The Open Provenance Model

Luc Moreau, University of Southampton,
Juliana Freire, University of Utah,
Joe Futrelle, NCSA,

Robert E. McGrath, NCSA
Jim Myers, NCSA,

Patrick Paulson, PNNL

December 18, 2007

1 Introduction

Provenance is well understood in the context of art or digital libaries, where it respectively
refers to the documented history of an art object, or the documentation of processes in a
digital object’s life cycle [3]. Interest for provenance in the “e-science community” [9] is
also growing, since provenance is perceived as a crucial component of workflow systems [2]
that can help scientists ensure reproducibility of their scientific analyses and processes.

Against this background, the International Provenance and Annotation Workshop
(IPAW’06), held on May 3-5, 2006 in Chicago, involved some 50 participants interested
in the issues of data provenance, process documentation, data derivation, and data an-
notation [5, 1]. During a session on provenance standardization, a consensus began to
emerge, whereby the provenance research community needed to understand better the
capabilities of the different systems, the representations they used for provenance, their
similarities, their differences, and the rationale that motivated their designs.

Hence, the first Provenance Challenge was born, and from the outset, the challenge
was set up to be informative rather than competitive. The first Provenance Challenge was
set up in order to provide a forum for the community to understand the capabilities of
different provenance systems and the expressiveness of their provenance representations.
Participants simulated or ran a Functional Magnetic Resonance Imaging workflow, from
which they implemented and executed a pre-identified set of “provenance queries”. Six-
teen teams responded to the challenge, and reported their experience in a journal special
issue [6].

The first Provenance Challenge was followed by the second Provenance Challenge,
aiming at establishing inter-operability of systems, by exchanging provenance informa-
tion. Thirteen teams [8] responded to this second challenge. Discussions indicated that
there was substantial agreement on a core representation of provenance. As a result, in
a workshop on August 7-8 in Salt Lake City, the authors met, and crafted and iterated
a data model, which is presented in this paper.



The starting point of this work is the community agreement summarized by Miles
[4]. We assume that provenance of objects (whether digital or not) is represented by an
annotated causality graph, which is a directed acyclic graph, enriched with annotations
capturing further information pertaining to execution. For the purpose of this paper, a
provenance graph is defined to be a record of a past execution, and not a description of
something that could happen in the future.

In this paper, we introduce the Open Provenance Model, a model for provenance
which meets the following requirements:

e To allow provenance information to be exchanged between systems, by means of a
compatibility layer based on a shared provenance model.

e To allow developers to build and share tools that operate on such provenance model.
e To define the model in a precise, technology-agnostic manner.

e To support a digital representation of provenance for any “thing”, whether pro-
duced by computer systems or not.

e To define a core set of rules that identify the valid inferences that can be made on
provenance graphs.

While specifying this model, we also have some non-requirements:

e [t is not the purpose of this document to specify the internal representations that
systems have to adopt to store and manipulate provenance internally; systems
remain free to adopt internal representations that are fit for their purpose.

e [t is not the purpose of this document to define a computer-parsable syntax for this
model; model implementations in XML, RDF or others will be specified in separate
documents, in the future.

e We do not specify protocols to store such provenance information in provenance
repositories.

e We do not specify protocols to query provenance repositories.

2 Basics

2.1 Entities

Our primary is concern is to be able to represent how “things”, whether digital data
such as simulation results, physical objects such as cars, or immaterial entities such as
decisions, came out to be in a given state, with a given set of characteristics, at a given
moment. It is recognised that many of such “things” can be stateful: a car may be
at various locations, it can contain different passengers, and it can have a tank full or
empty; likewise, a file can contain different data at different moments of its existence.
Hence, from the perspective of provenance, we introduce the concept of an artifact as



an immutable! piece of state; likewise, we introduce the concept of a process as actions
resulting in new artifacts.

A process usually takes place in some context, which enables or facilitates its ex-
ecution: examples of such contexts are varied and include a place where the process
executes, an individual controlling the process, or an institution sponsoring the process.
These entities are being referred to as Agents. Agents, as we shall see when we discuss
causality dependencies, are a cause (like a catalyst) of a process taking place.

The Open Provenance Model is based on these three primary entities, which we define
now.

Definition 1 (Artifact) Immutable piece of state, which may have a physical embodi-
ment in an physical object, or a digital representation in a computer system.

Definition 2 (Process) Action or series of actions performed on or caused by artifacts,
and resulting in new artifacts.

Definition 3 (Agent) Contextual entity acting as a catalyst of a process, enabling, fa-
cilitating, controlling, affecting its execution.

We introduce a graphical notation and a formal definition for provenance graphs.
Specifically, artifacts are represented by circles, and are denoted by elements of the set
Artifact. Likewise, processes are represented graphically by rectangles and denoted by
elements of the set Process. Finally, agents are represented by octogons and are elements
of the set Agent in the formal notation.

2.2 Dependencies

A provenance graph aims to capture the causal dependencies between the abovemen-
tioned entities. Therefore, a provenance graph is defined as a directed graph, whose
nodes are artifacts, processes and agents, and whose edges belong to one of following
categories depicted in Figure 1. An edge represents a causal dependency, between its
source, denoting the effect, and its destination, denoting the cause.

The first two edges express that a process used an artifact and that an artifact was
generated by a process. Since a process may have used several artifacts, it is important
to identify the roles under which these artifacts were used. Likewise, a process may
have generated many artifacts, and each would have a specific role. For instance, the
division process uses two numbers, with roles dividend and divisor, and produces two
numbers, with roles quotient and remainder. Roles are meaningful only in the context of
the process where they are defined.

