
Robust Search Algorithms for Test Pattem Generation

Joiio P. Marques Silva
Cadence European Laboratories

IST/INESC
1000 Lisboa, Portugal

Abstract
In recent years several highly effective algorithms have

been proposed for Automatic Test Pattem Generation
(ATPG). Nevertheless, most of these algorithms too ojien
rely on different types of heuristics to achieve good empir-
ical performance. Moreovel; there has not been signgcant
research work on developing algorithms that are robust, in
the sense that they can handle most faults with little heu-
ristic guidance. In this paper we describe an algorithm for
ATPG that is robust and still very efficient. In contrast
with existing algorithms for ATPG, the proposed algo-
rithm reduces heuristic knowledge to a minimum and
relies on an optimized search algorithm for effectively
pruning the search space. Even though the experimental
results are obtained using an ATPG tool built on top of a
Propositional Satisfability (SAT) algorithm, the same con-
cepts can be integrated on application-speciJc algorithms.

1 Introduction

During the last decade a large number of algorithms for
deterministic ATPG have been proposed [3-6, 8-11, 12-14,
18-19], many of which are extremely effective on most
existing benchmarks, and permit very high fault cover-
ages. Most of these ATPG algorithms are based on implicit
enumeration [7] and incorporate different search pruning
techniques to effectively reduce the amount of search in
most practical cases. The most well-known search-pruning
concepts include head lines [5], non-local implications [4,
12, 131, recursive leaming [9, IO], E-frontiers 161, transi-
tive closure [3], non-chronological backtracking [141
among several others. Despite this continued research
effort on the effectiveness of ATPG algorithms, they still
significantly rely on heuristic techniques. For example,
preprocessing is often applied after hard faults have been
identified (which were identified in a previous stage of the
algorithm). In addition, different heuristics for decision
making are commonly available and are used in different
phases of the ATPG algorithm. Examples of application of
these techniques can be found in [6,9, 12-14, 18-19].

In contrast, little research effort has been spent on
developing robust ATPG algorithms. We define a robust

Karem A. Sakallah
Department of EECS

University of Michigan
Ann Arbor, Michigan 48109-2122

ATPG algorithm as one that reduces the amount of heuris-
tic knowledge to a minimum and relies almost exclusively
on pruning techniques for effectively reducing the amount
of search. Robust ATPG algorithms can be crucial for cir-
cuits with a large number of hard faults and where existing
heuristic techniques fail. Furthermore, some techniques
commonly applied in ATPG will not scale for larger cir-
cuits. For example, preprocessing by identifying non-local
implications takes quadratic [111 or cubic [181 worst-case
time in the size of the circuit. Hence, for large circuits non-
local implications and other forms of preprocessing may
become impractical. On the other hand, a robust ATPG
algorithm, that does not require preprocessing for handling
all faults, can then become the algorithm of choice.

In this paper we describe different pruning techniques
that can be used for improving the robustness of ATPG
algorithms. Some of these techniques have been embed-
ded in the GRASP [151 algorithm for Propositional Satisfi-
ability (SAT), and hence the proposed ATPG tool is built
on top of GRASP. Nevertheless, all the techniques we pro-
pose can be integrated in a dedicated ATPG tool, which
would then avoid the overhead of mapping fault detection
problems into instances of satisfiability as the input to the
SAT solver.

The paper is organized as follows. In the next section
we describe how to represent circuits and fault detection
problems as Conjunctive Normal Form (CNF) formulas.
Afterwards, we briefly describe the GRASP SAT algo-
rithm for CNF formulas, that includes several powerful
search-pruning techniques. The next section is dedicated
to studying the integration of SAT algorithms in the ATPG
process. Several techniques can be applied with the goal of
reducing the complexity of fault detection problems. Fur-
thermore, we propose several methods to improve the
CNF representation of fault detection problems. We note
that some of the concepts proposed in this section can in
general be applied to other EDA tasks that can be solved
with SAT algorithms. Section 5 includes experimental

152
0731-3071/97 $10.00 0 1997 IEEE

x7 -
(a) Circuit

Number of stuck-at faults I 34 I
1 I 17 1 Collapsed fault set size [2]

(b) Stuck-at faults

1 Node x 1

I I

I I I

(c) Topological data for x1

Figure 1: Example circuit - C17 [2]

results on the well-known ISCAS’85 [2] benchmarks as
well as other benchmarks. Finally, Section 6 highlights
directions for future research work.

