
Abstract— A powerful combinational path sensitization engine is
required for the efficient implementation of tools for test pattern
generation, timing analysis, and delay fault testing. Path sensiti-
zation can be posed as a search, in the n-dimensional Boolean
space, for a consistent assignment of logic values to the circuit
nodes which also satisfies a given condition. In this paper we pro-
pose and demonstrate the effectiveness of several new techniques
for search-space pruning for test pattern generation. In particu-
lar, we present linear-time algorithms for dynamically identify-
ing unique sensitization points and for dynamically maintaining
reduced head line sets. In addition, we present two powerful
mechanisms that drastically reduce the number of backtracks:
failure-driven assertions and dependency-directed backtracking.
Both mechanisms can be viewed as a form of learning while
searching and have analogs in other application domains. These
search pruning methods have been implemented in a generic
path sensitization engine called LEAP. A test pattern generator,
TG-LEAP, that uses this engine was also developed. We present
experimental results that compare the effectiveness of our pro-
posed search pruning strategies to those of PODEM, FAN, and
SOCRATES. In particular, we show that LEAP is very efficient
in identifying undetectable faults and in generating tests for diffi-
cult faults.

I. INTRODUCTION

Path sensitization is commonly used in test pattern genera-
tion, delay fault testing and timing analysis, and can be posed
as the problem of finding a valid logic assignment to the cir-
cuit nodes that sensitizes one or more paths satisfying a partic-
ular application-specific property. Such assignments are
typically found by a decision procedure that performs a
directed search in then-dimensional Boolean space. In recent
years, most work on path sensitization has been concerned
with the development of techniques for pruning the search
space, particularly for test pattern generation [1, 5-9, 13-16,
21]. Some of these techniques, such as simple and multiple
backtracing and the various controllability and observability
measures, areheuristic; they may or may not lead to a reduc-
tion of the search space. On the other hand, techniques such as
unique sensitization points, head lines, static/dynamic learn-
ing and search state equivalence arenon-heuristic; if they
apply, they are guaranteed to reduce the search space.

In this paper we introduce several new non-heuristic
search-space pruning techniques, based on a dynamic analysis
of the search process, and present experimental data that dem-
onstrate their power for test pattern generation. We start by
illustrating howdynamic unique sensitization points [5] can
be identified in linear time; in contrast the algorithm sug-
gested in SOCRATES [16] has worst-case quadratic time
complexity. Next, we show that the notion ofhead lines can

be naturally extended to dynamic situations, allowing a reduc-
tion in the size of the set of head lines as the search process
evolves. Dynamic head lines are identified, at each node in the
decision tree, by a linear time algorithm.

When inconsistencies occur during the search, we provide a
method for identifying nodes that must assume certain values
to eliminate these inconsistencies. This is referred to asfail-
ure-driven assertions and can be viewed as a form of learning
while searching [3]. We also introduce an algorithm to per-
form dependency-directed backtracking. In most algorithms
for path sensitization such as the D-algorithm [14], PODEM
[7], FAN [5], TOPS [8], SOCRATES [15] and EST [6], the
search process always backtracks to the previous node in the
decision tree, i.e. it performschronological backtracking. In
some situations, however, the search process canprovably
backtrack to some other node in the decision tree, yielding a
significant reduction in the required number of backtracks
while guaranteeing that a solution will be found if one exists.
Our dependency-backtracking algorithm has linear time com-
plexity and introduces negligible overhead if no backtracking
is required. Dependency-directed backtracking schemes were
originally proposed in [19] in an application of artificial intel-
ligence techniques to circuit analysis.

The above search-space pruning techniques have been incor-
porated in a path sensitization engine called LEAP (LEvel-
dependent Analysis in Path sensitization). LEAP has been
used to implement a combinational timing analyzer, TA-
LEAP [18] as well as a test pattern generation system, TG-
LEAP which can also run customized versions of PODEM,
FAN, and SOCRATES.

