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Abstract

Bio-inspired computing comes in many flavours, in-
spired by biological systems from which salient fea-
tures and/or organisational principles have been
idealised and abstracted. These bio-inspired
schemes have sometimes been demonstrated to be
general purpose; able to approximate arbitrary dy-
namics, encode arbitrary structures, or even carry
out universal computation. The generality of these
abilities is typically (although often implicitly) rea-
soned to be an attractive and worthwhile trait.
Here, it is argued that such reasoning is fallacious.
Natural systems are nichiversal rather than univer-
sal, and we should expect the computational sys-
tems that they inspire to be similarly limited in
their performance, even if they are ultimately ca-

pable of generality in their competence. Practical
and methodological implications of this position for
the use of bio-inspired computing within artificial
life are outlined.

Within the context of computing, we routinely em-
ploy metaphors derived from nature: bugs, trees, inheri-
tance, killing, spawning, etc. In terms of novel computa-
tional architectures, biology has also been a rich source
of ideas. Artificial neural networks, swarm intelligence,
artificial immune systems, etc., have all arisen as a result
of our growing appreciation of the sophisticated “com-
putational” abilities of some biological systems.

The attractiveness of these approaches is compounded
by the possibility that they are, in some sense, general

purpose. For instance, a common class of continuous-
time recurrent artificial neural network can be shown
to approximate any dynamical system to an arbitrary
degree of accuracy (Funahashi & Nakamura, 1993); a
swarm of artificial insects can implement a general-
purpose optimisation algorithm (Bonabeau, Dorigo, &
Théraulaz, 2000a); a cellular automaton is capable of
universal computation (Cook, 2004); wasp and termite
behaviour might be idealised to deliver general-purpose
construction algorithms for self-organising architectures

(Bonabeau, Guérin, Snyers, Kuntz, & Théraulaz, 2000b;
Howsman, O’Neil, & Craft, 2004); artificial immune sys-
tems could offer the ability to efficiently classify arbi-
trary classes of patterns (e.g., Tarakanov, Skormin, &
Sokolova, 2003).

The generality of these idealised, bio-inspired systems
suggests that they might enjoy very wide applicability.
However, real biological systems are only ever general-
purpose accidentally. No biological species, organism,
organ, trait or mechanism has ever evolved to serve the
function of solving a class of problems that is wider than
the set of problems actually encountered by its ancestors
so far. It is true that some are more or less specialised
than others, but natural selection is not in the business
of fashioning devices that solve future problems or po-
tential problems, only actual historical ones.

For instance, the behavioural mechanisms that ter-
mites use to construct their amazing mounds (Bruinsma,
1979) were not evolved for construction, per se, but for
constructing termite mounds, specifically (Ladley & Bul-
lock, 2004, 2005). Our immune system has not evolved
to classify arbitrary patterns, but to deal with the partic-
ular kinds of pathogen to which we have historically been
exposed. Even the human brain, indisputably the most
awesome problem-solving mechanism that we know of, is
not a general purpose cognitive machine. It is specialised
to undertake particular cognitive tasks (language learn-
ing, face recognition, social cognition, etc.). It is not
organised to solve any problem or deal with every cogni-
tive challenge (witness the large literature on our cogni-
tive shortcomings, e.g., Kahnemann, Slovic, & Tversky,
1982). Rather our brain exhibits properties that allow it
to successfully tackle the reproductively significant cog-
nitive problems that faced our evolutionary ancestors on
the African savannah.

This is not to say that biological mechanisms do not
generalise at all. Biological niches are identified with
problem classes (digesting a particular kind of nut, warn-
ing off a particular species of predator) rather than just
problem instances (digesting a particular nut, warning
a particular predator), because evolution cannot tai-
lor mechanisms to individual problem instances. There
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must be some exploitable regularity in the instances of
a repeatedly encountered problem for them to count as
repetitions of the same problem, let alone be solved by
a single evolved mechanism. Our immune systems, for
instance, have been adapted by evolution such that they
are able to cope with many pathogens, some yet to be
encountered by our species. We might be tempted to
say that our immune system has some predictive ability
whenever it copes with a novel pathogen. However, this
“predictive ability” is little more than a gamble that the
future will resemble the past in particular ways.