2 Definitions

2.1 Combinational Circuits

We start by introducing unified representations for cir-
cuits and fault detection problems. These representations are
used throughout the paper. A combinational circuit C is rep-
resented as a directed acyclic graph C = (V,, E,) , where
the elements of V , , i.e. the circuit nodes, are either primary
inputs or gate outputs, with l V 4 = N . The set of edges
E, E V , x V, identifies gate input-output connections. We
shall assume gates with bounded fanin, and so
lEcl = O(lNI). For every circuit node x in V , , the follow-
ing definitions apply:

O(x) denotes the fanout nodes of node x , i.e. nodes y in
V, such that (x , y) E E,.
O*(x) denotes the transitive fanout of node x, i.e. the set
of all nodes y such that there is a path connecting x toy.
I(x) denotes the fanin nodes of node x, i.e. nodes y in V,
such that (y, x) E E,.
I*(x) denotes the transitive fanin of node x , i.e. the set

of all nodes y such that there is a path connecting y to x.

Ko(x) denotes immediate fanout cone of influence of x,
being defined as follows:

Ko(x) = {yIyE O*(x)vyE [(w) ~ w E o*(x)}. (1)

K,(x) denotes immediate fanin cone of influence of x,

being defined as follows:

K&x) = [U I*(Y)] - (O*(X) 1x1) . (2)

The set of primary inputs can also be referred to as PI,
and the set of primary outputs as PO. Simple gates are
assumed: AND, NAND, OR, NOR, NOT and BUFF.
Finally, the number of stuck-at faults in the circuit is M, with
M = O(N), since / E d = O(lNI), and are numbered
1, . . ., M . The example in Figure 1 illustrates the previous
definitions.

Y E O*W

2.2 Conjunctive Normal Form Formulas

A conjunctive normal form (CNF) formula cp on n
binary variables xl, ..., xn is the conjunction (AND) of m
clauses ol, ..., om each of which is the disjunction (OR) of
one or more literals, where a literal is the occurrence of a
variable x i or its complement x i) . A formula cp denotes a
unique n-variable Boolean function f (x l , ..., x n) and each
of its clauses corresponds to an implicate off. When appro-
priate we refer to a CNF formula (p as a clause database.

A backtracking search algorithm for Propositional Satis-
fiability (SAT) is implemented by a search process that
implicitly traverses the space of 2” possible binary assign-
ments to the problem variables. During the search, a vari-
able whose binary value has already been determined is
considered to be assigned otherwise it is unassigned with
an implicit value of X 5 { 0, 1 }. A truth assignment for a
formula cp is a set of assigned variables and their corre-

153

Gate type

AND x = AND(wl, ..., w,)

Gate function (Pr

NOR x = NOR(w,, ..., w,)

Table 1: CNF formulas for simDie aates

NOT

BUFFER

sponding binary values. Truth assignments will be repre-
sented as sets of variablehahe pairs; for example
A = { (x l , 0), (x7 , I) , (x l 3 , 0) } . Alternatively, assign-
ments can be denoted as A = {x, = 0, x7 = 1, x13 = 0} .
An assignment A is complete if IAl = n ; otherwise it is par-
tial. Evaluating a formula cp for a given truth assignment A
yields three possible outcomes: cp(= 1 and we say that cp
is satisfied and refer to A as a satisfjing assignment;
c p l A = 0 in which case cp is unsatisfied and A is referred to
as an unsatisjjing assignment; and qlA = X indicating
that the value of cp cannot be resolved by the assignment.
This last case can only happen when A is a partial assign-
ment. An assignment partitions the clauses of cp into three
sets: satisfied clauses (evaluating to 1); unsatisfied clauses
(evaluating to 0); and unresolved clauses (evaluating to X).
The unassigned literals of a clause are referred to as itsfree
literals. A clause is said to be unit if the number of its free
literals is one.

The CNF formula of a circuit is the conjunction of the
CNF formulas for each gate output, where the CNF formula
of each gate denotes the valid input-output assignments to
the gate. (For simple gates, generalized CNF formulas are
shown in Table 1 [14].) If we view a CNF formula as a set
of clauses, the CNF formula cp for the circuit is defined by
the set union of the CNF formulas for each gate with output

A

x, c p x :

c p = vcp, (3)
X E v,

x = NOT(w,)

x = BUFFER(wl)

(x + wl) ’ (X I + wl’)

(X ’ + W l) . (X+W1’)

N
The Boolean function f : (0 , I} + (0 , 1 >, where

N = IVA, associated with cp is referred to as the circuif
consistency function.