A process is caused by an agent, essentially acting as a catalyst or controller: this
causal dependency is expressed by the was controlled by edge. Given that a process may
have been catalyzed by several agents, we also identify their roles as catalysts. We note
that the dependency between an agent and a process represents a control relationship,

'In the presence of streams, we consider an artifact to be a slice of stream in time, i.e. the stream
content at a specific instant in the computation.



¢ used(R) P

wasTriggeredBy

P1 |« | P2

wasGeneratedBy(R)
P |«

wasDerivedFrom
D S —

wasControlledBy(R)

AgQ <——71| P

Figure 1: Edges in the Provenance Model

and not a data derivation relationship. It is introduced in the model to easily express
how a user (or institution) controlled a process.

It is also recognized that we may not be aware of the process that generated some
artifact A, but that artifact A, was derived from another artifact A;. Likewise, we may
not be aware of the exact artifact that a process P, used, but that there was some artifact
generated by another process P,. Process P, is then said to have been triggered by P;.
Both edges wasDerivedFrom and wasTriggeredBy are introduced, because they allow a
dataflow or process oriented views of past executions to be adopted, according to the
preference of system designers.

As far as conventions are concerned, we note that causality edges use past tense to
indicate that they refer to past execution. Causal relationships are defined as follows.

Definition 4 (Causal Relationship) A causal relationship is represented by an arc
and denotes the presence of a causal dependency between the source of the arc (the effect)
and the destination of the arc (the cause). Five causal relationships are recognized: a
process used an artifact, an artifact was generated by a process, a process was triggered
by a process, an artifact was derived from an artifact, and a process was controlled by an
agent.

Multiple notions of causal dependencies were considered for OPM. A very strong no-
tion of causal dependency would express that a set of entities was necessary and sufficient
to explain the existence of another entity. It was felt that such a notion was not practi-
cal, since, with an open world assumption, one could always argue that additional factors
may have influenced an outcome (e.g. electricity was used, temperature range allowed
computer to work, etc). It was felt that weaker notions, only expressing necessary de-
pendencies, would be more appropriate. However, even then, one can distinghish data
dependencies (e.g. where a quotient is clearly dependent on the dividend and divisor)
from a control dependency where the mere presence of some artifact or the beginning of



a process can explain the presence of another entity. A number of factors have influenced
us to adopt a weak notion of causal dependency for OPM.

o FExpressibility. 1t is anticipated that systems will produce descriptions of what their
components are doing, without having intimate knowledge of the exact internal
data and control dependencies. Weak notions of dependency are necessary for such
systems to be able to use OPM in practice.

e Composability. We shall see how OPM supports multi-level descriptions (Section
3). In a system consisting of the parallel composition of two subcomponents, the
high level summary of the system requires a weaker notion of dependency than the
low level descriptions of its subcomponents.

Hence, we adopt the following causal dependencies in OPM. We anticipate that subclasses
of these dependencies, capturing stronger notions of causality, may be defined in specific
systems.

Definition 5 (Artifact Used by a Process) In a graph, connecting a process to an
artifact by a used edge is intended to indicate that the process required the availability
of the artifact to complete its execution. When several artifacts are connected to a same
process by multiple used edges, all of them were required for the process to complete.

Alternatively, a stronger interpretation of the used edge would have required the
artifact to be available for the process to be able to start. It is believed that such a
notion may be useful in some circumstances, and it may be defined as a subtype of
used. We note that both interpretations of used coincide, when processes are modelled
as instantaneous.

Definition 6 (Artifacts Generated by Processes) In a graph, connecting an arti-
fact to a process by an edge wasGeneratedBy is intended to mean that the process was
required to initiate its execution for the artifact to be generated. When several artifacts
are connected to a same process by multiple wasGeneratedBy edges, the process had to
have bequn, for all of them to be generated.

Definition 7 (Process Triggered by Process) A connection of a process Py to a pro-
cess Py by a “was triggered by” edge indicates that the start of process P was required
for Py to be able to complete.

Definition 8 (Artifact Derived from Artifact) An edge “was derived from” between
two artifacts Ay and A, indicates that artifact Ay may have been used by a process that

derived As,.

Definition 9 (Process Controlled by Agent) The assertion of an edge “was con-
trolled by” between a process P and an agent Ag indicates that a start and end of process
P was controlled by agent Ag.



2.3 Roles

A role is an annotation on used, wasGeneratedBy and wasControlledBy.
Definition 10 (Role) A role designates an artifact’s or agent’s function in a process.
A role is used to differentiate among several use, generation, or controlling relations.

1. A process may use (generate) more than one artifact. Each used (wasGeneratedBy)
relation can be distinguished by a unique role with respect to that process. For
example, a process may use several files, reading parameters from one, and reading
data from another. The used relations would be labeled with distinct roles.

2. An artifact might be used by more than one process, possibly for different purposes.
In this case, the used relations can be distinguished or said to be the same by the
roles associated with the used relations. For example, a dictionary might be used by
one process to look up the spelling of “provenance”, (role = “look up provenance”),
while another process uses the same dictionary to hold open the door ( role =
“doorstop”).

