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Abstract: Planar photonic crystal waveguide structures have been
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hensive numerical calculations have been performed and compared to
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waveguides. It is found that within the experimental fabrication tolerances
the calculations correctly predict the measured transmission levels and other
major transmission features.
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1. Introduction

The concept of photonic crystals (PhCs) originated in the late 1980s [1,2] and these structures
are foreseen to be important building blocks in future optoelectronic communication networks.
In the beginning, the PhCs were intended for controlling spontaneous emission in optical semi-
conductor components by exploiting extraordinary properties of periodic structures [3].

Unfortunately, the practical realization of PhC structures in optics was strongly hampered
by a number of obstacles. In this paper we will focus on some the theoretical aspects. Among
these, the lack of fast and reliable 3D numerical tools, which are able to cope with fully vecto-
rial Maxwell equations, was a major limitation. The global problem of known numerical recipes
was their unstable behavior in a system that includes regions with large difference in their di-
electric constant. Needless to say, the requirements for modelling the PhCs are therefore based
on the stability properties of the numerical techniques, when handling such abrupt discontin-
ues in the inhomogeneous space functionε(r ). One way of overcoming the discontinuities is
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to increase the spatial resolution of the system, e.g. to increase the number of grid points as-
sociated with the characteristic length of the structure. The characteristic length of the PhC is
the lattice constantΛ of the periodical pattern. However, increasing the spatial resolution heav-
ily increases the complexity of the computation as the needed computation resources for most
of the methods well known in physics and applied in early era of the PhC modelling scaled
nonlinearly with the growing size of the system.

In band diagram calculations of perfect PhCs there is no need to simulate the complete sys-
tem. It is sufficient to exploit the translation symmetry of the PhC. Thus, only a unit cell of
lattice structure must be simulated. When, in turn, the concept of the PhC waveguide (PhCW)
appeared, it led to the supercell approach, which could be applied in the computation of pla-
nar PhCW structures by choosing the supercell correctly and avoiding any coupling between
neighboring supercells. However, full 3D simulations of transmission and reflection were still
beyond the range of the existing techniques.

Fortunately, researchers turned to the finite-difference time-domain (FDTD) scheme, known
in electromagnetics [4]. Attempts to apply this scheme in the modelling of PhCs were rather
successful. Meanwhile, special absorbing boundary conditions, so called perfectly matched lay-
ers (PMLs), had been developed that very effectively terminate numerical volumes in 2D and
3D leading to only very small back reflections. The FDTD method implemented with PMLs has
recently been widely accepted as a very powerful computational technique in the modelling of
PhCs. The complexity of the FDTD method scales only linearly with time and space. Thus,
the FDTD scheme is favored compared to most other numerical methods for PhC simulations.
However, the FDTD scheme is very demanding in terms of memory and speed of the available
computer hardware when applied to practical 3D problems such as analysis of transmission
spectra of PhCW in layered structures with 2D patterning. The method does not take full ad-
vantage of the periodicity, unlike what is the case in most band diagram calculations. The use
of symmetry conditions may only reduce the required memory resources by a factor of four for
straight PhCWs. Other passive system elements, such as Y-splitters, zigzags-bends, and vertical
couplers have even less symmetry.

The application of FDTD codes to various problems in PhCW design has recently been
demonstrated in Refs. [5–17]. Some of the papers [5, 6, 10–12, 15] address the modelling of
transmission spectra in 3D that is essential for studying the features of realistic PhCWs. This
applies in particular to the losses of the PhCW modes [9], which do not appear in 2D cal-
culations. A defect mode in the band gap of a 2D photonic crystal propagates without loss.
However, propagation of the defect modes in a 3D system requires basic restrictions of total-
internal-reflection to be fulfilled to avoid out-of-plane propagation.

Most of the existing FDTD codes are able to produce qualitatively correct transmission spec-
tra when compared to experimental data. However, frequency discrepancies around 5-10 % or
more are often observed, and empirical parameters are in some cases introduced to get bet-
ter agreement. In this paper we report comprehensive FDTD calculations employing newly
developed PML boundary conditions. Analytical formulas for the PMLs are used in the cal-
culations. Special care is taken in the border regions where two or three PMLs overlap. An
advantageous consequence of this analytical approach is that it only is necessary to update the
E andH fields during the calculations. In addition, a simple spatial representation is utilized
allowing the fields in the PMLs and the main region, respectively, to be treated similarly in the
calculation cycles. Thereby, the same internal organization of the calculations is ensured every-
where in the modelled structure. We find that our FDTD code produces quantitatively accurate
results both regarding the transmission level and spectral features—in all investigated cases
frequency shifts below 1-2 % are obtained when comparing numerical data with experimental
ones. The paper is organized as follows: First, the basic features of the FDTD method and the
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PML boundary conditions are presented. Next, the spatial resolution is discussed, and to gain
further insight calculated transmission spectra are compared with band-diagrams. Furthermore,
the calculated spectra are compared to experimental ones obtained from planar PhCWs real-
ized in silicon-on-insulator material. Finally, in the appendix, a detailed treatment is given of
the PMLs.

