
Conflict Analysis in Search Algorithms for Satisfiability

JoSo I? Marques Silva
Cadence European Laboratories

IST/INESC
1000 Lisboa, Portugal

Abstract
This paper introduces GRASP (Generic seaRch Algorithm

for the Sati$ability Problem), a new search algorithm f o r Prop-
ositional Satisjability (SAT). GRASP incorporates several
search-pruning techniques, some of which are spec$c to SAT
whereas others f ind equivalent in other f i e h ofArt$cial Intelli-
gence. GRASP is premised on the inevitability of conflicts during
search and its most distinguishing feature is the augmentation of
basic backtracking search with a powe@l conjlict analysis pro-
cedure. Analyzing conflicts to determine their causes enables
GRASP to backtrack non-chronologically to earlier kveh in the
search tree, potentially pruning large portions of the search space.
In addition, by “recording” the causes of conflicts, GRASP can
recognize andpreempt the occurrence of similar conflicts later on
in the search. Finally, straightforward bookkeeping of the causal-
ity chains leading up to conjicts allows GRASP to identi3
assignments that are necessary for a solution to be found. fiperi-
mental results obtained5om a large number of benchmarks
indicate that application of the proposed conflict analysis tech-
niques to SAT algorithms can be extremely effective for a large
number of representative classes of SAT instances.

1 Introduction

The propositional satisfiability problem (SAT) appears
in many contexts in Artificial Intelligence, including Con-
straint Satisfaction and Automated Reasoning. SAT has also
been extensively studied and applied in other fields of Com-
puter Science, as for example in Design Automation of Digi-
tal Electronic Circuits. Though well-researched and widely
investigated, it remains the focus of continuing interest
because efficient techniques for its solution can have great
theoretical and practical impact. Over the years, many algo-
rithmic solutions have been proposed for SAT, the most well
known being the different variations of the Davis-Putnam
procedure [3]. The best known version of this procedure is
based on a backtracking search algorithm that, at each node
in the search tree, elects an assignment and prunes subse-
quent search by iteratively applying the unit clause and the
pure literal rules.

Most of the recently proposed improvements to the
basic Davis-Putnam procedure [2, 5, 8, 111 can be distin-
guished based on their decision making heuristics or their
use of preprocessing or relaxation techniques. Common to
all these approaches, however, is the chronological nature of
backtracking. Nevertheless, non-chronological backtracking
techniques have been extensively studied and applied to dif-

Karem A. Sakallah
Department of EECS

University of Michigan
Ann Arbor, Michigan 48109-2122

ferent areas of Artificial Intelligence, particularly Truth
Maintenance Systems (TMS), Constraint Satisfaction Prob-
lems (CSP) and Automated Reasoning, in some cases with
very promising experimental results. (Bibliographic refer-
ences to work in these areas can be found in [lo].) In recent
years, extensive research has been directed towards the devel-
opment of locd-search algorithms for SAT [9]. Generally,
these algorithms are incomplete, i.e. they may not find a
solution and cannot prove unsatisfiability of an instance of
SAT. Nevertheless, local-search algorithms have been shown
to be extremely effective on specific classes of satisfiable
instances of SAT.

This paper introduces GRASP (Generic seaRch Algo-
rithmfor the Satisfiability Problem), a new search algorithm
for SAT. GRASP incorporates several search-pruning tech-
niques, some of which are specific to SAT, whereas others
find equivalent in other fields of Artificial Intelligence.
Experimental results obtained from a large number of bench-
marks [6] indicate that application of the proposed conflict
analysis techniques to SAT algorithms can be extremely
effective for a large number of representative classes of SAT
instances.

Several features distinguish the conflict analysis proce-
dure in GRASP from others used in TMSs and CSPs. First,
conflict analysis in GRASP is tightly coupled with Boolean
Constraint Propagation (BCP) [5] and the causes of conflicts
need not necessarily correspond to decision assignments.
Second, clauses can be added to the original set of clauses,
and the number and size of added clauses is user-controlled.
This is in explicit contrast to nogood recording techniques
developed for TMSs and CSPs. Third, GRASP employs
techniques to prune the search by analyzing the implication
structure generated by BCI? Exploiting the “anatomy” of con-
flicts in this manner has no equivalent in other areas.

