
Algorithms for Maximum Satisfiability using Unsatisfiable Cores

Joao Marques-Silva and Jordi Planes
University of Southampton

Electronics & Computer Science, Southampton, UK
{jpms,jp3}@ecs.soton.ac.uk

Abstract

Many decision and optimization problems in Electronic
Design Automation (EDA) can be solved with Boolean Sat-
isfiability (SAT). Moreover, well-known extensions of SAT
also find application in EDA, including Pseudo-Boolean
Optimization, Quantified Boolean Formulas, Multi-Valued
SAT and, more recently, Maximum Satisfiability (MaxSAT).
Algorithms for MaxSAT are still fairly inefficient in indus-
trial settings, in part because the most effective SAT tech-
niques cannot be easily extended to MaxSAT. This paper
proposes a novel algorithm for MaxSAT that improves ex-
isting state of the art solvers by orders of magnitude on in-
dustrial benchmarks. The new algorithm exploits modern
SAT solvers, being based on the identification of unsatis-
fiable subformulas. Moreover, the new algorithm provides
additional insights between unsatisfiable subformulas and
the maximum satisfiability problem.

1. Introduction

Boolean Satisfiability (SAT) is used for solving an ever
increasing number of decision and optimization problems
in Electronic Design Automation (EDA). These include
model checking, equivalence checking, design debugging,
logic synthesis, and technology mapping, among many
others [3, 14, 25, 26]. Besides SAT, a number of well-
known extensions of SAT also find application in EDA,
including Pseudo-Boolean Optimization (PBO) (e.g. [21]),
Quantified Boolean Formulas (QBF) (e.g. [8]), Multi-
Valued SAT [20] and, more recently, Maximum Satisfiabil-
ity (MaxSAT) [24].

MaxSAT is a well-known problem in Computer Science,
consisting of finding the largest number of satisfied clauses
in unsatisfiable instances of SAT. Algorithms for MaxSAT
are in general not effective for large industrial problem in-
stances, in part because the most effective SAT techniques
cannot be applied directly to MaxSAT [4] (e.g. unit propa-
gation).

Motivated by the recent and promising application of
MaxSAT in EDA (e.g. [24]) this paper proposes a novel
algorithm for MaxSAT, msu4, that performs particularly
well for large industrial instances. Instead of the usual
algorithms for MaxSAT, the proposed algorithm exploits
existing SAT solver technology, and the ability of SAT
solvers for finding unsatisfiable subformulas. Despite build-
ing on the work of others, on the relationship between
maximally satisfiable and minimally unsatisfiable subfor-
mulas [15, 16, 7, 19, 11], the approach outlined in this paper
is new, in that unsatisfiable subformulas are used for guid-
ing the search for the solution to the MaxSAT problem. The
msu4 algorithm builds on recent algorithms for the identi-
fication of unsatisfiable subformulas, which find other sig-
nificant applications in EDA [27, 23]. The msu4 algorithm
also builds on recent work on solving PBO with SAT [10],
namely on techniques for encoding cardinality constraints
as Boolean circuits obtained from BDDs. Finally, the msu4
algorithm differs from the one in [11] in the way unsatisfi-
able subformulas are manipulated, and in the overall orga-
nization of the algorithm. Experimental results, obtained
on representative EDA industrial instances, indicate that in
most cases the new msu4 algorithm is orders of magnitude
more efficient than the best existing MaxSAT algorithms.
The msu4 also opens a new line of research, that tightly
integrates SAT, unsatisfiable subformulas, and MaxSAT.

The paper is organized as follows. The next section
provides a brief overview of MaxSAT and existing algo-
rithms. Section 3 describes the msu4 algorithm, and proves
the correctness of the proposed approach. Section 4 pro-
vides experimental results, comparing msu4 with alterna-
tive MaxSAT algorithms. The paper concludes in Section 5.

2. Background

This section provides definitions and background knowl-
edge for the MaxSAT problem. Due to space constraints,
familiarity with SAT and related topics is assumed and the
reader is directed to the bibliography [5].

