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Abstract— A powerful combinational path sensitization engine is be naturally extended to dynamic situations, allowing a reduc-
required for the efficient implementation of tools for test pattern  tion in the size of the set of head lines as the search process

generation, timing analysis, and delay fault testing. Path sensiti- eyglves. Dynamic head lines are identified, at each node in the
zation can be posed as a search, in the n-dimensional BOOIea”decision tree, by a linear time algorithm.

space, for a consistent assignment of logic values to the circuit
nodes which also satisfies a given condition. In this paper we pro- When inconsistencies occur during the search, we provide a
pose and demonstrate the effectiveness of several new techniquegnethod for identifying nodes that must assume certain values
for search-space pruning for test pattern generation. In particu-  tg eliminate these inconsistencies. This is referred faibs
lar, we present linear-time algorithms for dynamically identify- - ,ra_griven assertionand can be viewed as a form of learning
ing unique sensitization points and for dynamically maintaining -\ hije searching [3]. We also introduce an algorithm to per-
reduced head line sets. In addition, we present two powerful . . .

form dependency-directed backtracking most algorithms

mechanisms that drastically reduce the number of backtracks: L .
failure-driven assertions and dependency-directed backtracking. [Of Path sensitization such as the D-algorithm [14], PODEM

Both mechanisms can be viewed as a form of learning while [7], FAN [5], TOPS [8], SOCRATES [15] and EST [6], the
searching and have analogs in other application domains. These Search process always backtracks to the previous node in the
search pruning methods have been implemented in a generic decision tree, i.e. it performshronological backtracking. In
path sensitization engine called LEAP. A test pattern generator, some situations, however, the search processpoarably
TG-LEAP, that uses this engine was also developed. We presentbacktrack to some other node in the decision tree, yielding a
experimental results that compare the effectiveness of our pro- significant reduction in the required number of backtracks
posed search pruning strategies to those of PODEM, FAN, and \yhjle guaranteeing that a solution will be found if one exists.
SOCRATES. In particular, we show that LEAP is very efficient 5\ qenendency-backtracking algorithm has linear time com-
in identifying undetectable faults and in generating tests for diffi- . . L . ;
cult faults. plexity and introduces negligible overhead if no backtracking
is required. Dependency-directed backtracking schemes were
originally proposed in [19] in an application of artificial intel-
ligence techniques to circuit analysis.

~ Path sensitization is commonly used in test pattern genefare above search-space pruning techniques have been incor-
tion, delay fault testing and timing analysis, and can be posgérated in a path sensitization engine called LEAP (LEvel-
as the problem of finding a valid logic assignment to the Citependent Analysis in Path sensitization). LEAP has been
cuit nodes that sensitizes one or more paths satisfying a partied to implement a combinational timing analyzer, TA-
ular application-specific property. Such assignments afgAP [18] as well as a test pattern generation system, TG-

typically found by a decision procedure that performs BEAP which can also run customized versions of PODEM,
directed search in thedimensional Boolean space. In recenfAN, and SOCRATES.

years, most work on path sensitization has been concerned

with the development of techniques for pruning the searchlIn the next section we introduce the basic concepts required
space, particularly for test pattern generation [1, 5-9, 13-1%®, implement failure-driven assertions and dependency-
21]. Some of these techniques, such as simple and multigieected backtracking. We also review concepts common to
backtracing and the various controllability and observabilitgecision procedures used in path sensitization. In Section IlI
measures, areeuristic they may or may not lead to a reducwe describe each of the new techniques, and detail the corre-
tion of the search space. On the other hand, techniques suctpagding algorithmic implementation. Afterwards, we present
unique sensitization points, head lines, static/dynamic leam-comprehensive set of results that illustrate the effectiveness
ing and search state equivalence mom-heuristi¢ if they of LEAP in identifying undetectable faults and in detecting
apply, they are guaranteed to reduce the search space. difficult faults. In Section V directions for future research are

