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Abstract 
This paper introduces GRASP (Generic seaRch Algorithm 

for the Sati$ability Problem), a new search algorithm f o r  Prop- 
ositional Satisjability (SAT). GRASP incorporates several 
search-pruning techniques, some of  which are spec$c to SAT 
whereas others f ind equivalent in other f i e h  ofArt$cial Intelli- 
gence. GRASP is premised on the inevitability of conflicts during 
search and its most distinguishing feature is the augmentation of 
basic backtracking search with a powe@l conjlict analysis pro- 
cedure. Analyzing conflicts to determine their causes enables 
GRASP to backtrack non-chronologically to earlier kveh in  the 
search tree, potentially pruning large portions of the search space. 
In addition, by “recording” the causes of conflicts, GRASP can 
recognize andpreempt the occurrence of similar conflicts later on 
in the search. Finally, straightforward bookkeeping of the causal- 
ity chains leading up to conjicts allows GRASP to identi3 
assignments that are necessary for a solution to be found. fiperi- 
mental results obtained5om a large number of benchmarks 
indicate that application of  the proposed conflict analysis tech- 
niques to SAT algorithms can be extremely effective for a large 
number of representative classes of SAT instances. 

1 Introduction 

The propositional satisfiability problem (SAT) appears 
in many contexts in Artificial Intelligence, including Con- 
straint Satisfaction and Automated Reasoning. SAT has also 
been extensively studied and applied in other fields of Com- 
puter Science, as for example in Design Automation of Digi- 
tal Electronic Circuits. Though well-researched and widely 
investigated, it remains the focus of continuing interest 
because efficient techniques for its solution can have great 
theoretical and practical impact. Over the years, many algo- 
rithmic solutions have been proposed for SAT, the most well 
known being the different variations of the Davis-Putnam 
procedure [3]. The best known version of this procedure is 
based on a backtracking search algorithm that, at each node 
in the search tree, elects an assignment and prunes subse- 
quent search by iteratively applying the unit clause and the 
pure literal rules. 

Most of the recently proposed improvements to the 
basic Davis-Putnam procedure [2, 5, 8, 111 can be distin- 
guished based on their decision making heuristics or their 
use of preprocessing or relaxation techniques. Common to 
all these approaches, however, is the chronological nature of 
backtracking. Nevertheless, non-chronological backtracking 
techniques have been extensively studied and applied to dif- 
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ferent areas of Artificial Intelligence, particularly Truth 
Maintenance Systems (TMS), Constraint Satisfaction Prob- 
lems (CSP) and Automated Reasoning, in some cases with 
very promising experimental results. (Bibliographic refer- 
ences to work in these areas can be found in [lo].) In recent 
years, extensive research has been directed towards the devel- 
opment of locd-search algorithms for SAT [9]. Generally, 
these algorithms are incomplete, i.e. they may not find a 
solution and cannot prove unsatisfiability of an instance of 
SAT. Nevertheless, local-search algorithms have been shown 
to be extremely effective on specific classes of satisfiable 
instances of SAT. 

This paper introduces GRASP (Generic seaRch Algo- 
rithmfor the Satisfiability Problem), a new search algorithm 
for SAT. GRASP incorporates several search-pruning tech- 
niques, some of which are specific to SAT, whereas others 
find equivalent in other fields of Artificial Intelligence. 
Experimental results obtained from a large number of bench- 
marks [6] indicate that application of the proposed conflict 
analysis techniques to SAT algorithms can be extremely 
effective for a large number of representative classes of SAT 
instances. 

Several features distinguish the conflict analysis proce- 
dure in GRASP from others used in TMSs and CSPs. First, 
conflict analysis in GRASP is tightly coupled with Boolean 
Constraint Propagation (BCP) [5]  and the causes of conflicts 
need not necessarily correspond to decision assignments. 
Second, clauses can be added to the original set of clauses, 
and the number and size of added clauses is user-controlled. 
This is in explicit contrast to nogood recording techniques 
developed for TMSs and CSPs. Third, GRASP employs 
techniques to prune the search by analyzing the implication 
structure generated by BCI? Exploiting the “anatomy” of con- 
flicts in this manner has no equivalent in other areas. 

The remainder of this paper is organized in four sec- 
tions. In Section 2, we describe the overall architecture of 
GRASP. Further details of the algorithm can be found in 
[IO]. A large number of experimental results on a wide range 
of benchmarks are presented and analyzed in Section 3. In 
particular, GRASP is shown to outperform several state-of- 
the-art SAT algorithms [ l ,  2,4, 5,  8, 9, 11, 73 on most, but 
not all, benchmarks. Furthermore, the experimental results 
shown strongly suggest that for several practical classes of 
instances of SAT, local-search algorithms may be inadequate. 
This is particularly significant whenever the instances of SAT 
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I1 Global variables: CNF formula cp 
I1 Variable assignment A 
I/ Return value: FAILURE or SUCCESS 
I/ Auxiliary variables: Backtracking level p 
I/ 
GRASP ( ) 
{ 

return (search (0 ,  f i )  != SUCCESS) ? 
FAILURE : SUCCESS; 

1 

I1 Input argument: 
I/ Output argument: Backtracking level p 
I1 Return value: CONFLICT or SUCCESS 
I1 
Search (d, & p )  
I 

Current decision level d 

if (Decide (d) == SUCCESS) 
return SUCCESS ; 

if (Deduce ( d )  != CONFLICT) { 
while (TRUE) { 

if (Search ( d  + 1, p )  == SUCCESS) 

else if ( 0  != d) { 
return SUCCESS; 

Erase ( ) ; return CONFLICT; 
1 

1 
if (Diagnose (d, p )  == CONFLICT) { 

1 
Erase ( ) ; 

Ease ( ) ; return CONFLICT; 

1 
1 

Figure 1: Description of GRASP 

are likely to be unsatisfiable. This is usually the case, for 
example, in Automated Theorem Proving and in several 
Electronic Design Automation tasks. 