2. Basic features of the FDTD technique

We use the ONYX-2 version of the FDTD algorithm developed by A. Ward and J. Pendry [18]
as the basic FORTRAN code. A main characteristic property of the original code is the coin-
ciding space frames for electric and magnetic fields obtained from forward and backward finite
difference schemes, respectively, thereby approximating the spatial derivatives. These finite dif-
ferences are first order approximations to the spatial derivatives and might therefore cause some
spurious results. Therefore, the numerical spectra should undergo a careful treatment.

The FDTD algorithm was implemented for an arbitrary system of coordinates in Ref. [18].
It has been shown that the discrete version of Maxwell equations in an arbitrary grid is given
by [19]

∆+
t E(r , t) = ε(r)−1∇−

q ×H′(r , t), ∆−t H′(r , t) =−QH µ(r)−1∇+
q ×E(r , t) , (1)

where QH is a parameter related to the renormalized magnetic fieldH′, ∆+
t E =

[E(r , t +∂ t)−E(r , t)]/∂ t, and∇±
q× is the discrete version of the curl operator with spatial

derivative approximations like∆−i H ′
j = H ′

j(r , t)−H ′
j(r −qi , t) with qi grid steps ini direction.

Similarly, an expression for the second Maxwell’s equation may be given.
In the general caseε(r)−1 andµ(r)−1 are inverse tensors of the redefined dielectric permit-

tivity and the magnetic permeability. A useful way of applying the FDTD technique is to utilize
a rectangular grid, which may be obtained by expanding a cubic grid in one or two dimensions

εi j = ε
qxqyqz

qiq jq0
, µi j = µ

qxqyqz

qiq jq0
, (2)

whereqi , i = x, y, z, is the distance between the mesh points in the corresponding directions,
andq0 is a characteristic length parameter. Due to the coordinate stretching the dielectricε and
magneticµ constants get tensorial properties. Nevertheless, the usage of coordinate stretching
is convenient when treating PhCWs with triangular lattice symmetry. If we for example con-
sider a waveguide in theΓ-K direction (along thex-axis) and with they-axis in the lattice plane
we obtain the following constraint:qx = qz = q0 = qy/

√
3. It should be noted that the utilized

grids in all cases are strictly orthogonal.
The code also applies to media with loss or gain. However, here we consider only transparent

dielectrics, i.e., where the dielectric and magnetic constants are real. In the calculations, the
fields are only stored as a function of time for mesh points in detector plates placed directly in
the waveguide channel. We avoid allocation of memory for information that is not necessary for
a reflection-transmission analysis. At the initial moment the spatial distribution of the electric
and the magnetic field describes the incident field [14,18]. The fields may be designed to excite
modes with specific parity, i.e. odd or even. Even if the initial field distribution has non-zero
divergence, which corresponds to the existence of a source, the evolution of fields in time keeps
the divergence in the whole space constant. This is the clear evidence that the evolving fields
are of wave-like nature and are governed by Maxwell equations limited only by unavoidable
numerical errors.

The elaboration of the ONYX-2 code for 2D and 3D PhCW problems has required basic
modifications of the boundary conditions implemented in the original version [18]. We have
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developed a reliable 3D FDTD code by a specific application of absorbing boundary condi-
tions. For reflection-free truncating of the computational space we use uniaxial PMLs, based
on considerations by S. Gedney [20]. The advantages of these PMLs over the traditional PMLs
introduced by J.P. Berrenger are a more straight procedure for their implementation without
splitting of every field component into two parts and saving of memory. The twofold and three-
fold intersections of the uniaxial absorbing layers have to be treated with special care. The
detailed procedure of the construction of the PMLs is given in the following.

