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NARX-Based Nonlinear System Identification Using
Orthogonal Least Squares Basis Hunting

S. Chen, X. X. Wang, and C. J. Harris

Abstract—An orthogonal least squares technique for basis
hunting (OLS-BH) is proposed to construct sparse radial basis
function (RBF) models for NARX-type nonlinear systems. Unlike
most of the existing RBF or kernel modelling methods, which
places the RBF or kernel centers at the training input data points
and use a fixed common variance for all the regressors, the pro-
posed OLS-BH technique tunes the RBF center and diagonal
covariance matrix of individual regressor by minimizing the
training mean square error. An efficient optimization method is
adopted for this basis hunting to select regressors in an orthogonal
forward selection procedure. Experimental results obtained using
this OLS-BH technique demonstrate that it offers a state-of-the-art
method for constructing parsimonious RBF models with excellent
generalization performance.

Index Terms—Basis hunting (BH), neural networks, nonlinear
system identification, orthogonal least squares (OLS), sparse
kernel regression.

I. INTRODUCTION

ABASIC principle in nonlinear system modelling is the
parsimonious principle of ensuring the smallest possible

model that explains the data [1]. Popular forward selection
using the orthogonal least squares (OLS) algorithm [2]–[11]
provides an effective means of constructing parsimonious
linear-in-the-weights nonlinear models that generalize well.
Alternatively, the support vector machine (SVM) and other
sparse kernel modelling techniques [12]–[22] have been widely
adopted in data modelling applications. These sparse regression
modelling techniques in effect choose the basis or kernel cen-
ters from the training input data points and use a fixed common
variance for all the regressor units. It is well-known that the
value of this common variance has a critical influence on the
model generalization capability and the level of model sparsity.
Since these model construction algorithms do not provide this
basis variance, it has to be treated as a hyperparameter and
learned via costly cross validation. For example, in [6] a genetic
algorithm (GA) is applied to determine the appropriate common
basis variance through optimizing the model generalization
performance using a separate validation data set.

A recent work [23] has developed a construction algorithm
for nonlinear system identification based on a general radial
basis function (RBF) model. The method as usual considers all
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the training input points as candidate RBF centers but the al-
gorithm individually fits a diagonal covariance matrix to each
RBF regressor by maximizing the correlation function of each
candidate regressor over the training data set. The locally regu-
larized OLS algorithm based on the leave-one-out mean square
error [11] is then applied to select a sparse representation from
the resulting candidate regressor set. The experimental results
reported in [23] show that this approach yields sparser models
with excellent generalization capability, in comparison with the
standard approach of adopting a single common RBF variance.
Moreover, the RBF covariance matrices are optimized using the
training data set, and there is no need to involve an additional
validation data set for this optimization. A drawback of this ap-
proach is an increase in computational complexity, particularly
when the number of the data points is large, since each data point
needs to be fitted with a diagonal RBF covariance matrix.

We propose a novel method for regression modelling using
the general RBF model. The proposed algorithm tunes the RBF
center and diagonal covariance matrix of each regressor by
minimizing the training mean square error (MSE) in an orthog-
onal forward selection procedure. This basis hunting process
is performed using a global optimization algorithm called the
repeated weighted boosting search (RWBS) [24]. Because the
RBF centers are not restricted to the training input data and each
regressor has an individually optimized diagonal covariance
matrix, this orthogonal least squares basis hunting (OLS-BH)
method is capable of producing very sparse models that gener-
alize well. Our modelling experimental results demonstrate that
this OLS-BH algorithm can produce much more parsimonious
models with equally good generalization capability, in compar-
ison with the existing state-of-the-art sparse RBF and kernel
modelling techniques. Because the number of the selected
RBF regressors is typically very small and optimization is
only performed for this small set of RBF units, the proposed
OLS-BH algorithm requires far less computation, compared
with the algorithm developed recently in [23].