Stated more generally, biological devices are shaped by
natural selection such that they tend to be well suited
to the challenges posed by their Environment of Evo-
lutionary Adaptedness (or eea, see Foley, 1997). This
“environment” is actually the sum total of the selection
pressures that have been brought to bear on a device’s
lineage (weighted by recency). It is the finite set of re-
productive problems that a particular contemporary bio-
logical device’s ancestors solved in order that this device
(rather than competing forms) currently exists. The eea

is thus similar to the notion of a biological niche, in that
the character of a biological device can be understood
as a reflection (or co-definition) of the demands, pres-
sures, and challenges that characterise its niche. From
an alternative perspective, one can expect biological de-
vices to function successfully only under Normal condi-
tions: the conditions that the device’s ancestors tended
to find themselves in historically (Millikan, 1984, 1993).
Outwith such conditions, the performance of an evolved
device may be suboptimal, or even pathological (e.g.,
some forms of human obesity may result from some of
our evolved devices operating in a modern environment
featuring many abNormal foodstuffs).

This line of argument implies that the biological sys-
tems that inspire novel computational architectures,
paradigms, or substrates are likely to be well-suited only
to particular tasks. Even when (idealised abstractions
of) these mechanisms are capable of exhibiting a very
general class of behaviour, we should not expect them
to do so uniformly—they will tend to be more suited to
some tasks than others.

Universal vs. Nichiversal

The apotheosis of the claim that a class of system ex-
hibits computational generality is the demonstration of
universality. Work on universal computation has had
profound consequences for our understanding of com-
putation and computability (e.g., Turing, 1936). How-
ever, demonstrations of general-purposeness, complete-
ness, etc., for ctrnns, swarm algorithms, genetic encod-
ings, etc., are not typically part of this effort to improve
our understanding (some work on cellular automata may
be an exception, here). Rather, they are driven by the
implicit conviction that the generality of a particular

bio-inspired approach is a point in its favour; general
schemes, architectures, or algorithms being intrinsically
more preferable than specialised ones. If, say, a swarm
of artificial ants is demonstrated to simulate a univer-
sal Turing machine, the intention is probably to reveal
something about the utility of swarm intelligence rather
than the nature of computation.

The meaning of the word universal derives from parts
meaning “all” and “turned towards or against”. Hence,
whereas universal might be glossed as meaning “all-
facing”, biological devices are “niche-facing” or nichiver-

sal. The nichiversality of bio-inspired computational
schemes is true, independent of whether they are prov-
ably general or not. For example, while continuous-time
recurrent neural networks are capable of exhibiting ar-

bitrary dynamics (given enough nodes), it is still true
that certain dynamics are characteristic of such net-
works, i.e., this class of device does exhibit a generic

behaviour (Beer, 1995). Attempting to find or construct
networks that exhibit dynamics very different from this
generic behaviour is difficult.

Similarly, even if termite construction behaviours can
be idealised such that they are, in theory, capable of
generating arbitrary structures (Howsman et al., 2004),
it will remain the case that some classes of structure
are more readily buildable by such systems. In order to
configure such a system to construct architectures that
are uncharacteristic, one faces a very difficult reverse
engineering task that cannot typically be solved by hand
and is often even difficult to solve using some kind of
powerful search algorithm (see below).

Comparisons with NFL

In one sense this argument boils down to a well-known
fact: every tool is good for some things and not so good
for others. However, the argument presented here differs
significantly from that of No Free Lunch (nfl) theorems
(Wolpert & Macready, 1995, 1997).

First, nfl proofs are formal statements derived from
first principles. This paper presents an informal argu-
ment predicated on our understanding of evolutionary
processes. More importantly, the line of argument pre-
sented here cannot be ducked in the way that nfl con-
siderations can sometimes seem to be.

nfl theorems state that no search or optimisation al-
gorithm will outperform any other over the set of all

problems. It therefore remains possible that some candi-
date algorithm will outperform others over a subset of all
problems. Since the set of problems that we care about
is such a subset, nfl-style arguments may not bite.

This type of reasoning will not defuse the nfl-like im-
plications of nichiversality: that generality claims for
bio-inspired schemes are empty. Consider the distinc-
tion between competence and performance introduced
by Chomsky (1965). While a system’s competence cor-
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responds to the range of (linguistic) behaviour that it
could produce in principle, a system’s performance cor-
responds to the range of (linguistic) behaviour that it ac-
tually produces in practice.1 Employing these terms: it
may be true that the relatively limited set of behaviours
that we require from a class of bio-inspired system (its
required performance) is a sub-set of the entire (possibly
complete) set of behaviours that such a class of system
is capable of performing (its competence). Nevertheless,
unless we require a bio-inspired system to be merely bio-
mimetic (to simply ape the natural activity that inspired
it in the first place), we will undoubtedly require its per-
formance to go beyond the range of behaviours that were
demanded by its niche, i.e., the performance that we re-

quire of it will outstrip its Normal performance.
Hence, nichiversal thinking (and, for different reasons,

nfl thinking) encourages us to characterise (rather than
merely quantify) an algorithm’s performance, rather
than its competence or scope. This type of thinking
implies a reconsideration of the typical working method-
ology of bio-inspired computing researchers. The rest
of this paper attempts to spell out these methodological
implications via five guidelines and, subsequently, two
brief examples.