Generally, a PML possess proportional tensors of dielectric and magnetic constants

ε̃ = εΛ̃ , µ̃ = µΛ̃ , (3)

where the tensor̃Λ in principal, rectangular coordinates has the form [20,21]

Λ̃ =


sysz
sx

0 0
0 sxsz

sy
0

0 0 sxsy
sz

 , (4)

sζ (ζ ,ω) = aζ (ζ )+ i
σζ (ζ )

ω
, ζ = x, y, z . (5)

The parametersσζ (ζ ) ≥ 0 and they usually have the form of a power functionσ(ζ ) =
σmax(ζ/d)n, whered is the total thickness of a layer, andn= 2,3,4. This form has been proven
to provide reflectionless absorption of guided modes. We set the parametersaζ (ζ ) = 1, how-
ever, in order to achieve enhanced absorption, one may setaζ (ζ ) > 1. The matrixΛ̃ describes
a biaxial crystal and includes absorption.Λ̃ can be represented by a triple matrix product where
each matrix is responsible for the expansion along one of the coordinates

Λ̃(r ,ω) = Λ̃x(x,ω) Λ̃y(y,ω) Λ̃z(z,ω) , (6)

where

Λ̃x =

 1
sx

0 0
0 sx 0
0 0 sx

 (7)

and similarly for the two other matrices. TensorsΛ̃ζ (ζ ,ω) describe the properties of 1D PML
at the faces of the numerical space. Contraction of any two different tensorsΛ̃ζ (ζ ,ω) gives us
2D PML at the edges of the computational zone. The full matrixΛ̃ in Eq. (6) is responsible for
the zone corners, where all three 1D PMLs intersect each other.

If we follow the well known approach that Maxwell’s equations in crystals correspond to
Maxwell’s equations in isotropic media, but in stretched coordinates [22], the parameters sζ (ζ )
are nothing else than analytical expansions of real coordinates in the complex plane. The ex-
pressions for dielectric and magnetic constants in expanded coordinates are given in Ref. [19].
Exploiting the idea revealed in Refs. [18,23] we can show that the numerical algorithm for the
implementation of 2D PML at the edge, corresponding to thek coordinate, is as follows (for
derivation, see Appendix):

Ei(t +∂ t) =
1

1+σ j∂ t

{
Ei(t)+

1
εii

[∇q×H′(t)]i +
σi∂ t
εii

∞

∑
n=0

[∇q×H′(t−n∂ t)]i
}

E j(t +∂ t) =
1

1+σi∂ t

{
E j(t)+

1
ε j j

[∇q×H′(t)] j +
σ j∂ t

ε j j

∞

∑
n=0

[∇q×H′(t−n∂ t)] j

}

Ek(t +∂ t) =
Ek(t)−σiσ j∂ t2

∞
∑

n=0
Ek(t−n∂ t)+(∇×H′(t))k/εkk

1+(σi +σ j)∂ t +σiσ j∂ t2
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H ′
i (t) =

1
1+σ j∂ t

×{
H ′

i (t−∂ t)− QH

µii
[∇q×E(t)]i −

σi∂ t
µii

QH

∞

∑
n=0

[∇q×E(t−n∂ t)]i
}

H ′
j(t) =

1
1+σi∂ t

×{
H ′

j(t−∂ t)− QH

µ j j
[∇q×E(t)] j −

σ j∂ t

µ j j
QH

∞

∑
n=0

[∇q×E(t−n∂ t)] j

}

H ′
k(t) =

H ′
k(t−∂ t)−σiσ j∂ t2

∞
∑

n=0
H ′

k(t−∂ t−n∂ t)−QH (∇×E(t))k/µkk

1+(σi +σ j)∂ t +σiσ j∂ t2 . (8)

Here, electric and magnetic field components are redefined according to the scheme presented
in Ref. [18]. The same ideas can be straightforwardly applied for the implementation of 3D
PML.

3. Spatial resolution and comparison with band diagrams

We have done an extensive variety of different 2D and 3D calculations of various components
including straight PhCWs of different lengths, various PhCW bend geometries, and other PhC
structures utilizing our improved FDTD code. The outcome of the calculations is the trans-
mission and reflection spectra for these PhC structures. The calculations were carried out by
utilizing a straight PhCW as the basic element. We use W1 PhCWs, i.e., waveguides where
the defect is formed by removing one row of holes in theΓ-K direction. The typical size of
the memory allocated for 2D calculations is about 100 Mb depending on the number of time
steps. Usually there were 213 steps in time, but the number of time steps was in some cases
increased to 214-216 to obtain better resolution. For 3D calculations with reasonable choice
of width, thickness and length, the memory requirements increased to 800-900 Mb. The CPU
time is strongly dependent on processor frequency and optimization features provided by the
FORTRAN compiler.