In the next section we introduce the basic concepts required
to implement failure-driven assertions and dependency-
directed backtracking. We also review concepts common to
decision procedures used in path sensitization. In Section III
we describe each of the new techniques, and detail the corre-
sponding algorithmic implementation. Afterwards, we present
a comprehensive set of results that illustrate the effectiveness
of LEAP in identifying undetectable faults and in detecting
difficult faults. In Section V directions for future research are
described.

II. DEFINITIONS

The essential definitions required to describe LEAP are
summarized in Fig. 1. We model a gate-level combinational
circuit as a directed acyclic graphC = (VC, EC) whose vertex
setVC corresponds to the circuit nodes and whose edge setEC
represents the input-to-output connections within the circuit
gates. For typical circuits with bounded fanin, the number of
edges is linearly related to the number of vertices. For such
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circuits, an algorithm whose run time is  is
said to have linear time complexity. Circuit vertices are
denoted by labels such asx1, x2, etc.

In the absence of inconsistencies, the search process can be
viewed as sequence of decisions each of which is, possibly,
followed by an appropriate sequence of implications. A deci-
sion in this context refers to theelective assignment of a
binary value to a given vertex in the circuit graph. An implica-
tion, on the other hand, refers to theforced assignment of a
value to a vertex due to the current assignments of other verti-
ces. Implications are triggered by decisions and are performed
breadth-first through the circuit graph. The state of the search
process is implicitly maintained using two dynamic data
structures: adecision treeT = (VT, ET) that records the deci-
sion sequence, and animplication graphI = (VI, EI) that cap-
tures the cause-and-effect chains of forced assignments. A
nodeθ in the decision tree (adecision node) corresponds to a
circuit vertex xi and is characterized by itsdecision level
(depth)d(θ) in the tree. The root decision node is defined to be
at decision level 1. Directed edges emanating fromθ represent
the possible binary assignments toxi. A nodeφ in the implica-
tion graph is a predicate that denotes the forced assignment of
a logic valuev to a circuit vertexxi. The predecessors ofφ in
the implication graph are referred to as itsantecedents

. Assuming that the assign-
mentsx1 = v1, . . . ,xm = vm are associated with antecedents
ζ1, . . . ,ζm, the edges directed fromAnt(φ) to φ correspond to
the implication .
Nodeφ is also characterized by two integer parameters:d(φ),
the decision level of the decision node that triggered the
implication sequence forφ, andp(φ), the implication level of
φ, that are calculated according to:

(1)

Θ VC EC+( )

Fig. 1. Structures associated with a circuit during the search process
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Ant φ( ) ζ VI∈ ζ φ,( ) EI∈{ }≡

x1 v1=( ) … xm vm=( )∧ ∧ xi vi=( )⇒

d φ( ) max d ζ( ) ζ Ant φ( )∈{ }=

(2)

By definition, the implication level of a decision node is 0. In
this paper, the notation  should be interpreted to
mean that circuit vertexxi is assigned the valuev at decision
level j and implication levelk.

Inconsistencies that arise during the search process are of
two types. Avertex inconsistency occurs when the logic val-
ues of the inputs and output of a gate are not consistent. A
path inconsistency occurs when there exists noX-path to
propagate an error signal.

In the sequel we also refer to other commonly-used con-
cepts in test pattern generation including head lines, D-fron-
tier, J-frontier, backward/forward implications, unique
sensitization points, non-local implications, etc. (e.g. see [1]).

III. LEVEL-DEPENDENTANALYSIS

A. Dynamic Unique Sensitization Points

A unique sensitization point (USP) is a gate that must prop-
agate the error for a given fault to be detected [5]. This, in
turn, implies that an input of this gate to which the error can-
not be propagated must assume a noncontrolling value; such
an implication is referred to as aunique sensitization implica-
tion (USI). The identification ofstatic USPs was proposed in
FAN, TOPS, and SOCRATES as a pre-processing step and
was based on the concept of dominators [20]. It is possible,
however, fordynamic USPs to emerge as the search process
evolves; such UPSs cannot be identified with pre-processing
techniques. A second version of SOCRATES [16] finds
dynamic USPs by intersecting thedynamic dominators of
each vertex on the D-frontier. This algorithm has quadratic
time complexity since it requires the intersection of lists of
dominator vertices. In addition, generating these lists for each
vertex on the D-frontier has worst-case quadratic time com-
plexity. Because of this high computational cost, SOCRATES
invokes dynamic USP evaluation only for difficult faults that
would otherwise be aborted. Examples of static and dynamic
USPs and USIs are shown in Fig. 2.

