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Abstract 
In recent years several highly effective algorithms have 

been proposed for Automatic Test Pattem Generation 
(ATPG). Nevertheless, most of these algorithms too ojien 
rely on different types of heuristics to achieve good empir- 
ical performance. Moreovel; there has not been signgcant 
research work on developing algorithms that are robust, in 
the sense that they can handle most faults with little heu- 
ristic guidance. In this paper we describe an algorithm for 
ATPG that is robust and still very efficient. In contrast 
with existing algorithms for ATPG, the proposed algo- 
rithm reduces heuristic knowledge to a minimum and 
relies on an optimized search algorithm for effectively 
pruning the search space. Even though the experimental 
results are obtained using an ATPG tool built on top of a 
Propositional Satisfability (SAT) algorithm, the same con- 
cepts can be integrated on application-speciJc algorithms. 

1 Introduction 

During the last decade a large number of algorithms for 
deterministic ATPG have been proposed [3-6, 8-11, 12-14, 
18-19], many of which are extremely effective on most 
existing benchmarks, and permit very high fault cover- 
ages. Most of these ATPG algorithms are based on implicit 
enumeration [7] and incorporate different search pruning 
techniques to effectively reduce the amount of search in 
most practical cases. The most well-known search-pruning 
concepts include head lines [5], non-local implications [4, 
12, 131, recursive leaming [9, IO], E-frontiers 161, transi- 
tive closure [3], non-chronological backtracking [ 141 
among several others. Despite this continued research 
effort on the effectiveness of ATPG algorithms, they still 
significantly rely on heuristic techniques. For example, 
preprocessing is often applied after hard faults have been 
identified (which were identified in a previous stage of the 
algorithm). In addition, different heuristics for decision 
making are commonly available and are used in different 
phases of the ATPG algorithm. Examples of application of 
these techniques can be found in [6,9, 12-14, 18-19]. 

In contrast, little research effort has been spent on 
developing robust ATPG algorithms. We define a robust 
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ATPG algorithm as one that reduces the amount of heuris- 
tic knowledge to a minimum and relies almost exclusively 
on pruning techniques for effectively reducing the amount 
of search. Robust ATPG algorithms can be crucial for cir- 
cuits with a large number of hard faults and where existing 
heuristic techniques fail. Furthermore, some techniques 
commonly applied in ATPG will not scale for larger cir- 
cuits. For example, preprocessing by identifying non-local 
implications takes quadratic [ 111 or cubic [ 181 worst-case 
time in the size of the circuit. Hence, for large circuits non- 
local implications and other forms of preprocessing may 
become impractical. On the other hand, a robust ATPG 
algorithm, that does not require preprocessing for handling 
all faults, can then become the algorithm of choice. 

In this paper we describe different pruning techniques 
that can be used for improving the robustness of ATPG 
algorithms. Some of these techniques have been embed- 
ded in the GRASP [ 151 algorithm for Propositional Satisfi- 
ability (SAT), and hence the proposed ATPG tool is built 
on top of GRASP. Nevertheless, all the techniques we pro- 
pose can be integrated in a dedicated ATPG tool, which 
would then avoid the overhead of mapping fault detection 
problems into instances of satisfiability as the input to the 
SAT solver. 

The paper is organized as follows. In the next section 
we describe how to represent circuits and fault detection 
problems as Conjunctive Normal Form (CNF) formulas. 
Afterwards, we briefly describe the GRASP SAT algo- 
rithm for CNF formulas, that includes several powerful 
search-pruning techniques. The next section is dedicated 
to studying the integration of SAT algorithms in the ATPG 
process. Several techniques can be applied with the goal of 
reducing the complexity of fault detection problems. Fur- 
thermore, we propose several methods to improve the 
CNF representation of fault detection problems. We note 
that some of the concepts proposed in this section can in 
general be applied to other EDA tasks that can be solved 
with SAT algorithms. Section 5 includes experimental 
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Figure 1: Example circuit - C17 [2] 

results on the well-known ISCAS’85 [2] benchmarks as 
well as other benchmarks. Finally, Section 6 highlights 
directions for future research work. 

