
M4M 2007

Aximo: automated axiomatic reasoning for
information update

Simon Richards1,2

School of Electronics and Computer Science
University of Southampton

Southampton, United Kingdom

Mehrnoosh Sadrzadeh3

School of Electronics and Computer Science
University of Southampton

Southampton, United Kingdom

Abstract

Aximo is a software written in C++ that verifies epistemic properties of dynamic scenarios in multi-agent
systems. The underlying logic of our tool is based on the algebraic axiomatics of Dynamic Epistemic Logic.
We also present a new theoretical result: the worst case complexity of the verification problem of Aximo.

Keywords: Automated Verification, Algebraic Axiomatics, Dynamic Epistemic Logic.

1 Introduction

One of the applications of modal logic is reasoning about the information of agents
in multi-agent systems in the context of epistemic logics [7]. This field of applica-
tion has been extended to information update in the context of dynamic epistemic
logics [1,3,5]. In these applications, one reasons about the information of interact-
ing agents who communicate with each other and get their information updated as
a result. Dynamic epistemic logic (DEL) reasons about the information of these
agents, the communication actions between them, and the changes induced to the
information by the actions. One of the novelties of DEL is its ability to reason
about honest as well as dishonest agents and their actions. It does so by using a
modality that stands for a possibly wrong belief, this is the belief that is caused by
the cheating and lying actions of dishonest agents.

1 Support from EPSRC grant EP/D000033/1 is acknowledged by both authors.
2 Email: sgr104@ecs.soton.ac.uk
3 Email: ms6@ecs.soton.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:sgr104@ecs.soton.ac.uk
mailto:ms6@ecs.soton.ac.uk

Richards and Sadrzadeh

Kripke structures provide intuitive relational semantics for modal logics. One
advantage of these models, other than being intuitive, is that their frame conditions
directly give rise to axioms of a Hilbert-style proof system, e.g. a transitive frame
gives rise to axiom 4: the so called positive introspection axiom of knowledge. Al-
though semantics of DEL is based on Kripke structures, not all of its modal axioms
are obtained from its frame conditions. This is because the semantics of DEL in-
volves higher level operations that act on the Kripke structures themselves. But if
one thinks in the spirit of Stone duality and moves to an algebraic semantics, the
axioms corresponding to these operations can be treated on the same level as the
axioms corresponding to the modalities, which are also operations on the base al-
gebra. As a result, one directly obtains an inequational machinery to reason about
information flow in multi-agent systems. It was this line of thought that led to
the algebraic axiomatics of DEL, developed in the thesis of the second author [9]
and jointly with Baltag and Coecke [2]. The algebra is equipped with a complete
sequent calculus and a theorem that shows how to construct the algebra from the
relational model of DEL. In fact, and as discussed in [2,9], one does not need the
full Boolean setting of DEL to get the algebra up and running: the propositions
can just be elements of a complete lattice, with no necessary internal negation and
implication. Another distinguished feature of the algebra is that it encodes the
epistemic and dynamic modalities as adjoint pairs that go equipped with a mechan-
ical unfolding method. The simplicity of the algebraic axiomatics, uniformity of
reasoning about dynamics and epistemics, and the mechanical nature of the adjoint
modalities motivated the development of Aximo [8].

Aximo came out of the Masters’ project of the first author in Computer Software
Engineering, under supervision of the second author. It implements the axioms of
the algebra of DEL. These consist of the axioms of (1) a distributive lattice of
propositions implementing a logic on propositions; (2) a quantale of actions imple-
menting a linear logic on actions; (3) the action of the quantale on the propositions,
enriching the propositional logic with updates; (4) dynamic modalities as adjoints
to update; and (5) epistemic modalities as adjoints to the endomorphisms of the
pair of quantale-module. Given the specification of a scenario, Aximo provides auto-
matic proofs of the dynamic epistemic properties that hold in the algebra generated
from the specification. We compute the worst case complexity of the program. The
complexity is based on the epistemic properties of states and actions involved in a
scenario, as well as the kernel of each action. Aximo is the first automated tool for
the algebra of DEL 4 , we have not yet compared its efficiency with that of DEMO [6],
which is a model checker based on the Kripke semantics of DEL. We aim to apply
Aximo to the verification of classical and quantum security protocols, these consti-
tute the ongoing work of the second author. Since Aximo has been written in a
modular way, we would hope that the relevant axioms of these applications (e.g.
hashes and signatures, non-local quantum co-relations) can be added on top of the
existing axioms of the algebra.

4 Because of the algebraic nature of the implemented logic and as pointed out by one of our referees, we
are not sure if Aximo is a theorem prover or a model checker, may be it is a bit of both!