I. INTRODUCTION

. . ~ described.
In this paper we introduce several new non-heuristic
search-space pruning techniques, based on a dynamic analysis II. DEEINITIONS

of the search process, and present experimental data that dem-

onstrate their power for test pattern generation. We start byThe essential definitions required to describe LEAP are
illustrating howdynamic unique sensitization poiff§ can summarized in Fig. 1. We model a gate-level combinational
be identified in linear time; in contrast the algorithm SUGcircuit as a directed acyc"c graﬁh: (VC’ EC) whose vertex
gested in SOCRATES [16] has worst-case quadratic tind@tV/ corresponds to the circuit nodes and whose eddg-set
complexity. Next, we show that the notiontefad lires can represents the input-to-output connections within the circuit
gates. For typical circuits with bounded fanin, the number of

This work was supported in part by the NSF under grant MIP-9014058 andguges is linearly related to the number of vertices. For such
part by the Portuguese JNICT under project “Ciéncia”.
31% ACM/IEEE Design Automation Conference ®
Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying it is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. © 1994 ACM 0-89791-653-0/94/0006 3.50

705



Key: xi(_j’k) = v means N dynamic USI dynamic USP
@0 _ vV is a_55|gn§d tq ve‘rteg( at de"CISIOH static USP
Xq = levelj and implication levek X,
Node
Xis, S @ %, =D Values USPs USIs
{29 = @*@ X3=1 —o| staticusi =1 2 o i
| =
XéZ Y= 1 @ X4
Xél’ 0 =0 @ X5 Xg
(a) Circuit (b) Circuit graphC Fig. 2. USPs and USIs
decision decision level
node L it p(@) = 1+max{p({)|{TAnt(e) Ud(Q) =d(9} (2)
0 implication
—® sequence _— L . .
2 By definition, the implic th<51 level of a decision node is 0. In
f . J’ _ .
- this paper, the notatior; = v should be interpreted to
incofsistency Y = mean that circuit vertex; is assigned the valueat decision
3 \ levelj and implication levek.
current g~
decision . . . .
level (R Inconsistencies that arise during the search process are of
x3O0 =1 )30 =1 (32 =g two types. Avertex inconsistencgccurs when the logic val-
ues of the inputs and output of a gate are not consistent. A
(c) Decision tred (d) Implication GrapH at decision level 3 path inconsistencyoccurs when there exists népath to

) . ) o propagate an error signal.
Fig. 1. Structures associated with a circuit during the search process

In the sequel we also refer to other commonly-used con-
gepts in test pattern generation including head lines, D-fron-
tier, J-frontier, backward/forward implications, unique
sensitization points, non-local implications, etc. (e.g. see [1]).

In the absence of inconsistencies, the search process can be
viewed as sequence of decisions each of which is, possibly, . LEVEL-DEPENDENTANALYSIS
followed by an appropriate sequence of implications. A deci-
sion in this context refers to thalective assignment of a A. Dynamic Unigue Sensitization Points
binary value to a given vertex in the circuit graph. An implica-
tion, on the other hand, refers to tieeced assignment of a
value to a vertex due to the current assignments of other ve
ces. Implications are triggered by decisions and are perfor
breadth-firstthrough the circuit graph. The state of the sear

process is implicitly maintained using two dynamic dat > e 1 .
structures: alecision treel = (Vy, Ey) that records the deci- tion (USI). The identification oftatic USPs was proposed in
sion sequence, and anplication graphl = (v}, E)) that cap- FAN. TOPS, and SOCRATES as a pre-processing step and
tures the cause-and-effect chains of forced assignments VS based on the concept of dominators [20]. It is possible,
node in the decision tree (@ecisionnode) corresponds to a NOWeVer, fordynamicUSPs to emerge as the search process
circuit vertexx and is characterized by itiecisionlevel ~EVOIVes; such UPSs cannot be identified with pre-processing
(depth)d(6) in the tree. The root decision node is defined to Bchhmques. A second version of SOCRATES [16] finds
at decision level 1. Directed edges emanating Bogpresent dynamic USPs Dby intersecting tilynamic dominatorsof
the possible binary assignmentsqoA nodegin the implica- ©aCh vertex on the D-frontier. This algorithm has quadratic
tion graph is a predicate that denotes the forced assignment'@€_complexity since it requires the intersection of lists of
dominator vertices. In addition, generating these lists for each

