed sét of labels, and overR*. For the semantics, the au-
thors of [20] decided to avoid multi-transition systems and rely on the standard process
of LTS induction from inference rules. For this, to model stochastic choice and commu-
nication accurately, they enriched transition labels substantially, equipping them with
encodings of derivations that lead to them. In thisved operational semanticeur
“stochastic CCS” fragment of stochastiecalculus would be defined by:

6 6

X1 —>Yy Xp—>Yy @)
(a,r) +160 +20
(ar)x == X1+Xp ==y X1+Xp —2> y
X1 0 y X5 0 y X1 61(ara) Vi X 62(ar2) V2
1160 1260 (ll261(a,r1).ll162(ar2)),R
xallx s ylx,  xillxp s xylly gk, RA@WLEGERDIR,

wheref ranges ovederivation proofse.g. represented by terms of the grammar:
O=(@r) | +10 | +20 | 1116 | [120 | {ll26,I26),

and whereR depends om; andr, according to the minimal rate law [20] or the mass
action law [22], as in PEPA.

These rules are then used to induce an LTS, which results in relatively complex
labels. To obtain an RTS, one then extracts more familiar ladbeisA from proofs



in the obvious way, by adding up rates of identical transitions. Thus, for example, the

proces® = (a,3).nil +(a, 3).nil in the induced LTS can make two distinct transitions

3 3 . , . . .
P +1(—a’>) nil andP +2(—a’>) nil, and in the final RTS it can make a transitiomtdl with

labela and rate 6.

Although both the multi- and the proved-transition approaches work fine for the spe-
cific examples described above, it appeafBdlilt to extend any of them to a general
framework for defining operational semantics for stochastic transition systems. Con-
sider for example the proved SOS approach of stochastadculus. As in the case of
GSOS for nondeterministic systems, a well-behaved semantic framework should guar-
antee that stochastic bisimilarity is a congruence for the induced RTS. This is the case
for our CCS example above, but it is easy to write examples where it fails; for example,
extend the CCS language with a unary operétaith semantics defined by a rule:

+16
X—>Yy

f(x) sy

and see that, although,2).nil+nil andnil +(a, 2).nil are stochastic bisimilar, they
are not so when put in contex{-), since only the former process can make a step in
this context. Clearly, this is because the structure of a proof is inspected in the premise
of the rule. However, it would be wrong to forbid such inspection altogether, as it is
needed, e.g. in the communication rule for stochastialculus.

The source of the problem is the richness of labels in the proved approach to SOS.
In [8], it is claimed that proofs as transition labels carry almost all information about
processes that is ever needed. Indeed, it appears they may sometimes carry excessive
information; in a well-behaved SOS framework they should only carry as much data as
required for the derivation of the intended semantics (here, an RTS), not a bit more.

The same criticism, though perhaps to a lesser extent, can be moved to the multi-
transition systems approach used in the semantics of PEPA, where transition multiplic-
ities are the superfluous data. In the process of multi-transition system induction, two
identical transitions of rate 3 are distinguished from a single transition of rate 6. As a
result, one can write specifications such as

r
xa"_by

f(x) amax(,5) y

and see that, although processas3jnil + (a,3).nil and @, 6).nil are stochastic
bisimilar, they are not so in the conteif-). On the other hand, forbidding arbitrary
dependency of transition rates on subprocesses rates is hard to contemplate, since that
forms the very core of PEPA.

It may be possible to determine the exact range of constructs and formulas that must
be forbidden in the proved- or in the multi-transition approach in order to guarantee
that stochastic bisimilarity is compositional. Indeed, this approach has been used with
success in the related framework of probabilistic processes [16], where a well-behaved
version of the proved semantics is developed. In this paper, however, we take a more
principled approach and derive a formalism for stochastic operational semantics from
an abstract theory of congruence formats developed in [24] and applied to the case of
probabilistic transition systems in [2].