The remainder of this paper is organized in four sec-
tions. In Section 2, we describe the overall architecture of
GRASP. Further details of the algorithm can be found in
[IO]. A large number of experimental results on a wide range
of benchmarks are presented and analyzed in Section 3. In
particular, GRASP is shown to outperform several state-of-
the-art SAT algorithms [l , 2,4, 5, 8, 9, 11, 73 on most, but
not all, benchmarks. Furthermore, the experimental results
shown strongly suggest that for several practical classes of
instances of SAT, local-search algorithms may be inadequate.
This is particularly significant whenever the instances of SAT

467
0-8186-7686-8/96 $05.00 0 1996 IEEE

I1 Global variables: CNF formula cp
I1 Variable assignment A
I/ Return value: FAILURE or SUCCESS
I/ Auxiliary variables: Backtracking level p
I/
GRASP ()
{

return (search (0 , f i) != SUCCESS) ?
FAILURE : SUCCESS;

1

I1 Input argument:
I/ Output argument: Backtracking level p
I1 Return value: CONFLICT or SUCCESS
I1
Search (d, & p)
I

Current decision level d

if (Decide (d) == SUCCESS)
return SUCCESS ;

if (Deduce (d) != CONFLICT) {
while (TRUE) {

if (Search (d + 1, p) == SUCCESS)

else if (0 != d) {
return SUCCESS;

Erase () ; return CONFLICT;
1

1
if (Diagnose (d, p) == CONFLICT) {

1
Erase () ;

Ease () ; return CONFLICT;

1
1

Figure 1: Description of GRASP

are likely to be unsatisfiable. This is usually the case, for
example, in Automated Theorem Proving and in several
Electronic Design Automation tasks.

2 Search Algorithm Template

The general structure of the GRASP search algorithm is
shown in Figure 1. We assume that an initial CNF formula
cp and an initial assignment A of variable-value pairs are
given at decision level 0. This initial assignment, which may
be empty, may be viewed as an additional problem constraint
and causes the search to be restricted to a subcube of the n-
dimensional Boolean space. As the search proceeds, both cp ,
A and the decision level are modified. The recursive search
procedure consists of four major operations:

1. D e c i d e () , which chooses a decision assignment at each
stage of the search process. Decision procedures are
commonly based on heuristic knowledge. For the results
given in Section 3, the following greedy heuristic is used:
At each node in the decision tree evaluate the number
of clauses directly satisfied by each assignment to each
variable. Choose the variable and the assignment that
directly satisfi’es the largest number of clauses.

Other decision making procedures have been incorporated
in GRASP, as described in [lo].

2. D e d u c e () , which implements BCP and (implicitly)
maintains the resulting implication graph.

3.

4.

D i a g n o s e () , which identifies the causes of conflicts, can
backtrack non-chronologically and can augment the CNF
formula with additional clauses. (See [lo] for the details of
D e d u c e () and D i a g n o s e () .)
Erase () , which deletes the assignments at the current
decision level.

w e refer to D e c i d e () , D e d u c e () and D i a g n o s e () as
the Decision, Deduction and Diagnosis engines, respectively.
Different realizations of these engines lead to different SAT
algorithms, For example, the Davis-Putnam procedure can
be emulated with the above algorithm by defining a decision
engine, requiring the deduction engine to implement BCP
and the pure literal rule, and organizing the diagnosis engine
to implement chronological backtracking.

3 Experimental Results

In this section we present experimental results for
G M S P Several benchmarks are used and GRASP is com-
pared with other state-of-the-art and publicly available SAT
programs [l-5, 7-9, I I]. In all cases, either the source code
or the executable was provided by the respective author.

GRASP is implemented in the C++ programming lan-
guage and was compiled with GCC 2.7.2. The CPU times
for all programs were scaled to the CPU times on a SUN
SPARC 5/85 machine. All SAT programs were run with a
CPU time limit of 10,000 seconds. In order to evaluate the
different programs, the DIMACS and UCSC benchmarks
were used [6] . The UCSC benchmarks represent one practi-
cal application of SAT algorithms to the field of Electronic
Design Automation, thus being of key significance for exper-
imentally evaluating SAT algorithms.