For Automatic Test Pattern Generation (ATPG), the fol-
lowing definitions apply. The single stuck-at line (SSF) fault
model is assumed [l]. We say that a stuck-at fault is detect-
able if and only if there exists an assignment of logic values
to the circuit primary inputs such that the effect of discrep-
ancy caused by the fault can be observed on at least one of
the circuit primary outputs.

2.3 Test Pattern Generation

The application of CNF representations of circuits and
fault detection problems in ATPG has been extensively stud-
ied [3, 11, 181. In this section we provide very simple and
non-optimized CNF representations of circuits and fault
detection problems, which will be assumed in the remainder
of the paper.

In the context of test pattern generation, and for capturing
the fault detection problem, each node x is characterized by
three propositional variables:

xG denotes the logic value assumed by the node in the
good circuit.
x denotes the logic value assumed by the node in the
faulty circuit.
x denotes whether x and x assume different logic
value [ll]. We shall refer to this variable as the
sensitization status of node x. (Other semantic definitions

F

S G F

154

Sub-formuldCondition

Good Circuit
(PG = v 9,"

X E v,

Clause Set

cpF = v cpf
Faulty Circuit

x E O*(Z)

Fault Activation Conditions

Node Sensitization

C F

F

A S

A S C

cp = (z) . (*) . (z) i f v = 1

cp = (z) . (z) . (- - ~ z) i f v = O

S
c p = vcp:

X E 0'12) 1 Propagation Blocking Conditions B S cp = (-ax) X E Ko(z)-O*(z) I I
G F C F cp = (-Lx + x) . (x +-a) x E K o (z) - O * (z) I E Side Input Equivalence

I Fault Detection Requirement I
cpD = cpCucpFu(pS"cpBu~EucpAucp R I I I Detection of Fault z s-a-v

Table 2: Definition of the fault detection problem for the stem fault zs-a-v

of the sensitization status have been proposed [3, 181,
which are more stringent.)
Given the definition of variable x , the following rela- S

tionship must hold:

G F S G F S [(x # x) + + x] e (x +'x + x) .
G F S

S G F

(-a + x + x) .

('x + x + x) .
(4)

S G F
(-a +-rx + 'x)

F which basically states that the logic values of xG and x
differ if and only if x assumes logic value 1.

Let 'p, denote the CNF formula associated with gate out-
put x. The notation 'p, denotes the CNF formula forx in the
good circuit, i.e. using y variables, whereas 'p, denotes
the CNF formula for x in the faulty circuit, i.e. using y
variables. For a stem fault z-a+', the CNF representation of
the associated fault detection problem contains the follow-
ing components:

CNF formula for the circuit, denoting the good circuit.
CNF formula for the circuit, denoting the faulty circuit.
This formula only needs to contain the CNF formulas for
the nodes that are relevant for detecting the given fault,
i.e. nodes in the transitive fanout of node z.

S

G

G F

F

CNF formulas for defining the sensitization status of
every node in the transitive fanout of the fault site, i.e.
node z. Hence, for each of these nodes,

S G F S G F S
'p,= (x +-ax + x) . (' x + x + x) .

(5)
S G F S G F

S G F
which states that x = 1 if and only if x f x .
Clauses that prevent each node x from being sensitized, by
having xs = 0, whenever x is not in the transitive fanout
of z but at least one fanout node of x is in the transitive
fanout of z.
Clauses requiring x = x on each node x such that x is
not in the transitive fanout of z but at least one fanout node
of x is in the transitive fanout of z. (Observe that this
condition and the previous one permit restricting the
number of x and x variables that must actually be
used.)
Clauses capturing conditions for activating the fault, i.e.
by re uiring z # z and by forcing a suitable logic value
on z .
The formula 'p for detecting a fault z s-a-v is summa-

(1x +x + x)e(* +-Lx +-rx)

G F

F S

G F

2
D

rized in Table 2 and will henceforth be referred to as the
fault detection formula. Similarly, we define the fault-spe-