Fortunately, dynamic USPs can be found much more sim-
ply by a linear timelevelized breadth-first traversal of the cir-
cuit graph with overhead comparable to those of X-path check
procedures. Starting from the vertices on the D-frontier, suc-
cessive vertices that are on X-paths are visited inlevel order

p φ( ) 1 max p ζ( ) ζ Ant φ( )∈ d ζ( )∧ d φ( )={ }+=

xi
j k,( )

v=

Fig. 2. USPs and USIs
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until the primary outputs are reached. A dynamic USP is iden-
tified whenever the width of this traversal, defined as the num-
ber of vertices scheduled to be processed next, drops toone; a
traversal width ofzero indicates that there are no X-paths
from the D-frontier to the primary outputs.

B. Dynamic Evaluation of Head Lines

In FAN and SOCRATES, head lines are defined as the out-
puts of fanout-free sub-circuits and, thus, can be satisfied to
any logic value in linear time. By using head lines instead of
primary inputs, the search space can be effectively reduced.
Head lines have been determined statically, as a pre-process-
ing phase prior to computing the test pattern for each fault.
However, as the search process evolves, it may be possible to
define new head lines as a function of other head lines. An
example of such a situation is shown in Fig. 3. Initially the set
of head lines corresponds to the primary inputs

. Let us assume that the first decision,
at decision level 1, corresponds to , which impliesx7
to 1. We note that at this decision level the value ofx9 is
uniquely determined by the value ofx4, because the value of
x2 is 1. Let us further assume that the next decision corre-
sponds to , which impliesx8 to 1. Becausex4 cannot
affect vertices other thanx9, theeffective fanout ofx4 is one
after decision level 2. Sincex4 is a head line and it is fanout-
free, thenx9 is a new head line at decision level 2. However,
nowx10 is driven by three fanout-free head lines,x9, x5 andx6,
and thusx10 also becomes a new head line. Each time a new
head line is defined, the fanin head lines become fanout-free
vertices covered by the new head lines. Consequently, after
decision level 2, the set of dynamic head lines becomes

 instead of the static set , and the
dimension of the search space is reduced to half.

In LEAP, at each decision level and after all implications of
the current decision have been performed, a levelized back-
ward traversal of the circuit graph is performed to update the
effective number of fanout vertices of each vertex. After-
wards, the current set of head lines is examined to determine
whether a subset of head lines can be merged into a new head
line. A vertex driven by head lines all of which become
dynamically fanout-free is a new head line. The process of
merging head lines into new head lines is repeated until no
more new head lines can be derived. We note that whenever
an unjustified vertexxi becomes a new head line,xi also
becomes justified. In [17], dynamic head lines are further
extended by using topologicaldon’t cares [9].
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Fig. 3. Dynamic head lines
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C. Failure-Driven Assertions