3. An agent may control more than one process. In this case, the different processes
may be distinguished by the role associated with the wasControlled By relation. For
example, a gardener may control the digging process (role = “dig the bed”), as well
as planting a rose bush (role = “plant”) and watering the bush (role = “irrigating”)

4. A process may be controlled by more than one agent. In this case, each agent
might have a distinct control function, which would be distinguished by roles as-
sociated with the wasControlled By relations. For example, boarding the train may
be controlled by the ticket agent (role = “sell ticket”), the gate agent (role = “take
ticket”) and the steward (role = “guide to seat”).

A role has meaning only within the context of a given process (agent). For a given
process, each used, wasGeneratedBy or wasControlledBy relation has a role specific to
the process, though the roles may have no meaning outside that process. In general, for
a given process (agent) with several arcs, each role should be distinct for that process.
However, it is possible, though not recommended, for roles to be the same within a
context. For example, baking a cake with two eggs, may define each egg as a separate
artifact, and the two used edges might have the identical role, say, egg.

The role is recommended but may be unspecified when not known. It is recommended
to give roles whenever possible. For interoperability, communities should define standard
sets of roles with agreed meanings. In addition, a reserved value will be defined for
“undefined”, which should be used when the role is not known or omitted.

2.4 Examples

An example illustrating all the concepts and a few of the causal dependencies is displayed
in Figure 2. This provenance graph expresses that John baked a cake with ingredients
butter, eggs, sugar and flour.



John

wasControlledBy(cook)

wasGeneratedBy(cake)
Bake

Figure 2: Victoria Sponge Cake Provenance

A computational example is displayed in Figure 3. The final data product is a
scientific-grade mosaic of the sky, which was produced by a process that used scientific
images in FITS format (such as the Sloan Digital Sky Survey data set) and a param-
eter indicating the size of the mosaic to be produced. The process was caused by the
Pegasus/Condor Dagman agent.

Pegasus/
Condor
Dagman

wasControlledBy(enactor)

DFITg used(fnputset)
ataSet Produce
Sky wasGeneratedBy(out) Mosaic
% Mosaic
<\
Degree usedt

Figure 3: Montage Provenance

While graphs can be constructed by incrementally connecting artifacts, processes, and
agents with individual edges, the meaning of the causality relations can be understood in
the context of all the used (or wasGeneratedBy) edges, for each process. By connecting
a process to several artifacts by used edges, we are not just stating the individual inputs
to the process. We are asserting a causal dependency expressing that the process could



take place only because all these artifacts were available. Likewise, when we express that
several artifacts were generated by a process, we mean that these artifacts would not
have existed if the process had not taken place; furthermore, all of them were generated
by the process; one could not have been generated without the others. The implication
is that any single generated artifact is caused by the process, which itself is caused by
the presence of all the artifacts it used. We will use such a property to derive transitive
closures of causality relations in Section 6. We summarise the properties in the two
following definitions.

As illustrated by the two examples above, the entities and edges introduced in Fig-
ure 1 allow us to capture many of the use cases we have come across in the provenance
literature. However, they do not allow us to provide descriptions at multiple level of ab-
stractions, or from different view points.To support these, we allow multiple descriptions
of a same execution to coexist.

3 Alternate Descriptions

Figure 4 shows two examples of provenance graphs describing what led the pair (3,7) to
being as it is. According to the left hand graph, the pair was generated by a process that
added one to all constituents of the pair (2,6). According to the right hand graph, the
derivation process of (3,7) required the pair to be created from values 3 and 7, respectively
obtained by adding one to 2 and 6, themselves being the data product of splitting the
original pair (2,6).

add1ToAll

ConD o

Figure 4: Examples Provenance Graph

Assuming these two graphs refer to the same pairs (2,6) and (3,7), they provide two

8



different explanations of how (3,7) was derived from (2,6): these explanations would offer
different levels of details about the same derivation. The requirement of providing details
at different levels of abstraction or from different viewpoints is common for provenance
systems, and hence, we would expect both accounts to be integrated in a single graph. In
Figure 5, we see how the two provenance graphs of Figure 4 were integrated, by selecting
different colors for nodes and edges. The darker (green) part belonged to the left graph
of Figure 4, whereas the lighter (orange) part is the alternate description from the right
graph of Figure 4. (Graphs in this paper are better viewed in color.) The darker and
lighter subgraphs are two different accounts of the same past execution, offering different
levels of explanation for such execution. Such subgraphs are said to be alternate accounts.

split
5 6
+1 1
2 7

@ N

Figure 5: Example of Alternate Accounts in a Provenance Graph

Observing Figure 5, it becomes crucial to contrast the edges originating from artifact
(3,7) with those originating from process cons. Indeed, the used edges out of the process
cons mean that both artifacts 3 and 7 were required for the process cons to take place.
On the contrary, since the edges out of artifact (3,7) are colored differently, they indicate
that alternate explanations exist for the process that led to such artifact being as it
is. Using the analogy of AND/OR graphs, a process with used edges corresponds to
an AND-node, whereas an artifact with wasGeneratedBy edges from different accounts
represent an OR-node.

While alternate accounts are intended to allow various descriptions of a same execu-
tion, it is recognized that these accounts may differ in their description’s semantics. In
general, such semantic differences may not be expressed by structural properties we can
set constraints on in the model (beyond the constraints identified in this document).



4 Provenance Graph Definition

The open provenance model is defined according to the following rules, which we formalise
in Section 5.

1. Accounts are entities that we assume can can be compared.

2. Artifacts are identified by unique identifiers. T'wo artifacts are equal if they have the
same identifier. Artifacts can optionally belong to accounts: account membership
is declared by listing the accounts an artifact belongs to.