FS cifc formula, (p , as follows,

1. See [l] for ATPG definitions used throughout the paper.

155

1 Sub-formuldCondition 1 Clause Set I Example

Faulty Circuit

S s s s s Node Sensitization
'p = 'px,6 'pXIP %22 ' p X J

S S S
cp = (- 5) ' (- 7 - 9) . (- 5 0)

Propagation Blocking Conditions

Fault Activation Conditions A

Fault Detection Requirement I R s s I cp = (x 2 2 + 4

Figure 2: Fault-specific formula and fault detection requirement for fault x,, s-a-1

Fault-specific formulas contain only the clauses associ-
ated with propagating the error signal to the primary outputs
and can be defined independently of the circuit formula. The
fault-specific CNF formula for fault xI1 s-a-1 is given in
Figure 2.

Fanout-brunch faults require additional information for
dealing with setting specific values on the fanout branch.
For a given fanout-branch fault (z , y) s-a-vl, the CNF for-
mula of Table 2 needs to be modified as follows:

For all sub-formulas in Table 2, replace node z by node y.

Replace the fault activation formula cp with the
following formulas. First, add clauses requiring y # y ,

A

G F

This condition causes the creation of the fault effect.
Second, require z = 1 or z = 0 depending on
whether the fault is stuck at 0 or 1, respectively.
If the gate with output y has a non-controlling value [13,
n c (y) , require the side inputs of y with respect to z to
assume the non-controlling value of y,

G G

~~

1. The fanout-branch from node z to node y is denoted by
edge (z , y), which can be stuck at a given logic value.

U (w) ifnc(y) = 1

U (T W) if nc(y) = 0
(8) w E I (Y) - (2 1

w E I (Y) - (21

These clauses allow propagation of the fault effect from
node z to node y if the gate y has a controlling value. We
refer to the sub-formula obtained from (8) as cp , and thus
the fault-specific formula becomes

N

(9)
F B E A N cpFS = cp ucpsucp ucp ucp ucp

Given the proposed CNF formulations for the fault detec-
tion problem, we have the following formal results:

Proposition 1. Given a stuck-at stem fault t s-a-v, or a
fanout-branch fault (z , y) s-a-v, the fault is detectable if and
only if the associated fault detection formula
cp = cp vcp ucp issatisfiable.

Proposition 2. For any fault in a combinational circuit com-
posed of simple gates, the size of the associated fault detec-
tion formula cp is O(N) (clauses or literals), where N is
the number of circuit nodes.

D F S G R

D

As will be shown in the remainder of the paper, the pro-
posed CNF formulation can be simplified and improved. For
example, nodes that do not affect the €ault detection problem
need not be included in the circuit formula cp . In contrast,
other conditions can be added, which permit pruning the

G

156

I/ Global variables: Clause database cp
I1 Variable assignment A
I / Return value: FAILURE or SUCCESS
/ I Auxiliary variables: Backtracking level p
N
GRASP ()
(

return (Search (0. p) != SUCCESS) ?
FAILURE : SUCCESS;

1

I1 Input argument: Current decision level d
// Output argument:
I1 Return value: CONFLICT or SUCCESS
I1
Search (d , & p)
(

Backtracking level p

if (Decide (d) == SUCCESS)

while (TRUE) (
return SUCCESS;

if (Deduce (d) != CONFLICT) (

return SUCCESS;

Erase () ; return CONFLICT;

if (Search (d + 1, 0) == SUCCESS)

ekeif (p != d) {

1
)
if (Diagnose (d , p) == CONFLICT) (

}
Erase () ;

Erase (1 ; return CONFLICT;

}
)

Fiqure 3: DescriDtion of GRASP

amount of search associated with the satisfiability prob-
lem.

3 The Propositional Satisfiability Algorithm

In this section we briefly review the GRASP (Generic
seaRch Algorithm for Satisfiability Problems) SAT algo-
rithm, developed by Silva and Sakallah [IS]’. GRASP can
be used as a library of search algorithms and hence it can
integrated as the back-end search engine of other applica-
tions. GRASP is a backtrack search algorithm organized
as shown in Figure 3. Each stage of the search process is
characterized by a decision level. We assume that an initial
clause database (p and an initial assignment A, at decision
level 0, are given. llus initial assignment, which may be
empty, may be viewed as an additional problem constraint
and causes the search to be restricted to a subcube of the n-
dimensional Boolean space. As the search proceeds, both
cp and A are modified. During the search, we say that a
conflict occurs when one or more unsatisfied clauses result
from a given partial assignment to the variables. The