3.1. Spatial resolution

The spatial resolution of the simulated structure is given as the number of mesh points used
for the discretization of space within one lattice constantΛ. The resolution is one of the ma-
jor parameters that determines the needed computation time and the consumption of memory
resources as well as the accuracy of the computation. The photonic crystal structure is embed-
ded in a substrate (silicon) withε = 12. The holes have a radius of 0.375Λ and the inner side
is coated with a layer of low refractive index material (silica). The thickness of the coating is
0.125Λ and its refractive index is 1.45. In the vertical direction the 3D structures consist of 3-4
layers of dielectric material placed on a substrate or suspended in air. In order to investigate
the effect of the spatial resolution on the results of the simulations we performed similar calcu-
lations increasing the spatial resolution from 16 to 32 and even 64 mesh points per periodΛ.
Computed transmission spectra for TE polarized light in 2D for a straight 15Λ long PhCW are
given in Fig. 1(a). It is evident that theΛ/64 mesh structure is more accurate, when compar-
ing it with 2D-calculations of a 10Λ long PhCW performed by Agio in Ref. [9]. However, the
spectra are in general quite similar except the dip at frequencyΛ/λ = 0.26. This frequency cor-
responds to the cross-section point of an even and an odd mode as shown in Fig. 2. The dip can
be explained by a broken symmetry of the simulated structure when first-order finite differences
are applied. Therefore, numerically induced interactions between even and odd modes are un-
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Fig. 1. Transmission spectra for a PhCW calculated for (a) three different spatial resolutions
in 2D (b) two different spatial resolutions in 3D.

avoidable and an artificial anti-crossing effect between the even and the odd mode leads to the
artificial mini stop-zone and hence, the dip in the transmission spectrum. Increasing the spa-
tial resolution reduces the numerical coupling and the dip eventually disappears. By increasing
the resolution fromΛ/16 the computing time increases by a factor of 4 and 16 for resolutions
of Λ/32 andΛ/64, respectively, in a 2D system. Calculated 3D transmission spectra for the
straight W1 PhCW with 16 and 32 mesh points perΛ are presented in Fig. 1(b). Again, we see
a very good resemblance between the two spectra except for the artificial dip corresponding
to the odd-even mode intersection atΛ/λ = 0.31. Therefore, we conclude that performing the
FDTD calculations with a spatial resolution of 16 mesh points perΛ is sufficient in order to
reveal the main features of the transmission through a straight PhCW. Specific features may
have to be analyzed using a higher number of mesh points.

3.2. Comparison of transmission spectra and band diagrams

In this section we make direct comparisons between 2D transmission spectra and corresponding
band diagrams for TE polarized light. Figure 2 shows the band diagrams (left) calculated by
using plane wave expansion theory (PWE) [24] and the related transmission spectra (right)
simulated by using FDTD (both in 2D) for a W1 PhCW. The correlation between the band
diagram and the transmission spectrum is excellent, it is seen that all the major features in the
band diagram are directly relatable to features in the transmission spectrum. The largest dip in
the transmission spectrum is observed atΛ/λ = 0.22-0.23, and it is due to the complete absence
of modes in this frequency region. High transmission is observed for the index guided mode
belowΛ/λ = 0.17 andΛ/λ = 0.18-0.19 and for the even photonic band gap modeΛ/λ = 0.22-
0.31. At Λ/λ = 0.26 the dip in the transmission curve is due to the spurious mini stop-zone
caused by the artificial anti-crossing effect between the even and the odd mode as discussed in
Section 3.1.

4. Comparison with experimental spectra

To confirm the predictions of our FDTD code a number of planar PhCWs have been fabri-
cated in silicon-on-insulator material. First, the experimental fabrication procedure is discussed.
Thereafter, measured transmission spectra are compared to the calculated ones.
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Fig. 2. 2D Band diagram (left) shown for modes of different parities in a W1 PhCW. Even
guided modes are shown in red, odd modes in blue, and slab modes in black. Transmission
spectrum (right) shown for excitation with even modes.