3 An abstract approach to SOS

Our approach to a stochastic counterpart of the GSOS framewdR&. bfis based on

a categorical generalisation of GSOS, developed by Plotkin and Turi in [24]. In this
section we briefly recall that work; in the rest of the paper we develop a syntactic format
for stochastic SOS as an instance of the general framework.

3.1 Transition systems as coalgebras

The abstract study of well-behaved structural operational semantics is based on model-
ing the behaviour of processes via coalgebras, and their syntax via algebras. The orig-
inal motivating example is that of LTSs: for a fixed gebf labels, image-finite LTSs
can be seen as functiohs X — (P,X)” (here P, is the finite powerset construction),
along the correspondenges h(x)(a) if and only if x = y. More generally, for any
covariant functoB on the categorpetof sets and functions, B-coalgebrais a setX
(the carrier) and a functiorh : X — BX (the structurg. Thus image-finite LTSs are
coalgebras for the functof(,—)".

A B-coalgebramorphismfromah : X - BXtog:Y — BYisafunctionf : X - Y
such that the equatiane f = Bf o h holds. This notion provides a general coalgebraic
treatment of process equivalenceshisimulationon a coalgebrd : X — BXis a
binary relationQ <€ X x X such that for some coalgebra structgre Q — BQ the
projectionsry, 1, : Q — X extend to a span of coalgebra morphisms frgro h.
For example, foB = (P,—)", this span bisimulatiorspecializes to the well-known
notion of LTS bisimulation [18]. For more information about the coalgebraic approach
to process theory, see [23].

We now show how to view RTSs as coalgebras for a suitable functBebiCall a
function f : X — R{ finitely supportedf the set{x € X | f(x) > 0} is finite. For any set
X, letR, X be the set of all finitely supported functions frofrto Rf. This extends to a
functorR,, on Set with the actioriR,, f on functionf : X — Y defined by

R,E@Y) = . o),

f(9)=y

for g € R,X andy € Y. Sinceg is finitely supported the sum exists afj, f(g) is
finitely supported too. Functoriality &, is then easy to check.
Fix an arbitrary sef of labels. Coalgebras for the functor

BX = (R, X)A

are exactly image-finite rated transition systems as defing®.th Indeed, a coalgebra
h: X — BXis an image-finite RTS with statésalong the correspondence:

x5y ifandonlyif r = h(x)(a)(y).
This coalgebraic treatment of RTSs is justified by the following statement.

Proposition 1. Span bisimulations ornR(,—)*-coalgebras, when restricted to equiva-
lence relations, are exactly stochastic bisimulations as defing2l 2n



In the following, a technical property of the functa® (—)* will be useful:
Proposition 2. (R,,-)" preserves weak pullbacks.

To prove the above two results, proceed exactly as in [7] for the case of probabilistic
bisimulation and the corresponding behaviour functor.

3.2 Process syntax via algebras

In the context of SOS, processes typically are closed terms over some algebraic signa-
ture, i.e., a set > f£,g,... of operation symbols with an arity functiar : 2 — N.
Such a signature corresponds to a funéidr= [ ] s~ X*® on Set in the sense that a
model for the signature is exactly afgebrafor the functor, i.e., a seX (the carrier)
and a functiorg : X — X (thestructure.

The set of terms over a signatukeand a sefX of variables is denoted bysX;
in particular, T0 is the set of closed terms ov&rand it admits an obvious algebra
structurea : 2T;0 — T0 for thefunctor2 corresponding to the signature. This is the
initial X-algebra. The constructiofy is also a functor, called tHeee monadverX.