2

Richards and Sadrzadeh

2 The Algebra

The algebra consists of a triple (M,Q, {appA}A∈A) where Q is a quantale, M is
its right module, and {appA}A∈A is a family of endomorphisms of the pair, i.e.
appA: (M,Q) → (M,Q). The signature of the quantale is (Q,

∨
, ·, τ,>,⊥) and the

signature of the module is (M,
∨

,
∧

,>,⊥). Moreover, the quantale acts on the
module via a binary operation − · − : M × Q → M . This structure has been
developed and referred to as a distributive Epistemic System in [2,9]. We briefly
recall it here by stating its axioms. We only state the binary versions of the axioms
to keep the presentation close to a logical view of the algebra 5 .

• Disjunction and conjunction. The axioms for joins, meets, > and ⊥ in both
quantale and module are the usual axioms, that is the Tarski-style semantic
axioms for disjunction, conjunction, true and false. For instance we have m ≤
>,⊥ ≤ m and also

If m ≤ m′′ and m′ ≤ m′′ then m ∨m′ ≤ m′′

If m ≤ m′ and m ≤ m′′ then m ≤ m′ ∧m′′

• Distributivity of composition over disjunction. The quantale has a non-
commutative resource sensitive binary operation 6 −·−:Q×Q → Q. It preserves
joins (in both arguments) and has a neutral element τ satisfying the following

(q1 ∨ q2) · q′ = (q1 · q′) ∨ (q2 · q′) q · τ = τ · q = q

• Distributivity of the action over disjunctions. The action of quantale on
the module preserves the disjunctions of both the quantale and the module

(m1 ∨m2) · q = (m1 · q) ∨ (m2 · q), m · (q1 ∨ q2) = (m · q1) ∨ (m · q2)

It is associative over the composition of the quantale and preserves its unit

m · (q · q′) = (m · q) · q′, m · τ = m

• Dynamic adjunction. Since the action of the quantale preserves arbitrary joins,
it has Galois right adjoints in both argument that preserve arbitrary meets and
>. We are interested in the adjoint in the first argument, which is denoted by
[q]m and satisfies the following axiom

m · q ≤ m′ iff m ≤ [q]m′

• Each element of the family of endomorphisms {appA}A is a pair of endomor-
phisms: one on the module and one on the quantale, that is appA = (appM

A :M →
M,appQ

A:Q → Q). These satisfy the following
· Distributivity of appM

A over disjunction. The endomorphisms on the mod-
ule preserve the disjunction and ⊥

appM
A (m1 ∨m2) = appM

A (m1) ∨ appM
A (m2), appM

A (⊥) = ⊥
· Distributivity of appQ

A over disjunction. The endomorphisms on the quan-
tale satisfy the disjunction and ⊥,

appQ
A(q1 ∨ q2) = appQ

A(q1) ∨ appQ
A(q2), appQ

A(⊥) = ⊥

5 All the axioms also holds for arbitrary meets and joins.
6 This is indeed the tensor ⊗ of non-commutative multiplicative linear logic. We denote it with the same
notation as for the action of Q on M .

3

Richards and Sadrzadeh

· Weak distributivity of appQ
A over composition. The weak version means

that we only ask for one direction of the usual distributivity as follows

τ ≤ appQ
A(τ), appQ

A(q · q′) ≤ appQ
A(q) · appQ

A(q′)

· Weak distributivity of appA over action of Q on M . The pair
(appM

A , appQ
A) satisfies the following

appM
A (m · q) ≤ appM

A (m) · appQ
A(q)

· Epistemic Adjunction. Each appA (on the quantale and on the module) has
a Galois right adjoint 2A that is meet and > preserving

2A(x1 ∧ x2) = 2Ax1 ∧2Ax2, 2A> = >
· The adjunction means that we have the following axiom for appA

appA(x) ≤ x′ iff x ≤ 2A x′

• Stabilizers and Kernels.
· We distinguish a special subset of the module Stab(Q) ⊆ M , whose elements

satisfy the following

φ ∈ Stab(Q) iff φ · q ≤ φ

· Each element of the quantale has a kernel ker(q) in the module for which we
have the following axiom

m ∈ ker(q) iff m · q = ⊥

3 Interpretation of the Algebra

We think of the elements of the module as logical propositions of the partial order
of the module as the logical entailment between propositions. The elements of the
quantale are communication actions and the join on the quantale stands for the
non-determinsitic choice of actions. So the order of the quantale is the order of
non-determinism. The action of the quantale on the module m · q is the update of
information in m by action q. Its right adjoint is indeed the weakest precondition
of Hoare logic and the dynamic modality of PDL and DEL. Our interpretation is
thus as follows

• [q]m is all the propositions that become true after applying action q to proposition
m. We read it as ’after doing action q proposition m holds’.

Each appA denotes the appearance of agent A as follows

• On the module, appM
A (m) is all the propositions that appear to agent A as true

where as in reality proposition m is true. We read it as ’the appearance of agent
A of proposition m’.