Guidelines

1. Embrace the nichiversal nature of bio-inspired
computation.

First and foremost, we should adopt the working as-
sumption that characterising the limited, task-specific,
generic behaviour of a bio-inspired system is what
is important, rather than its potential for generality.
Characterising the “niche” of a class of bio-inspired
system is a challenging, but critically important goal.
It is crucial to our ability to make practical use of
bio-inspired computing, but is also important to our
ability to make theoretical progress in understanding
the nature of adaptive behaviour in general.

2. Accept that multiple idealisations of a biolog-
ical mechanism/organisation/process can coex-
ist.

Within a particular domain of bio-inspired computing,
there often appears to be competition between differ-
ent flavours of system. The evolutionary algorithms
literature offers many clear examples. At one level,
genetic programming, genetic algorithms, evolution-
ary strategies, etc., “compete” (with each other and
with alternative search and optimisation algorithms)
to demonstrate their ability to solve hard optimisation
problems. At a lower level, different genetic encodings,
genetic operators, selection schemes, multi-population
set-ups, etc., also compete to outperform each other.

1Thanks to Richard Watson for suggesting the use of this
terminology.

The importance of specifying the ways in which these
different flavours of algorithm relate to one another, or
how one might decide between them when attempting
to solve a particular problem, is widely acknowledged,
but this aim is rarely achieved.

3. Take note of negative results, carefully exam-
ined.

In the context of (2), above, one can see why nega-
tive results are unpopular: “I’ve invented a new type
of a swarm intelligence algorithm—here’s a number of
ways in which it is outperformed by existing swarm
intelligence algorithms”. Of course, since we under-
stand that no algorithm will outperform all others
on all classes of problem, it is precisely this type of
negative result that can be valuable, when carefully
analysed. While merely reporting an instance of un-
successful (or indeed successful) performance can have
little value, per se, even a thoroughly poor class of
algorithm that appears to be outperformed by many
others can have theoretical value if in analysing the
reasons for its mediocrity, we discover insights into
wider classes of scheme or algorithm. Zaera, Cliff, and
Bruten (1996), for example, present a failed attempt
to evolve realistic flocking behaviour as an indicator
of what makes constructing a fitness function hard or
easy. Unfortunately, this type of research is rarely un-
dertaken and remains difficult to get published when
it is.

4. Attend to the limits of natural biological
mechanisms/organisations/processes in situ.

Biologists cannot completely and accurately charac-
terise a biological mechanism’s eea or its Normal con-
ditions for functioning. However, they often know
something about the character of a mechanism’s niche.
In particular, where a mechanism varies across differ-
ent populations, there is scope for explaining these dif-
ferences as resulting from the different selection pres-
sures that these populations have been subjected to.
This information can be useful in determining what
one might expect a bio-inspired approach to be good
for. However, gathering it involves serious engagement
with the relevant biological community and their lit-
erature, which is time-consuming and difficult work.

5. Choose problems appropriate to particular
bio-inspired solutions, and vice versa.

A corollary of the observation that bio-inspired algo-
rithms do not equally suit every problem is that only
some of our problems may be suitable for bio-inspired
solution. We should give as much consideration to
tailoring, adapting, rethinking and refining our prob-
lems such that they suit the predispositions of our bio-
inspired computing, as we do the converse.
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Two Brief Examples

Collective Construction

Paper wasps work collectively to build impressive nest
structures. Idealising their behaviour has resulted in a
simple class of decentralised construction algorithm ca-
pable of generating nest-like structures as well as other
interesting architectures (Théraulaz & Bonabeau, 1995).
The algorithm involves a swarm of reactive agents mov-
ing through a 3-dimensional cubic lattice, depositing dif-
ferent kinds of building material. An agent’s building
behaviour is determined by a set of production rules,
each sensitive to a particular configuration of building
material in the 26 cells adjacent to the agent’s loca-
tion (a triggering condition). With two types of building

block, there are 326 possible building rules, and thus 33
26

possible algorithms. Moreover, it is straightforward to
demonstrate that, given an arbitrary number of block
types, any configuration of contiguous building material
can be specified. In some sense, then, the algorithm is
general purpose and complete.