1. A detailed description of GRASP can be found in [151.

recursive search procedure consists of four major opera-
tions:

D e c i d e () , which chooses a decision assignment at
each stage of the search process. Decision procedures
are commonly based on heuristic knowledge.
D e d u c e () , which implements Boolean Constraint
Propagation as described in [15, 181. This procedure is
equivalent to the derivation of implications in digital
circuits [11.
Diagnose (1, which identifies the causes of conflicts
and can augment the clause database with additional
implicates. These implicates are referred to as conflict-
induced clauses.
E r a s e () , which deletes the assignments at the current
decision level.
The distinguishing feature of GRASP is the ability to

diagnose conflicts, and to record the causes of conflicts as
conflict-induced clauses. These clauses provide a unified
mechanism for implementing the following search-prun-
ing techniques:

A non-chronological backtracking search strategy.
Non-chronological backtracking permits jumping over
parts of the decision tree where a solution cannot be
found.
Early identification of conflicts associated with
equivalent conflicting conditions. This technique is
provided automatically by adding conflict-induced
clauses to the clause database.
Unique implication points permit finding necessary
assignments to prevent the occurrence of known
conflicting conditions.
The basic procedure for conflict-induced clause identi-

fication consists of recording dependencies associated
with variable assignments while tracing implication
sequences from a given unsatisfied clause to the decision
assignment causing the conflict. (Further details of the
algorithm and a description of the conflict diagnosis pro-
cedure can be found in [151.)

4 Integration of SAT Algorithms in ATPG

The design of a SAT-based ATPG tool must take into
account two key issues. First, the tool must help the SAT
algorithm in reducing the amount of search for each fault.
Second, the tool ought to overcome possible drawbacks

157

inherent to the algorithmic framework chosen.

techniques can be applied:

1. Incorporate in the CNF formulation additional
information that can be used to reduce the amount of
search. This is the case, for example, of the structural
information associated with fault detection problems.

2. Extend the pruning ability of the search algorithm by
taking into account any specific properties of the ATPG
process. For example, since ATPG involves a sequence
of fault detection problems, we can simplify subsequent
fault detection probIems by learning from difficulties
encountered in previous fault detection problems.
The second issue involves developing mechanisms

aimed at reducing the effects of potential drawbacks of the
approach chosen. Current SAT algorithms are known to
exhibit the following major drawbacks when used for fault
detection:

1. SAT-based ATPG algorithms are known to over-specify
test patterns. Hence, a SAT-based ATPG algorithm
ought to include mechanisms for preventing the
overspecification of test patterns.

2. Decision-making procedures in SAT algorithms cannot
exploit structural information for deciding assignments.
Nevertheless, relating decision assignments with
relevant circuit nodes can be particularly helpful in
reducing the amount of search.
In the following subsections we propose solutions to

each of the above drawbacks, which have been incorpo-
rated into TG-GRASP, a SAT-based ATPG tool developed
on top of the GRASP SAT algorithm [15].

Regarding the first issue, two main search reduction

4.1 Including Structural Information

Most, if not all, of recent structural ATPG algorithms
have included structural information in order to prune the
amount of search. A paradigmatic example of this fact are
the identification of unique sensitization points (USPs),
originally introduced by Fujiwara and Shimono in [5], and
further generalized by Schulz and others in [12-141. A

unique sensitization point is a node that must propagate
the error signal for the error signal to be observed at a pri-
mary output. Unique sensitization points permit identify-
ing necessary assignments, thus constraining the search
process. In TG-GRASP structural information is identified
while constructing the CNF formula for a given fault, and

can be used for either defining necessary assignments or
adding additional clauses which permit pruning the
amount of search during the search process.

TG-GRASP can include structural information associ-
ated with USPs under two different perspectives. While
generating the CNF formula, static USPs are identified
using the linear-time algorithm described in [14]. Each
static USP node U leads to setting U = 1 . Furthermore, if
node U has a controlling value, then every fanin node v of
U that cannot propagate the error signal must assume the
non-controlling value of U .

Another way to include structural information in the
CNF formula is to establish conditions denoting implied
variable assignments under the assumption that a node
becomes a unique sensitization point. For the example cir-
cuit of Figure 1, if x6 becomes a USP and x2 cannot propa-
gate the error signal, then x2 must assume the non-
controlling value of x . This condition can be captured by
the clause (-a6 + x2 + x2) , because the non-controlling
value of x6 is 1.