• On the quantale, appQ
A(q) is all the actions that appear to agent A as happening

where as in reality action q is happening. We read it as ’the appearance of agent
A of action q’.

The Galois right adjoint in each case is the epistemic modality: not necessarily
truthful knowledge or possibly wrong belief (in the context where no wrong knowl-
edge is allowed). That is

4

Richards and Sadrzadeh

• We read 2M
A m as ’agent A knows or believes that proposition m holds’.

• We read 2
Q
A q as ’agent A knows or believes that action q is happening’.

The set Stab(Q) is interpreted as the set of facts. These are elements of the module
that are stable under any update. The reason for stability is that our actions are
epistemic and cannot change the facts of the world. If a fact is true before an
action, it will stay true afterwards. The kernel of each action can be seen as its
co-precondition or co-content, that is the set of states to which it cannot apply. For
details and examples see [2,9].

From Kripke Structures to the Algebra
Assume given a Kripke structure (S, {RA}A∈A) with S a set of states and RA ⊆

S × S a family of accessibility relations. We lift this relational structure to the
algebraic structure of the powerset of its states, that is P(S). The appA maps arise
from the accessibility relations of the Kripke structure, since there is an isomorphism
between relations on a set RA ⊆ S × S and join preserving maps on the powerset
of the set appA : P(S) → P(S). The isomorphisms works as follows:

for x, y ∈ S, y ∈ appA({x}) iff (x, y) ∈ RA

The knowledge modality defined on the subsets of states as below

for T ⊆ S, 2A T = {s ∈ S | appA(s) ⊆ T}

is exactly the right adjoint to the appA map on the P(S), that is

appA({s}) ⊆ T iff {s} ⊆ 2A T

Given the set of atomic actions Σ involved in a scenario, the quantale is generated
by first closing Σ under sequential composition and obtain Σ∗ (the free monoid or all
the words over Σ) and then taking its powerset, that is Q := P(Σ∗). Following the
approach introduced in DEL [1] and to be able to encode mis-information actions
such as cheating and lying, we assume there is a Kripke structure on the atomic
set of actions. In an action Kripke structure (Σ, {R′

A}A∈A) we read (σ, σ′) ∈ R′
A as

whenever action σ is happening, agent A thinks that action σ′ is happening. These
accessibility relations are point wisely extended to Σ∗ and in the same way as on the
module, they give rise to the appearance maps appA:P(Σ∗) → P(Σ∗). The effect of
the actions on the states is modeled in DEL by taking the update product of state and
action kripke structures. We have proved in [2,9] that (P(S∗),P(Σ∗), {appA}A∈A)
forms an epistemic system where S∗ is the closure of states under the update prod-
uct.

4 Design, Data structures, and Complexity

Once provided with the specification of an interactive multi-agent scenario, Aximo
provides automatic proofs for the properties of the scenario. The following informa-
tion are needed for the specification of a scenario (1) the states and actions involved
in the scenario, (2) the appearances of each to the agents involved, (3) the facts that
each state satisfies, and (4) the kernel of each action. Aximo treats these assump-
tions as (or assumes these assumptions are) inequalities on the epistemic system
generated from the states and actions. One then poses questions to Aximo that

5

Richards and Sadrzadeh

whether a certain property holds in the epistemic systems of the specified scenario
and Aximo replies with a yes-no answer and provides the details of a proof or failure.
The answer is provided by applying to the inputted property the generic axioms
of epistemic systems (enumerated in sec.2) and the specific axioms that encode the
assumptions of the specified scenario, for example the kernel and fact inequalities.

In order to see this, we go through a simple example. The generic proof steps
for all scenarios are depicted in the high level flow chart of the Aximo (for more
details see appendix). Assume a coin tossing scenario with two agents where agent
1 tosses a coin and covers it. None of the agents know on what face the coin has
landed. We encode this scenario in an epistemic system (M,Q, {appA}A∈A) with
states s(0), s(1) ∈ M , agents 1, 2 ∈ A, and facts f(0), f(1) ∈ Stab(Q). State s(0)
is the state in which the coin has landed heads and fact f(0) is the fact saying ’the
coin is heads’. We thus have s(0) ≤ f(0) and similarly s(1) ≤ f(1) for the state
in which the coin is tails and its corresponding fact. Since both of the agents are
uncertain about the face of the coin, we have app1(s(0)) = app1(s(1)) = s(0)∨ s(1)
and similarly for 2. Assume now that 1 uncovers the coin and publicly announces
that it is heads. So we have one action a(0) ∈ Q that appears as it is to all the
agents since it is public, so app1(a(0)) = app2(a(0)) = a(0). Since a(0) is the
announcement of heads, it cannot apply to the states that satisfy tails, that is
s(1) ≤ ker(a(0)) We want to prove that after the announcement of heads, agent 2’s
uncertainty gets waived and he gets to know the fact that the coin is heads, that is
s(0) ≤ [a(0)]22f(0), or in the notation of Aximo s(0) ≤ d(0)e(2)f(0). In order to
prove this, Aximo proceeds via the following steps:

(1) By dynamic adjunction this inequality holds iff we have

s(0) · a(0) ≤ e(2)f(0)

(2) By epistemic adjunction this is iff

app2(s(0) · a(0)) ≤ f(0)

(3) By weak distributivity of appearance over update it is enough to prove

app2(s(0)) · app2(a(0)) ≤ f(0)

(4) By assumptions of the scenario this is equivalent to

(s(0) ∨ s(1)) · a(0) ≤ f(0)

(5) By distributivity of update over disjunction this is equivalent to

(s(0) · a(0)) ∨ (s(1) · a(0)) ≤ f(0)

(6) By the definition of disjunction, we have to prove both of these two cases

s(0) · a(0) ≤ f(0), s(1) · a(0) ≤ f(0)

(7) For the second one we have s(1) ≤ ker(a(0)) and thus s(1) · a(0) = ⊥ ≤ f(0).

(8) The first one follows since we have s(0) ≤ f(0) by assumptions, since update is
order preserving we obtain from this s(0) · a(0) ≤ f(0) · a(0). Now since facts are
stable under any update we get f(0) · a(0) ≤ f(0).

6

Richards and Sadrzadeh

Start

An optional stage which uses the rules of distributivity in
conjunctions and disjunctions to rearrange the expression into
a form which can be more easily enumerated into candidate
solutions (for example, by grouping conjunctions together).

O1: Rerarrangement of Expression

An optional stage in which the original expression is
broken down into anumber of candidate expressions
(only one of which needs to be solved) based on the

conjunctions/disjunctions present. This stage is required for
complex conjunctions/disjunction support to be present.

Appearance symbols are evaluated by a recursive process
that gets the respective appearance of states/ations for a
given agent (done by calling the axiom/assumption store).

Where appearances have returned multiple states or actions,
the expression is split into a number of sub-expressions
covering all possible constructions that can be made.

States from the left hand side of expressions are checked to
see if they satisfy the facts on the right hand side (by calling
the axiom/assumption store). In the case of a positive result,

the sub-expression is eliminated.

For each remaining sub-expression, a new expression is
constructed consisting of the state on the left hand side, and

the kernel of the first action on the right hand side. An attempt
is then made to solve this (recursively). If the process

suceeds, the sub-expression can be eliminated. If it fails the
action is added to the left hand side of the new expression and

the kernel of the following action is used for the right hand
side. This process continues until either the sub-expression is

eliminated, or all actions have been iterated through, (in
which case the sub-expression cannot be eliminated).

If all sub-expressions were eliminated, then the process
returns a positive result to indicate that the current

expression was provable.

Modalities are removed from the right hand side of the
expression by adjusting the left hand side accordingly.

Dynamic Modalities become action symbols, and
epistemic modalities become appearances.

1: Modality Elimination

2: Appearance Evaluation

3: Enumeration into Sub-Expressions

4: Elimination by Facts

5: Elimination by Kernels

6: Result Checking

O2: List Candidate Solutions

A
Axioms and assumptions of the scenario are stored outside of

the main algorithm in a separate class. This class is probed
throughout the reduction/solving process for needed information,

and can easily be subclassed such that responses can be
obtained in different ways (generated mathematically,

ask the user, etc.).

A: Axioms/Assumptions Store

A

A

A

Finish

S

S

High Level Flow chart of Aximo

The assumptions of a scenario are either read from a text input file or asked
from the user and assigned interactively. While computing, all the computation
steps are broadcasted to the screen. If Aximo fails to verify the input inequality
and thus produces a no answer, the user can find out where things went wrong by
following the series of steps on the screen. Internally, inequalities are stored as a
pair of classes each representing a list (for symbols on the left and right hand sides
of the expression respectively). These are pointed to from an encapsulating class
which is used to provide expression-wide functionality and handle the inequality
from a single pointer. By using two seperate list classes, modifications and function
calls can be made on each side of the inequality independantly from the other,
reducing difficulty of implementation. The solving process uses a list of lists to keep
track of it’s progress. Each item in the first list represents the various candidate
solutions, with the entry itself being a list to all the sub-inequalities present in that
particular candidate. It is worth noting that the size of these lists can be quite
dynamic, expanding as new candidates/sub-inequalities are created, and shrinking
as sub-inequalities are successfully eliminated.