2 Definitions 

2.1 Combinational Circuits 

We start by introducing unified representations for cir- 
cuits and fault detection problems. These representations are 
used throughout the paper. A combinational circuit C is rep- 
resented as a directed acyclic graph C = (V,, E,) , where 
the elements of V , ,  i.e. the circuit nodes, are either primary 
inputs or gate outputs, with l V 4  = N .  The set of edges 
E, E V ,  x V, identifies gate input-output connections. We 
shall assume gates with bounded fanin, and so 
lEcl = O(lNI). For every circuit node x in V , ,  the follow- 
ing definitions apply: 

O(x) denotes the fanout nodes of node x ,  i.e. nodes y in 
V, such that ( x ,  y) E E,. 
O*(x)  denotes the transitive fanout of node x, i.e. the set 
of all nodes y such that there is a path connecting x toy. 
I(x)  denotes the fanin nodes of node x, i.e. nodes y in V, 
such that (y, x )  E E,. 
I*(x) denotes the transitive fanin of node x ,  i.e. the set 

of all nodes y such that there is a path connecting y to x. 

Ko(x) denotes immediate fanout cone of influence of x, 
being defined as follows: 

Ko(x) = {yIyE O*(x)vyE [ ( w ) ~ w E  o*(x)}. (1) 

K,(x) denotes immediate fanin cone of influence of x, 

being defined as follows: 

K&x) = [ U I*(Y)] - (O*(X)  1x1) . (2) 

The set of primary inputs can also be referred to as PI, 
and the set of primary outputs as PO. Simple gates are 
assumed: AND, NAND, OR, NOR, NOT and BUFF. 
Finally, the number of stuck-at faults in the circuit is M, with 
M = O(N), since / E d  = O(lNI), and are numbered 
1, . . ., M . The example in Figure 1 illustrates the previous 
definitions. 

Y E  O*W 

2.2 Conjunctive Normal Form Formulas 

A conjunctive normal form (CNF) formula cp on n 
binary variables xl, ..., xn is the conjunction (AND) of m 
clauses ol, ..., om each of which is the disjunction (OR) of 
one or more literals, where a literal is the occurrence of a 
variable x i  or its complement x i ) .  A formula cp denotes a 
unique n-variable Boolean function f ( x l ,  ..., x n )  and each 
of its clauses corresponds to an implicate off. When appro- 
priate we refer to a CNF formula (p as a clause database. 

A backtracking search algorithm for Propositional Satis- 
fiability (SAT) is implemented by a search process that 
implicitly traverses the space of 2” possible binary assign- 
ments to the problem variables. During the search, a vari- 
able whose binary value has already been determined is 
considered to be assigned otherwise it is unassigned with 
an implicit value of X 5 { 0, 1 }. A truth assignment for a 
formula cp is a set of assigned variables and their corre- 
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Gate type 

AND x = AND(wl, ..., w,) 

Gate function (Pr 

NOR x = NOR(w,, ..., w,) 

Table 1: CNF formulas for simDie aates 

NOT 

BUFFER 

sponding binary values. Truth assignments will be repre- 
sented as sets of variablehahe pairs; for example 
A = { ( x l ,  0), (x7 ,  I ) ,  ( x l 3 , 0 ) } .  Alternatively, assign- 
ments can be denoted as A = {x, = 0, x7 = 1, x13 = 0} . 
An assignment A is complete if IAl = n ; otherwise it is par- 
tial. Evaluating a formula cp for a given truth assignment A 
yields three possible outcomes: cp( = 1 and we say that cp 
is satisfied and refer to A as a satisfjing assignment; 
c p l A  = 0 in which case cp is unsatisfied and A is referred to 
as an unsatisjjing assignment; and qlA = X indicating 
that the value of cp cannot be resolved by the assignment. 
This last case can only happen when A is a partial assign- 
ment. An assignment partitions the clauses of cp into three 
sets: satisfied clauses (evaluating to 1); unsatisfied clauses 
(evaluating to 0); and unresolved clauses (evaluating to X). 
The unassigned literals of a clause are referred to as itsfree 
literals. A clause is said to be unit if the number of its free 
literals is one. 