We can thus conclude that by identifying static USPs
and by adding conditions defining implied assignments
due to dynamic USPs, the proposed CNF formulas are
necessarily more constrained versions of the CNF formu-
las proposed in [3, 11, 181. Nevertheless, we note that a
SAT-based ATPG algorithm cannot use truly dynamic
structural information for pruning the search, the way it is
done in some structural algorithms [13, 141.

4.2 Increased Pruning Ability

S

S f G

The GRASP SAT algorithm provides several powerful
pruning techniques. When GRASP is used within another
application, some of these pruning techniques can be natu-
rally generalized, thus further extending the pruning
power of the resulting tool. One of the key features of
GRASP is its ability to record conflict-induced clauses and
use them to prevent similar conflicts from being identified
subsequently during the search process. For ATPG it is
plain that some of these conflict-induced clauses are inde-
pendent of the given target fault and depend only on the
function and structure of the circuit. Hence, such conflict-
induced clauses can be re-used for other target faults, and
so need only be derived once. We refer to such clauses as
pervasive conflict-induced clauses.

Proposition 3. Let there be a conflict during the search

158

process, such that any clause o involved in the conflict is
included in the circuit formula, i.e. O E cp . Then the
resulting conflict-induced clause is an implicate of the cir-
cuit consistency function.

G

In TG-GRASP, and after detecting a given fault, all cre-
ated conflict-induced clauses are analyzed. If a clause is
not pervasive it is discarded. If a clause is pervasive and its
size is below a user-specified maximum allowed threshold
size, then the clause is kept for subsequent faults. Other-
wise the clause is also discarded. Consequently, the clause
recording mechanisms of GRASP can be naturally
extended for ATPG. Pervasive clauses that are kept in the
clause database permit simplifying the search for subse-
quent faults.

An interesting side result is that any of the pervasive
clauses created under Proposition 3 can also be re-used in
other circuit analysis tasks besides ATPG, e.g. Delay-Fault
Testing, Path Delay Computation, Combinational Equiva-
lence Checking, among others. Moreover, an open issue is
how to extend the definition of pervasive conflict-induced
clause in order to include other conflict-induced clauses
that are derived from clauses that are not necessarily con-
tained in cp . G

4.3 Reducing Test Pattern Overspecification

By definition an instance of SAT is satisfied when all
clauses are satisfied. This requirement may lead, in ATPG
to the overspecification of test patterns. This problem does
not arise in structural ATPG algorithms where the termina-
tion conditions are much less stringent. In fact, as soon as
the error signal reaches a primary output and the justifica-
tion frontier [l] becomes empty, most structural ATPG
algorithms declare the fault to be detected, thus potentially
allowing many primary inputs to remain unassigned.

The procedure used in TG-GRASP for reducing the
overspecification problem hinges on the following obser-
vation. It is plain that there are assignments that satisfy
cp , since we can always find consistent assignments in a
combinational circuit. Furthermore, from the definition of
the fault detection problem in Table 2, we can also con-
clude that consistent assignments can always be found for
theformulacp ucp ucp ucp ucp .

In general, clauses in cp U cp are declared as requir-
ing being satisfied. Each time a variable y becomes
assigned, all clauses containing literals in y are also said to

G

G F S B E

A R

require being satisfied. Hence, the search process can ter-
minate when all clauses that require being satisfied are
indeed satisfied. This termination condition implies that
we can terminate the search process even when some
clauses are not satisfied, since we know beforehand that
those clauses can be satisfied. This modified termination
condition for SAT is referred to as syntactic sati@ubili@.

4.4 Decision Making Procedures

One clear advantage of structural ATPG algorithms is
that decision assignments can be made on the primary
inputs and heuristically related with goals of the ATPG
process. Such goals may include the controllability of a
line or the observability of another. SAT algorithms cannot
directly exploit such structural information in order to
guide the search process. Nevertheless, and as noted by
Stephan et al. in [18], the variables can be reordered so
that decisions will be first made with respect to primary
inputs close to the objectives being satisfied. TG-GRASP
incorporates such techniques. Hence, each time a fault is
being targeted, variables are reordered so that decisions
will be first made with respect to the primary inputs close
to the site of the fault. Note, however, that this decision
making procedure orders variables statically, and conse-
quently it is not necessarily as effective as dynamic deci-
sion making procedures used by structural algorithms.