The complexity of the program is in direct relation with the number of cases
it has to check to verify the original inequality. Assume an input inequality where

7

Richards and Sadrzadeh

we have m dynamic modalities for actions a1 · · · am and n epistemic modalities
for agents 1 · · ·n, and one fact f(l). After applying the dynamic and epistemic
adjunctions in total n×m times, we have to verify the following

appn(· · · app1(s)) · appn(· · · app1(a1)) · · · · · appn(· · · app1(am)) ≤ f(l)

If we take k to be the maximum number of choices in the agents’ appearances of
states and actions, then in the worst case each nested appearance expression, e.g.
appn(· · · app1(s)) provides us with kn choices. Because of distributivity between
disjunction and update, in the worst case one ends up to verify an exponential
number of inequalities

(kn)(1+m)

If all these inequalities are true, then the original one is true. Otherwise, when the
first false inequality is encountered, the program will stop and return a no answers
for the original property. There are two steps to verify each choice: checking if the
state satisfies the fact and using the axiom for facts. For example for an inequality
of the form s′ · a′1 · · · · · a′m ≤ f(l), the program tries to verify the following by
questioning the user s′ ≤ f(l). If this fails, that is the state does not satisfy the
fact, then the program proceeds with asking the user about the kernel of the actions
and then recursively calls itself to verify the kernel inequalities. The first recursive
call is to verify s′ ≤ ker(a′1). If we assume ker(a′1) = e(j) · · · e(n′− j +1)f ′(l′), then
we get kn′

cases. If one of these fails, so does the inequality s′ ≤ ker(a′1) and the
program moves to the second expression s′ ·a′1 ≤ ker(a′2) and so on. The worst case
occurs when the program gets to the following inequality

s′ · a′1 · · · · · a′m−1 ≤ ker(a′m)

The total number of cases for verification of the kernel will be
∑m

i=0(k
n′

)i. Repeat
this for all the inequalities obtained before, that is (kn)(m+1) and we get

(kn)(m+1) ×
m∑

i=0

(kn′
)i = (kn)(m+1) × 1− (kn′

)m+1

1− kn′

by the convergence of geometric series. We thus obtain the following

Proposition 4.1 The complexity of Aximo is of the order k2n′′(m+1) where m is
the number of actions in the input equality, n′′ = max{n, n′} is the maximum of
the number of epistemic modalities in the input inequality and in kernels of the
actions of the input inequality, and k is the maximum of the number of choices in
the appearance of the initial state and the actions of the input inequality.

Proof. Directly follows from the above calculation of the number of inequalities to
be verified in the worst case. 2

The number of choices in the appearance of actions determines what kind of
agents are involved in a scenario, for example honest, cheating, or suspicious. By
fixing this number in each case, we obtain a better complexity bound:

Corollary 4.2 In a scenario where either no one cheats or no one suspects the
cheating, the complexity of Aximo becomes kn′′ × m2. If the cheating action is
suspected by at most w alternative actions by all the agents, the complexity becomes
k2n′′ × wmn′′

.

8

Richards and Sadrzadeh

Proof. If there is no cheating, all the actions are assumed to be public, so the
appearance of them to all the agents is identity. If there is cheating but the outsiders
do not suspect it, the appearance of the cheating action to the cheating agents is
identity and to the outsiders is the τ action (they think nothing has happened).
In both of these cases the number of cases to be verified is k2n′′ × wmn′′

. But if
the outsiders suspect the cheating, the number of choices in their appearance of
the cheating action, that is our variable w, may vary. In this case the number of
cases to be verified becomes kn × wm × kn′ ×

∑m
i=0(w

n′
)i . For instance, in the

setting of security protocols the agents may suspect that either their messages were
intercepted or not (w = 2), for more examples see [9]. 2

5 Test Cases

The first test case is our simple coin toss example with cheating and lying actions.
The second test case is the milestone puzzle of muddy children and new versions
of it with cheating and lying. These two represent the two ends of the spectra of
scenarios of interest to us: in the coin toss we have one dynamic modality m = 1
and many epistemic modalities, where as in the muddy children, we deal with many
dynamic modalities and only one epistemic modality n = 1.

Coin-Toss:
Consider again our above scenario and its encoding, recall that there are 2 agents,
1 throws a coin and covers it in his palm. Each agent thinks either the coin is heads
f(0) or tails f(1). For instance the program returns a yes answer for the following
inequalities

s(0) ≤ e(1)(f(0) + f(1)), s(0) ≤ e(1)e(2)(f(0) + f(1))

In the same lines, the program will return a no answer for the following

s(0) ≤ (e(2)f(0)&e(1)f(1))

After 1 announces that the coin is heads (action 0) we have a yes to the following

s(0) ≤ (d(0)e(2)f(0))&(d(0)e(1)f(0)), s(0) ≤ d(0)e(2)e(1)e(2)e(1)f(0)

If 1 lies, we have a new action a(2) in which 1 announces tails when he sees heads.
The appearance of this action is identity to 1, that is app1(a(2)) = a(2), but others
are not aware of the lying and think that the usual truthful announcement is hap-
pening, that is app2(a(2)) = a(0). The kernel of this action is where the coin has
landed tails s(1) ∈ ker(a(2)). The program returns a yes answer to the following

s(0) ≤ d(2)e(2)f(1), s(0) ≤ d(2)e(1)e(2)f(1), s(0) ≤ d(2)e(2)e(1)f(1)