3.3 SOS rules, distributive laws, bialgebras

In [24], Turi and Plotkin proposed an elegant treatment of well-behaved SOS at the level
of algebras and coalgebras. Their main motivating application was GSO§dge

Turi and Plotkin observed (full proof provided later by Bartels [2]), that image finite
GSOS specifications are in an essentially one-to-one correspondendgistritbutive

laws i.e., natural transformations of the type

A:2(ld x B) = BTs (8)

whereB = (P,-)" is the behaviour functor used for modeling LTSsis the functor
corresponding to the given signature, andis the free monad oveX. Informally, (8)

says that ‘structural’ combination&’ of behaviours B) are mapped to the behaviour

of terms BTy), which is the essence of a SOS rule, with Id accounting for subterms that
stay idle in a transition. Moreover, arlyas above gives rise toBxcoalgebra structure

h, on T30, defined by a “structural recursion theorem” (see [24] for details) as the only
functionh, : Tx0 — BTx0 such that:

h, o a = Ba o Ax o 2(id, hy). (9)

The fact that bisimilarity on LTSs induced from GSOS specifications is guaranteed to
be a congruence, can be proved at the level of coalgebras and distributive laws:

Theorem 1 ([24], Cor. 7.5).If a functor B on Setpreserves weak pullbacks, then for
any A as in (8), span bisimilarity oh, : Tx0 — BTs0 is a congruence ohs0.

This result, together with Propositions 1 and 2, is the basis of our search for a
congruence format for stochastic systems.



4 Stochastic GSOS

We now proceed to the main technical contribution of this paper: a complete characteri-
sation of distributive laws (8) for stochastic systems in terms of inference rules. To find
the characterisation, we closely follow the technique used by Bartels [2] for the case of
probabilistic transition systems.

Definition 1. An SGSOS ruléor a signature’ and a sef of labels is an expression of
the form:

a@ra b
{X' }aeDi,lsisn {X'i - yJ}lsjsk (10)
£f(x1, ..., %n) 2, ¢

where

— feXandar(f) =n, withnkeN,and {i,...,ix} C{1,...,n};

— x; andy; are all distinct variables and no other variables appeardiT ==
moreover, all variableg; appear int;

- DicA ceA andbjeD,

- WeR", rseR], andmoreovery >0,forj=1,...,k

A rule istriggeredby a tuple of real valuesif)aca1<i<n if Vai = rgforall1 <i <n
and alla € D;. A collection of rules is called aBGSOS specificatiahfor every f € X
c € A, every tuple ) triggers only finitely many rules witli andc in the conclusion.

In order to complete the definition of SGSOS we need describe how to derive an
RTS from an SGSOS specification. Intuitively, a rule as in (10) contributes to the rate
of a c-labeled transition fromf(s,,..., s,) if the apparent arates (see Eqn. (3)) of
the s match the corresponding;; its contribution depends oW and onconditional

probabilitiesof a selectiors; LN u; of transitions from thes. Formally:

Definition 2. Every SGSOS specificatiohinducesa rated transition syste( >0, A, p),
with the rate functiop defined by induction on the first argument as follows. For a term
s = £(sy,...,S) € Ts0, assume thai(s 2, u) has been defined for dll=1,...,n,
alla e Aand allu € T50; then, for anyc € A andt € T0, defineo(s = t) as below.

Let Ac € A be the set of all those rules withandc in the conclusion that are
triggered by the tuple of apparent rates = pa(s) — cf. (3). Note thatA. is finite. To
calculate the value gf(s = t), look at each ruld € A in turn and check whether
there exists a substitutian : & — Tx0 such thatt =tandox; = s fori=1,...,n.
Note that although many suchmay exist, their values on eaghcoincide, since aly;

appear int. If o exists, calculate theontributiony, € R of L to p(s N t) according

to the formula:
k

bj
p(s, — oyj)
=W- | | e R

whereW, k, ij, b; andy; are determined by the shape of ride- cf. rule format (10).
Note that the quotient is well defined sineg(s;) = ry,i; > 0. If no suitableo exist,
takey, = 0. Finally, defing(s — t) = ¥, 4 yL; the sum exists sincé; is finite.



Notation 1. If in a rule as in (10), for some; anda € D; there is exactly onég for
whichi; =i andb; = a, instead of the two premisas 2&%» andx; 2> y; we shall

write simply x; 22 y;. Note that, unlike in the frameworks recalled§2.2, such a

premise doesotrequire that a transitiog; 2, y; has rata,;; insteady 5 refers to the
apparentratep,(x;). To avoid this confusion, @ is used in (10) instead of a comma.