5 Experimental Results

The TG-GRASP ATPG algorithm has been imple-
mented as a new software layer on top of GRASP. The
ISCAS’85 [2] benchmarks were used to evaluate the algo-
rithm and, in order to fully evaluate the robustness of the
proposed algorithmic organization, every possible fault in
each circuit is targeted. A single and fixed decision making
procedure was used. In addition, no preprocessing was
used. These experimental conditions are in explicit con-
trast with most algorithmic organizations in ATPG,
because each fault becomes harder to detect. Thus we are
able to evaluate in greater detail how robust the proposed
algorithm is.

Both GRASP and TG-GRASP have been implemented
in the C++ programming language, and compiled with
GCC 2.7.2. TG-GRASP was run on a SUN 5/85 machine
with 64 MByte of RAM. The experimental results of run-
ning TG-GRASP on the ISCAS’85 benchmarks are shown

159

GRASP [171.

C432

C499

C880

C1355

C1908

524 520 4 0 71.0 27.3 98.5

758 750 8 0 61.5 15.6 77.0

942 942 0 0 29.7 8.6 38.3

1574 1566 8 0 121.7 105.1 226.8

1879 1870 9 0 133.0 I 32.5 165.5

C2670

C3540

C5315

C6288

C7552

Table 3: Results on the ISCAS’85 benchmark circuits

in Table 3. In this table all the CPU times denote average
CPU times per fault in milliseconds (msec). #F, #D, #R
and #A denote, respectively, the total number of faults,
and the number of detected, redundant and aborted faults.
The GRASP SAT solver was run with the default set of
options described in [15]. The interface between TG-
GRASP and GRASP was instructed to keep pervasive
clauses of size no greater than 10. Furthermore, decision
making followed the procedure described in Section 4.4.

As can be concluded, even under particularly adverse
experimental conditions, TG-GRASP is able to detect or
prove redundant every fault in all ISCAS’85 circuits.
Moreover, the average running time for each fault is com-
petitive with the most efficient ATPG algorithms. One
other conclusion is that a significant percentage of the
CPU time is spent generating the CNF formulas. This data
agrees with experimental data from other authors [11, 181.

We can also conclude that the behavior of TG-GRASP
improves as the circuit size increases. This is in contrast
with other ATPG tools, and justifies using robust ATPG
algorithms. In addition, and to our best knowledge, TG-
GRASP is the first ATPG tool that is able to detect or
prove redundant every fault in the ISCAS benchmark suite
without using any form of preprocessing and under a fixed
decision-making strategy.

Finally, we note that additional experimental results,
obtained on circuits synthesized using power management
techniques, also support the robustness claim of TG-

6 Conclusions and Ongoing Work

In this paper we describe a SAT-based ATPG algorithm,
TG-GRASP, that is targeted at being robust, i.e. not requir-
ing much heuristic knowledge for successfully detecting
all faults. The algorithm is built on top of a highly efficient
SAT algorithm and further extends the pruning ability of
the SAT algorithm by exploiting intrinsic properties of the
ATPG problem. Experimental results, obtained with the
ISCAS’85 benchmark circuits, confirm that the proposed
algorithm is indeed robust and still competitive with other
existing ATPG algorithms.

Despite the promising results the proposed approach
has important drawbacks. First, the structural information
inherent to fault detection can only be exploited under
very limited conditions. Second, very noticeable overhead
is introduced by using a general SAT solver. Clearly, much
better experimental results could be attained if the same
search-pruning concepts could be used without having to
map fault detection problems into CNF formulas, and thus
without having to use the Propositional Satisfiability algo-
rithmic framework. Nevertheless, the proposed version of
TG-GRASP strongly suggests that a highly efficient and
robust ATFG tool can be developed. Such tool can incor-
porate powerful search-pruning techniques and still have
reduced computational overhead.

Future research work includes the application of the
algorithmic framework described in the paper, but bypass-
ing the need for a SAT solver. Hence, the search procedure
will be done on top of circuits instead of CNF formulas.
Ideally, such search algorithm will include the search-
pruning techniques of GRASP, but will avoid the signifi-
cant overhead of mapping fault detection problems into
CNF formulas. Another relevant research topic is the eval-
uation of the practical usefulness of pervasive conflict-
induced clauses. Moreover, stronger conditions, under
which conflict-induced clauses can still be declared perva-
sive, need also to be developed.