4.1. Fabrication of SOI PhCWs

The PhCs are fabricated as triangular arrangements of air holes in a SiO2/Si/SiO2 trilayer film.
The thicknesses of the layers are 50 nm / 300 nm / 1µm, respectively. E-beam lithography is
used to define the PhC pattern in an e-beam resist, which is used as mask in a reactive ion etch
(RIE) of the top silicon layer on the initial silicon-on-insulator wafer. The perforated top silicon
layer is used as a mask in a subsequent RIE of silica to make the PhC pattern penetrate∼100 nm
down into the underlying silica layer. The reason for not letting the PhC holes penetrate deep
into the silica layer is the low selectivity in the RIE between silicon and silica. Finally, in
order to increase the vertical symmetry of the PhC structure and to smoothen out any surface
roughness, a thin oxide layer (∼50 nm) is grown on top of the structure by thermal oxidation.
The final diameter of the PhC holes isDglass= 0.76Λ, whereΛ = 428 nm is the lattice pitch.
Figure 3 shows representative scanning electron micrographs of (a) a fabricated 10µm straight
W1 PhCW and (b) a PhCW containing two 60◦ bends.

The characterization setup used to measure the transmission spectra of the fabricated waveg-
uides has been described in detail elsewhere [25].

4.2. Estimation of propagation losses

Next, we will compare transmission spectra calculated using our 3D FDTD code to experi-
mental transmission spectra obtained from measurements. It is well known that the main loss
in a planar PhCW is caused by out-of-plane scattering of energy. This means that coupling of
PhCW modes to radiative modes, which are capable of propagating in the ambient medium,
strongly increases the propagation loss of modes in the PBG. Therefore, we expect that 2D
transmission calculations do not provide such characteristics of the PhCW (see e.g. Ref. [9]). It
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Fig. 3. Scanning electron micrographs of (a) a straight PhCW of length 10µm, and (b) a
PhCW containing two modified 60◦ bends (details shown in zoom), which are separated
by a 20Λ long straight PhCW.

has previously been attempted to calculate the transmission loss due to the out-of-plane scatte-
ring in 3D PhCWs using 2D simulations by making the material in the holes absorptive. In this
way, it is possible to obtain 2D transmission spectra, which are in agreement with experimental
spectra [26], and use these to estimate the waveguide losses. However, the method represents
a crude approximation and the results cannot be compared directly to experiments. A logical
conclusion is that only full 3D transmission calculations are adequate for numerical estima-
tions of genuine PhCW transmission. For the modelling of the propagation losses in the PhCW
we used the experimental parameters of planar silicon-on-insulator PhCWs. Hence, the PhCW
is defined as a line defect in theΓ-K direction of a triangular lattice of holes. The physical
parameters such as hole diameters and dimensions of vertical structure were chosen to match
the experimental ones as closely as possible. 3D FDTD calculations have shown that 5 rows
of holes on both sides of the waveguide line defect are enough to pin the light to the core.
Both in the calculations and the experiment we utilized 10 rows of holes on each side. In the
calculations the length of the waveguides was varied from 10Λ to 60Λ. Figure 4(a) shows 3
representative calculations of the 3D transmission through PhCWs with different lengths for
TE polarized light. Figure 4(b) shows the measured and calculated transmission spectra for the
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Fig. 4. (a) 3D FDTD transmission spectra for different lengths of PhCW. (b) The measured
(gray) and calculated (dashed black) transmission spectra for a 10µm PhCW.

10 µm (23Λ) straight W1 PhCW displayed in Fig. 3(a) for TE polarized light. The measured
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spectrum has been normalized to the transmission spectrum for a ridge waveguide located on
the same sample. From the figure it is evident that the 3D FDTD calculations successfully ex-
plain all essential features of the spectrum as well as the actual transmission level. The position
of the sharp cut-off around 1540 nm is in excellent agreement with previous band gap calcu-
lations [28]. The small frequency shift (approximately 1-2%) between the experimental and
simulated spectra is due to uncertainties of the experimental parameters and the limited grid
resolution of the 3D FDTD calculations. For wavelengths longer than∼1540 nm the measured
transmission appears to be less suppressed than the calculated one. This is due to the fact that
it experimentally not is possible to completely extinguish the TM polarization. In Ref. [25] it
was found that TM polarized light propagates with very low loss in straight PhCWs in this
wavelength range. Hence, the measured transmission will unavoidably include a small part of
TM polarized light, and this small TM contribution plays a rather significant role at the longer
wavelengths, where there are no guided TE polarized modes in the PhCW. The calculations,
however, are performed utilizing a purely TE polarized light source.

In order to experimentally find the propagation loss in straight PhCWs we have fabricated
and characterized seven straight PhCWs of different lengths between 10µm-150 µm. For a
given wavelength the propagation loss can be extracted by finding the slope of the best linear
fit, when plotting the transmission on a logarithmic scale as function of the PhCW length.
Similarly, the calculated propagation loss is found from the transmission through PhCWs with
lengths 10-60Λ. Figure 5 shows the measured and calculated propagation loss for TE polarized
light. Again excellent agreement is seen between experiment and simulation.
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Fig. 5. The measured (gray) and calculated (dashed black) propagation losses for the TE
polarization.