It turns out that SGSOS specifications correspond to distributive laws (8) for the
behaviour functor used for modeling stochastic systems:

Theorem 2. For all signatureg’ and label set#\, every SGSOS specification for
X andA determines a distributive law : X(Id x (R,)*) = (R, Tx)" such thath, :
T-0 — (R,T=0)* defined as in (9) coincides with the RTS induced/byMoreover,
every such distributive lawt is defined by an SGSOS specification.

Corollary 1. Stochastic bisimilarity on RTSs induced by SGSOS specifications is al-
ways a congruenceP(oof: Combine Theorems 2 and 1 with Propositions 1 and 2.)

Although technically more involved, the correspondence between SGSOS and RTSs
is a perfect match for that for GSOS and LTSs, and lifts the benefits of congruence
formats to the equally more involved semantics of stochastic mode§s below we
shall illustrate that the formatt@rds expressiveness, conciseness and elegance.

5 Examples of SGSOS

To illustrate the form of SGSOS specifications, we now present a few simple examples,
including operators present in stochasticalculus or in PEPA, as well as some other
operators of potential interest.

Example 1 (atomic actionsp basic ingredient of most process calculi is prefixing
composition with atomic actions. To model stochastic systems, these actions are equip-
ped with basic rates. For the simplest nontrivial example of SGSOS, fixfacfdabels
and consider a language with syntax defined by the grammar:

P:=nil|(ar).P

wherearanges oveA andr overR*. The semantics afil is defined by the empty set
of rules, and the semantics of a unary operador)(_ is defined by a single rule:

(ar).x 20, %
Thus, according to Definition 2, the proceBs= (a,2).(b,3).nil can make a unique

” 2 . " :
transitionP — (b, 3).nil in the transition system induced by the rules.

Example 2 (stochastic choic&}onsider an extension of the language from Example 1
with a binary operatoP + P with semantics defined by rules:

x 2,y % 2%y

10



(note the use of Notation 1), for eaale A andr € R*. Note that this is a well-defined
SGSOS specification. Although it contains uncountably many rules, for evernA
exactly two rules are triggered by every tuple of apparent rates. The rules define

be the stochastic choice operator, as present e.g. in PEPA and stoehealitlus.

In particular, according to Definition 2, in the stochastic transition system induced by
the rules, the proced® = ((a,2).nil + (a,2).(b,1).nil) + (c,3).nil can make three

transitionsP 2 nil, P 2 (b,1).nil andP 23 nil. Note, however, that the process

Q = (a,2)nil + (a,3).nil can only make one transitioQ 25 nil. In particular,
processesy 2).nil +(a, 3).nil and @, 5).nil are not only stochastic bisimilar, but can
actually make exactly the same outgoing transitions.

We remark that when compared to the existing literature, in all our examples the
expected semantics of the operators arises naturally from intuitive and elementary spec-
ifications, witness of the flexibility of the SGSOS format.

Example 3 (PEPA-style synchronisatioBxtend the language from Example 2 with a
binary synchronisation operat®t for eachL C A, with semantics defined by a family
of rules:

X1 —«>a@r y X, 2% y 1)
xlBﬂXz ——yBEx Xy B x, 290, ——x My

W
XlBﬁszhB“}’z

foreachae A\ L, bel, andr,ry,r,, We R" such thatW = min(ry, ). It is not
difficult to see that this, according to Definition 2, is the synchronisation operator of
PEPA where the minimal rate law (5) is used. As an example, consider processes:

=(a1).P1+(a3).P2 Q=(a2).Q (13)
whereP; # P,. Then the procesB 1(351 Q, whereb # a, can make the transitions:
PMQIPQ PMQIPxNQ PMQEPMQL

On the other hand, the outgoing transitions frBrtEl Qare:

&l a,§
PMQ-SPXQ  PXQ—P,MQ

Example 4 (CCS-style communicatioB)jmilarly, one can extend the language from
Example 2 with a CCS-style communication operator. Assdme AU {a | a €
Ao} U {7} (denotea = a) and extend the language with a single binary opergtaith
semantics defined by rules:

X1 a@r y Xp a@r y (14)
2@ ylx  xlxn2@ex|y
x 29,y x, 202,y (15)
T@W

1% —=—>y1lly2
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for eacha € A and for eachr, ry,r,, W € R* such thaW = min(ry, r,). This, according

to Definition 2, is the communication operator of the original definition of stochastic
m-calculus [20], with the minimal rate law (5) used. For example, consider procsses
Qasin (13). The proced3|| Q can make the following transitions:

1 3 az2
PIQSPIQ  PIQSPIQ  PIQSPIQ
7l 7.2
PIQ—=PillQ PIQ—PllQu

Alternatively, one could use the same rules With= r; - r». This would correspond
to the semantics of parallel composition in the biological stochastialculus [22],
with the mass action law (6) used. For example, the proeédisQ above can then make
the following transitions:

1 3 a2
PIRSPIIQ  PIQR=PIQ  PIQSPIQ
7,2 7,6
PIQ-SPIQ  PIQ- Pl Qu

Example 5.Several non-standard, yet meaningful stochastic operators can be defined
within the SGSOS format. For example, consider unagtdlyst and “inhibitor” op-
eratorscat, and inh, for eacha € A, which influence rates of process transitions;
they can be seen as stochastic counterparts of the restriction operator of CCS. Their
semantics is defined by the rules:

x a@r y x a@r y
cata(x) 22%s caty(y) inh,(x) 2225 inhy(y)
x b@r y x b@r y
b@r . b@r -
cata(x) — cata(y) inhy(x) = inhy(y)

for eachr € R* anda,b € A such thato # a. For example, in the derived stochas-

tic transition system we find the transiti@at,((a, 2).nil) 24 caty(nil). Since the
above rules conform to the SGSOS format, it is immediate that operatoy@ndinh,
preserve stochastic bisimilarity.

Another example is a binary operator !! of “unfair race parallel composition,” which
only allows transitions from processes with higher apparent rates than their competitors.
Formally, its semantics is defined by rules

X1 a@ry >y X a@ry X1 a@ry X5 a@rl,; y
x1!!x2@>y!!x2 xﬂ!xzﬁxl!!y

for eacha € A andry,r, € Rj such thatr; > rp. For example, the proces3 =

((&2).Q)!"((a,3).T) has only one outgoing transitioR 23 ((&,2.Q " T. Again,
stochastic bisimilarity is immediately compositional with respect to !!. This example
illustrates the fact that in the semantics of SGSOS operators, apparent rates (3) of sub-
processes can be tested, compared and used in an arbitrary fashion. This is in contrast
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with formats defined for probabilistic systems [2, 16], where probabilities of transitions
can be used in a very restricted manner. Note however that in SGSOS raieglef
transitions of subprocesses cannot be used entirely freely. For example, it is not pos-
sible to write SGSOS semantics of a hypothetical unary opegater(_) that would
propagate transitions with even rates and suppress those with odd rates. Indeed, such an
operator would not preserve stochastic bisimilarity. However, one can define an SGSOS
operator that propagates only transitions with labels whose apparent rates are even.

6 Associative parallel composition for stochastic systems

In this section we address an issue in the original design of the stochasticulus [20],
which to our knowledge has not yet been addressed in the literature. Namely, if the
minimal rate law (5) is used in the definition (7), then the CCS-style communication
operatol| is not associative up to stochastic bisimilarity. Indeed, consider processes

P;1=(ar)nil P, =(ar)nil
Q1= (P Py) Il P2 Q2 =Py | (Pl P2).