2.1. The MaxSAT Problem

The maximum satisfiability (MaxSAT) problem can be
stated as follows. Given an instance of SAT represented
in CNF, compute an assignment that maximizes the num-
ber of satisfied clauses. During the last decade there has
been a growing interest on studying MaxSAT, motivated
by an increasing number of practical applications, includ-
ing scheduling, routing, bioinformatics, and EDA [24].

Despite the clear relationship with the SAT problem,
most modern SAT techniques cannot be applied directly
to the MaxSAT problem. As a result, most MaxSAT al-
gorithms are built on top of the standard DPLL [6] al-
gorithm, and so do not scale for industrial problem in-
stances [12, 17, 18, 11].

The usual approach (most of the solvers in the MaxSAT
competition [1]) is based on a Branch and Bound algo-
rithm, emphasizing the computation of lower bounds and
the application of inference rules that simplify the in-
stance [12, 17, 18]. Results from the MaxSAT competi-
tion [1] suggest that algorithms based on alternative ap-
proaches (e.g. by converting MaxSAT into SAT) do not
perform well. As a result, the currently best performing
MaxSAT solvers are based on branch and bound with addi-
tional inference rules.

More recently, an alternative, in general incomplete, ap-
proach to MaxSAT has been proposed [24]. The motiva-
tion for this alternative approach is the potential application
of MaxSAT in design debugging, and the fact that existing
MaxSAT approaches do not scale for industrial problem in-
stances.

2.2. Solving MaxSAT with PBO

One alternative approach for solving the MaxSAT
problem is to use Pseudo-Boolean Optimization (PBO)
(e.g. [19]). The PBO approach for MaxSAT consists of
adding a new (blocking) variable to each clause. The block-
ing variable bi for clause ωi allows satisfying clause ωi in-
dependently of other assignments to the problem variables.
The resulting PBO formulation includes a cost function,
aiming at minimizing the number of blocking variables as-
signed value 1. Clearly, the solution of the MaxSAT prob-
lem is obtained by subtracting from the number of clauses
the solution of the PBO problem.

Example 1 Consider the CNF formula: ϕ = (x1) (x2 +
x̄1) (x̄2). The PBO MaxSAT formulation consists of adding
a new blocking clause to each clause. The resulting instance
of SAT becomes ϕW = (x1 + b1) (x2 + x̄1 + b2) (x̄2 +
b3), were b1, b2, b3 denote blocking variables, one for each
clause. Finally, the cost function for the PBO instance is:
min

∑3

i=1
bi.

Despite its simplicity, the PBO formulation does not
scale for industrial problems, since the large number of
clauses results in a large number of blocking variables, and
corresponding larger search space. Observe that, for most
instances, the number of clauses exceeds the number of
variables. For the resulting PBO problem, the number of
variables equals the sum of the number of variables and
clauses in the original SAT problem. Hence, the modified
instance of SAT has a much larger search space.

2.3. Relating MaxSAT with Unsatisfiable Cores

In recent years there has been work on relating minimum
unsatisfiable and maximally satisfiable subformulas [15, 16,
19, 11]. Nevertheless, this work has not been extended to
solving the MaxSAT problem.

This section summarizes properties on the relationship
between unsatisfiable cores and MaxSAT, which are used
in the next section for developing msu4. Let ϕ be an unsat-
isfiable formula with a number of unsatisfiable cores, which
may or may not be disjoint. Note that two cores are disjoint
if the cores have no identical clauses. Let |ϕ| denote the
number of clauses in ϕ.

Proposition 1 (MaxSAT Upper Bound) Let ϕ contain K

disjoint unsatisfiable cores. Then |ϕ|−K denotes an upper
bound on the solution of the MaxSAT problem.

Furthermore, suppose blocking variables are added to
clauses in ϕ such that the resulting formula ϕW becomes
satisfiable.

Proposition 2 (MaxSAT Lower Bound) Let ϕW be satis-
fiable, and let B denote the set of blocking variables as-
signed value 1. Then |ϕ| − |B| denotes a lower bound on
the solution of the MaxSAT problem.