In LEAP, whenever an inconsistency is found, its causes are
analyzed and an attempt is made to avoid repeating implica-
tions that would lead to the same inconsistency later in the
search process. Let us consider the example circuit with the
dynamic situation shown in Fig. 4. The current decision level
is assumed to be 7, andx1 is assigned to 0. This causes verti-
cesx3, x4, x5, x7, x9, x10, x11 andx12 to be implied to 1, and
leads to a vertex inconsistency atxo, which is required to be 0
at decision level 2. An analysis of the dynamic situation in the
circuit shows that only decision levels 2, 4 and 5 contribute to
the inconsistency. Furthermore,x7 cannot assume value 1
above decision level 4; with the values ofx6, x8 and xo,
implied at decision levels less or equal to 4, a vertex inconsis-
tency occurs ifx7 assumes value 1 above decision level 4.
Similarly, x3 cannot assume value 1 above decision level 4.
Consequently, both vertices must be asserted to value 0 at
decision level 4. On the other hand,x1 cannot assume value 0
above decision level 5, because otherwise the same implica-
tion sequence would take place, and an inconsistency would
occur. Verticesx1, x3 and x7, with asserted values due to
inconsistencies, are referred to asfailure-driven assertions.
These assertions also cause the implication ofx9 andx10 to 0.
We note that failure-driven assertions can also be determined
in case of path inconsistencies.

After an inconsistency is detected, it is necessary to deter-
mine the vertices and decision levels that contributed to the
inconsistency. Given a vertex or path inconsistency, we want
to determine all the vertices that directly contributed to the
inconsistency at the current decision level and at past decision
levels. We also want to compute which decision levels besides
the current decision level affected the inconsistency, to decide
at which decision levels to assert vertices.

The process of identifying vertices and decision levels affect-
ing an inconsistency is divided into two phases:

1. Determining decision levels that constrain D-propagation.
Propagation of an error signal is constrained whenever
some possible propagation paths to the primary outputs are
eliminated.

2. Tracing the antecedents from the inconsistent vertex or
from the set of vertices defining a path inconsistency until
the decision vertex.

The first phase is used only to identify decision levels which

Fig. 4. Failure-driven assertions
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effectively contribute to the inconsistency and which will not
be identified by the second phase. The second phase deter-
mines the remaining decision levels which contribute to the
inconsistency and determines which vertices can be asserted
to a fixed value at some decision level. To obtain this informa-
tion we perform antecedent tracing on the implication
sequence leading to the inconsistency.

Antecedent tracing at decision levelk corresponds to a reverse
levelized breadth-first traversal on the implication level of
each vertex implied at decision levelk, from the inconsistency
point until the vertex associated with the current decision. The
inconsistency point denotes the set of vertices responsible for
a vertex or path inconsistency. Each vertex after being pro-
cessed schedules for future processing its antecedents that are
also implied at the current decision level. The decision levels
of antecedents other than those at the current decision level
are recorded. By definition, the implication level of any ante-
cedent of a vertexxi, implied at the same decision level, is
lower than the implication level ofxi. The partial order thus
defined assures that whenever the width of the reverse level-
ized breadth-first traversal reachesone, the vertex to be pro-
cessed next in the breadth-first traversal can be asserted to the
complement of its current value at the highest decision level
recorded so far, since its current value alone generates an
implication sequence leading to an inconsistency. We note that
since phase 1 records the decision levels constraining D-prop-
agation, any decision level that directly contributes to the
inconsistency is recorded. Hence if a vertexxi is asserted to
valuev at some decision levelj, it cannot provably assume a
different value after decision levelj.

We refer now to the example of Fig. 4, and illustrate how
assertions are derived. In Fig. 5 the implication graph describ-
ing the information provided by the implication levels and by
the antecedents is shown. Given the inconsistent verticesxo,
x11 andx12, verticesx11 andx12 are scheduled for starting the
reverse levelized breadth-first traversal and the decision level
of xo is recorded. During the traversal, the breadth-first width
reaches one on verticesx7, x3 andx1. Thus, each of these ver-
tices can be asserted to the complement of its current logic
value. The decision levels at which the vertices are asserted
are defined by the decision levels other than 7 which have
been recorded from the inconsistency point until the vertex
being asserted is processed. In the example shown the deci-
sion levels recorded are 2 and 4 forx7 andx3, and 2, 4 and 5

Fig. 5. Implication graph for decisionx1 = 0
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for x1. For this example we assume that no decision levels are
recorded due to constraining D-propagation.

Although the example consists of forward implications, ante-
cedent tracing can be used with backward implications or non-
local implications because it is based on implication levels
and on antecedents, and not on topological levels. We further
note that antecedent tracing is the key procedure for imple-
menting dependency-directed backtracking.