a logic valuev to a circuit vertex;. The predecessors ¢fin . e

the implication graph are referred to as #stecedents VE'tex on the D-frontier has worst-case quadratic time com-
Ant (@) = {0 V| (Z,9) OE,} . Assuming that the assign- plexity. Because of this high computational cost, SOCRATES
mentsx, = vy, . . _' Xm,: Vi arle associated with antecedentdnvokes dynamic USP evaluation only for difficult faults that

24, . . . Ly the edges directed froAnt(g) to @ correspond to would otherwise be aborted. Examples of static and dynamic

the implication (x; =v;) O...0 (x=Vyy) O (x =v) . USPsandUSIsare shownin Fig. 2.

Node@is also characterized by two integer parameti{; Fortunately, dynamic USPs can be found much more sim-

the decision level of the decision node that triggered thi, by 3 jinear timaevelizedbreadth-first traversal of the cir-

implication sequence fap, andp(¢), theimplicationlevel of ¢ )it graph with overhead comparable to those of X-path check

¢, that are calculated according to: procedures. Starting from the vertices on the D-frontier, suc-
d(@) = max{d(Q)|COAnt(¢)} (1) cessive vertices that are on X-paths are visitdeviel order

circuits, an algorithm whose run time &(|V| + |Eg|)
said to have linear time complexity. Circuit vertices ar
denoted by labels such &g x,, etc.

A unigue sensitization poilfUSP) is a gate that must prop-
agate the error for a given fault to be detected [5]. This, in

g, implies that an input of this gate to which the error can-
dipt be propagated must assume a noncontrolling value; such
an implication is referred to asuaique sensitization implica-
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Fig. 3. Dynamic head lines

Fig. 4. Failure-driven assertions

until the primary outputs are reached. A dynamic USP is ide
tified whenever the width of this traversal, defined as the num®@: Failure-Driven Assertions

ber of vertices scheduled to be processed next, drapsta

traversal width ofzero indicates that there are no X-paths In LEAP, whenever an inconsistency is found, its causes are

from the D-frontier to the primary outputs. analyzed and an attempt is made to avoid repeating implica-
tions that would lead to the same inconsistency later in the
B. Dynamic Evaluation of Head Lines search process. Let us consider the example circuit with the