Numerically, we have also investigated the dependence of the transmission on the vertical
structure. By changing the thickness of the air and the silica above and under the core layer in
the computations and keeping other parameters fixed we observed the following tendency: For a
thickness of the complete vertical structure at 500 nm the lowest propagation loss was found to
be 108 dB/mm. When the thickness was increased to 1100 nm propagation losses like the ones
displayed in Fig. 5 were obtained. Further increase of the cladding thickness did not improve
the transmission. These calculations show that it is important to have enough vertical space for
leaky (i.e. radiating) modes to travel along the waveguide, since these modes otherwise would
be cut immediately by the PMLs.
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Fig. 6. Measured (gray) and calculated (dashed black) bend loss in two consecutive 60◦

bends for the TE polarization.

4.3. Sixty degree bends

It is an essential property for all integrated photonic circuits to be able to route the light around
sharp corners. The natural bend in a PhC defined in a triangular lattice is the 60◦ bend. Fig-
ure 3(b) shows a fabricated PhCW having two consecutive 60◦ bends separated by an interme-
diate PhCW with length 20Λ. Each bend has been modified by displacing one hole in the bend.
The recorded transmission spectrum for TE polarized light has been normalized to the trans-
mission spectrum for a straight PhCW of same length. The normalized spectrum, which now
expresses the total bend loss for the two 60◦ bends in the PhCW, is shown in Fig. 6. The figure
also shows the calculated bend loss for a PhCW containing two similar 60◦ bends separated
by 20Λ. It is seen that the 3D FDTD simulations successfully explain the observed bend losses
and the spectral features. Losses as small as 1.6 dB per bend are observed in the shown wave-
length region. The oscillations observed in the spectrum have conclusively been identified as
Fabry-Perot resonances by recording experimental spectra for PhCWs having different lengths
(20-40Λ) of the intermediate straight PhCW connecting the two bends. The Fabry-Perot cavity
oscillations in the measured and simulated spectra are found to be in very good agreement. The
frequency shift between the measured and calculated local maxima and minima is found to be
around 1 %. Further experiments have shown that the bend geometry shown in Fig. 3(b) has
improved the transmission per bend by 4-5 dB compared to unmodified sharp 60◦ bends in the
displayed wavelength region in Fig. 6.

4.4. Other structures, geometries and polarizations

Several other comparisons between experimental spectra and numerical spectra obtained us-
ing the FDTD code have been performed. A few of these results have already been reported
in the literature. For example, for the straight PhCWs shown in Fig. 3(a) we have experimen-
tally demonstrated a broad wavelength span with high transmission for the TM polarization
and propagation losses as low as 2.5 dB/mm have been measured [25]. These findings have
successfully been confirmed by 3D FDTD calculations. Furthermore, directional couplers with
coupling losses just above 1 dB have been fabricated in SOI material [25,30]. Again the meas-
ured transmission levels and spectral features are in excellent agreement with the 3D FDTD
calculations both for the TE and TM polarizations.

Recently, McNab and Vlasov [31] have experimentally obtained propagation losses at
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1.7 dB/mm for TE polarized light in planar W1 PhCWs realized in a silicon-in-air membrane.
We have performed 3D FDTD calculations that quantitatively confirm their reported transmis-
sion level and spectral features. The reason for the lower losses for TE polarized light in this
case compared to the losses reported in Fig. 5 is that for the silicon-membrane waveguides there
is a large section of a TE polarized photonic band gap guided mode below the light line. For
the silicon-on-insulator waveguides this mode is mostly located above the light line, whereby
it becomes leaky and has out-of-plane scattering losses.

5. Summary

In this paper details on 2D and 3D finite-difference-time-domain calculations have been re-
ported for planar photonic crystal waveguide structures, where perfectly matched layers have
been employed as boundary conditions. For the calculated transmission spectra it was found
that a spatial resolution atΛ/16 was sufficient to correctly reproduce most spectral features and
that an even better result was obtained when the resolution was increased toΛ/32. Calculated
spectra for various photonic crystal structures have been compared to experimental spectra. In
all cases an excellent agreement has been found both regarding the transmission level and the
spectral features. Hence, we have developed a finite-difference-time-domain code that gives
quantitatively correct results without the use of any empirical parameters.
This work was supported in part by the European IST project PICCO.