According to the last inequality agent 2 has obtained a piece of wrong knowledge
as a result of agent 1’s lying: 2 knows that 1 knows that the coin is tails, where
as 1 knows that it is heads, that is s(0) ≤ d(2)e(1)f(0). The output screen for the

9

Richards and Sadrzadeh

inequality s(0) ≤ d(2)e(1)f(0) is presented below

Enter expression: s(0)〈= d(2)e(1)f(0)
Solving- s(0)〈= d(2)e(1)f(0)
Rearrangement/Optimisation-s(0)〈= d(2)e(1)f(0)
Candidate Solutions- s(0)〈= d(2)e(1)f(0)
Attempting to Solve Candidate- s(0)〈= d(2)e(1)f(0)
Candidate Enumerated-s(0)〈= d(2)e(1)f(0)
Dynamic Modalities Removed-s(0)a(2)〈= e(1)f(0)
Epistemic Modalities Removed- app(1|s(0))app(1|a(2))〈= f(0)
Apearances Evaluated-s(0, 1)a(2)〈= f(0)
Further Enumeration-s(0)a(2)〈= f(0), s(1)a(2)〈= f(0)
Parts Remaining After Elimination by Axioms-s(1)a(2)〈= f(0)
Parts Remaining After Elimination by Known Solution- s(1)a(2)〈= f(0)
Performing Elimination by Action Kernels Trying- s(1)〈= kernel(a(2))
-as- s(1)〈= f(1) - Solving s(1)〈= f(1)
- Rearrangement/Optimisation- s(1)〈= f(1)
- Candidate Solutions- s(1)〈= f(1)
- Attempting to Solve Candidate- s(1)〈= f(1)
- Candidate Enumerated- s(1)〈= f(1)
- Dynamic Modalities Removed- s(1)〈= f(1)
- Epistemic Modalities Removed- s(1)〈= f(1)
- Apearances Evaluated- s(1)〈= f(1)
- Further Enumeration-s(1)〈= f(1)

- Parts Remaining After Elimination by Axioms- - *none*
- --Expression Passed--
Parts Remaining After Elimination by Action Kernels- *none*
--Expression Passed--
Try another expression? Enter Y/N:

A sample output screen of Aximo

Assume we are interested in verifying the following general inequality

s ≤ d(0)e(1) · · · e(n)f(0)

In all these properties, we only have one action, that is m = 1 and the kernels have
no epistemic modalities, that is ker(0) = ker(2) = f(1), so we have n′ = 0. By
corollary 4.2, in this case one obtains a better complexity bound as shown below:

Agents App. of actions No. cases

honest identity 2n

cheating with no suspicion singleton 2n

cheating with suspicion | appi(q) |= w 2n × w

Muddy children with cheating and lying:
The puzzle goes like this: n′ children are playing in the mud and k′ ≥ 1 of them have
dirty foreheads. Each child sees other children’s foreheads but cannot see his own.
Their father announces ’at least one of you is dirty’, and asks ’do you know if you are
dirty?’. The children look around and simultaneously reply no! We prove that after
k′ − 1 rounds of no answers, all the dirty children get to know that they are dirty.
This scenario is encoded in an epistemic system (M,Q, {appA}A∈A) with children as
agents {i | 1 ≤ i ≤ n′} ⊆ A. The states of the system are denoted by sβ for β ⊆ A
where each sβ represents the states in which the children in β are dirty and the
children not in β are clean. The appearance of each child of each state is appi(sβ) =
sβ∪{i}∨ sβ\{i}, that is the choice of two states: in one he is dirty and in another one
he is clean. The set of facts include {f(i) | 1 ≤ i ≤ n′} ∪ {f(i′) | n′ + 1 ≤ i′ ≤ 2n′}

10

Richards and Sadrzadeh

where f(i) stands for the fact ’child i is dirty’ and f(i′) for the fact ’child i′ is
clean’. Each state satisfies its corresponding fact, that is sβ ≤ f(i) for all i ∈ β and
sβ ≤ f(i+n′) for all i /∈ β. The actions of the epistemic system are father’s original
announcement a(0) and the children’s simultaneous no answers (all encoded in the
same action) a(1). These actions are public announcements, so their appearances
to each child is identity, that is appi(a(0)) = a(0) and appi(a(1)) = a(1). The kernel
of a(0) is f(0), that is the fact standing for ’no child is dirty’. The kernel of the no
answers a(1) is

∨n
i=1 e(i)f(i), that is the state in which the children know that they

are dirty. After encoding the above assumptions in Aximo, it provides a yes answer
to the following inequality for all 1 ≤ i ≤ k′

s{1,2,···,k′} ≤ d(0) d(1) · · · d(1)︸ ︷︷ ︸
k′−1

e(i)f(i)

That is, after father’s initial announcement and k′ − 1 rounds of no answers, all
the dirty children get to know that they are dirty. The yes answer provided by
Aximo means that the inequality holds in an epistemic system satisfying the above
assumptions.