For the results shown below, GRASP was configured to
use the decision engine described in Section 2, to implement
non-chronological backtracking and to limit the size of
recorded clauses to 20 or fewer literals. (Additional configu-
ration details can be found in [IO].)

For the tables of results the following definitions apply.
A benchmark suite is partitioned into classes of related
benchmarks. In each class, #M denotes the total number of
class members; #S denotes the number of class members for
which each program terminated in less than the allowed
10,000 CPU seconds; and Time denotes the total CPU
time, in seconds, taken to process all members of the class.

The results obtained for the DIMACS and the UCSC
benchmarks are shown in Table 1. For the DIMACS bench-
marks we can conclude that GRASP performs better than
the other algorithms in a large number of classes of bench-
marks. Furthermore, for the UCSC benchmarks GRASP
performs significantly better than all the other programs, all
of which abort a large number of problem instances and
require much larger CPU times. The UCSC benchmarks are
characterized by extremely sparse CNF formulas for which
the conflict analysis procedure of GRASP works particularly

468

Table 1: Results on the DIMACS and UCSC SAT benchmarks

well.
Additional experiments measuring the effect of non-chro-

nological backtracking and clause recording on the amount of
search conducted by GRASP can be found in [lo].

4 Conclusions

This paper describes a configurable algorithmic framework
for solving SAT that incorporates procedures for conflict analy-
sis. Experimental results indicate that conflict analysis and its by-
products, non-chronological backtracking and identification of
equivalent conflicting conditions, can contribute decisively for
efficiently solving a large number of classes of instances of SAT.
For this purpose, the proposed SAT algorithm is compared with
other state-of-the-art algorithms.

References
I? Barth, “A Davis-Putnam Based Enumeration Algorithm for
Linear pseudo-Boolean Optimization,” Technical Report MPI-I-
95-2-003, Max-Planck-Institut fiir Informatik, 1995.
J. Crawford and L. Auton, “Experimental Results on the Cross-
Over Point in Satisfiability Problems,” in Proc. National Confir-
ence on Artificial Intelligence (MI-93), pp. 22-28, 1993.
M. Davis and H. Putnam, “A Computing Procedure for Quanti-
fication Theory,”JournalofACM, vol. 7, pp. 201-215, 1960.
0. Dubois, I? Andre, Y. Boufkhad and J. Carlier, “SAT versus

UNSAT,” Second DIMACS Implementation Challenge, D. S.
Johnson and M. A. Trick (eds.), 1993.
J. W. Freeman, Improvements to Propositional Satisjability Search
Algorithms, Ph.D. Dissertation, CIS Department, University of
Pennsylvania, May 1995.
D. S. Johnson and M. A. Trick (eds.), Second DIMACS Imple-
mentation Challenge, 1993. DIMACS benchmarks available in
ftp://Dimacs.Rutgers.EDU/pub/challenge/sat/benchmarks/cnf.
UCSC benchmarks available in lpublchallengelsat/contributedl
ucsc.
S. Kim and H. Zhang, “ModGen: Theorem proving by model
generation,” in Proc. National Conference of American Association
on Artifcial Intelligence (AAAI-94), pp. 162-167, 1994.
D. Pretolani, “Efficiency and Stability of Hypergraph SAT Algo-
rithms,” Second DIMACS Implementation Challenge, D. S.
Johnson and M. A. Trick (eds.), 1993.
B. Selman, €I. J. Levesque and D. Mitchell, ‘A New Method for
Solving Hard Sarisfiability Problems,” in Proc. National Confer-
ence on Artificial Intelligence (AAAI-92), 1992.
J. I? M. Silva and K.A. Sakallah, “Conflict Analysis in Search
Algorithms for Satisfiability,” Technical Report RT-4-96,
INESC, May 1996.
I? R. Stephan, R. K. Brayton and A. L. Sangiovanni-Vincentelli,
“Combinational Test Generation Using Satisfiability,” Memoran-
dum no. UCB/ERL M92/112, EECS Department, University of
California ar Berkeley, October 1992.

469

ftp://Dimacs.Rutgers.EDU/pub/challenge/sat/benchmarks/cnf