A. Appendix

In Section 2 it was discussed that the discrete version of Maxwell’s equations in an arbitrary
coordinate system may be written as shown in Eq. 1. In the most important case of a rectangular
grid expressions forεi j andµi j were given in Eq. 2. The coordinate stretching in a rectangular
grid results in tensorial properties for the dielectric and magnetic constants. In the PML regions
these properties will be superimposed by anisotropic properties of the PML itself. For example,
in a 1D PML orthogonal to thez axis, we have

ε̃xx = εxx

(
1+

iσz

ω−

)
, ε̃yy = εyy

(
1+

iσz

ω−

)
, ε̃zz= εzz

(
1+

iσz

ω−

)−1

, (9)

where the componentsε i j are defined by Eq. (2),σz = σ (z), andω− = 1−exp(iω∂ t)
−i∂ t is a dis-

cretized frequency [18]. Using Eq. (1) for thex component of the electric field we obtain

Ex(t +∂ t)−Ex(t) = (ε̃−1)xx[∇q×H′(t)]x =
1

εxx

(
1+

iσz

ω−

)−1

[∇q×H′(t)]x . (10)

Thex-component of the curl operator may be approximated by [18]

[∇q×H′]x = −i∂ tεxxω
+

(
1+

iσz

ω−

)
Ex (11)

with ω+ = exp(−iω∂ t)−1
−i∂ t . Straightforward derivations give us the result [18]

Ex(t +∂ t) = Ex(t)+
1

εxx

(
1+

iσz

ω−

)−1

[∇q×H′(t)]x

=
1+σz∂ t
1+σz∂ t

Ex(t)+
1

εxx

(
1+

iσz

ω−

)−1

[∇q×H′(t)]x
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=
1

1+σz∂ t
Ex(t)+

σz∂ t
1+σz∂ t

Ex(t)+
1

εxx

ω−

ω−+ iσz
[∇q×H′(t)]x

=
1

1+σz∂ t
Ex(t)+

[∇q×H′(t)]x
εxx(1+σz∂ t)

×
[

iω−σz

ω+(ω−+ iσz)
+

ω−(1+σz∂ t)
ω−+ iσz

]
=

1
1+σz∂ t

(
Ex(t)+

[∇q×H′(t)]x
εxx

)
. (12)

The corresponding expression follows forEy. The z-component is treated differently. From
Eq. (1) we obtain

Ez(t +∂ t) = Ez(t)+
1

εzz

(
1+

iσz

ω−

)
[∇q×H′(t)]z

= Ez(t)+
1

εzz
[∇q×H′(t)]z+

iσz

εzz
· −i∂ t

1−eiω∂ t
[∇q×H′(t)]z

= Ez(t)+
1

εzz
[∇q×H′(t)]z+

σz∂ t
εzz

·
∞

∑
n=0

einω∂ t [∇q×H′(t)]z

= Ez(t)+
1

εzz
[∇q×H′(t)]z+

σz∂ t
εzz

·
∞

∑
n=0

[∇q×H′(t−n∂ t)]z . (13)

It is seen from Eqs. (12) and (13) that the components of the electromagnetic fields lying in
the plane of PML layer are decreasing with the same rate while penetrating deeper inside the
layer. The fields in anisotropic absorbing medium propagate as directed by Maxwell equations.
During the numerical implementation the infinite series are substituted by finite sums. For the
field evolution by the FDTD method this means that the summation will commence at the initial
pulse.

The results obtained above were presented by Ward and Pendry in Ref. [18]. They have been
included here for convenience. Next we proceed to the 2D PML case. For thex−y edge PML
the matrix for the dielectric tensorε̃ in principal coordinates is given by

ε̃ =


ε11

1+ iσy
ω−

1+ iσx
ω−

0 0

0 ε22
1+ iσx

ω−

1+ iσy
ω−

0

0 0 ε33
(
1+ iσx

ω−
)(

1+ iσy
ω−

)

 . (14)

Instead of expression (10) for thex projection of Maxwell equations (1) we have

Ex(t +∂ t)−Ex(t) = (ε̃−1)xx[∇q×H′(t)]x

=
1

εxx

(
1+

iσx

ω−

)(
1+

iσy

ω−

)−1

[∇q×H′(t)]x . (15)

It is seen from Eq. (12) that the factor
(

1+ iσy
ω−

)
in the denominator corresponds to multipli-

cation of all field components by the factor1
1+σy∂ t . As seen from Eq. (13) the presence of this

factor in the nominator leads to the appearance of the curl summed over all previous time steps.
Because these actions are independent we can also write