D. Dependency-Directed Backtracking

To illustrate how dependency-directed backtracking can
improve the search process over chronological backtracking,
we study the example circuit in Fig. 6. Without loss of gener-
ality, we assume a simple backtracing scheme which chooses
the input variables in the orderx1, x2, x3, andx4, and that the
order of choosing vertices in the D-frontier isz1, z2 andz3.
Furthermore, the simple backtracing scheme is assumed to
choosex1 overx8, x7 overx4, andx5 overx4. y assumes value
D, andz1, z2 andz3 are assumed to be primary outputs. We
further assume that none of the techniques introduced in the
previous sections is applied. Our goal is to propagate the error
signal iny to any of the primary outputs.

The first decision isx1 = 0, which results from backtracing an
initial objective of 1 onx10. This decision causes the implica-
tion of x9 to 0 andz3 to 0. Sincez3 is removed from the D-
frontier, decision level 1 is recorded as constraining D-propa-
gation. The second decision isx2 = 1, which also results from
backtracing fromx10. This decision causes the implication of
x6 to 1. The third decision isx3 = 1, which causesx5 to be
implied to 1. Finally, the fourth decision isx4 = 0, which
causesx7 to be implied to 1,x8 to be implied to 1, andx10, z1
and z2 to be implied to 0. Hence a path inconsistency is
detected, and the value ofx4 must be complemented. We note
that only decision levels 1 and 4 contribute to the path incon-
sistency as shown in Fig. 6. This information can be obtained
by considering recorded decision levels which constrain D-
propagation, and by performing antecedent tracing from the
vertices that constrain D-propagation at the current decision
level, i.e.z1 andz2. We note that decision levels 2 and 3 do not

Fig. 6. Dependency-directed backtracking
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constrain D-propagation and do not contribute to any implica-
tion at decision level 4.

After complementingx4, the new implications arex7 implied
to 0,x8 implied to 1 andx10, z1 andz2 implied to 0 (see high-
lighted assignments in Fig. 6). Again a path inconsistency is
detected. Furthermore, we note that only decision levels 1 and
4 contribute to the path inconsistency.

Assigning x4 to both logic values causes inconsistencies,
hence it is necessary to backtrack. In chronological backtrack-
ing schemes, the last non-complemented decision is tried,
which corresponds tox3 in the example. However, the analy-
sis of the decision levels that effectively contribute to both
inconsistencies reveals that backtracking can be performed to
decision level 1. Hence the value ofx1 is complemented and
all decisions after decision level 1 are erased. By backtracking
to decision level 1, it is proved that reconsidering the deci-
sions at levels 2 or 3 could not allow path sensitization. The
difference between dependency-directed backtracking and the
chronological backtracking schemes is illustrated in Fig. 7.

As suggested in the previous section, the information
required to implement the proposed dependency-directed
backtracking scheme is obtained by recording the decision
levels that constrain D-propagation and by performing ante-
cedent tracing after detecting each inconsistency. Hence, all
decision levels that contribute to inconsistencies are recorded,
and each time both values of a decision node cause inconsis-
tencies, the highest decision level that has been recorded in
past inconsistencies is used as the backtracking decision level.

When backtracking to decision levelk, it is necessary to iden-
tify lower decision levels that contribute to the implications at
decision levelk. The real cause for inconsistencies at higher
decision levels can be related to these lower decision levels,
which may not be recorded yet. However, by identifying all
such decision levels, we could force backtracking to decision
levels higher than the lowest decision level possible. For this
reason, when processing inconsistencies, any vertexxi implied
at a lower decision levell is explicitly identified (i.e. marked
as part of a setMl). When backtracking to decision levell,
only the vertices inMl are processed. Antecedent tracing is
performed for each of the vertices inMl to identify lower deci-
sion levels that contribute to relevant implications at decision
level l.