Now consider a cheating version of the above scenario in which just before the
k′ − 1’th round of no answers, all but one of the dirty children (say, all except 1),
cheat by secretly telling each other that they are dirty. This scenario is encoded
in an epistemic system similar to the above, but where we also have a cheating
action a(2) that can only apply to states in which children 2 to k′ are dirty, that
is the states satisfying

∧k′

j=2 f(j). The cheating action appears as it is to all the
cheaters, that is appj(a(2)) = a(2), and as ’nothing’ to all the other children, that
is app1(a(2)) = appl(a(2)) = τ for k′+1 ≤ l ≤ n′. As a result of the cheating, in the
k′ − 1’th round, all the dirty cheating children will announce that they know they
are dirty where as 1 answers as usual. We denote this round of mixed answers in the
public announcement a(3) whose kernel and appearance are easily determined. After
encoding all these assumptions in Aximo, we obtain a yes answer to the following
inequality

s{1,2,···,k′} ≤ d(0) d(1) · · · d(1)︸ ︷︷ ︸
k′−2

d(2)d(3)e(1)f(n′ + 1)

which says that child one will wrongly believe that he is clean.
For a version with lying children assume a scenario in which there is only one

dirty child, that is k′ = 1 and he lies in his answer (by saying no instead of yes) in
the first round. We encode this scenario in an epistemic system in a similar fashion
as the above scenarios where moreover we have a lying action a(4), which can only
apply to the states that moreover satisfy e(1)f(1). This action appears as identity
to the lier, that is app1(a(4)) = a(4) where as all the other children think that it is
an honest no answer, that is appj(a(4)) = a(1) for 2 ≤ j ≤ n′. After encoding these
assumptions in Aximo, we obtain a yes answer to the following

s{1} ≤ d(0)d(4)e(j)f(j)

This means that the clean children 2 ≤ j ≤ k′ will wrongly believe that they are
dirty. The complexity analysis for these scenarios are obtained in a similar way to
the coin toss, that is by applying corollary 4.2.

11

Richards and Sadrzadeh

6 Challenges and Future Work

Theoretical challenges: Distributivity, Negation, Preservation.
(1) For simplicity of implementation we work with distributive epistemic systems.
As discussed in [2,9], distributivity is not necessary to prove properties of puzzles
like muddy children. We would like to extend our software to the non-distributive
case. (2) Following [2] , Aximo does not have negation in its language and it uses
adjunction rather than De Morgan dualities to reason about modalities. However,
it is easy to include negation: by adding the axioms to the appropriate setting,
e.g. Boolean negation to a Boolean algebra and Intuitionistic negation to a Heyting
Algebra module. It is nice to note that even in the presence of either of these, our
current epistemic operators will not become De Morgan duals. (3) The recursive
calls to the solver for verification of the kernel inequalities is one of the complexity
bottlenecks of Aximo. This can be overcome by using stability under update prop-
erties (i.e. preservation theorems). The preservation of facts under any update is
the simplest such result. In recent work [4] we have shown that any state is stable
under any action with a positive content. Lack of negation in our setting means
that we need a more refined version of this result, that is, one that distinguishes
formulas in a positive fragment and in the presence of kernel rather than content.
This is a nice theoretical challenge that came out of our implementation.

Practical challenges: Dynamic kernels, Memorizing, Garbage collection
(1) In order to stop Aximo from looping indefinitely, we only allow epistemic modal-
ities in the kernels of actions. A natural generalization would be to relax this and
use other methods of preventing an infinite loop. One possibility would be to keep
track of sub-inequalities and return (with a no answer) from the loop if they overlap
with a kernel inequality. Of course in this case the no answer will not mean that
the inequality was false. (2) While solving the puzzles, we noticed that there is a
good number of overlaps between the sub-inequalities generated from the choices
in appearances, for example for the coin toss this is a 1/2 ratio. In order to avoid
repetition, we aim to detect these overlaps. (3) The main algorithm in Aximo re-
lies heavily on list manipulation and contains a lot of dynamic memory allocation,
making it more suitable to a language such as Digital Mars D which supports list
handling and garbage collection (for memory handling) at the compiler/language
specification level, thus improving overall performance. As D is largely interoperable
with C, porting the algorithm to D would not reduce its accessibility to developers.