II. GENERAL RBF MODELLING FOR NONLINEAR SYSTEM

For notational simplicity, we consider the class of discrete
stochastic nonlinear systems that can be represented by the fol-
lowing NARX structure:

(1)

where and are the system input and output vari-
ables, respectively, and are the known lags in and

, respectively, the observation noise is uncorrelated
with zero mean, is the unknown system mapping,

denotes the system
input vector with a known dimension , and is
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an unknown parameter vector associated with the appropriate,
but yet to be determined, model structure. The NARX model
(1) is a special case of the general NARMAX model that takes
the form [25], [26]

(2)

The technique developed in this contribution can be extended to
the generic NARMAX model of (2), see for example [2], [3],
and [25].

The system model (1) is to be identified from an -sample
system observational data set , using some
suitable functional which can approximate with arbitrary
accuracy. One class of such functionals is the regression model
of the form

(3)

where denotes the model output given the input , are
the model weight parameters, are the model regressors,
and is the number of regressors. The RBF model and the
solution of many kernel methods can be represented in the form
of (3). We will allow the regressor to be chosen as the following
general form:

(4)

where and are the th regressor’s
basis center and diagonal covariance matrix, respectively, and

is the chosen basis function. Note that, unlike the method
given in [23] and other existing kernel modelling techniques, the
basis or kernel centers are not chosen from the training input
points . Rather, the basis centers are also tunable parameters.

The proposed OLS-BH algorithm constructs the regres-
sion model (3) by “hunting” the regressors one by one in an
orthogonal forward selection procedure. By defining

and

(5)

with

(6)

the regression model (3) over the training data set can be
written in the matrix form

(7)

Let an orthogonal decomposition of the regression matrix be
, where

. . .
...

...
. . .

. . .
(8)

and

(9)

with the orthogonal columns that satisfy , if .
The regression model (7) can alternatively be expressed as

(10)

where the weight vector in the orthogonal
model space satisfies the triangular system

(11)

Knowing and can readily be solved from (11). For the
-term orthogonal regression model (10), the training MSE

(12)

can be expressed as [2]

(13)

Now consider using an OLS-BH procedure to “hunt” the regres-
sors one by one. At the -th stage of this orthogonal forward se-
lection, we will have built up a model consisting of regressors.
The MSE cost for this -term “subset” model can be expressed
recursively as

(14)

where . At the th stage of the basis hunting mod-
elling process, the th regressor is determined by maximizing
the error reduction criterion defined as

(15)

Unlike the original OLS algorithm [2], however, here the max-
imization is with respect to the basis center and the diagonal
covariance matrix of the th regressor. As usual, is the as-
sociated least squares weight solution. This OLS-BH procedure
can be terminated at the th stage if

(16)

is satisfied, where the small positive scalar is a chosen tol-
erance. This produces a parsimonious model containing
regressors.

An appropriate value for is problem dependent and must be
learned empirically. Alternatively, the Akaike information cri-
terion (AIC) [27], [28] can be adopted to terminate the OLS-BH
procedure. Specifically, for the -term model, the AIC is defined
as

(17)

where is the critical value of the chi-squared distribution with
one degree of freedom and for a given level of significance. An
appropriate value for can be shown to be [27]. If the
AIC reaches the minimum at , then the OLS-BH proce-
dure is terminated, yielding an -term model. The termination
of the OLS-BH process can also be decided using cross vali-
dation [29]–[31]. Instead of using the pure MSE criterion (12),
other criteria can also be adopted for the OLS-BH procedure,
and these include regularization, optimal experimental design,
and leave-one-out criterion [10], [11].
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III. ORTHOGONAL LEAST SQUARES BASIS HUNTING