2 Search Algorithm Template 

The general structure of the GRASP search algorithm is 
shown in Figure 1. We assume that an initial CNF formula 
cp and an initial assignment A of variable-value pairs are 
given at decision level 0. This initial assignment, which may 
be empty, may be viewed as an additional problem constraint 
and causes the search to be restricted to a subcube of the n- 
dimensional Boolean space. As the search proceeds, both cp , 
A and the decision level are modified. The recursive search 
procedure consists of four major operations: 

1. D e c i d e  ( ) , which chooses a decision assignment at each 
stage of the search process. Decision procedures are 
commonly based on heuristic knowledge. For the results 
given in Section 3, the following greedy heuristic is used: 
At each node in the decision tree evaluate the number 
of clauses directly satisfied by each assignment to each 
variable. Choose the variable and the assignment that 
directly satisfi’es the largest number of clauses. 

Other decision making procedures have been incorporated 
in GRASP, as described in [lo]. 

2. D e d u c e  ( ) , which implements BCP and (implicitly) 
maintains the resulting implication graph. 

3. 

4. 

D i a g n o s e  ( ) , which identifies the causes of conflicts, can 
backtrack non-chronologically and can augment the CNF 
formula with additional clauses. (See [lo] for the details of 
D e d u c e  ( ) and D i a g n o s e  ( ) .) 
Erase ( ) , which deletes the assignments at the current 
decision level. 

w e  refer to D e c i d e  ( )  , D e d u c e  ( ) and D i a g n o s e  ( ) as 
the Decision, Deduction and Diagnosis engines, respectively. 
Different realizations of these engines lead to different SAT 
algorithms, For example, the Davis-Putnam procedure can 
be emulated with the above algorithm by defining a decision 
engine, requiring the deduction engine to implement BCP 
and the pure literal rule, and organizing the diagnosis engine 
to implement chronological backtracking. 

3 Experimental Results 

In this section we present experimental results for 
G M S P  Several benchmarks are used and GRASP is com- 
pared with other state-of-the-art and publicly available SAT 
programs [l-5, 7-9, I I]. In all cases, either the source code 
or the executable was provided by the respective author. 

GRASP is implemented in the C++ programming lan- 
guage and was compiled with GCC 2.7.2. The CPU times 
for all programs were scaled to the CPU times on a SUN 
SPARC 5/85 machine. All SAT programs were run with a 
CPU time limit of 10,000 seconds. In order to evaluate the 
different programs, the DIMACS and UCSC benchmarks 
were used [6 ] .  The UCSC benchmarks represent one practi- 
cal application of SAT algorithms to the field of Electronic 
Design Automation, thus being of key significance for exper- 
imentally evaluating SAT algorithms. 

For the results shown below, GRASP was configured to 
use the decision engine described in Section 2, to implement 
non-chronological backtracking and to limit the size of 
recorded clauses to 20 or fewer literals. (Additional configu- 
ration details can be found in [IO].) 

For the tables of results the following definitions apply. 
A benchmark suite is partitioned into classes of related 
benchmarks. In each class, #M denotes the total number of 
class members; #S denotes the number of class members for 
which each program terminated in less than the allowed 
10,000 CPU seconds; and Time denotes the total CPU 
time, in seconds, taken to process all members of the class. 

The results obtained for the DIMACS and the UCSC 
benchmarks are shown in Table 1. For the DIMACS bench- 
marks we can conclude that GRASP performs better than 
the other algorithms in a large number of classes of bench- 
marks. Furthermore, for the UCSC benchmarks GRASP 
performs significantly better than all the other programs, all 
of which abort a large number of problem instances and 
require much larger CPU times. The UCSC benchmarks are 
characterized by extremely sparse CNF formulas for which 
the conflict analysis procedure of GRASP works particularly 
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Table 1: Results on the DIMACS and UCSC SAT benchmarks 

well. 
Additional experiments measuring the effect of non-chro- 

nological backtracking and clause recording on the amount of 
search conducted by GRASP can be found in [lo]. 

4 Conclusions 

This paper describes a configurable algorithmic framework 
for solving SAT that incorporates procedures for conflict analy- 
sis. Experimental results indicate that conflict analysis and its by- 
products, non-chronological backtracking and identification of 
equivalent conflicting conditions, can contribute decisively for 
efficiently solving a large number of classes of instances of SAT. 
For this purpose, the proposed SAT algorithm is compared with 
other state-of-the-art algorithms. 
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