Comparison.
DEMO is a model checker [6] based on the underlying Kripke semantics of DEL. It
inputs the initial kripke structure of the scenario and the kripke structures of the
actions involved. Its main task is computing the update product of these structures,
as introduced in [1], and then browsing it to model check a dynamic epistemic
property. We defer a formal comparison of Aximo and DEMO to future work and only
hint to the fact that since Aximo is based on a non-Boolean propositional setting
and thus does not have negation, it stores less information about states than DEMO
whose propositional language is Boolean.

12

Richards and Sadrzadeh

Acknowledgement

We thank C. Ĉırstea for her useful comments and V. Sassone for his kind advice.

References

[1] A. Baltag and L.S. Moss, ‘Logics for epistemic programs’, Synthese 139, 2004.

[2] A. Baltag, B. Coecke and M. Sadrzadeh, ’Epistemic actions as resources’, Journal of Logic and
Computation 17(3), 555-585, 2007.

[3] J. van Benthem, ’One is a Lonely Number’, Technical Report PP-2002-27, ILLC, Amsterdam, 2002, to
appear in P. Kopke, ed., Colloquium Logicum, Munster, 2001, AMS Publications.

[4] C. Cirstea and M. Sadrzadeh, ’Coalgebraic Epistemic Update without Change of Model’, Lecture Notes
in Computer Science 4624, pp. 158-172, June 2007.

[5] W. van Der Hoek and M. Wooldridge, ’Time, Knowledge, and Cooperation: Alternating-Time Temporal
Epistemic Logic’, COORDINATION 2002.

[6] Jan van Eijck, CWI, Amsterdam http://homepages.cwi.nl/∼jve/demo/DEMO.pdf.

[7] R. Fagin, J. Y. Halpern, Y. Moses and M. Y. Vardi. Reasoning about Knowledge. MIT Press, 1995.

[8] S. Richards and M. Sadrzadeh, Aximo, downloadable from
http://www.charcoalfeathers.net/research/projects/aximo, August 2007.

[9] M. Sadrzadeh, ’Actions and Resources in Epistemic Logic’, Ph.D. Thesis, University of Quebec at
Montreal, 2005, www.ecs.soton.ac.uk/∼ms6/all.pdf.

13

Richards and Sadrzadeh

7 Appendix

Start
Obtain the expression to
be evaluated as a list of

symbols.

Type of
symbol?

For each symbol on
the right hand side:

1

1

Modality
Elimination

Remove the
symbol from the
right hand side

Replace each LHS
symbol 'L' with an

appearance symbol
pointing to L and the
agent of the modality.

epistemic
modality

Add a matching
action as the last

symbol on the
left hand side.

d
y
n
a
m

ic
m

o
d
a
lity

fact symbol

Break.
(fact symbol sould
be the last symbol)

2

2

Appearance
Evaluation

next symbol

For each symbol on
the left hand side:

Skip/do nothing.

Appearance
symbol?

next symbol

n
o

yes Symbol type
pointed to?

Return state/action
appearance for the
agent by using the
initial assumptions.

next symbol

state/action

Recursivley call the
pointed symbol to

evaulate itself.

Replace appearance
symbol with the
evaluated reult.

a
p
p
e
a
ra

n
c
e

3

3

Enumration Into
Sub-Expressions

Modify the related
symbol in each new

expression to contain
one each of the states.

Modify the related
symbol in each new

expression to contain
one each of the actions.

Remove the
current expression

from the list.

Create a duplicate of
the expression at the

end of the list for
each held state.

Action symbol
holds more

than 1 action?

Create a duplicate of
the expression at the

end of the list for
each held action.

Type of
symbol?

yes

yes

state

action

State symbol
holds more

than 1 state?

no - next symbol
Add the

expression
 to the list.

For each symbol on
the left hand side:

Create a new list
to hold a set of
expressions.

Select the next
expression in

the list.

next expression

4

4

Elimination
By Facts

Extract the state
from the LHS.

Extract the fact
from the RHS.

Check the state
satisfies the fact, by

looking at the
initial axioms.

For each expression
in the list.

Does the state

satisfy the fact?

Remove the
current expression

from the list.

yes

n
o

next expression

5

Elimination
By Kernels

5

Select the next
expression in

the list.

Select the next
action in the
expression.

Create a temporary
LHS using the state
from the expression.

Add the actionto
the temporary
left hand side.

Construct a new
expression from the

temporary LHS, using
kernel of the action

for the RHS.

Axioms/Initial assumptions.
Can be hard-coded

or inputted as required

A

A

A

A

Call the algorithm

recursively with the
new expression.

1

Was the new
expression
solvable?

Remove the
current expression

from the list.

n
o

yes

next expression

6

6

Are there any
expressions left

in the list?

Finish

The expression
was solvable.

The expression
was not solveable.

no

yes

14

	Introduction
	The Algebra
	Interpretation of the Algebra
	Design, Data structures, and Complexity
	Test Cases
	Challenges and Future Work
	Acknowledgement
	References
	Appendix