dynamic situation shown in Fig. 4. The current decision level
In FAN and SOCRATES, head lines are defined as the oi-assumed to be 7, amglis assigned to 0. This causes verti-
puts of fanout-free sub-circuits and, thus, can be satisfiedd@sxs, x,, x5, X7, Xg, X;0, X7 @ndx;, to be implied to 1, and
any logic value in linear time. By using head lines instead @fads to a vertex inconsistencyxgtwhich is required to be 0
primary inputs, the search space can be effectively reduce€ decision level 2. An analysis of the dynamic situation in the
Head lines have been determined statically, as a pre-procesgcuit shows that only decision levels 2, 4 and 5 contribute to
ing phase prior to computing the test pattern for each faulte inconsistency. Furthermorg; cannot assume value 1
However, as the search process evolves, it may be possibleggve decision level 4; with the values xf xg and x,,
define new head lines as a function of other head lines. ffiplied at decision levels less or equal to 4, a vertex inconsis-
example of such a situation is shown in Fig. 3. Initially the seéncy occurs ifx; assumes value 1 above decision level 4.
of head lines corresponds to the primary inputSimilarly, x; cannot assume value 1 above decision level 4.
{ X1, X5, X3, Xy, X5, Xg} - L€t us assume that the first decisionConsequently, both vertices must be asserted to value 0 at
at decision level 1, correspondsxg = 1, which implgs decision level 4. On the other hamgl,cannot assume value 0
to 1. We note that at this decision level the valuefs above decision level 5, because otherwise the same implica-
uniquely determined by the valueof because the value of tion sequence would take place, and an inconsistency would
Xp is 1. Let us further assume that the next decision corigccur. Verticesx;, x3 and x;, with asserted values due to
sponds tox; = 1 , which impliegg to 1. Because, cannot inconsistencies, are referred to faflure-driven assertions
affect vertices other thaxy, the effectivefanout ofx, is one  These assertions also cause the implicatio ahdx; to O.
after decision level 2. Sinog is a head line and it is fanout- we note that failure-driven assertions can also be determined
free, therxg is a new head line at decision level 2. Howevefn case of path inconsistencies.
now X, gis driven by three fanout-free head limes x5 andxg,
and thusx; also becomes a new head line. Each time a newAfter an inconsistency is detected, it is necessary to deter-
head line is defined, the fanin head lines become fanout-freéne the vertices and decision levels that contributed to the
vertices covered by the new head lines. Consequently, aftegonsistency. Given a vertex or path inconsistency, we want
decision level 2, the set of dynamic head lines becomtss determine all the vertices that directly contributed to the
{ X3, X;0} instead of the static s€tx;, X,, X5, Xg} , and thenconsistency at the current decisior_l level ar!d at past deci_sion
dimension of the search space is reduced to half. levels. We also want to compute which decision levels besides
the current decision level affected the inconsistency, to decide
In LEAP, at each decision level and after all implications qft which decision levels to assert vertices.
the current decision have been performed, a levelized back- ) o ) o
ward traversal of the circuit graph is performed to update té@ process of identifying vertices and decision levels affect-
effective number of fanout vertices of each vertex. Aftefld an inconsistency is divided into two phases:

wards, the current set of h_ead lines is examine_d to determmeDetermining decision levels that constrain D-propagation.
whether a subset of head lines can be merged into a new heaggpagation of an error signal is constrained whenever

line. A vertex driven by head lines all of which become gome possible propagation paths to the primary outputs are
dynamically fanout-free is a new head line. The process of gliminated.

merging head lines into new head lines is repeated until PO Tracing the antecedents from the inconsistent vertex or
more new head lines can be derived. We note that whenevefyom the set of vertices defining a path inconsistency until

an unjustified vertex; becomes a new head ling, also the decision vertex.
becomes justified. In [17], dynamic head lines are further . ] ] o )
extended by using topologicabnt cares[9]. The first phase is used only to identify decision levels which
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be identified by the second phase. The second phase deter-

mines the remaining decision levels which contribute to t- Fig. 6. Dependency-directed backtracking

inconsistency and determines which vertices can be assefteua

to a fixed value at some decision level. To obtain this inform#er X;. For this example we assume that no decision levels are
tion we perform antecedent tracingon the implication recorded due to constraining D-propagation.

sequence leading to the inconsistency.

Although the example consists of forward implications, ante-
Antecedent tracing at decision lekaorresponds to a reversecedent tracing can be used with backward implications or non-
levelized breadth-first traversal on the implication level dpcal implications because it is based on implication levels
each vertex implied at decision lekefrom the inconsistency and on antecedents, and not on topological levels. We further
point until the vertex associated with the current decision. THete that antecedent tracing is the key procedure for imple-
inconsistency point denotes the set of vertices responsible fognting dependency-directed backtracking.

a vertex or path inconsistency. Each vertex after being pro- ) )

cessed schedules for future processing its antecedents thafar@ependency-Directed Backtracking

also implied at the current decision level. The decision Ievelslo illustrate how dependency-directed backtracking can

of antecedents othe( t_h_an thosg—:- at.the_ current decision IeYﬁ rove the search process over chronological backtracking,
are recorded. By definition, the implication level of any an.t‘%/(/e study the example circuit in Fig. 6. Without loss of gener-