3. Processes are identified by unique identifiers. Two processes are equal if they
have the same identifier. Processes can optionally belong to accounts: account
membership is declared by listing the accounts a process belongs to.

4. Agents are identified by unique identifiers. Two agents are equal if they have the
same identifier. Agents can optionally belong to accounts: account membership is
declared by listing the accounts an agent belongs to.

5. Edges are identified by their source, destination, and role (for those that include a
role). The source and destination consist of identifiers for artifacts, processes, or
agents, according to Figure 1. Two edges are equal if they have the same source, the
same destination, and the same role. Edges can also optionally belong to accounts:
account membership is defined by listing the accounts an edge belongs to.

6. Roles are mandatory in edges used, wasGeneratedBy and wasControlledBy. The
meaning of a role is defined by the semantics of the process they relate to. Role
semantics is beyond the scope of OPM.

7. To ensure that edges establish a causal connection between actual causes and ef-
fects, the model assumes that if an edge belongs to an account, then its source
and destination also belong to this account. In other words, the effective account
membership of an artifact/process/agent is its declared account membership and
the account membership of the edges it is souce and destination of.

8. An OPM graph is a set of artifacts, processes, agents, edges, and accounts, as
specified above. OPM graphs may be disconnected. The empty set is an OPM
graph. A singleton containing an artifact, a process or an agent is an OPM graph.
The set of OPM graphs is closed under the intersection and union operations, i.e.
the intersection of two OPM graphs is an OPM graph (and likewise for union). We
note at this stage that syntactically valid OPM graphs may not necessarily make
sense from a provenance viewpoint. Rules below refine the OPM graph concept.

9. A view of an OPM graph according to one account, referred to as account view,
is the set of elements whose effective account membership (for artifacts, processes,
and agents) and account membership (for edges) contain the account.

10



10. While cycles can be expressed in the syntax of OPM, a legal account view is defined
as an acyclic account view, which contains at most one wasGenerated By edge per
artifact. This ensures that within one account, an OPM graph captures proper
causal dependencies, and that a single explanation of the origin of an artifact is
given.

11. Hence, a legal OPM graph is one for which all account views are legal.

12. Legal account views are OPM graphs. The union of two legal account views is an
OPM graph (it is not a legal view since it may contain cycles). The intersection of
two legal account views is a legal account view.

13. Two account views can be declared to be alternate to express the fact that represent
different descriptions of an execution.

14. A declaration that two views are alternate is legal if the views have some artifact,
process or agent in common.

15. A provenance graph is a legal OPM graph where alternate views are legal.

16. FEdges can optionally be annotated with time information. This aspect will be
discussed in Section 7.

17. A provenance graph does not need to contain time annotations.

Having defined the concept of a provenance graph, we now study its formal specifi-
cation.

5 Timeless Formal Model

Figure 6 provides a set-theoretic definition [7] of the open provenance model, based on
the concepts introduced so far. The model of causality we propose is timeless since time
precedence does not imply causality: if a process P; occurs before a process P, in general,
we cannot infer that P; caused P, to happen. However, the converse implication holds
assuming time is measured according to a single clock.

Even though the provenance model is timeless, we recognize the importance of time,
since time is easily observable by computer systems or users. Hence, in Section 7, we
examine how the causality graph can be annotated with time. We will also specify
constraints that one would expect time annotations to satisfy (in terms of monotonicity
with respect to time) in sound causality graphs.

We assume the existence of a few primitive sets: identifiers for processes, artifacts
and agents, roles, and accounts. A given serialization will standardize on these sets, and
provide concrete representations for them.

In the model, processes, artifacts and agents are identified by their IDs, and are
associated with zero or more accounts — noted P(Account), the powerset notation. In
the set-theoretic notation, identifiers map to the corresponding account membership.

11



In other words, with a database perspective, elements of Processld, Artifactld and
Agentld are keys to processes, artifacts and agents, respectively.

The five causality edges can be easily specified by sets Used, WasGenerated By, WasTriggered By,
WasDerivedFrom, and WasControlled By making use of identifiers for artifacts, processes
or agents, roles, and the associated accounts.

Finally, an OPM graph needs to identify explicitly which accounts are alternate. For
this, we use a set Alternate enumerating pairs of alternate accounts.

ProcessId : primitive set (Process Identifiers)
Artifactld :  primitive set (Artifact Identifiers)
AgentId : primitive set (Agent Identifiers)
Role : primitive set (Roles)
Account :  primitive set (Accounts)
Process = Processld — P(Account)
Artifact = Artifactld — P(Account)

Agent = Agentld — P(Account)
Used = Processld x Role x Artifactld x P(Account)
WasGeneratedBy = Artifactld x Role x ProcessId x P(Account)

WasTriggeredBy = Processld x Processld x P(Account)

WasDerivedFrom = Artifactld x Artifactld x P(Account)
WasControlledBy = Processld x Role x Agentld x P(Account)
Alternate = Account x Account

OPMGraph = Artifact x Process
x Agent x P(Used)
xP(WasGeneratedBy) x P( WasTriggered By)
xP(WasDeriwedFrom) x P( WasControlledBy)
xP(Alternate)

Figure 6: Timeless Causality Graph Data Model

The model of Figure 6 specifies all the necessary building blocks for creating OPM
graphs. We now revisit the definition provided by Section 4, re-examining each item, and
explaining it in terms of the formal model.

1. Accounts are elements of the set Account.

2. Artifacts have identifiers belonging to the set Artifactld. For a given set of Arti-
facts A, and for an artifact id a, account membership is A(a).