Clearly, the solution to the MaxSAT problem lies be-
tween any computed lower and upper bound.

Finally, it should be observed that the relationship of un-
satisfiable cores and MaxSAT was also explored in [11] in
the context of partial MaxSAT. This algorithm, msu1, re-
moves one unsatisfiable core each time, by adding a fresh
set of blocking variables to the clauses in each unsatisfiable
core. A possible drawback of the algorithm of [11] is that it
can add multiple blocking variables to each clause, an upper
bound being the number of clauses in the CNF formula [22].
In constrast, the msu4 algorithm adds at most one addi-
tional blocking variable to each clause. Moreover, a number
of algorithmic improvements to the algorithm of [11] can be
found in [22], i.e. msu2 and msu3. The proposed improve-
ments include linear encoding of the cardinality constraints,
and an alternative approach to reduce the number of block-
ing variables used.

2

3. A New MaxSAT Algorithm

This section develops the msu4 algorithm, by building
on the results of the section 2.3. As shown earlier, the major
drawback of using a PBO approach for the MaxSAT prob-
lem is the large number of blocking variables that have to
be used (essentially one for each original clause). For most
benchmarks, the blocking variables end up being signifi-
cantly more than the original variables, which is reflected
in the cost function and overall search space. The large
number of blocking variables basically renders the PBO ap-
proach ineffective in practice.

The msu4 algorithm attempts to reduce as much as pos-
sible the number of necessary blocking variables, thus sim-
plifying the optimization problem being solved. Moreover,
msu4 avoids interacting with a PBO solver and instead is
fully SAT-based.

3.1. Overview

Following the results of section 2.3, consider identifying
disjoint unsatisfiable cores of ϕ. This can be done by iter-
atively computing unsatisfiable cores, and adding blocking
variables to the clauses in the unsatisfiable cores. The iden-
tification and blocking of unsatisfiable cores is done on a
working formula ϕW . Eventually, a set of disjoint unsatis-
fiable cores is identified, and the blocking variables allow
satisfying ϕW . From Proposition 2, this represents a lower
bound on the solution of the MaxSAT problem. This lower
bound can be refined, by requiring fewer blocking variables
to be assigned value 1. This last condition can be achieved
by adding a cardinality constraint to ϕ 1.

The resulting formula can still be satisfiable, in which
case a further refined cardinality constraint is added to ϕW .
Alternatively, the formula is unsatisfiable. In this case,
some clauses of ϕ without blocking variables may exist in
the unsatisfiable core. If this is the case, each clause is aug-
mented with a blocking variable, and a new cardinality con-
straint can be added to ϕW , which requires the number of
blocking variables assigned value 1 to be less than the to-
tal number of new blocking clauses. Alternatively, the core
contains no original clause without a blocking variable. If
this is the case, then the highest computed lower bound is
returned as the solution to the MaxSAT problem. The proof
that this is indeed the case, is given below.

In contrast with the algorithms in [11] and [22], the
msu4 algorithm is not exclusively based on enumerating
unsatisfiable cores. The msu4 algorithm also identifies sat-
isfiable instances, which are then eliminated by adding ad-
ditional cardinality constraints.

1Encodings of cardinality constraints are studied for example in [10].

Algorithm 1 The msu4 algorithm

msu4(ϕ)

1 � Clauses of CNF formula ϕ are the initial clauses
2 ϕW ← ϕ � Working formula, initially set to ϕ

3 µBV ← |ϕ| � Min blocking variables w/ value 1
4 νU ← 0 � Iterations w/ unsat outcome
5 VB ← ∅ � IDs of blocking variables
6 UB ← |ϕ| + 1 � Upper bound estimate
7 LB ← 0 � Lower bound estimate
8 while true
9 do (st, ϕC)← SAT(ϕW)

10 � ϕC is an unsat core if ϕW is unsat
11 if st = UNSAT
12 then
13 ϕI = ϕC ∩ ϕ � Initial clauses in core
14 I ← {i |ωi ∈ ϕI}
15 VB ← VB ∪ I