The CNF formula of a circuit is the conjunction of the 
CNF formulas for each gate output, where the CNF formula 
of each gate denotes the valid input-output assignments to 
the gate. (For simple gates, generalized CNF formulas are 
shown in Table 1 [14].) If we view a CNF formula as a set 
of clauses, the CNF formula cp for the circuit is defined by 
the set union of the CNF formulas for each gate with output 

A 

x, c p x :  

c p =  vcp, (3) 
X E  v, 

x = NOT(w,) 

x = BUFFER(wl) 

(x + wl)  ’ ( X I +  wl’) 

( X ’ + W l )  . (X+W1’) 

N 
The Boolean function f : ( 0 ,  I} + ( 0 ,  1 >, where 

N = IVA,  associated with cp is referred to as the circuif 
consistency function. 

For Automatic Test Pattern Generation (ATPG), the fol- 
lowing definitions apply. The single stuck-at line (SSF) fault 
model is assumed [l]. We say that a stuck-at fault is detect- 
able if and only if there exists an assignment of logic values 
to the circuit primary inputs such that the effect of discrep- 
ancy caused by the fault can be observed on at least one of 
the circuit primary outputs. 

2.3 Test Pattern Generation 

The application of CNF representations of circuits and 
fault detection problems in ATPG has been extensively stud- 
ied [3, 11, 181. In this section we provide very simple and 
non-optimized CNF representations of circuits and fault 
detection problems, which will be assumed in the remainder 
of the paper. 

In the context of test pattern generation, and for capturing 
the fault detection problem, each node x is characterized by 
three propositional variables: 

xG denotes the logic value assumed by the node in the 
good circuit. 
x denotes the logic value assumed by the node in the 
faulty circuit. 
x denotes whether x and x assume different logic 
value [ll].  We shall refer to this variable as the 
sensitization status of node x. (Other semantic definitions 

F 

S G F 
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Sub-formuldCondition 

Good Circuit 
(PG = v 9," 

X E  v, 

Clause Set 

cpF = v cpf 
Faulty Circuit 

x E O*(Z) 

Fault Activation Conditions 

Node Sensitization 

C F  

F 

A S  

A S C  

cp = ( z ) . ( * ) . ( z )  i f v = 1  

cp = ( z ) . ( z ) . ( - - ~ z )  i f v = O  

S 
c p =  vcp: 

X E  0'12) 1 Propagation Blocking Conditions B S cp = (-ax ) X E  Ko(z)-O*(z) I I 
G F  C F cp = (-Lx + x  ) .  (x  +-a ) x E K o ( z ) - O * ( z )  I E  Side Input Equivalence 

I Fault Detection Requirement I 
cpD = cpCucpFu(pS"cpBu~EucpAucp R I I I Detection of Fault z s-a-v 

Table 2: Definition of the fault detection problem for the stem fault zs-a-v 

of the sensitization status have been proposed [3, 181, 
which are more stringent.) 
Given the definition of variable x , the following rela- S 

tionship must hold: 

G F  S G F S  [ ( x  # x ) + + x ] e ( x  +'x + x ) .  
G F S  

S G F  

(-a + x  + x ) .  

('x + x  + x  ) .  
(4) 

S G F  
(-a +-rx + 'x) 

F which basically states that the logic values of xG and x 
differ if and only if x assumes logic value 1. 

Let 'p, denote the CNF formula associated with gate out- 
put x. The notation 'p, denotes the CNF formula forx in the 
good circuit, i.e. using y variables, whereas 'p, denotes 
the CNF formula for x in the faulty circuit, i.e. using y 
variables. For a stem fault z-a+', the CNF representation of 
the associated fault detection problem contains the follow- 
ing components: 

CNF formula for the circuit, denoting the good circuit. 
CNF formula for the circuit, denoting the faulty circuit. 
This formula only needs to contain the CNF formulas for 
the nodes that are relevant for detecting the given fault, 
i.e. nodes in the transitive fanout of node z. 