Fig. 7. Dependency-directed versus chronological backtracking
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The dependency-directed backtracking scheme proposed here
has negligible overhead in the absence of inconsistencies.
When inconsistencies are detected, the time complexity of the
algorithms for failure-driven assertions and dependency-
directed backtracking is linear. Because all relevant dependen-
cies are determined, the dependency-directed scheme pro-
posed iscomplete, in contrast with other schemes proposed
for sequential test pattern generation [11, 12].

IV. RESULTS

The techniques described in the previous section have been
incorporated in a path sensitization algorithm, LEAP, imple-
mented in C++, which forms the core of a test pattern genera-
tion system, TG-LEAP. TG-LEAP can also run customized
implementations of PODEM, FAN and SOCRATES, that
employ the non-heuristic pruning techniques of each of these
path sensitization algorithms. The implementation of PODEM
[7], PODEM*, can perform both forward and backward impli-
cations, and thus must maintain a J-frontier. The implementa-
tion of FAN [5], FAN*, computes unique sensitization points
dynamically whenever the size of the D-frontier is one using
the algorithm described in Section III. The implementation of
SOCRATES, SOCRATES*, implements the concepts
described in [15] and also computes dynamic unique sensiti-
zation points, but using the algorithm proposed in Section A.
Hence, SOCRATES* corresponds to a more efficient imple-
mentation of the deterministic heuristics in [15] and [16] until
phase DYN_1 [16], but without the implementation of
instruction 2 of the unique sensitization procedure [15]. The
results given for SOCRATES also use the improved learning
criterion of [10].

Because our main goal is to compare the non-heuristic prun-
ing techniques of each algorithm, only structural controllabil-
ity/observability measures are used [1]. In TG-LEAP
backtracingalways stops at a head line in opposition to the
multiple backtracing schemes in FAN and SOCRATES, where
backtracing can stop at fanout points. This option is intended
to allow using LEAP in other applications, mainly timing
analysis and delay fault testing. Furthermore, no redundancy
removal techniques are used [1, 19]. In the tests performed,
each path sensitization problem is intended to be analyzed
individually, and updating the redundancy information of the
circuit every time a fault is proved redundant, would eventu-
ally relate individual path sensitization problems.

In the following, several tests are performed on the
ISCAS’85 [2] benchmark suite, using a collapsed fault set for
each circuit. For comparison purposes, all faults in each col-
lapsed fault set are targeted. This option is intended to allow a
thorough evaluation of each of the path sensitization algo-
rithms when applied to test pattern generation, especially in
proving redundancy and finding tests for hard to detect faults.
All the results shown were obtained on a DECstation 5000/
240 with 32 Mbytes of RAM. In addition, all CPU times
shown are in seconds.

The results of running each algorithm using the multiple
backtracing of [5] are shown in Table I, where#D, #R and#A
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denote the number of detected, proved redundant and aborted
faults, respectively. A backtrack limit of 500 was used. Col-
umns labeledTime denote the average CPU time per fault for
each algorithm.

LEAP is able to prove redundantall the redundant faults, and
only aborts two detectable faults of circuit C6288, whereas the
other path sensitization algorithms abort a larger number of
faults. The run times for each algorithm, although similar,
depend on the number of aborted faults. For circuits where
SOCRATES* or FAN* abort no faults, the processing over-
head of LEAP leads to slightly higher CPU times per fault.
For circuits where FAN* and SOCRATES* abort a reasonable
number of faults, LEAP performs better.

We further note that for C6288, FAN* performs better than
SOCRATES*. We conjecture that since SOCRATES* uses
non-local implications, for some faults this increases the orig-
inal width of the J-frontier. This increased width may cause
some wrong initial decisions, which are difficult to correct
when the size of the decision tree becomes large. Although
LEAP uses the same assignments as SOCRATES*, the initial
wrong assignments are overcome by the dependency-directed
backtracking scheme and by failure-driven assertions.