16 if |I| > 0
17 then ϕN ← {ωi ∪ {bi} |ωi ∈ ϕI}
18 ϕW ← (ϕW − ϕI) ∪ ϕN

19 ϕT ← CNF(
∑

i∈I
bi ≥ 1)

20 ϕW ← ϕW ∪ ϕT

21 else � Solution to MaxSAT problem
22 return UB

23 νU ← νU + 1
24 UB ← |ϕ| − νU � Refine UB
25 else
26 ν ← | blocking variables w/ value 1 |
27 if µBV < ν

28 then µBV ← ν

29 LB ← |ϕ| − µBV � Refine LB
30 ϕT ← CNF(

∑
i∈VB

bi ≤ µBV − 1)

31 ϕW ← ϕW ∪ ϕT

32 if LB = UB � Solution to MaxSAT problem
33 then return UB

3.2. The Algorithm

Following the ideas of the previous section, the pseudo-
code for msu4 is shown in Algorithm 1. The msu4 algo-
rithm works as follows. The main loop (lines 8 to 33) starts
by identifying disjoint unsatisfiable cores. The clauses in
each unsatisfiable core are modified so that any clause ωi

in the core can be satisfied by setting to 1 a new auxiliary
variable bi associated with ωi. Consequently, a number of
properties of the MaxSAT problem can be inferred. Let |ϕ|
denote the number of clauses, let νU represent the num-
ber of iterations of the main loop in which the SAT solver
outcome is unsatisfiable, and let µBV denote the smallest
of the number of blocking variables assigned value 1 each
time ϕW becomes satisfiable. Then, an upper bound for
the MaxSAT problem is |ϕ| − νU , and a lower bound is
|ϕ| − µBV . Both the lower and the upper bounds provide

3

approximations to the solution of the MaxSAT problem, and
the difference between the two bounds provides an indica-
tion on the number of iterations. Clearly, the MaxSAT so-
lution will require at most µBV blocking variables to be
assigned value 1. Also, each time the SAT solver declares
the CNF formula to be unsatisfiable, then the number of
blocking variables that must be assigned value 1 can be in-
creased by 1. Each time ϕW becomes satisfiable (line 25),
a new cardinality constraint is generated (line 30), which
requires the number of blocking variables assigned value 1
to be reduced given the current satisfying assignment (and
so requires the lower bound to be increased, if possible).
Alternatively, each time ϕW is unsatisfiable (line 12), the
unsatisfiable core is analyzed. If there exist initial clauses
in the unsatisfiable core, which do not have blocking vari-
ables, then additional blocking variables are added (line 17).
Formula ϕW is updated accordingly, by removing the orig-
inal clauses and adding the modified clauses (line 18). A
cardinality constraint is added to require at least one of the
blocking clauses to be assigned value 1 (line 19). Observe
that this cardinality constraint is in fact optional, but exper-
iments suggest that it is most often useful. If ϕW is unsatis-
fiable, and no additional original clauses can be identified,
then the solution to the MaxSAT problem has been identi-
fied (line 22). Also, if the lower bound and upper bound
estimates become equal (line 32), then the solution to the
MaxSAT problem has also been identified. Given the previ-
ous discussion, the following result is obtained.

Proposition 3 Algorithm 1 gives the correct MaxSAT solu-
tion.

Proof: The algorithm iteratively identifies unsatisfiable
cores, and adds blocking variables to the clauses in each
unsatisfiable core that do not yet have blocking variables
(i.e. initial clauses), until the CNF formula becomes
satisfiable. Each computed solution represents an upper
bound on the number of blocking variables assigned value
1, and so it also represents a lower bound on the MaxSAT
solution. For each computed solution, a new cardinality
constraint is added to the formula (see line 30), requiring a
smaller number of blocking variables to be assigned value
1. If the algorithm finds an unsatisfiable core containing
no more initial clauses without blocking variables, then
the algorithm can terminate and the last computed upper
bound represents the MaxSAT solution. Observe that in
this case the same unsatisfiable core C can be generated,
even if blocking clauses are added to other original clauses
without blocking clauses. As a result, the existing lower
bound is the solution to the MaxSAT problem. Finally, note
that the optional auxiliar constraint added in line 19, does
not affect correctness, since it solely requires an existing
unsatisfiable core not to be re-identified.