S 

G 

G F 

F 

CNF formulas for defining the sensitization status of 
every node in the transitive fanout of the fault site, i.e. 
node z. Hence, for each of these nodes, 

S G F S  G F S  
'p,= (x +-ax + x ) . ( ' x  + x  + x ) .  

(5 )  
S G F  S G F  

S G F  
which states that x = 1 if and only if x f x  . 
Clauses that prevent each node x from being sensitized, by 
having xs = 0, whenever x is not in the transitive fanout 
of z but at least one fanout node of x is in the transitive 
fanout of z. 
Clauses requiring x = x on each node x such that x is 
not in the transitive fanout of z but at least one fanout node 
of x is in the transitive fanout of z. (Observe that this 
condition and the previous one permit restricting the 
number of x and x variables that must actually be 
used.) 
Clauses capturing conditions for activating the fault, i.e. 
by re uiring z # z and by forcing a suitable logic value 
on z . 
The formula 'p for detecting a fault z s-a-v is summa- 

(1x +x + x  )e(* +-Lx +-rx ) 

G F  

F S 

G F  

2 
D 

rized in Table 2 and will henceforth be referred to as the 
fault detection formula. Similarly, we define the fault-spe- 

FS cifc formula, (p , as follows, 

1. See [ l ]  for ATPG definitions used throughout the paper. 
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1 Sub-formuldCondition 1 Clause Set I Example 

Faulty Circuit 

S s s s s  Node Sensitization 
'p = 'px,6 'pXIP %22 ' p X J  

S S S 
cp = ( - 5 ) ' ( - 7 - 9 ) . ( - 5 0 )  

Propagation Blocking Conditions 

Fault Activation Conditions A 

Fault Detection Requirement I R s s  I cp = ( x 2 2 + 4  

Figure 2: Fault-specific formula and fault detection requirement for fault x,, s-a-1 

Fault-specific formulas contain only the clauses associ- 
ated with propagating the error signal to the primary outputs 
and can be defined independently of the circuit formula. The 
fault-specific CNF formula for fault xI1 s-a-1 is given in 
Figure 2.  

Fanout-brunch faults require additional information for 
dealing with setting specific values on the fanout branch. 
For a given fanout-branch fault ( z ,  y) s-a-vl, the CNF for- 
mula of Table 2 needs to be modified as follows: 

For all sub-formulas in Table 2,  replace node z by node y.  

Replace the fault activation formula cp with the 
following formulas. First, add clauses requiring y # y , 

A 

G F  

This condition causes the creation of the fault effect. 
Second, require z = 1 or z = 0 depending on 
whether the fault is stuck at 0 or 1, respectively. 
If the gate with output y has a non-controlling value [ 13, 
n c ( y ) ,  require the side inputs of y with respect to z to 
assume the non-controlling value of y, 

G G 

~~ 

1. The fanout-branch from node z to node y is denoted by 
edge ( z ,  y), which can be stuck at a given logic value. 

U (w) ifnc(y) = 1 

U ( T W )  if nc(y) = 0 
(8) w E I (Y )  - ( 2 1  

w E I (Y)  - (21 

These clauses allow propagation of the fault effect from 
node z to node y if the gate y has a controlling value. We 
refer to the sub-formula obtained from (8) as cp , and thus 
the fault-specific formula becomes 

N 

(9) 
F B E A N  cpFS = cp ucpsucp ucp ucp ucp 

Given the proposed CNF formulations for the fault detec- 
tion problem, we have the following formal results: 

Proposition 1. Given a stuck-at stem fault t s-a-v, or a 
fanout-branch fault ( z ,  y )  s-a-v, the fault is detectable if and 
only if the associated fault detection formula 
cp = cp vcp ucp issatisfiable. 

Proposition 2. For any fault in a combinational circuit com- 
posed of simple gates, the size of the associated fault detec- 
tion formula cp is O(N) (clauses or literals), where N is 
the number of circuit nodes. 