The primary objective of LEAP is to be used with difficult
faults, both redundant and detectable. To compare LEAP with
the other algorithms, a small set of redundant and hard to
detect faults was chosen from some of the benchmark circuits.
The results obtained are shown in Table II; columns labeled
#B denote the number of backtracks and the column labeled
#A denotes the number of assertions determined by LEAP. A
** indicates that the fault was aborted after 50000 backtracks,
and a * indicates that the fault was aborted after 10000 back-
tracks.

For all the redundant faults, LEAP proves redundancy with a
reduced number of backtracks. On the other hand, the other
algorithms cannot prove redundancy in most cases, even with
a large backtrack limit. The difference of backtracks between
SOCRATES* and LEAP illustrates the strength of the deter-
ministic heuristics introduced in LEAP. For both algorithms,
the decision tree created for each fault is the same until back-
tracking is required. Afterwards, while SOCRATES* usually

requires a very large number of backtracks, LEAP manages to
derive the information required to skip several decision tree
nodes, thus proving redundancy with a very small number of
backtracks. Furthermore, in each of the examples shown that
require backtracking, several assertions are determined by
analyzing the causes of the inconsistencies.

For fault 3695 s-a-1 in circuit C7552, although LEAP requires
110 backtracks to find a test pattern to detect the fault, none of
the other algorithms is able to find a solution to the path sensi-
tization problem in less than 10000 backtracks. This example
further illustrates the applicability of the deterministic heuris-
tics used in LEAP when compared to SOCRATES*. Finally,
we note that for fault 2417 s-a-1 of C2670, FAN* manages to
prove redundancy while SOCRATES* does not. From our
experience, the reason seems to be the increased J-frontier in
SOCRATES* due to static learning.

A possible solution to reduce the CPU time per fault is to
run PODEM* followed by LEAP. Hence, we ran PODEM* on
all the faults, with a backtrack limit of 5, and using a simple
backtracing scheme [7, 17]. Afterwards, we ran LEAP, with a
backtrack limit of 500, on the faults aborted by PODEM*.
The results obtained are shown in Table III. The total number
of faults analyzed by each algorithm is denoted by#T. The
number of detected, redundant and aborted faults is denoted
by #D, #R and #A, respectively. PODEM* detects a total
31645 detectable faults from a total of 32496 faults, proves
redundant 287 faults, and aborts 564 faults. Afterwards,
LEAP detects 344 faults from an initial total of 564, proves
redundant 220 faults and aborts no faults. The combination of
PODEM* followed by LEAP achieves better performance
than any of the other algorithms alone. Furthermore, no fault
is aborted. We note that the two faults aborted by LEAP with
multiple backtracing for C6288, are detected without back-
tracks by LEAP or PODEM* using simple backtracing [17].

The results presented in this section are intended only to
illustrate the effectiveness of LEAP for difficult faults, both
redundant and detectable. In a complete test pattern genera-
tion system, fault simulation would be employed to reduce the
test set size, and to randomly detect some difficult detectable
faults, as proposed in [13], [15] and [21]. We further note that