ﬁ)?/t/jgrnih?afnir:/:ritrﬁ)(ilyiclgizlée?e\?é|tgj? _sr?]rge Sr(taigls gjrr&;?\;ﬁtslsality, we assume a simple backtracing scheme which chooses
P . P the input variables in the ordey, X, X3, andx,, and that the

defined assures that whenever the width of the reverse Ievoeder of choosing vertices in the D-frontierzs z, andzs,

cossed next n the breadif-iret raversal can be asserted (feTMore: the simple backiracing scheme s assumed to
chOOSEX; OVerxg, X7 OVErx,, andxs overx,. y assumes value

complement of its current value at the highest decision IevBI andzy, z, andz, are assumed to be primary outputs. We
i i 1 2 3 .
recorded so far, since its current value alone generatesfﬁiﬂher assume that none of the techniques introduced in the

|mpllcat|on sequence leading to an inconsistency. We note t %vious sections is applied. Our goal is to propagate the error
since phase 1 records the decision levels constraining D-pr Binal iny to any of the primary outputs

agation, any decision level that directly contributes to the?
inconsistency is recorded. Hence if a vertgxs asserted to The first decision ig; = 0, which results from backtracing an
valuev at some decision levgl it cannot provably assume ainitial objective of 1 orx;o. This decision causes the implica-
different value after decision leviel tion of xg to 0 andzz to 0. Sincezz is removed from the D-

We refer now to the example of Fig. 4, and illustrate ho\1;\50nt|er, decision level 1 is recorded as constraining D-propa-

; ; . A ation. The second decisionds= 1, which also results from
assetztlo_n? are derived, I_r; FAQBS tr?e_lmpll_lcat_mn Igra[:IJh deg,ck: acktracing fromx; . This decision causes the implication of
ing the information provided by the implication levels an 710 TS ST i
the antecedents is shown. Given the inconsistent vev@ces%r%;ﬁe}j' t-ghel trﬂ{gaﬁjc'tﬂgnféﬁsnﬁ %jegg:g?\ (.éuzs%zf’ vtvc;\igﬁ
X131 andxyp, verticesxy; andx;, are scheduled for starting the USesc 1o b'e implie'd 10 1xg to be implied to 1 a;mll 7
reverse levelized breadth-first traversal and the decision Ie\%‘ 7 8 ’ o 71

. ; . and z, to be implied to 0. Hence a path inconsistency is
of X, is recorded. During the traversal, the breadth-first wid{ etected, and the value of must be complemented. We note

reaches one on vertices x; andxy. Thus, each of these ver- that only decision levels 1 and 4 contribute to the path incon-
tices can be asserted to the complement of its current Io%

| . . .. . .
value. The decision levels at which the vertices are asser %?ency as shown in Fig. 6. This information can be obtained

are defined by the decision levels other than 7 which ha considering recorded decision levels which constrain D-
been recorded from the inconsistency point until the Vertggpagatlon, and by performing antecedent tracing from the
el

. . rtices that constrain D-propagation at the current decision
being asserted is processed. In the example shown the d el, i.e.z; andz,. We note that decision levels 2 and 3 do not
sion levels recorded are 2 and 4 ferandxs, and 2, 4 and 5
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The dependency-directed backtracking scheme proposed here
has negligible overhead in the absence of inconsistencies.
When inconsistencies are detected, the time complexity of the
GV algorithms for failure-driven assertions and dependency-
directed backtracking is linear. Because all relevant dependen-
cies are determined, the dependency-directed scheme pro-
posed iscomplete in contrast with other schemes proposed
for sequential test pattern generation [11, 12].

(A) Dependency-directed backtracking
(B) Chronological backtracking

. . . IV. RESULTS
inconsistencies only

dependent on decisiog . . . . .
levels 4 and 1 The techniques described in the previous section have been

Fig. 7. Dependency-directed versus chronological backtracking ~ Incorporated in a path sensitization algorithm, LEAP, imple-
- - - — mented in C++, which forms the core of a test pattern genera-
constrain D-propagation and do not contribute to any implicgon system, TG-LEAP. TG-LEAP can also run customized
tion at decision level 4. implementations of PODEM, FAN and SOCRATES, that