References

[l] M. Abramovici, M. A. Breuer and A. D. Friedman,
Digital Systems Testing and Testable Design, Com-
puter Science Press, 1990.

[2] F. Brglez and H. Fujiwara, “A Neutral List of 10

160

Combinational Benchmark Circuits and a Target
Translator in FORTRAN,” in Proceedings of the
International Symposium on Circuits and Systems,
1985.

[3] S. T. Chakradhar, V. D. Agrawal and S. G. Rothweiler,
“A Transitive Closure Algorithm for Test Genera-
tion,” IEEE Transactions on Computer-Aided Design,
vol. 12, no. 7, pp. 1015-1028, July 1993.

[4] H. Cox and J. Rajski, “On Necessary and Nonconflict-
ing Assignments in Algorithmic Test Pattern Genera-
tion,” IEEE Transactions on Computer-Aided Design,
vol. 13, no. 4, pp. 515-530,April 1994.

[5] H. Fujiwara and T. Shimono, “On the Acceleration of
Test Generation Algorithms,” IEEE Transactions on
Computers, vol. 32, no. 12, pp. 1137-1144, December
1983.

[6] J. Giraldi and M. L. Bushnell, “Search State Equiva-
lence for Redundancy Identification and Test Genera-
tion,” in Proceedings of the International Test
Conference, pp. 184-193, 1991.

[7] P. Goel, “An Implicit Enumeration Algorithm to Gen-
erate Tests for Combinational Logic Circuits,” IEEE
Transactions on Computers, vol. 30, no. 3, pp. 215-
222, March 198 1.

[8] T. Kirkland and M. Ray Mercer, “A Topological
Search Algorithm for ATPG,” in Proceedings of the
24th Design Automation Conference, pp. 502-508,
1987.

[9] W. Kunz and D. K. Pradhan, “Recursive Learning: An
Attractive Alternative to the Decision Tree for Test
Generation in Digital Circuits,” in Proceedings of the
International Test Conference, pp. 8 16-825, 1992.

[101 W. Kunz and D. K. Pradhan, “Accelerated Dynamic
Learning for Test Pattern Generation in Combina-
tional Circuits,” IEEE Transactions on Computer-
Aided Design, vol. 12, no. 5, pp. 684-694, May 1993.

[111 T. Larrabee, “Test Pattern Generation Using Boolean
Satisfiability,” IEEE Transactions on Computer-Aided
Design, vol. 11, no. 1, pp. 4-15, January 1992.

[12]M. H. Schulz, E. Trischler and T. M. Sarfert,
“SOCRATES: A Highly Efficient Automatic Test Pat-
tern Generation System,” IEEE Transactions on Com-
puter-Aided Design, vol. 7, no. 1, pp. 126-137,
January 1988.

[131 M. H. Schulz and E. Auth, “Improved Deterministic
Test Pattern Generation with Applications to Redun-
dancy Identification,” IEEE Transactions on Com-
puter-Aided Design, vol. 8 , no. 7, pp. 811-816, July
1989.

[14] J. P. M. Silva and K. A. Sakallah, “Dynamic Search-
Space Pruning Techniques in Path Sensitization,” in

Proceedings of the 3Ist Design Automation Confer-
ence, pp. 705-711, 1994.

[15] J. P, M. Silva and K. A. Sakallah, “GRASP-A New
Search Algorithm for Satisfiability,” in Proceedings of
the International Conference on Computer-Aided
Design, November 1996.

[16]J. P. M. Silva and K. A. Sakallah, “Robust Search
Algorithms for Test Pattern Generation,” Technical
Report RTIOY97, INESC, Portugal, January 1997.

[17]J. P. M. Silva, J. C. Monteiro and K. A. Sakallah,
“Test Pattern Generation for Circuits Using Power
Management Techniques,” in Proceedings of the
European Test Workshop, Italy, May 1997.

[181 P. R. Stephan, R. K. Brayton and A. L. Sangiovanni-
Vincentelli, “Combinational Test Generation Using
Satisfiability,” IEEE Transactions on Computer-Aided
Design, vol. 15, no. 9, pp. 1167-1176, September
1996.

[19]M. Teramoto, “A Method for Reducing the Search
Space in Test Pattern Generation,” in Proceedings of
the International Test Conference, pp. 429-435, 1993.

161