3.3. A Complete Example

This section illustrates the operation of the msu4 algo-
rithm on a small example formula.

Example 2 Consider the following CNF formula:

ϕ = ω1 · ω2 · ω3 · ω4 · ω5 · ω6 · ω7 · ω8

(x1) (x̄1 + x̄2) (x2) (x̄1 + x̄3) (x3) (x̄2 + x̄3)
(x1 + x̄4) (x̄1 + x4)

Initially ϕW contains all the clauses in ϕ. In the first
loop iteration, the core ω1, ω2, ω3 is identified. As a result,
the new blocking variables b1, b2 and b3 are added, respec-
tively, to clauses ω1, ω2 and ω3, and the CNF encoding of
the cardinality constraint b1 + b2 + b3 ≥ 1 is also (option-
ally) added to ϕW . In the second iteration, ϕW is satisfi-
able, with b1 = b3 = 1. As a result, the CNF encoding of
a new cardinality constraint, b1 + b2 + b3 ≤ 1, is added
to ϕW . For the next iteration, ϕW is unsatisfiable and the
clauses ω4, ω5 and ω6 are listed in the unsatisfiable core. As
a result, the new blocking variables b4, b5 and b6 are added,
respectively, to clauses ω4, ω5 and ω6, and the CNF encod-
ing of the cardinality constraint b4 + b5 + b6 ≥ 1 is also
(optionally) added to ϕW . In this iteration, since the lower
and the upper bound become equal, then the algorithm ter-
minates, indicating that two blocking variables need to be
assigned value 1, and the MaxSAT solution is 6.

From the example, it is clear that the algorithm efficiency
depends on the ability for finding unsatisfiable formulas ef-
fectively, and for generating manageable cardinality con-
straints. In the implementation of msu4, the cardinality
constraints were encoded either with BDDs or with sorting
networks [10].

4. Experimental Results

The msu4 algorithm described in the previous section
has been implemented on top of MiniSAT [9]. Version 1.14
of MiniSAT was used, for which an unsatisfiable core ex-
tractor was available. Two versions of msu4 are consid-
ered, one (v1) uses BDDs for representing the cardinality
constraints, and the other (v2) uses sorting networks [10].

All results shown below were obtained on a 3.0 GHz In-
tel Xeon 5160 with 4GB of RAM running RedHat Linux.
A timeout of 1000s was used for all MaxSAT solvers con-
sidered. The memory limit was set to 2GB. The MaxSAT
solvers evaluated are the best performing solver in the
MaxSAT evaluation [1], maxsatz [18], minisat+ [10]
for the MaxSAT PBO formulation, and finally msu4. Ob-
serve that the algorithm in [11] targets partial MaxSAT, and
so performs poorly for MaxSAT instances [1, 22].

4

Total maxsatz pbo msu4 v1 msu4 v2
691 554 248 212 163

Table 1. Number of aborted instances

10−2

10−1

100

101

102

103

10−2 10−1 100 101 102 103

m
ax

sa
tz

msu4-v2

Figure 1. Scatter plot: maxsatz vs. msu4-v2

In order to evaluate the new MaxSAT algorithm, a set
of industrial problem instances was selected. These in-
stances were obtained from existing unsatisfiable subsets
of industrial benchmarks, obtained from the SAT compe-
tition archives and from SATLIB [2, 13]. The majority of
instances considered was originally from EDA applications,
including model checking, equivalence checking, and test-
pattern generation. Moreover, MaxSAT instances from de-
sign debugging [24] were also evaluated. The total number
of unsatisfiable instances considered was 691.