3. Processes have identifiers belonging to the set Processld. For a given set of Pro-
cesses P, and for a process id p, account memberhsip is P(p).

4. Agents have identifiers belonging to the set AgentId. For a given set of agents AG,
and for an agen id ag, account memberhsip is AG(ag).

5. For any used edges u; = (p1, a1,7r1,acc;) € Used and uy = (ps, ag, 19, accy) € Used,
uy = ug if p1 = pa9, a1 = as, r1 = ro. Likewise for the other edges.

12



6. The model does not place any constraints on roles, beyond their membership to
the set Role.

7. We introduce a convenience function accountO f operating on artifact ids, process
ids, agent ids. For a given OPM graph (A, P, AG,U,G,T, D,C, AL), where A C
Artifact, P C Process, AG C Agent, and U C Used, G C WasGeneratedBy, T C
WasTriggeredBy, D C WasDeriwvedFrom,C C WasControlledBy, AL C Alternate

accountOf (p) = P(p)
accountOf (a) = A(a)

accountOf (ag) = AG(ag)
accountOf ({p,r,a,acc)) = acc
accountOf ({a,r,p,acc)) = acc
accountOf ({py, pa, acc)) = acc
accountOf ({ay, as, acc)) acc
accountOf ({p,r, ag, acc)) acc

We then introduce effectiveAccountOf:

effectiveAccountOf (p) = accountOf (p)
U, j.kaccountOf ({p, i, aj, accy) € U)
U, j.xaccountOf ({a;, rj, p, accy) € G)
U, jaccountOf ((p, p;, acc;) € T)
U, jaccountOf ((p;, p, acc;) € T)
U, j.xaccountOf ({p, i, ag;, accy) € C)

(It is defined similarly for artifacts and agents.)

8. No topological restriction is placed on OPM graphs. For instance, (p,ri,a,0) € U
and (a, 9, p,0) € G are two acceptable edges of an OPM graph, which would create
a circularity.

If gri, gro € OPMGraph, then
gri U gre € OPMGraph

and
gri N gro € OPMGraph.

9. For an OPMGraph gr = (A, P, AG,U,G, T, D,C, AL), for an account «, view(a, gr)
is (An, Po, AGo, Uy, Go, Ty, Dy, Cyy AL), where:

A, €A with A, ={(a,acc) € A such that a € effectiveAccountOf (a)}

13



P, C P with P, ={(p,acc) € P such that a € effectiveAccountOf (p)}
AG, € AG with AG, = {(ag,acc) € AG such that «a € effectiveAccountOf (ag)}
U, CU with U, = {{p,r,a,acc) € U such that a € acc}
G, CG with G, = {{a,r,p,acc) € G such that a € acc}
T, CT with T, = {(p1,p2,accy € T such that a € acc}
D, C D with D, = {{ai,as,acc) € D such that o € acc}
Co, CC with C, = {(p,ag,acc) € C such that o € acc}

10. A legal account view gr = (A, P, AG,U,G,T,D,C, AL) is such that there is no
cycle in U,G,T,D and if (a1,r1,p1,acc;) € G and (ay,rq,pa,accs) € G, then
(a1, 71,p1,acc) = (ay,ra, pa, accs) (see item 5).

11. Two accounts ag,as are declared to be alternate in an OPMgraph gr = (A, P,
AG,U,G,T,D,C, AL), if (ay,a9) € AL or {as,cq) € AL. Hence, the alternate

relationship is symmetric.

12. Two accounts a1, ap are declared to be legal alternate in an OPMgraph if they are
alternate and if their respective account views (A, P, AGy, Uy, G1, Ty, D1, C1, ALy)
and <A2, PQ, AGQ, UQ, GQ, TQ, DQ, CQ, AL2> are such that

Domain(A;) N Domain(As) # ()
or  Domain(Py) N Domain(Py) # ()
or Domain(AG:) N Domain(AG3) # 0.

6 Inferences

The Open Provenance Model has defined the notion of OPM graph based on a set of syn-
tactic rules and the notion of Provenance Graph adding a set of topological constraints.
Provenance graphs are aimed at representing causality graphs explaining how processes
and artifacts came out to be. It is expected that a variety of reasoning algorithms will
exploit this data model, in order to provide novel and powerful functionality to users.
It is beyond the scope of this document to include an extensive coverage of relevant
reasoning algorithms. However, provenance graphs, by means of edges, capture causal
dependencies, which can be summarised by means of transitive closure that we describe
in this section.

6.1 One Step Inferences

In Section 2, we have introduced the two causal dependencies wasTriggeredBy and
wasDeriwvedFrom acting as abbreviation for causal dependencies used and wasGenerated By.
Figure 7 shows their exact meaning.

Figures 8 and 9 formalize Figure 7 by introducing rules for each inference that can be
performed in the Open Provenance Model. A rule consists of two expressions separated

14



wasTriggeredBy

dR1) wasGene-

used(R1 dBV(R2 used(R3)

¢ . rate V(R2) ¢

Accl P1 Acc2 Acc3 P2
wasDerivedFrom

Figure 7: One Step Inference in the Provenance Model

by a horizontal line. The expression above the line is a hypothesis, whereas the expression
below the line is a conclusion that can be inferred from the hypothesis.

In Equation (1), a wasTriggeredBy edge is inferred from the existence of a used
and wasGeneratedBy edges, as per described in Figure 7. We note that the inferred
wasTriggeredBy edge relies on both accounts accy and accs, hence, it is given accy U accs
as account.