D F S G R  

D 

As will be shown in the remainder of the paper, the pro- 
posed CNF formulation can be simplified and improved. For 
example, nodes that do not affect the €ault detection problem 
need not be included in the circuit formula cp . In contrast, 
other conditions can be added, which permit pruning the 

G 
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I/ Global variables: Clause database cp 
I1 Variable assignment A 
I /  Return value: FAILURE or SUCCESS 
/ I  Auxiliary variables: Backtracking level p 
N 
GRASP ( ) 
( 

return (Search (0. p ) != SUCCESS) ? 
FAILURE : SUCCESS; 

1 

I1 Input argument: Current decision level d 
// Output argument: 
I1 Return value: CONFLICT or SUCCESS 
I1 
Search ( d ,  & p )  
( 

Backtracking level p 

if (Decide ( d )  == SUCCESS) 

while (TRUE) ( 
return SUCCESS; 

if (Deduce ( d )  != CONFLICT) ( 

return SUCCESS; 

Erase ( ) ; return CONFLICT; 

if (Search ( d  + 1, 0 )  == SUCCESS) 

ekeif ( p  != d )  { 

1 
) 
if (Diagnose ( d ,  p )  == CONFLICT) ( 

} 
Erase ( ) ; 

Erase ( 1  ; return CONFLICT; 

} 
) 

Fiqure 3: DescriDtion of GRASP 

amount of search associated with the satisfiability prob- 
lem. 

3 The Propositional Satisfiability Algorithm 

In this section we briefly review the GRASP (Generic 
seaRch Algorithm for Satisfiability Problems) SAT algo- 
rithm, developed by Silva and Sakallah [IS]’. GRASP can 
be used as a library of search algorithms and hence it can 
integrated as the back-end search engine of other applica- 
tions. GRASP is a backtrack search algorithm organized 
as shown in Figure 3. Each stage of the search process is 
characterized by a decision level. We assume that an initial 
clause database (p and an initial assignment A, at decision 
level 0, are given. llus initial assignment, which may be 
empty, may be viewed as an additional problem constraint 
and causes the search to be restricted to a subcube of the n- 
dimensional Boolean space. As the search proceeds, both 
cp and A are modified. During the search, we say that a 
conflict occurs when one or more unsatisfied clauses result 
from a given partial assignment to the variables. The 

1. A detailed description of GRASP can be found in [ 151. 

recursive search procedure consists of four major opera- 
tions: 

D e c i d e  ( ) , which chooses a decision assignment at 
each stage of the search process. Decision procedures 
are commonly based on heuristic knowledge. 
D e d u c e  ( ) , which implements Boolean Constraint 
Propagation as described in [15, 181. This procedure is 
equivalent to the derivation of implications in digital 
circuits [ 11. 
Diagnose ( 1, which identifies the causes of conflicts 
and can augment the clause database with additional 
implicates. These implicates are referred to as conflict- 
induced clauses. 
E r a s e  ( ) , which deletes the assignments at the current 
decision level. 
The distinguishing feature of GRASP is the ability to 

diagnose conflicts, and to record the causes of conflicts as 
conflict-induced clauses. These clauses provide a unified 
mechanism for implementing the following search-prun- 
ing techniques: 

A non-chronological backtracking search strategy. 
Non-chronological backtracking permits jumping over 
parts of the decision tree where a solution cannot be 
found. 
Early identification of conflicts associated with 
equivalent conflicting conditions. This technique is 
provided automatically by adding conflict-induced 
clauses to the clause database. 
Unique implication points permit finding necessary 
assignments to prevent the occurrence of known 
conflicting conditions. 
The basic procedure for conflict-induced clause identi- 

fication consists of recording dependencies associated 
with variable assignments while tracing implication 
sequences from a given unsatisfied clause to the decision 
assignment causing the conflict. (Further details of the 
algorithm and a description of the conflict diagnosis pro- 
cedure can be found in [ 151.) 

