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Abstract 
Patients with post-stroke hemiplegia may have 
impaired upper limb function related to motor 
control, weakness and spasticity. Evidence has 
shown that robotic therapy or Functional 
Electrical Stimulation can improve 
impairment levels and possibly function. To 
date there has been limited research into 
possible benefits gained by combining the two 
techniques. This is also true of the application 
of Iterative Learning Control to problems that 
are not concerned with industrial processes. 
The aim of this project is to test the feasibility 
of re-educating upper limb movement post 
stroke, using ILC mediated by FES using a 
robot. 
 
In the initial phase of this project, models have 
been created using data from eight 
neurologically intact subjects. Muscle activity 
was recorded using surface electromyography 
in a cross sectional observation study during 
which participants undertook tracking tasks 
using nine different trajectories, with their 
forearm constrained in a two dimensional 
plane by a robot. Kinematic and kinetic data 
was then collected, used to produce a dynamic 
model for each subject and to derive iterative 
learning control laws. These algorithms were 
applied to adjust the level and timing of 
electrical stimulation, to achieve accurate arm 
tracking using the robot over the course of six 
iterations. 
 
1 Introduction 
Following stroke many patients have a complex 
and varied pattern of motor and functional 
impairment in the hemiplegic upper extremity.  
Systematic reviews of the robot therapy 
literature for the upper limb suggest that robot 
aided therapy improves motor control of the 

proximal upper limb and may improve 
functional outcomes [1-3]. There is also a body 
of clinical evidence to support the use of FES to 
improve motor control [4]. However there is 
little research that has combined these two 
fields. 
 
It is known that when stimulation is associated 
with the person’s intention to move the effect is 
enhanced [5]. However, until now, techniques 
have not allowed feedback which could be used 
to adjust stimulation parameters and provide 
more precise feedback. This research seeks to 
address these issues, using a robot and ILC 
mediated by FES. ILC has its origins in the 
control of processes that repetitively perform a 
task with a view to improving accuracy from 
trial to trial by using information from previous 
executions of the task. The classic example is 
the area of trajectory following in industrial 
robot applications, but can it be usefully applied 
to neurological rehabilitation? 
 
To answer this question, a study is in progress 
in which ILC will be used to control FES 
applied to appropriate muscles of stroke 
patients, to enable them to accurately track a 
number of reaching trajectories. Following 
repeated accurate tracking the stimulation will 
be reduced, to encourage optimal voluntary 
contribution to the task; ensuring that the 
patient is always working at the limit of their 
ability. 
 
Phase 1 of this project comprises tests 
conducted with unimpaired subjects to produce 
a model of their voluntary tracking ability and 
to test the ability of ILC to correct tracking 
error via stimulation. 
 
The model uses normal activation sequences 
and kinematic characteristics recorded during 
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gravity eliminated reaching tasks. The ILC 
controller then utilises the model to govern the 
stimulation applied, in order to eliminate error 
during tasks in which unimpaired subjects 
provide no active movement. Furthermore, the 
model will also be used to inform when to 
apply stimulation in stroke patients (although 
effects due to impairments such as spasticity 
will be taken in account) and will be used as a 
tool with which to analyse their results. 

-0.6

 
2 Methods 
As a major purpose of phase one is to provide a 
normative data set, in order to identify which 
muscles to stimulate in phase two, only normal 
healthy adults were chosen to participate. 
During the second phase, the technique will be 
applied to a small sample of stroke patients. 
 
2.1 Participants 
Eight neurological normal participants aged 
fifty years and over were recruited as 
representative of stroke patients. Participants 
gave written informed consent, and ethical 
approval (S05-12/1) was granted. 
 
2.2 Interventions 
Visit 1 – Identification of normal muscle 
activation patterns during different trajectories: 
EMG electrodes were attached to the 
participant’s triceps, biceps, anterior deltoid, 
upper, middle and lower trapezius and 
pectoralis using a standard procedure [6]. They 
were then seated in front of the robot at a height 
which allowed normal shoulder positioning, 
and restraining seat belts were used to limit 
trunk movement. Their arm was placed in the 
robot arm holder which had a Perspex layer 
over the grip with a central target area marked 
with a cross wire. An overhead projector 
displayed an image of an elliptical trajectory 
with a moving red dot. The participant then 
attempted to follow nine different trajectories 
(in three different directions, at three different 
lengths, speeds and resistances). Each trajectory 
was calculated depending on the subject’s 
maximum reach capability and biometrics, an 
example is shown in Figure 1. 
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Figure 1: Arm position and reference trajectory. 
 
Visit 2 – Modelling and application of ILC: 
Participants were positioned as in Visit 1, and 
were asked to relax. To provide data for the 
dynamic model, the arm was moved by the 
robot in different directions at varying speeds. 
The maximum comfortable level of stimulation 
was then identified and used as an upper limit. 
The sequence of movements was then repeated 
whilst using stimulation (asymmetric, biphasic, 
40Hz fixed amplitude variable pulse width 0-
300µs with a resolution of 1µs) to identify 
parameters in a model of the triceps muscle.  
Finally, the subject was again asked to relax 
their arm and to shut their eyes, so they did not 
anticipate movement. Iterative learning control 
mediated by ES was then used to control the 
movement of their arm over six iterations of 
selected trajectories. During these, the action of 
the robotic arm was firstly to make the 
movement feel ‘natural’ to the subject. 
Secondly, to provide a minimal level of 
assistance to ensure the task was achievable, yet 
allow the stimulation to drive its completion 
(the robot provided an assistive torque about the 
shoulder only when stimulation produced a 
torque about the elbow). 
 
3  Results 
The robot was designed and constructed at the 
University of Southampton [7]. 
 
3.1 EMG data during gravity eliminated 
reaching tasks. 
EMG data was bandpass filtered (Butterworth 
10-500Hz), full wave rectified, smoothed 
(moving average 0.1s window) and normalised 
to maximum voluntary isometric contraction 
data. For each reaching task the mean data for 
all subjects was calculated and then integrated 
to produce a cumulative plot showing the 
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relative activations of each muscle (Figure 2 
shows a plot for one of the nine tasks). 
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Figure 2: Cumulative normalised EMG during 
one reach and return task (‘●’ at peak rate). 
 
3.2 Tracking error data during gravity 
eliminated reaching tasks. 
The mean tracking error over each trajectory for 
all subjects was calculated using: 
i) Voluntary movement (without stimulation,     

performed three times)  
ii) ILC mediated by FES (without voluntary 

movement, performed six times)  
 
Mean error values for each case are shown in 
Figures 3 and 4 respectively. FES was not 
tolerated by one subject and could not generate 
sufficient force in two others, so these are 
absent from Figure 4. 
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Figure 3: Mean error against iteration number 
using no stimulation. 
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Figure 4: Mean error against iteration number 
using ILC mediated by FES. 
 

4  Discussion and Conclusions 
The gradient of the cumulative normalised 
EMG graph represents the rate of increase of 
EMG activity. The ‘●’ symbol indicates the 
centre of the 2 second interval in which the 
muscle was most active. The end point 
amplitude of each muscle corresponds with its 
total contribution to the completion of the task. 
Cumulative EMG graphs have been drawn for 
each trajectory to enable a simple 
characterisation to be constructed of muscle 
activation patterns in unimpaired subjects. 
 
Iterative Learning Control mediated by FES has 
been applied to enable unimpaired subjects, 
contributing no voluntary movement, to track 
trajectories; the accuracy achieved within six 
iterations is comparable with voluntary 
movement without stimulation.  
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