(pa, T3, a2, accs) € Used N (ag,T9,p1,accy) € WasGeneratedBy

(1)

(p2, p1, acca U aces) € WasTriggeredBy
(pa, p1,acc) € WasTriggeredBy

(2)

Jag, re, r3, accy, accs, (pa, T3, ag,accs) € Used
A {ag, 19, p1, acce) € WasGenerated By
N acecy U aces = acce

Figure 8: One Step Inference Rules (1)

Equation (2) is the reverse of Equation (1): it allows us to establish that the edge
wasTriggeredBy(pa, p1, acc) is hiding the existence of some artifact as, used by py and
generated by p;. The inferred edges used and wasGeneratedBy were asserted in the
context of some account accy and accy, whose union is the original account acc. We
note that Equation (2) allows us to establish the existence of some artifact as (and
1,79, accy, accy) but it does not tell us what their values are. This is the consequence
of using wasTriggeredBy, which is a lossy summary of the composition of used and
wasGeneratedBy.

The kind of inferences that can be made about wasDerivedFrom is of a different
nature. Indeed, without any internal knowledge of P; in Figure 7, it is impossible to
ascertain there is an actual data dependency between A; and As. This is why Definition
8 adopts a weaker notion of dependency, acknowledging the presence of process that used
A; and generated Ay. Hence, Equation (3) states that a wasDerivedFrom edge can be
derived from the existence of a succession of wasGeneratedBy and used edges. Equation

15



(4) is to (2) what wasDerivedFrom is to wasTriggeredBy.

(ag, 9, p1,accs) € WasGeneratedBy N\ (p1,r1,a1,acc;) € Used

(ag,ay,acc; U acey) € WasDerivedFrom

(ay, ay,acc)y € WasDerivedFrom

Ip1, 71,72, accy, accy,  (ag, T, pr,accy) € WasGeneratedBy
A (p1,71, a1, accy) € Used
N accy U acey = ace

Figure 9: One Step Inference Rules (2)

In rules 1 and 3, the inferred edges have accounts accy U accs and accy U acco, respec-
tively. Hence, the artifacts and processes connected by these edges will have an effective
account membership modified accordingly. We note that rules 1 and 3 effectively creates
relationships in the union of multiple account views.

6.2 Transitive Closure

Users want to find out the causes of an artifact, not due to one process, but potentially,
due to an unknown number of them.

Hence, for the purpose of expressing queries or expressing inferences about provenance
graphs, we introduce four new relationships, which are transitive versions of existing re-
lationships, namely Used®, WasGeneratedBy*, WasDerivedFrom” and WasTriggeredBy".
Their definitions are displayed in Figure 10. We note that Figure 10 contains definitions
(as opposed to inference rules of Figures 8 and 9, which specify which edges can be
inferred from which edges). For convenience, we have also introduced a generic causal
dependency wasDependentOn™ (see equations (9) to (12)).

Equations (7) and (8) are one of the multiple possible ways of defining edges used”
and wasGeneratedBy*. Other definitions could be expressed and proved equivalent (such
as used” can be derived from a single used and wasDerivedFrom”).

16



(as, ay,accy € WasDerivedFrom®

if ay = ay V Jas, (as,as,accs) € WasDerivedFrom
A (a3, ay,accy) € WasDerivedFrom®
N\ acc = accy U acey

(pa2, p1, acc) € WasTriggered By*

if po =p1V 3ps, (pa,ps,accy) € WasTriggeredBy
A (ps, p1,acc) € WasTriggered By
N\ acc = accy U acey

(p,a,acc) € Used'

if Apy, 7, accy, accy, (p, pa, accy) € WasTriggered By*
A (pa, 1, a,accy) € Used
A\ acc = accy U accy

(A, P,acc) € WasGenerated By*

if Apy, R, accy, accs, (A, R,ps,accs) € WasGenerated By
A (pa, P,accy) € WasTriggered By*
N\ acc = accy U accy

(A, P,acc) € WasDependentOn®™ if (A, P,acc) € WasGenerated By*

(a1, as,acc) € WasDependentOn™ if  (ay,aq,acc) € WasDeriwvedFrom®

) (
) (
(p1, P2, acc) € WasDependentOn®™ if  (py,pe, acc) € WasTriggered By*
(P, A, acc) € WasDependentOn™ if (P, A,acc) € Used"

Figure 10: Transitive Closures

17



7 Formal Model and Time Annotations

The Open Provenance Model allows for causality graphs to be annotated with time
annotations. In this model, time is not intended to be used for deriving causality: if
causal dependencies exist, they need to be made explicit with the appropriate edges.
However, time may have been observed during the course of a process, and we would
expect such time information to be compatible with causal dependencies: the time of
an effect should be greater than the time of its cause (for a same clock). Hence, time is
useful in validating causality claims.

In the Open Provenance Model, time may be associated to instantaneous occurrences
in a process. We currently recognize four instantaneous occurrences, which have a rea-
sonable shared understanding in real life and computer systems. Two of them pertain
to artifacts, whereas the other two relate to processes. For artifacts, we consider the
occurrences of creation and use, whereas for processes, we consider their starting and
ending.

The rationale for choosing instant time for the OPM model is the same as for adopting
artifacts as immutable pieces of state. At a specific time, an object we consider will be in
a specific state, which we refer to as artifact, and for which we can express the causality
path that led to the object being in such a state.