The task of th stage of the OLS-BH regression is to deter-
mine the th regressor by minimizing the training MSE cost
function over , where the vector contains the
regressor’s basis center and diagonal covariance matrix .
This task may be carried out with a gradient-based optimiza-
tion method. A gradient-based method, however, depends on the
initial condition and may become trapped at the local minima.
Alternatively, the standard global optimization methods, such
as the GA [32], [33] and adaptive simulated annealing (ASA)
[34], [35], can be used. We opt to perform this optimization
task using the RWBS algorithm [24]. The RWBS algorithm is
a simple yet efficient global search algorithm that adopts some
ideas from boosting [36]–[39]. In a comparative study investi-
gated in [24], the RWBS algorithm was shown to achieve a sim-
ilar global convergence speed as the GA and ASA for several
global optimization applications. The RWBS algorithm has ad-
ditional advantages of requiring minimum programming effort
and having fewer algorithmic parameters that require to tune.
The procedure of using the RWBS algorithm to determine the
basis parameters, and , at the th modelling stage of the
OLS-BH regression is summarized as follows.

Give the RWBS algorithmic parameters: the population size
, the number of generations in the repeated search , and

the accuracy for terminating the weighted boosting search .

Outer loop: generations For

Generation Initialization: Initialize the population by
setting and randomly generating rest
of the population members , where

denotes the solution found in the previous
generation. If is also randomly chosen.

Weighted Boosting Search Initialization: Assign
the initial distribution weightings

, for the population. Then

1) For , generate from , the
candidates for the th model column, and orthogonalize
them

(18)

(19)

2) For , calculate the cost function value of
each

(20)

(21)

Inner loop: weighted boosting search For (

Step 1: Boosting

1) Find

and

Denote and .

2) Normalize the cost function values

3) Compute a weighting factor according to

4) Update the distribution weightings for

for

for

and normalize them

Step 2: Parameter updating

1) Construct the th point using the formula

2) Construct the th point using the formula

3) Calculate and from
and , orthogonalize these two candidate
model columns [as in (18) and (19)], and compute
their corresponding cost function values

[as in (20) and (21)]. Then find

4) The pair then replaces
in the population.

If , exit inner loop.

End of inner loop

The solution found in the th generation is .

End of outer loop
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This yields the solution , i.e., and of the th
regressor, the th model column , the orthogonalization coef-
ficients , as well as the corresponding orthog-
onal model column , the weight and the MSE of the -term
model .

The motivation and analysis of the RWBS algorithm as a
global optimizer are detailed in [24]. Appropriate values for the
algorithmic parameters , and depend on the dimen-
sion of and how hard the objective function to be optimized.
Generally, these algorithmic parameters have to be found empir-
ically, just as in any global optimization algorithm. In the inner
loop optimization, there is no need for every member of the pop-
ulation to converge to a (local) minimum, and it is sufficient to
locate where the minimum lies. Thus, can be set to a rel-
atively large value. This makes the search efficient, achieving
convergence with a small number of the cost function evalua-
tions. Instead of choosing , we may simply set a maximum
number of iterations for the inner loop. The values of and

should be set to be sufficiently large so that the parameter
space will be sampled sufficiently.

Finally, we make a computational complexity comparison be-
tween this proposed algorithm and our previous algorithm of
[23]. The proposed algorithm performs tasks of -dimen-
sional nonlinear optimization, while the previous algorithm of
[23] performs tasks of -dimensional nonlinear optimization,
where is the number of RBF units constructed by the pro-
posed algorithm, is the number of training data samples, and

is the dimension of the model input space. Since is much
smaller than , the saving in computational requirements by
the proposed algorithm is self-evident.

IV. EXPERIMENTAL RESULTS

Two real data sets were used to investigate the proposed
OLS-BH regression construction method. The basis function
(4) was chosen to be Gaussian. The RWBS algorithmic pa-
rameters , and were chosen empirically, and it was
found that the values of , and did not critically
influence the modelling results. The OLS-BH procedure was
terminated automatically when the AIC criterion (17) reached
its minimum at .