: i aati T— employ the non-heuristic pruning techniques of each of these
,tbc\)ft(e)rxc?mpll_ergentmg(‘l, the new |mp_llcat_|ons aner |mpI|§d _ path sensitization algorithms. The implementation of PODEM

,Xg implied to 1 andk,q, z; andz, implied to O (see high " oo

lighted assignments in Fig. 6). Again a path inconsistency ig, POPEM*, can perform both forward and backward impli-

detected. Furthermore, we note that only decision levels 1 grions, and thus must maintain a J-frontier. The implementa-
4 contribute to the path inconsistency. tion of FAN [5], FAN*, computes unique sensitization points

dynamically whenever the size of the D-frontier is one using
Assigning x4 to both logic values causes inconsistencieshe algorithm described in Section Ill. The implementation of
hence it is necessary to backtrack. In chronological backirads©CRATES, SOCRATES*, implements the concepts
ing schemes, the last non-complemented decision is triefbscribed in [15] and also computes dynamic unique sensiti-
which corresponds tr; in the example. However, the analy-zation points, but using the algorithm proposed in Section A.
sis of the decision levels that effectively contribute to botAdence, SOCRATES* corresponds to a more efficient imple-
inconsistencies reveals that backtracking can be performedientation of the deterministic heuristics in [15] and [16] until
decision level 1. Hence the valuexgfis complemented and phase DYN_1 [16], but without the implementation of
all decisions after decision level 1 are erased. By backtrackimgtruction 2 of the unique sensitization procedure [15]. The
to decision level 1, it is proved that reconsidering the dediesults given for SOCRATES also use the improved learning
sions at levels 2 or 3 could not allow path sensitization. Tleiterion of [10].
difference between dependency-directed backtracking and

e . . -
chronological backtracking schemes is illustrated in Fig. 7. Eecause our main goal is to compare the non-heuristic prun-
ing techniques of each algorithm, only structural controllabil-

As suggested in the previous section, the informatidty/observability measures are used [1]. In TG-LEAP
required to implement the proposed dependency-directedckiracingalwaysstops at a head line in opposition to the
backtracking scheme is obtained by recording the decisionultiple backtracing schemes in FAN and SOCRATES, where
levels that constrain D-propagation and by performing antbacktracing can stop at fanout points. This option is intended
cedent tracing after detecting each inconsistency. Hence, tallallow using LEAP in other applications, mainly timing
decision levels that contribute to inconsistencies are recorde@dalysis and delay fault testing. Furthermore, no redundancy
and each time both values of a decision node cause incongignoval techniques are used [1, 19]. In the tests performed,
tencies, the highest decision level that has been recordece@ith path sensitization problem is intended to be analyzed
past inconsistencies is used as the backtracking decision leirdividually, and updating the redundancy information of the

hen backtracki decision levelit i circuit every time a fault is proved redundant, would eventu-
When backtracking to decision levelit is necessary 10 iden- 1y relate individual path sensitization problems.

tify lower decision levels that contribute to the implications at
decision levek. The real cause for inconsistencies at higher In the following, several tests are performed on the
decision levels can be related to these lower decision levelSCAS'85 [2] benchmark suite, using a collapsed fault set for
which may not be recorded yet. However, by identifying altach circuit. For comparison purposes, all faults in each col-
such decision levels, we could force backtracking to decisifeipsed fault set are targeted. This option is intended to allow a
levels higher than the lowest decision level possible. For thisorough evaluation of each of the path sensitization algo-
reason, when processing inconsistencies, any vgri@plied rithms when applied to test pattern generation, especially in
at a lower decision levelis explicitly identified (i.e. marked proving redundancy and finding tests for hard to detect faults.
as part of a setl)). When backtracking to decision levgl All the results shown were obtained on a DECstation 5000/
only the vertices irM, are processed. Antecedent tracing i240 with 32 Mbytes of RAM. In addition, all CPU times
performed for each of the verticeshij to identify lower deci- shown are in seconds.
sion levels that contribute to relevant implications at decision
levell. The results of running each algorithm using the multiple
backtracing of [5] are shown in Table I, wheéi®, #R and#A
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TABLE |
RESULTSWITH MULTIPLE BACKTRACING