However, despite this general competence of the algo-
rithm, its performance is typically extremely constrained
(Ladley & Bullock, in preparation). With small num-
bers of block types, it is very difficult to find, or hand-
design, rule sets that give rise to structures with any-
thing other than very fine-grained spatial scale. Long-
range structures are practically impossible to generate.
This is because, although there are an astronomical num-
ber of different triggering conditions, some (a very small
proportion) are more privileged than others. Triggering
configurations involving, say, 15 blocks of building ma-
terial can only arise after 15 blocks have been placed. In
placing these blocks, many, many triggering conditions
involving only one, two, three, or four blocks will nec-
essarily arise. Any rule-set capable of encouraging the
placement of 15 blocks must contain rules that are trig-
gered by configurations of small numbers of blocks. As a
result, the inherent reflexivity of the scheme’s early be-
haviour ensures that it is predisposed to undermine the
utility of the vast majority of more complicated trigger-
ing conditions.

In practice, it turns out that it is very difficult for a
rule-set to prevent simple configurations of blocks being
constructed repeatedly. This ensures that complicated
configurations of blocks, or simple structures that arise
only a limited number of times, tend to be precluded.
By increasing the number of block types, B, available to
the wasp agents, this problem can be somewhat atten-
uated (e.g., Howsman et al., 2004), but the size of the
space of rule-sets scales very badly with B. The inher-
ent stochasticity of the algorithm also works against the
construction of particular complex architectures.

In this case, then, knowledge of the generic perfor-
mance of the algorithm is more important than knowl-
edge of its ultimate competence. The arguments pre-

sented here suggest that this will be true for bio-inspired
algorithms in general. Conversely, it is interesting to
note that an algorithm subject to such strong limitations
is still perfectly capable of generating some (nest-like) re-
peated structures quite robustly. As such, the discovery
of even very serious constraints on performance is still
the discovery of knowledge that can be leveraged much
more readily than any knowledge of the algorithm’s gen-
erality.

Neuromodulation

Within neuroscience there is an increasing realisation
that the traditional abstraction of neural systems as es-
sentially networks of units interacting via neurotrans-
mission is unsatisfactory since it neglects the role of the
chemical substrate within which this electrical activity is
embedded (Katz, 1999). The chemicals involved are im-
plicated in numerous kinds of adaptive behaviour, from
triggering plasticity and learning, reconfiguring neural
circuits, and balancing gross levels of activity, to switch-
ing between multiple modes of behaviour. Emerging
from this research is a new “liquid brain” perspective
on real neural networks (Changeux, 1993).

GasNets are a class of recurrent artificial neural net-
work inspired by this line of neuroscience research (Hus-
bands, Smith, Jakobi, & O’Shea, 1998). In addition to a
relatively standard explicit network of idealised neurons
communicating via idealised neurotransmission, these
anns employ an idealised type of chemical signalling in
the form of simulated neuromodulators. GasNets have
been artificially evolved successfully for a range of tasks
including the control of autonomous mobile robots. In
fact, they appear to be particularly suited to this kind
of application (op. cit.).

What is important for the purposes of this paper is
not that the GasNet mechanism (or some variant of it)
might be demonstrated to be in some sense general pur-
pose. In fact, one might easily imagine that, given an
arbitrary number of idealised neurons sharing the same
intrinsic timescale, augmented by a similarly arbitrary
number of idealised neuromodulators acting over differ-
ent spatiotemporal scales, the scheme could be shown to
share with ctrnns the ability to approximate any dy-
namical system to an arbitrary degree of accuracy. By
contrast, from a nichiversal perspective, what is of inter-
est is the generic behaviour of GasNets, and the extent to
which this generic behaviour matches or suits the control
problems facing the autonomous robots that we wish to
artificially evolve. It is only by addressing the challenge
of characterising this niche that we can determine the
circumstances in which GasNets, rather than ctrnns,
say, are the appropriate architecture to employ.

More specifically, answering this question requires
more than collecting a large number of examples of one
paradigm outperforming another. Rather, a combina-
tion of carefully analysed successes (Smith, Husbands,
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Philippides, & O’Shea, 2002), basic research into the
original biological mechanisms (Philippides, Husbands,
& O’Shea, 2000), new conceptual frameworks (Philip-
pides, Husbands, Smith, & O’Shea, 2002), and funda-
mental modelling work (e.g., Buckley, Bullock, & Cohen,
2004, 2005) is necessary in order to reveal why, for exam-
ple, ann schemes that involve analogues of neuromodu-
latory chemicals are able in some cases to exhibit robust,
evolvable, adaptive behaviour over multiple timescales
(temporal adaptivity). It is through these parallel, over-
lapping activities that the GasNet niche might be char-
acterised.

Summary

Only once we accept that, in general, biological devices,
processes and organisations are properly viewed as spe-
cific to their particular niches, and (in collaboration with
biologists) develop theoretical accounts of what it is that
individual biological devices, processes or organisations
are good at—what it is that they have been “designed”
to achieve—will we be in a position to exploit idealisa-
tions of them efficiently.
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