In some scenarios, occurrences of use or creation of objects and occurrences of start-
ing or ending of processes may not be instantenous. To capture such scenarios, detailed
processes and artifacts, and their respective causal dependencies, need to be made ex-
plicit, in order to be expressible in the OPM model. For instance, the starting of a
nuclear power plant is not usefully modelled as an instantatenous occurrence, when one
tries to understand failures that occurred during this activity; hence, this whole starting
occurrence must be modelled by one process (or possibly several), which in turn have
instanenous beginnings and endings.

In the Open Provenance Model, time information is expected to be obtained by
observing a clock when an occurrence occurs. Given that time is observed, time accuracy
is limited by the granularity of the clock and the granularity of the observer’s activities.
Hence, while the notion of time we consider is instantaneous, the model allows for an
interval of accuracy to support granularity of clocks and observers. In the OPM model,
an instantaneous occurrence happening at time t is annotated by two observation times
t™ tM such that the occurrence is known to have occurred no later than t™ and no
earlier than ™. Hence, t € [t™, tM].

Concretely, for an artifact, we will be able to state that it was used (or generated by)
no earlier than time ¢; or no later than time t,. For a process, we will be able to state
that it was started (or terminated), no earlier than time ¢; or no later than time t,.

In Figure 11, we revisit our formal model, examining where time annotations are per-
mitted. We first introduce a new primitive set Time, for which a given serialization will
specify a format (such as the standard coordinated universal time, UTC). We then intro-
duce Observed Time as a pair of time values (whose set is OTime). All time annotations
are optional, which we note by OTime® in the definitions.

Edges involve OT'vme in their cartesian product. Edges from WasGenerated By and
Used can be annotated by an optional timestamp, marking the associated artifact was

18



Processld
Artifactld
Agentld

Role

Account

Time

Process
Artifact

Agent

OTime

Used
WasGeneratedBy
WasTriggered By
WasDerivedFrom
WasControlled By
Alternate
OPMGraph

primitive set (Process Identifiers)
primitive set (Artifact Identifiers)
primitive set (Agent Identifiers)
primitive set (Roles)
primitive set (Accounts)
primitive set (Time)

ProcessId — P(Account)

Artifactld — P(Account)

Agentld — P(Account)

Time x Time (Observed Time)
Processld x Role x Artifactld x P(Account) x OTime"
ArtifactId x Role x Processld x P(Account) x OTime?
ProcessId x Processld x P(Account) x OTime®

Artifactld x Artifactld x P(Account) x OTime?

Processld x Role x AgentId x P(Account) x OTime® x OTime°
Account x Account

Artifact x Process

x Agent x P(Used)

xP(WasGeneratedBy) x P( WasTriggered By)
xP(WasDerivedFrom) x P(WasControlled By)

xP(Alternate)

Figure 11: Causality Graph Data Model and Time Annotations

19



known to be generated or used, at a given time (expressed as an observation interval).

For WasControlledBy, we allow two optional timestamps marking when the process
was known to be started or terminated, respectively.

For WasDerivedFrom, we also allow one optional timestamp. Given Figure 7 and
associated inferences, for a given edge (ay, as, acc) € WasDerivedFrom, there is an implicit
process that generated a; and that consumed ay. The time annotation indicates when
the artifact was generated.

Likewise, for WasTriggeredBy, we also allow one optional timestamp. Given Figure
7 and associated inferences, for a given edge (p1, p2, acc) € WasTriggeredBy, there is an
implicit artifact that was used by p; and generated by p,. The time annotations indicates
the time when the artifact was used by p;.

8 Time Constraints and Inferences

The model of causality in OPM is essential timeless since time precedence does not imply
causality: if a process P, occurs before a process P,, in general, we cannot infer that P,
caused P, to happen. However, the converse implication holds assuming time is measured
according to a single clock.

We therefore expect time annotations to be consistent with causality. To this end,
we extend the definition of legal account view, defined as: an acyclic account view,
which contains at most one wasGeneratedBy edge per artifact, and in which causation
1s time-monotonic, as displayed in Figure 13, and discussed below.

We remind the reader that all observed times are pairs of instanteous time values.
For Ty = (7, tM), with 7" < tM and Ty, = (t5, t37), with t7* < t) inequality is defined
as follows:

Ty <Ty if tP <t <<t
Ty <Ty if 7 <t <ty <ty

According to Figure 12, an artifact must exist before it is being used (77 < T3 and
Ty < Ts). If an artifact is used by a process, it will actually be used after the start of the
process (Ty < T3). A process generates artifacts before its end (7, < T5), and a process
starts precedes its generation of artifacts (7, < Ty) and its end (T < T5).

Equipped with these definitions, Figure 13 formally states the time constraints illus-
trated by Figure 12.

Equation (13) states that generation of an artifact precedes its use. Equation (14)
requires a process to start before it uses artifacts, but after the artifact that caused it
was generated; the use of the artifact taking place before the end of the process.

Equation (15) states that generation of an artifact by a process is preceded by the
start of the process and takes place before the end of the process.