Note thatra(P1) = r, ra(Py || P1) = 2r, andrz(P,) = ra(P1 || P2) = r. This means
that, in the derived proved-transitions

Q (lu(ar),@r),R (@il || Py) || nil
Q. (@n).ll@r)).Re nil || (Pl I I‘lil),

one hay = min(2r,r) - 5 - £ = S andR, = min(r,r) - T - T =r, hence in the resulting
RTS, processea®; andQ; do the correspondingtransitions respectively with rateg2
andr. As aresult, they are not stochastic bisimilar. On the other hand, the same operator
|| with the rate calculation formula changed to the law of mass action (6), as in [22], is
associative. Moreover, CSP-style synchronisation as used in PEPA is associative for
both minimal rate and mass action laws.

In the following, we consider parallel composition within the framework of SGSOS
and characterise those rate formulas for which CCS-style communication and CSP-style
synchronisation operators are associative up to stochastic bisimilarity. It turns out that

the CSP-style composition gives much more freedom in the choice of rate formula.

6.1 CCS-style communication

Consider the language of Example 4, extending those of Examples 1 and 2. Two ver-
sions of the language were mentioned there, depending on the choice of the family of
rules of type (15) used in the semantics: one whre min(ry, rz) (the minimal rate

law) and one wher®/ = r; - r, (themass actiorlaw). We will now characterise those
“laws” that give rise to an associative operafjoMore formally, we assume that for
each pairy, rp € Rj there is exactly one rule of the type (15) in our semantics for each
labela, and that, moreover, the numbaftin the conclusion of the rules does not depend
ona; we can thus treat thé/’s as a functiolW : R{ xR{ — Rj. We then look for those

rate functiondW for which the operatolf is associative up to stochastic bisimilarity.
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As the following theorem shows, the choicaiis severely limited: the mass action
law is essentially the only choice that maljesssociative.

Theorem 3. In the situation described abovgis associative up to stochastic bisimi-
larity if and only if W(rq,r2) = ¢ - ry - ro for some constart € R*.

6.2 CSP-style synchronisation

Consider now the language of Example 3, extending those of Examples 1 and 2. Again,
assume that for each paif, r> € RJ there is exactly one rule of the type (12) for each
labela, and that the numbéW in the conclusion of the rules does not dependhus,

as before, we have a functioh : R x R} — R{. It turns out that, compared §6.1,

one has considerably more freedom in choodWgo that each of the synchronisation
operators= is associative:

Theorem 4. In the situation described above, ea:§hi3 associative up to stochastic
bisimilarity if and only if W is associative, i.eMV(ry, W(r2,r3)) = W(W(ry,r»),r3) for
allry,ro, r3 € R,

7 Conclusions and future work

We have define&GSOsa congruence format for structural operational descriptions of
discrete space, continuous time Markov chains. Stochastic bisimilarity is guaranteed to
be compositional on languages defined by SGSOS rules. Standard operators of Marko-
vian process algebras, such as prefixing, choice and various forms of synchronization,
as well as plenty of non-standard, yet potentially useful operators, are definable in SG-
SOS. The format arises naturally from the abstract theory of well-behaved operational
semantics, based on bialgebras and distributive law.

SGSOS is similar to formats for reactive probabilistic systems developed in [2, 16].
Apart from syntactic sugar, the most importanffelience is the treatment of apparent
rates, absent in the probabilistic setting. Rates of single transitions (and their condi-
tional probabilities) are treated in SGSOS just as probabilities of transitions are in [2,
16]. In [16], additional complication is necessary to catergenerativeprobabilistic
systems. The notions of reactive and generative RTSs coincide, and the additional com-
plexity is not needed in SGSOS.

This is only an initial study of a theory of well-behaved stochastic operational se-
mantics, and several research directions are left open. Look-ahead premises are not
allowed in SGSOS, unlike in the probabilistic formats of [16]. Recursive definitions or
the name-binding features of stochasticalculus are not currently supported; to treat
the latter correctly, one should combine SGSOS with techniques from [10]. Also, non-
Markovian processes are not treated here, as a coalgebraic treatment of them is missing.
Process algebra for continuous-space Markov chains [9] is another possible direction.
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