Ex(t +∂ t) =
1

1+σy∂ t
×{

Ex(t)+
1

εxx
[∇q×H′(t)]x +

σx∂ t
εxx

·
∞

∑
n=0

[∇q×H′(t−n∂ t)]x
}

. (16)
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A similar expression may be written for they projection of the vectorE. However, for the
z-component ofE both factors are in the nominator

Ez(t +∂ t)−Ez(t) = (ε̃−1)zz[∇q×H′(t)]z

=
1

εzz

(
1+

iσx

ω−

)−1(
1+

iσy

ω−

)−1

[∇q×H′(t)]z . (17)

In this case we are not able to make derivations of each bracket independently. So we start from
the beginning rearranging the expression to the form(

1+
iσx

ω−

)(
1+

iσy

ω−

)
(Ez(t +∂ t)−Ez(t)) =(

1+
i(σx +σy)

ω− −
σxσy

(ω−)2

)
(Ez(t +∂ t)−Ez(t)) . (18)

Taking this expression by parts we obtain

i(σx +σy)
ω− (Ez(t +∂ t)−Ez(t)) = i

(σx +σy)(−i∂ t)
1−eiω∂ t

(Ez(t +∂ t)−Ez(t))

= (σx +σy)∂ t
∞

∑
k=0

e−kiω∂ t(Ez(t +∂ t)−Ez(t))

= (σx +σy)∂ t ×( ∞

∑
k=0

Ez(t +∂ t−k∂ t)−
∞

∑
k=0

Ez(t−k∂ t)
)

= (σx +σy)∂ tEz(t +∂ t) ; (19)

σxσy

(ω−)2 (Ez(t +∂ t)−Ez(t)) =
σxσy

ω−
−i∂ t

1−eiω∂ t
(Ez(t +∂ t)−Ez(t))

= −i∂ t
σxσy

ω− Ez(t +∂ t)

=
(−i∂ t)2σxσy

1−eiω∂ t
Ez(t +∂ t)

= −∂ t2
σxσy

∞

∑
k=0

Ez(t +∂ t−k∂ t)

= −∂ t2
σxσy

(
Ez(t +∂ t)+

∞

∑
k=0

Ez(t−k∂ t)
)

. (20)

Collecting all parts together give

1
εzz

[∇q×H′(t)]z = Ez(t +∂ t)−Ez(t)+∂ t(σx +σy)Ez(t +∂ t) +

∂ t2
σxσy

(
Ez(t +∂ t)+

∞

∑
k=0

Ez(t−k∂ t)
)

. (21)

Finally, the old field components are used to derive the new one

Ez(t +∂ t) =
Ez(t)−σxσy∂ t2

∞
∑

k=0
Ez(t−k∂ t)+

(
∇×H′(t)

)
z/εzz

1+(σx +σy)∂ t +σxσy∂ t2 . (22)
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All other 2D PML’s are treated in a similar way and it is possible to write down the expressions
immediately, using the cycling of indices:x→ y, y→ z, z→ x. The same holds true for the
derivation of the evolution equation for the magnetic field components.

The corresponding matrix for a 3D PML is

ε̃ =


εxx

(
1+ iσy

ω−

)(
1+ iσz

ω−

)
1+ iσx

ω−
0 0

0 εyy

(
1+ iσx

ω−

)(
1+ iσz

ω−

)
1+ iσy

ω−
0

0 0 εzz

(
1+ iσx

ω−

)(
1+ iσy

ω−

)
1+ iσz

ω−


. (23)

It is obvious that the 3D PML described by Eq. (23) has a similar influence on the field com-
ponents. The derivation of the evolution equations corresponding to Eqs. (13) and (22) is cum-
bersome, but straightforward.

Finally, we would like to make a remark. Instead of the procedure applied in the derivation
of Eq. (22) it is possible to use 2D boundary conditions in the form discussed by Petropoulos
and Zhao [23] e.g., for thez-component of the electric field

εzz
∂Ez

∂ t
+ εzz(σx +σy)Ez+ εzzσxσy

t∫
0

Ẽz(t ′)dt′ =
(
∇×H′)

z . (24)

Taking into account the time positions of the electric and magnetic fields in the FDTD scheme
all the features of Eq. (22) are seen from Eq. (24), and it may be used to obtain the same result.
The latter expression for the boundary conditions has more physical insight on the transfor-
mation of the PML at the crossing zones into time domain. However, our derivation through
Eqs. (14)-(22) seems more straightforward from the point of view of direct numerical applica-
tions.
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