TABLE I
RESULTS WITH M ULTIPLE BACKTRACING

Circuit Faults
PODEM* FAN* SOCRATES* LEAP

#D #R #A Time #D #R #A Time #D #R #A Time #D #R #A Time

C432 524 520 1 3 0.081 520 1 3 0.071 520 2 2 0.059 432 4 0 0.040

C499 758 750 0 8 0.211 750 8 0 0.134 750 8 0 0.137 750 8 0 0.144

C880 942 942 0 0 0.036 942 0 0 0.040 942 0 0 0.041 942 0 0 0.044

C1355 1574 1566 0 8 0.307 1566 8 0 0.280 1566 8 0 0.277 1566 8 0 0.290

C1908 1879 1861 6 12 0.217 1866 7 6 0.147 1870 9 0 0.126 1870 9 0 0.136

C2670 2747 2630 68 49 0.349 2628 86 33 0.260 2630 93 24 0.264 2630 117 0 0.210

C3540 3428 3281 114 33 0.282 3284 132 12 0.166 3291 137 0 0.152 3291 137 0 0.154

C5315 5350 5290 53 7 0.147 5291 59 0 0.159 5291 59 0 0.164 5291 59 0 0.180

C6288 7744 7703 34 7 0.579 7708 34 2 0.555 7695 34 15 0.782 7708 34 2 0.634

C7552 7550 7369 62 119 0.519 7349 77 124 0.435 7368 77 105 0.436 7419 131 0 0.384

Total 32496 246 180 146 2
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our implementation of SOCRATES* has some relevant differ-
ences with respect to the original algorithm [15, 16].
SOCRATES uses an improved multiple backtracing procedure
as well as improved controllability/observability measures to
guide the decision procedure. Furthermore, SOCRATES*
only implements one of the unique sensitization procedures of
SOCRATES [16]. This justifies the differences in results
observed between SOCRATES* and SOCRATES.

V. CONCLUSIONS

This paper introduces several new techniques to prune the
search space in path sensitization problems. These techniques
explore dynamic information provided by the search process,
both before and after inconsistencies are detected. The tech-
niques proposed have been incorporated in a path sensitization
algorithm (LEAP), which experimental results show to be
more suitable to prove redundancy and to find tests for hard to
detect faults than customized implementations of PODEM,
FAN and SOCRATES.

Despite the improvements introduced in LEAP, the search
process is still extremely dependent on the ordering of assign-
ments to the head lines as the results in Section IV show.
Future work is mainly intended to overcome this problem and
to improve the inconsistency processing schemes proposed in
LEAP. A natural evolution consists in introducing search state
equivalence [6] and dominance [4] relations to further prune
the search space. Actually, search state equivalence relations
provide a complementary scheme with respect to dependency-
directed backtracking; search state equivalence relations avoid
entering in regions of the search space equivalent to others
searched before, while dependency-directed backtracking
prunes the decision tree by avoiding reconsidering decisions
that do not affect the inconsistencies found.

Part of the motivation for developing LEAP is the construc-
tion of a highly efficient path sensitization algorithm with
applications to other areas where path sensitization is
required, mainly timing analysis and delay fault testing. Pre-
liminary results of applying LEAP to timing analysis are
given in [18]. Moreover, it is our goal to evaluate the applica-
tion of LEAP to delay fault testing.

TABLE I I
HANDLING DIFFICULT FAULTS

Circuit
R: redundant
D: detectable

Podem* Fan* Socrates* Leap

#B Time #B Time #B Time #B #A Time

C432 (R)
259gat s-a-1

** 389 5618 56.63 793 4.93 33 66 0.36

C432 (R)
347gat s-a-1

** 288.5 5740 43.94 921 6.65 11 20 0.11

C1908 (R)
565 s-a-1

* 147.2 * 161.2 0 0.031 0 0 0.052

C2670 (R)
2282 s-a-1

* 127.3 * 150.5 * 203.8 9 16 0.24

C2670 (R)
2417 s-a-1

* 126.8 1872 57.41 * 227 4 6 0.16

C7552 (D)
3695 s-a-1

* 119.3 * 92.94 * 95.05 110 48 2.56
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TABLE I I I
RESULTS USING PODEM* FOLLOWED BY L EAP

Circuit
PODEM* LEAP Time

(sec/fault)#T #D #R #A #T #D #R #A

C432 524 519 0 5 5 1 4 0 0.031

C499 758 750 0 8 8 0 8 0 0.055

C880 942 940 0 2 2 2 0 0 0.027

C1355 1574 1566 0 8 8 0 8 0 0.142

C1908 1879 1818 6 55 55 52 3 0 0.079

C2670 2747 2624 49 74 74 6 68 0 0.070

C3540 3428 3262 100 66 66 29 37 0 0.093

C5315 5350 5268 46 36 36 23 13 0 0.075

C6288 7744 7534 34 176 176 176 0 0 0.213

C7552 7550 7364 52 134 134 55 79 0 0.189

Total 32496 31645 287 564 564 344 220 0
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