Table 1 shows the number of aborted instances for each
algorithm. As can be concluded, for practical instances,
existing MaxSAT solvers are innefective. The use of the
PBO model for MaxSAT performs better than maxsatz,
but aborts more instances than either version of msu4. It
should be noted that the PBO approach uses minisat+,
which is based on a more recent version of MiniSAT than
msu4.

Figures 1, 2 and 3 show scatter plots comparing
maxsatz, the PBO formulation and msu4 v1 with msu4
v2. As can be observed, the two version of msu4 are clearly
more efficient than either maxsatz or minisat+ on the
MaxSAT formulations. Despite the performance advantage
of both versions of msu4, there are exceptions. With few
outliers, maxsatz can only outperform msu4 v2 on in-
stances where both algorithms take less than 0.1s. In con-
trast, minisat+ can outperform msu4 v2 on a number
of instances, in part because of the more recent version of
MiniSAT used in minisat+.

10−2

10−1

100

101

102

103

10−2 10−1 100 101 102 103

pb
o

msu4-v2

Figure 2. Scatter plot: pbo vs. msu4-v2

10−2

10−1

100

101

102

103

10−2 10−1 100 101 102 103

m
su

4-
v1

msu4-v2

Figure 3. Scatter plot: msu4-v1 vs. msu4-v2

Finally, Table 2 summarizes the results for design de-
bugging instances [24]. As can be concluded, both versions
of msu4 are far more effective than either maxsatz or
minisat+ on the PBO model for MaxSAT.

5. Conclusions

Motivated by the recent application of maximum satisfi-
ability to design debugging [24], this paper proposes a new
MaxSAT algorithm, msu4, that further exploits the rela-
tionship between unsatisfiable formulas and maximum sat-
isfiability [15, 16, 7, 19, 11]. The motivation for the new
MaxSAT algorithm is to solve large industrial problem in-
stances, including those from design debugging [24]. The
experimental results indicate that msu4 performs in general
significantly better than either the best performing MaxSAT

5

Total maxsatz pbo msu4 v1 msu4 v2
29 26 21 3 3

Table 2. Design debugging instances

algorithm [1] or the PBO formulation of the MaxSAT prob-
lem [19].

For a number of industrial classes of instances, which
modern SAT solvers solve easily but which existing
MaxSAT solvers are unable to solve, msu4 is able to find
solutions in reasonable time. Clearly, msu4 is effective
only for instances for which SAT solvers are effective at
identifying small unsatisfiable cores, and from which man-
ageable cardinality constraints can be obtained.

Despite the promising results, additional improvements
to msu4 are expected. One area for improvement is to
exploit alternative SAT solver technology. msu4 is based
on MiniSAT 1.14 (due to the core generation code), but
more recent SAT solvers could be considered. Another
area for improvement is considering alternative encodings
of cardinality constraints, given the performance differ-
ences observed for the two encodings considered. Finally,
the interplay between different algorithms based on unsat-
isfiable core identification (i.e. msu1 [11] and msu2 and
msu3 [22]) should be further developed.

References

[1] J. Argelich, C. M. Li, F. Manyà, and J. Planes. MaxSAT
evaluation. http://www.maxsat07.udl.es/.

[2] D. L. Berre, L. Simon, and O. Roussel. Sat competition.
http://www.satcompetition.org/.

[3] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic
model checking without BDDs. In Tools and Algorithms for
the Construction and Analysis of Systems, pages 193–207,
March 1999.

[4] M. L. Bonet, J. Levy, and F. Manyà. Resolution for Max-
SAT. Artificial Intelligence, 171(8–9):606–618, 2007.

[5] L. Bordeaux, Y. Hamadi, and L. Zhang. Propositional satis-
fiability and constraint programming: A comparative survey.
ACM Comput. Surv., 38(4), 2006.

[6] M. Davis, G. Logemann, and D. Loveland. A machine pro-
gram for theorem-proving. Communications of the ACM,
5:394–397, July 1962.