20



start: T2
wasControlledBy(R) end: T5

wasGeneratedBy(R) used(R = wasGeneratedBy(R) used(R)
<~ (4_; <
T1 T3 T4 T6

T1<T3 (artifact must exist before being used)

T2<T3 (process must have started before using artifacts)
T3<T5 (process uses artifacts before it ends)

T2<T4 (process must have started before generating artifacts)
TA<T5 (process generates artifacts before it ends)

T4<T6 (artifact must exist before being used)

T2<T5 (process must have started before ending)

no constraint between t3 and t4

Figure 12: Time Constraints in the Open Provenance Model

used(p1,m1,a,accy, T3) N wasGeneratedBy(a,re, py, accy, T1)

13
T < T; ( )
used(p,r1,a,accy, T3) N wasControlledBy(p,rs, ag,accy, Ty, T5) (14)
TQ < Tg, T3 < T5
wasGeneratedBy(a, ra, p, accy, Ty) A wasControlledBy(p, rs, ag, accy, To, T5) (15)

Ty < Ty, Ty < T5

Figure 13: Causation is Time-Monotonic

21



9 Example of Representation

In this Section, we construct an explicit representation of the model for Figure 4. It
appears in Figure 14, where we used the symbols O and G to denote orange and green
accounts, respectively.

10 Conclusion

The document has introduced the open provenance model, consisting of a technology-
independent specification and a graphical notation, to express causality graphs represent-
ing past executions. In the future, we will define a serialization format for this model.
We will also specify protocols by which provenance of artifacts can be determined, and
protocols for applications to record descriptions of their execution. We invite teams that
have defined their own provenance model to establish whether their representations can
be converted into this model and vice-versa.

22



ProcessID
ArtifactI D
Account

P C Process

{m

b2

P3

P4

Ps

A C Artifact
{a

a2

as

Gy

as

ag

u C Used

g C WasGeneratedBy

a C Alternate

Figure 14:

] A A A

el

—

——

{p1,p2, 3, 01,05}

{aly G2, as, a4, s, CLG}

{G,0}

{G},

{0},

{0},

{0},

{0} }

{G,0},  //(2,6)
{G,0}, //(3,7)
{0}, //2

{0}, //6

{0}, //3

{0} } /7
used(p1,in, ar, {G}),
used(pa, pair, ay, {O}),
used(ps,in, as, {0}),
used(pa, in, as,{0}),
used(ps, left, as,{0}),
used(ps, right, ag, {O}) }

wasGeneratedBy(ay, out, p1,{G})
wasGeneratedBy(as, left, ps, {0}),
(as, right, p2,{O}),
(

(

(

wasGenerated By

as OUtap37{O})7
wasGeneratedBy(ag, out, py, {O}),

wasGenerated By
wasGeneratedBy(as, pair, ps, {O}) }

alternate(O, G) }

Representation of Figure 4

23



A Best Practice on the Use of Agents

With the defined notion of account, we now revisit the sky mosaic example. Instead of
Figure 3, a different description could encompass the steps the operating system (or the
grid) goes through in order to execute a program (as in the PASS and ES3 approaches).
Figure 15 illustrates some possible causal dependencies for a system-level description.
Here, we see an explicit reference to the workflow script used by the enactor.

Enactor
xecutabl ontage
Workflow

D \_Script

Operating
System/

Execute
Y0, Program

wasGeneratedBy(out)

Figure 15: Alternate Montage Provenance

Naturally, both descriptions can coexist in a same provenance graph, using the concept
of alternate descriptions, as depicted by Figure 16. While such a description is perfectly
acceptable, it fails to tell us that the agent Pegasus/Condor Dagman is this executable,
which itself was activated under the control of the operating system (or Grid).

In other circumstances, it is necessary to explain that multiple agents were all control-
ling a same process, but from different perspective. For the case present, the researcher
who controlled the experiment, the enactment engine, and the funding institution are
all potential causes of the experiment. We then obtain Figure 17, where we see three
processes triggering the production of a mosaic. Further experience will the model will
allow us to identify guidelines to promote inter-operability of systems.

24



Alternate D

Pegasus/
Condor
Dagman

wasGeneratedBy(out)

wasControlledBy(enact)

Produce
Sky
Mosaic

wasGeneratedBy(out).

Figure 16: Montage Provenance

Researc

Pegasus her

Workflow Run a Perform

Template experime Proposal Fund
p workflow ot P i

Produce
Mosaic

Figure 17: Multiple Agents Controlling a Process

25



References

1]

2]

[9]

Raj Bose, Ian Foster, and Luc Moreau. Report on the International Provenance and
Annotation Workshop (IPAWO06). Sigmod Records, 35(3):51-53, September 2006.

Ewa Deelman and Yolanda Gil (Eds.). Workshop on the challenges of scientific work-
flows. Technical report, Information Sciences Institute, University of Southern Cali-
fornia, May 2006.

PREMIS Working Group. Data dictionary for preservation metadata — final report of
the premis working group. Technical report, Preservation Metadata: Implementation
Strategies (PREMIS), 2005.

Simon Miles. Technical summary of the second provenance challenge workshop.
http://twiki.ipaw.info/bin/view/challenge/Second WorkshopMinutes, King’s College,
July 2007.

Luc Moreau and Ian Foster, editors. Provenance and Annotation of Data — Inter-
national Provenance and Annotation Workshop, IPAW 2006, volume 4145 of Lecture
Notes in Computer Science. Springer-Verlag, May 2006.

Luc Moreau and Bertram Ludaescher, editors. Special Issue on the First Provenance
Challenge. Wiley, 2007.

David A. Schmidt. Denotational Semantics. A Methodology for Language Develop-
ment. Brown Publishers, 1986.

Second challenge team contributions. http://twiki.ipaw.info/bin/view/Challenge/
ParticipatingTeams, June 2007.

Y. Simmhan, B. Plale, and D. Gannon. A survey of data provenance in e-science.
SIGMOD Record, 34(3):31-36, September 2005.

26