Example 1: This example constructed a model representing
the relationship between the fuel rack position (input ) and
the engine speed (output ) for a Leyland TL11 turbocharged,
direct injection diesel engine operated at low engine speed.
Detailed system description and experimental setup can be
found in [40]. The input/output (I/O) data set, depicted in
Fig. 1, contained 410 samples. The first 210 data points were
used in training and the last 200 points in model validation.
The previous study [10], [11] has shown that this data set
can be modelled adequately as with

. With and
, the OLS-BH algorithm automatically produced 11

Gaussian RBF regressors, and the resultant model is listed in
Table I. The MSE values of this 11-term Gaussian RBF model
over the training and testing sets were 0.000496 and 0.000503,
respectively. Fig. 2(a) depicts the model prediction superim-
posed on the system output and Fig. 2(b) shows the model

Fig. 1. Engine data set: (a) the input u and (b) the output y .

prediction error , for this 11-term Gaussian RBF
model. To achieve a similar modelling accuracy, the algorithm
presented in [23] required 15 Gaussian RBF regressors. Fur-
thermore, computational complexity of the OLS-BH procedure
was much less than the algorithm of [23], since the former
only required 11 optimization stages corresponding to the 11
selected regressors while the latter involved 210 optimization
fittings required for the 210 candidate regressors.

Example 2: This example constructed a model for the gas fur-
nace data set [41, Series J]. The data set contained 296 pairs of
I/O points, where the input was the coded input gas feed rate
and the output represented CO concentration from the gas
furnace. The I/O data set is depicted in Fig. 3. The model input
vector was defined by .
The odd samples of were used for training while the
even samples were left out for testing the constructed model.
The RWBS algorithmic parameters were set to

and . The search space for this example
was much larger than that of the example one, and therefore,
we chose a much larger value for the number of generations.
The OLS-BH algorithm automatically constructed a model
with six Gaussian RBF regressors, and the MSE values of
this constructed model over the training and testing data sets
were and , respectively. Table II lists
this constructed six-term model, while Fig. 4 depicts the cor-
responding model prediction and prediction error. We also
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TABLE I
MODEL PRODUCED BY THE OLS-BH PROCEDURE FOR THE ENGINE DATA SET

Fig. 2. OLS-BH modelling for the engine data set: (a) the model prediction
ŷ (dashed line) of the constructed 11-term model superimposed on the system
output y (solid line) and (b) the corresponding model prediction error ê =

y � ŷ .

applied the algorithm developed in [23] to this data set, and
it needed 18 Gaussian RBF regressors to achieve a similar
modelling accuracy as the six-term model produced by the
OLS-BH method. Moreover, the computational complexity
of the OLS-BH algorithm was a fraction of the complexity
required by the algorithm of [23].

V. CONCLUSION

A novel construction algorithm has been proposed for par-
simonious nonlinear system identification based on the general
RBF model. Unlike most of the sparse RBF or kernel regression

Fig. 3. Gas furnace data set: (a) the input u and (b) the output y .

modelling methods, which restrict basis or kernel centres to the
training input data points and use a single basis variance for all
the regressors, the proposed OLS-BH algorithm has the ability
to tune the center vector and diagonal covariance matrix of indi-
vidual regressor by minimizing the training mean square error.
An efficient yet simple global optimization search algorithm
called the RWBS has been employed to “hunt” model bases
one by one in an OLS regression procedure. The model con-
struction procedure is automatically terminated using the AIC
criterion. The proposed OLS-BH technique provides enhanced
modelling capability with very sparse representations. Using the
state-of-the-art sparse regression modelling algorithm recently
developed in [23] as a benchmark, the modelling experiments
involved two real-data sets have been conducted and it has been
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TABLE II
MODEL PRODUCED BY THE OLS-BH PROCEDURE FOR THE GAS FURNACE DATA SET

Fig. 4. OLS-BH modelling for the gas furnace data set: (a) the model prediction
ŷ (dashed line) of the constructed six-term model superimposed on the system
output y (solid line) and (b) the corresponding model prediction error ê =

y � ŷ .

shown that the proposed OLS-BH construction method is ca-
pable of producing much sparser model representations with the
same excellent generalization performance, at a fraction of the
complexity required by the previous algorithm [23].
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