[7] M. G. de la Banda, P. J. Stuckey, and J. Wazny. Finding
all minimal unsatisfiable sub-sets. In International Confer-
ence on Principles and Practice of Declarative Program-
ming, 2003.

[8] N. Dershowitz, Z. Hanna, and J. Katz. Bounded model
checking with QBF. In International Conference on Theory
and Applications of Satisfiability Testing, pages 408–414,
2005.

[9] N. Een and N. Sörensson. An extensible SAT solver. In In-
ternational Conference on Theory and Applications of Sat-
isfiability Testing, pages 502–518, May 2003.

[10] N. Een and N. Sörensson. Translating pseudo-Boolean con-
straints into SAT. Journal on Satisfiability, Boolean Model-
ing and Computation, 2:1–26, March 2006.

[11] Z. Fu and S. Malik. On solving the partial MAX-SAT prob-
lem. In International Conference on Theory and Applica-
tions of Satisfiability Testing, pages 252–265, 2006.

[12] F. Heras, J. Larrosa, and A. Oliveras. MiniMaxSat: a new
weighted Max-SAT solver. In International Conference on
Theory and Applications of Satisfiability Testing, pages 41–
55, 2007.

[13] H. Hoos and T. Stützle. Sat lib. http://www.satlib.org/.
[14] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai. Ro-

bust boolean reasoning for equivalence checking and func-
tional property verification. IEEE Trans. on CAD of Inte-
grated Circuits and Systems, 21(12):1377–1394, 2002.

[15] O. Kullmann. Investigations on autark assignments. Dis-
crete Applied Mathematics, 107(1-3):99–137, 2000.

[16] O. Kullmann. Lean clause-sets: generalizations of mini-
mally unsatisfiable clause-sets. Discrete Applied Mathemat-
ics, 130(2):209–249, 2003.

[17] C. M. Li, F. Manyà, and J. Planes. Detecting disjoint incon-
sistent subformulas for computing lower bounds for Max-
SAT. In National Conference on Artificial Intelligence,
2006.

[18] C. M. Li, F. Manyà, and J. Planes. New inference rules for
Max-SAT. Journal of Artificial Intelligence Research, 2007.
In press.

[19] M. H. Liffiton and K. A. Sakallah. On finding all minimally
unsatisfiable subformulas. In International Conference on
Theory and Applications of Satisfiability Testing, pages 173–
186, June 2005.

[20] C. Liu, A. Kuehlmann, and M. W. Moskewicz. Cama: A
multi-valued satisfiability solver. In International Confer-
ence on Computer-Aided Design, pages 326–333, 2003.

[21] H. Mangassarian, A. G. Veneris, S. Safarpour, F. N. Najm,
and M. S. Abadir. Maximum circuit activity estimation us-
ing pseudo-boolean satisfiability. In Design, Automation and
Testing in Europe Conference, pages 1538–1543, 2007.

[22] J. Marques-Silva and J. Planes. On using unsatisfiability
for solving maximum satisfiability. Computing Research
Repository, abs/0712.0097, December 2007.

[23] K. L. McMillan. Interpolation and SAT-based model check-
ing. In Computer-Aided Verification, 2003.

[24] S. Safarpour, H. Mangassarian, A. Veneris, M. H. Liffiton,
and K. A. Sakallah. Improved design debugging using max-
imum satisfiability. In Formal Methods in Computer-Aided
Design, November 2007.

[25] A. Smith, A. G. Veneris, M. F. Ali, and A. Viglas. Fault
diagnosis and logic debugging using boolean satisfiability.
IEEE Trans. on CAD of Integrated Circuits and Systems,
24(10):1606–1621, 2005.

[26] K.-H. Wang and C.-M. Chan. Incremental learning ap-
proach and SAT model for boolean matching with don’t
cares. In International Conference on Computer-Aided De-
sign, November 2007.

[27] L. Zhang and S. Malik. Validating SAT solvers using an
independent resolution-based checker: Practical implemen-
tations and other applications. In Design, Automation and
Testing in Europe Conference, March 2003.

6