4 Integration of SAT Algorithms in ATPG 

The design of a SAT-based ATPG tool must take into 
account two key issues. First, the tool must help the SAT 
algorithm in reducing the amount of search for each fault. 
Second, the tool ought to overcome possible drawbacks 
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inherent to the algorithmic framework chosen. 

techniques can be applied: 

1. Incorporate in the CNF formulation additional 
information that can be used to reduce the amount of 
search. This is the case, for example, of the structural 
information associated with fault detection problems. 

2.  Extend the pruning ability of the search algorithm by 
taking into account any specific properties of the ATPG 
process. For example, since ATPG involves a sequence 
of fault detection problems, we can simplify subsequent 
fault detection probIems by learning from difficulties 
encountered in previous fault detection problems. 
The second issue involves developing mechanisms 

aimed at reducing the effects of potential drawbacks of the 
approach chosen. Current SAT algorithms are known to 
exhibit the following major drawbacks when used for fault 
detection: 

1. SAT-based ATPG algorithms are known to over-specify 
test patterns. Hence, a SAT-based ATPG algorithm 
ought to include mechanisms for preventing the 
overspecification of test patterns. 

2. Decision-making procedures in SAT algorithms cannot 
exploit structural information for deciding assignments. 
Nevertheless, relating decision assignments with 
relevant circuit nodes can be particularly helpful in 
reducing the amount of search. 
In the following subsections we propose solutions to 

each of the above drawbacks, which have been incorpo- 
rated into TG-GRASP, a SAT-based ATPG tool developed 
on top of the GRASP SAT algorithm [15]. 

Regarding the first issue, two main search reduction 

4.1 Including Structural Information 

Most, if not all, of recent structural ATPG algorithms 
have included structural information in order to prune the 
amount of search. A paradigmatic example of this fact are 
the identification of unique sensitization points (USPs), 
originally introduced by Fujiwara and Shimono in [5], and 
further generalized by Schulz and others in [12-141. A 

unique sensitization point is a node that must propagate 
the error signal for the error signal to be observed at a pri- 
mary output. Unique sensitization points permit identify- 
ing necessary assignments, thus constraining the search 
process. In TG-GRASP structural information is identified 
while constructing the CNF formula for a given fault, and 

can be used for either defining necessary assignments or 
adding additional clauses which permit pruning the 
amount of search during the search process. 

TG-GRASP can include structural information associ- 
ated with USPs under two different perspectives. While 
generating the CNF formula, static USPs are identified 
using the linear-time algorithm described in [14]. Each 
static USP node U leads to setting U = 1 . Furthermore, if 
node U has a controlling value, then every fanin node v of 
U that cannot propagate the error signal must assume the 
non-controlling value of U .  

Another way to include structural information in the 
CNF formula is to establish conditions denoting implied 
variable assignments under the assumption that a node 
becomes a unique sensitization point. For the example cir- 
cuit of Figure 1, if x6 becomes a USP and x2 cannot propa- 
gate the error signal, then x2 must assume the non- 
controlling value of x . This condition can be captured by 
the clause (-a6 + x2 + x2 ) , because the non-controlling 
value of x6 is 1. 

We can thus conclude that by identifying static USPs 
and by adding conditions defining implied assignments 
due to dynamic USPs, the proposed CNF formulas are 
necessarily more constrained versions of the CNF formu- 
las proposed in [3, 11, 181. Nevertheless, we note that a 
SAT-based ATPG algorithm cannot use truly dynamic 
structural information for pruning the search, the way it is 
done in some structural algorithms [13, 141. 

4.2 Increased Pruning Ability 

S 

S f G  

The GRASP SAT algorithm provides several powerful 
pruning techniques. When GRASP is used within another 
application, some of these pruning techniques can be natu- 
rally generalized, thus further extending the pruning 
power of the resulting tool. One of the key features of 
GRASP is its ability to record conflict-induced clauses and 
use them to prevent similar conflicts from being identified 
subsequently during the search process. For ATPG it is 
plain that some of these conflict-induced clauses are inde- 
pendent of the given target fault and depend only on the 
function and structure of the circuit. Hence, such conflict- 
induced clauses can be re-used for other target faults, and 
so need only be derived once. We refer to such clauses as 
pervasive conflict-induced clauses. 