PODEM* FAN* SOCRATES* LEAP

Circuit |Faults

#D | #R | #A| Time | #D | #R| #A| Time | #D | #R| #A| Time| #D| #R| #A| Time
C432 524 520 1 3| 0.081 520 | B 0.071 520 2 2 0059 432 | 4 0 0jo40
C499 758 750, O 8| 0.211 750 0.134 750 |8 0 0137 750 | 8 0 0{144
C880 942 942 O 0| 0.03¢ 94p 0.040 942 |0 0 0041 942 | O 0 0[{o44
C1355| 1574| 156¢ 0 8 0.30F 1566 B O 0.2B0 1%66 |8 0 0.R77 1566| 8 0 .290
C1908 | 1879| 1861 6| 12 0.217 1866 |[7 |6 0.147 1870 |9 | O 0126 1870, 9| O .136
C2670| 2747| 2630 68 49 0.349 26p8 86 B3 0.260 2630 |93 | 24 0264 (263Q 11y 0 [0.210
C3540 | 3428| 3281 114 33 0.282 3284 132 |12 0.166 3291 (137| O Q.152 |3291 137 O |0.154
C5315| 5350( 5290 53 71 0.14f 5291 %9 |0 0.159 5p91 (59 | O 0Jj164 5291 59| 0 D.180
C6288 | 7744| 7703 34 71 0579 7708 34 |2 0555 7p95 (34 |15 0782 (7708 34 2 [0.634
C7552 | 7550( 7369 62 119 0.519 7349 |7 124 0435 71368 77 |105 Q.436 |7419 131 O |0.384
Total | 32496 244 180 | 14p 2

denote the number of detected, proved redundant and aboreglires a very large number of backtracks, LEAP manages to
faults, respectively. A backtrack limit of 500 was used. CoHerive the information required to skip several decision tree
umns labeledime denote the average CPU time per fault fonodes, thus proving redundancy with a very small number of
each algorithm. backtracks. Furthermore, in each of the examples shown that

LEAP is able to prove redundaait the redundant faults, and ricgflrze’;nba,:ﬁ;t::a;ﬂg% o??ﬁ':ﬁilcgﬁssii{gﬁzﬁesare determined by
only aborts two detectable faults of circuit C6288, whereas RaaY#ng '

other path sensitization algorithms abort a larger number Bbr fault 3695 s-a-1 in circuit C7552, although LEAP requires
faults. The run times for each algorithm, although similad10 backtracks to find a test pattern to detect the fault, none of
depend on the number of aborted faults. For circuits whettee other algorithms is able to find a solution to the path sensi-
SOCRATES* or FAN* abort no faults, the processing ovettization problem in less than 10000 backtracks. This example
head of LEAP leads to slightly higher CPU times per faulfurther illustrates the applicability of the deterministic heuris-
For circuits where FAN* and SOCRATES* abort a reasonabtes used in LEAP when compared to SOCRATES*. Finally,
number of faults, LEAP performs better. we note that for fault 2417 s-a-1 of C2670, FAN* manages to

rove redundancy while SOCRATES* does not. From our
We further note that for C6288, FAN* performs better tha ; : ) I
SOCRATES*. We conjecture that since SOCRATES* 5xper|ence, the reason seems to be the increased J-frontier in

TR - = USESOCRATES* due to static learning.
non-local implications, for some faults this increases the orig-

inal width of the J-frontier. This increased width may cause A possible solution to reduce the CPU time per fault is to
some wrong initial decisions, which are difficult to correciyn PODEM* followed by LEAP. Hence, we ran PODEM* on
when the size of the decision tree becomes large. Althoug the faults, with a backtrack limit of 5, and using a simple
LEAP uses the same assignments as SOCRATES*, the inifipickiracing scheme [7, 17]. Afterwards, we ran LEAP, with a
wrong assignments are overcome by the dependency-direqig@ktrack limit of 500, on the faults aborted by PODEM*.
backtracking scheme and by failure-driven assertions. The results obtained are shown in Table lil. The total number
. I . ... . 0Of faults analyzed by each algorithm is denoted#iby The