Proposition 3. Let there be a conflict during the search 
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process, such that any clause o involved in the conflict is 
included in the circuit formula, i.e. O E  cp . Then the 
resulting conflict-induced clause is an implicate of the cir- 
cuit consistency function. 

G 

In TG-GRASP, and after detecting a given fault, all cre- 
ated conflict-induced clauses are analyzed. If a clause is 
not pervasive it is discarded. If a clause is pervasive and its 
size is below a user-specified maximum allowed threshold 
size, then the clause is kept for subsequent faults. Other- 
wise the clause is also discarded. Consequently, the clause 
recording mechanisms of GRASP can be naturally 
extended for ATPG. Pervasive clauses that are kept in the 
clause database permit simplifying the search for subse- 
quent faults. 

An interesting side result is that any of the pervasive 
clauses created under Proposition 3 can also be re-used in 
other circuit analysis tasks besides ATPG, e.g. Delay-Fault 
Testing, Path Delay Computation, Combinational Equiva- 
lence Checking, among others. Moreover, an open issue is 
how to extend the definition of pervasive conflict-induced 
clause in order to include other conflict-induced clauses 
that are derived from clauses that are not necessarily con- 
tained in cp . G 

4.3 Reducing Test Pattern Overspecification 

By definition an instance of SAT is satisfied when all 
clauses are satisfied. This requirement may lead, in ATPG 
to the overspecification of test patterns. This problem does 
not arise in structural ATPG algorithms where the termina- 
tion conditions are much less stringent. In fact, as soon as 
the error signal reaches a primary output and the justifica- 
tion frontier [ l ]  becomes empty, most structural ATPG 
algorithms declare the fault to be detected, thus potentially 
allowing many primary inputs to remain unassigned. 

The procedure used in TG-GRASP for reducing the 
overspecification problem hinges on the following obser- 
vation. It is plain that there are assignments that satisfy 
cp , since we can always find consistent assignments in a 
combinational circuit. Furthermore, from the definition of 
the fault detection problem in Table 2, we can also con- 
clude that consistent assignments can always be found for 
theformulacp ucp ucp ucp ucp . 

In general, clauses in cp U cp are declared as requir- 
ing being satisfied. Each time a variable y becomes 
assigned, all clauses containing literals in y are also said to 

G 

G F S B E  

A R  

require being satisfied. Hence, the search process can ter- 
minate when all clauses that require being satisfied are 
indeed satisfied. This termination condition implies that 
we can terminate the search process even when some 
clauses are not satisfied, since we know beforehand that 
those clauses can be satisfied. This modified termination 
condition for SAT is referred to as syntactic sati@ubili@. 

4.4 Decision Making Procedures 

One clear advantage of structural ATPG algorithms is 
that decision assignments can be made on the primary 
inputs and heuristically related with goals of the ATPG 
process. Such goals may include the controllability of a 
line or the observability of another. SAT algorithms cannot 
directly exploit such structural information in order to 
guide the search process. Nevertheless, and as noted by 
Stephan et al. in [18], the variables can be reordered so 
that decisions will be first made with respect to primary 
inputs close to the objectives being satisfied. TG-GRASP 
incorporates such techniques. Hence, each time a fault is 
being targeted, variables are reordered so that decisions 
will be first made with respect to the primary inputs close 
to the site of the fault. Note, however, that this decision 
making procedure orders variables statically, and conse- 
quently it is not necessarily as effective as dynamic deci- 
sion making procedures used by structural algorithms. 

5 Experimental Results 

The TG-GRASP ATPG algorithm has been imple- 
mented as a new software layer on top of GRASP. The 
ISCAS’85 [2] benchmarks were used to evaluate the algo- 
rithm and, in order to fully evaluate the robustness of the 
proposed algorithmic organization, every possible fault in 
each circuit is targeted. A single and fixed decision making 
procedure was used. In addition, no preprocessing was 
used. These experimental conditions are in explicit con- 
trast with most algorithmic organizations in ATPG, 
because each fault becomes harder to detect. Thus we are 
able to evaluate in greater detail how robust the proposed 
algorithm is. 

Both GRASP and TG-GRASP have been implemented 
in the C++ programming language, and compiled with 
GCC 2.7.2. TG-GRASP was run on a SUN 5/85 machine 
with 64 MByte of RAM. The experimental results of run- 
ning TG-GRASP on the ISCAS’85 benchmarks are shown 
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GRASP [ 171. 

C432 

C499 

C880 

C1355 

C1908 

524 520 4 0 71.0 27.3 98.5 

758 750 8 0 61.5 15.6 77.0 

942 942 0 0 29.7 8.6 38.3 

1574 1566 8 0 121.7 105.1 226.8 

1879 1870 9 0 133.0 I 32.5 165.5 

C2670 

C3540 

C5315 

C6288 

C7552 

Table 3: Results on the ISCAS’85 benchmark circuits 

in Table 3. In this table all the CPU times denote average 
CPU times per fault in milliseconds (msec). #F, #D, #R 
and #A denote, respectively, the total number of faults, 
and the number of detected, redundant and aborted faults. 
The GRASP SAT solver was run with the default set of 
options described in [15]. The interface between TG- 
GRASP and GRASP was instructed to keep pervasive 
clauses of size no greater than 10. Furthermore, decision 
making followed the procedure described in Section 4.4. 

As can be concluded, even under particularly adverse 
experimental conditions, TG-GRASP is able to detect or 
prove redundant every fault in all ISCAS’85 circuits. 
Moreover, the average running time for each fault is com- 
petitive with the most efficient ATPG algorithms. One 
other conclusion is that a significant percentage of the 
CPU time is spent generating the CNF formulas. This data 
agrees with experimental data from other authors [ 11, 181. 

We can also conclude that the behavior of TG-GRASP 
improves as the circuit size increases. This is in contrast 
with other ATPG tools, and justifies using robust ATPG 
algorithms. In addition, and to our best knowledge, TG- 
GRASP is the first ATPG tool that is able to detect or 
prove redundant every fault in the ISCAS benchmark suite 
without using any form of preprocessing and under a fixed 
decision-making strategy. 

Finally, we note that additional experimental results, 
obtained on circuits synthesized using power management 
techniques, also support the robustness claim of TG- 

6 Conclusions and Ongoing Work 

In this paper we describe a SAT-based ATPG algorithm, 
TG-GRASP, that is targeted at being robust, i.e. not requir- 
ing much heuristic knowledge for successfully detecting 
all faults. The algorithm is built on top of a highly efficient 
SAT algorithm and further extends the pruning ability of 
the SAT algorithm by exploiting intrinsic properties of the 
ATPG problem. Experimental results, obtained with the 
ISCAS’85 benchmark circuits, confirm that the proposed 
algorithm is indeed robust and still competitive with other 
existing ATPG algorithms. 

Despite the promising results the proposed approach 
has important drawbacks. First, the structural information 
inherent to fault detection can only be exploited under 
very limited conditions. Second, very noticeable overhead 
is introduced by using a general SAT solver. Clearly, much 
better experimental results could be attained if the same 
search-pruning concepts could be used without having to 
map fault detection problems into CNF formulas, and thus 
without having to use the Propositional Satisfiability algo- 
rithmic framework. Nevertheless, the proposed version of 
TG-GRASP strongly suggests that a highly efficient and 
robust ATFG tool can be developed. Such tool can incor- 
porate powerful search-pruning techniques and still have 
reduced computational overhead. 

Future research work includes the application of the 
algorithmic framework described in the paper, but bypass- 
ing the need for a SAT solver. Hence, the search procedure 
will be done on top of circuits instead of CNF formulas. 
Ideally, such search algorithm will include the search- 
pruning techniques of GRASP, but will avoid the signifi- 
cant overhead of mapping fault detection problems into 
CNF formulas. Another relevant research topic is the eval- 
uation of the practical usefulness of pervasive conflict- 
induced clauses. Moreover, stronger conditions, under 
which conflict-induced clauses can still be declared perva- 
sive, need also to be developed. 
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