The primary objective of LEAP is to be used with d|ff|cultn mber of detected, redundant and aborted faults is denoted
faults, both redundant and detectable. To compare LEAP w g #D, #R and #A, respectively. PODEM* detects a total

Eihei oihfer Italgorithrﬂs, a ?mall set of frtehdugdan;] andk hard 645 detectable faults from a total of 32496 faults, proves
etect fau'ts was chosen from Some ot th€ benchmark CIrCURSy, nqant 287 faults, and aborts 564 faults. Afterwards,

;ge dgiiﬂgstr?é)tr?”:ﬁge?rgf Sbg(zzvlzt?algkla;rfj Itlh:(zlglmgsn I;%ﬂl‘?_ AP detects 344 faults from an initial total of 564, proves

#A denotes the r?umber of assertions determineduby LEAP undant 220 faults and aborts no faults. The combination of
. * .

** indicates that the fault was aborted after 50000 backtrac@, DEM* followed by LEAP achieves better performance

and a * indicates that the fault was aborted after 10000 bacf %%g::gdmvtvr:een?ge{hzltggg r;vn\:os ]%I Sﬂg'af,ﬂﬁgﬁrgyo[eé ES 5&?#
tracks. :

multiple backtracing for C6288, are detected without back-
For all the redundant faults, LEAP proves redundancy withteacks by LEAP or PODEM* using simple backtracing [17].
reduced number of backtracks. On the other hand, the othe[I_ : . . .
algorithms cannot prove redundancy in most cases, even W'm he results presented in this section are intended only to
a large backtrack limit. The difference of backtracks betwedipStrate the effectiveness of LEAP for difficult faults, both
SOCRATES* and LEAP illustrates the strength of the detep_t_adundant and det.ectabl'e. In a complete test pattern genera-
ministic heuristics introduced in LEAP. For both algorithmst,Ion system, fault simulation would be employgq to reduce the
the decision tree created for each fault is the same until baf&St Set size, and to randomly detect some difficult detectable
tracking is required. Afterwards, while SOCRATES* usually@ults, as proposed in [13], [15] and [21]. We further note that
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TABLE Il TABLE 1l

HANDLING DIFFICULT FAULTS ResuLTsUsING PODEM* FOLLOWED BY LEAP
Circuit Podem* Fan* Socrates* Leap PODEM* LEAP Time
R: redundant Circuit (sec/fault)
D: detectable| #B | Time | #B | Time| #B| Time| #B| #A| Time #T #D | #R | #A| #T | #D| #R| #A
C432 (R)| ** | 389 |5618| 56.63 793 4.93 33 66 0.36 C432 | 524 519 0 5 5 1 4 0.031
259gat s-a-1 caoo | 758 | 750 o| 8] 8] of § d 0055
C432 (R)| ** |288.5|5740| 43.94 921 6.65 11 20 0.11 c880 942 940 0 2 2 2 0 d 0.027
347gats-a-l Cisss| 1574 1566 o 8 8 d & 0 o012
C1908 (R)| * |147.2| * |161.2 0| 0.031 0| QO 0.052 .
565 s-a-1 c1908| 1879] 1814 6/ 55 53 52 3 D  0.079
C2670 (R)| * |127.3| * |1505| *|203.8 9| 14 0.24 C2670| 2747| 2624 49 74 74 6 63 P 0.07d
2282 s-a-1 C3540| 3428| 3260 100 66 66 249 37 [0  0.09
02251770 (li) * |126.8| 1872 57.41 *| 227 4 § 0.16 C5315| 5350/ 5268 46 36 36 23 13 [0  0.075
— a(D) s Tozea Tosod 0 a6 35 Ce288| 7744 7534 34 176 176 176 p [0 0213
3695 s-au1 ' ' 7 ' C7552| 7550| 7364 52 134 134 55 79 [0  0.189
Total | 32496/ 3164% 287 564 564 344 220 |0
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