
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

ABSTRACT

SEARCH ALGORITHMS FOR SATISFIABILITY PROBLEMS
IN COMBINATIONAL SWITCHING CIRCUITS

by

João Paulo Marques da Silva

Chair: Karem A. Sakallah

A number of tasks in computer-aided analysis of combinational circuits, including test

pattern generation, timing analysis, delay fault testing and logic verification, can be viewed as

particular formulations of the satisfiability problem (SAT). The first purpose of this dissertation is

to describe a configurable search-based algorithm for SAT that can be used for implementing

different circuit analysis tools. Several methods for reducing the amount of search are detailed and

integrated into a general algorithmic framework for solving SAT. Special emphasis is given to the

description of methods for diagnosing the causes of conflicts that may be identified while

searching for a solution to each instance of SAT. These methods allow the implementation of non-

chronological backtracking, conflict identification based on equivalence relations and logic value

assertions derived from conflicts.

Path sensitization in combinational circuits is often used to solve test pattern generation,

timing analysis and delay fault testing problems. While path sensitization can be cast as an

instance of SAT, such an approach can conceal desirable structural properties of the problem and

may lead to exponential size representations. Another purpose of this dissertation is to introduce a

new model for path sensitization that permits modeling test pattern generation and timing analysis

with linear size representations. In addition, this formulation for path sensitization permits the

adaptation of all the pruning methods developed for the general SAT problem.

The proposed SAT algorithms and path sensitization model form an initial kernel for the

development of tools for the analysis of combinational circuits. Their practical applicability is

supported by experimental results obtained with test pattern generation and timing analysis tools.

SEARCH ALGORITHMS FOR SATISFIABILITY PROBLEMS
IN COMBINATIONAL SWITCHING CIRCUITS

by

João Paulo Marques da Silva

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering)

in The University of Michigan
1995

Doctoral Committee:

Associate Professor Karem A. Sakallah, Chair
Professor Richard B. Brown
Professor John P. Hayes
Professor Trevor N. Mudge
Professor Quentin F. Stout

© João Paulo Marques da Silva 1995.
All Rights Reserved

ii

For my family.

iii

ACKNOWLEDGEMENTS

Many people have helped and encouraged me during my work on this research and

dissertation. First and foremost, I would like to thank Prof. Karem Sakallah, my research advisor,

for all his support throughout my graduate studies at the University of Michigan. Karem’s wisdom

and knowledge of the field have inspired and guided me over the years. His reviews, suggestions

and constant encouragement are gratefully acknowledged.

I am also grateful to each of the other members of my dissertation committee: Prof. Rich

Brown, Prof. John Hayes, Prof. Trevor Mudge and Prof. Quentin Stout. At different stages of my

research work, each has been invaluable for their technical advice. In particular, I would like to

thank Prof. Hayes for motivating my interest in testing, and Prof. Stout for shaping my knowledge

of algorithms.

I also would like to thank all friends and colleagues: Matthew Jones, Mike Riepe, Tim

Burks, Ajay Daga, Wei-Han Lien, Krish Chakrabarty, Hakan Yalcin, Mark Hansen, John-David

Wellman, Jeff Bell, Vaidyanathan Chandramouli, Chuan-Hua Chang and others who have shared

many discussions and technical advice. In particular, I would like to thank Matthew Jones and

Ajay Daga for listening and debugging many ideas, Hakan Yalcin for reading early drafts of the

dissertation and providing useful comments, and Mike Riepe, Jeff Bell and Vaidyanathan

Chandramouli for proofreading a complete draft of the dissertation. I thank Tim Burks and Ayman

Kayssi for having supplied the FrameMaker document formats for this dissertation.

I would like to thank the financial support, at different stages of my research work, of the

Fulbright Committee and the I.I.E, and the Portuguese ‘Junta Nacional the Investigação Científica

e Tecnológica’. Their support is gratefully acknowledged.

I would like to thank my family for all their support and encouragement over the years. To

my mother, Maria Marques, for all her constant support and love. To my brothers, José and

António, for the greatest friendship of all. Finally, I would like to thank my wife, Rosário, for all

iv

her love and understanding, for all her strength in the difficult moments, and for having always

encouraged and believed in me; and I would like to thank my son, João Nuno, for the years to

come.

1

CHAPTER I

INTRODUCTION

1.1 Statement of the Problem

Satisfiability problems are ubiquitous to the computer-aided analysis of combinational

switching circuits. The identification of circuit input assignments that satisfy some circuit property

can be viewed as a satisfiability problem. The identification of circuit input assignments that sat-

isfy a given circuit output objective is an example of a satisfiability problem. Logic verification is

a satisfiability problem. Path sensitization for test pattern generation is a satisfiability problem.

Path sensitization for timing analysis is yet another satisfiability problem. Path sensitization for

delay fault testing is also a satisfiability problem.

Given this state of affairs, an

efficient

1

 algorithm to solve general satisfiability problems

can solve efficiently any of the problems above. The problem is that the satisfiability problem

(SAT), in several distinct formulations, is known to be

NP

-complete [34, 65, 90], and it is com-

monly accepted that any algorithmic solution for solving SAT requires at least worst-case expo-

nential time in the size of each problem instance description. The aforementioned circuit analysis

tasks are also known to be algorithmically hard [63, 65, 84, 118] and no known efficient algorithm

exists for them. Despite these negative facts, circuit designs have to be validated prior to fabrica-

tion and have to be tested after fabrication, and thus acceptable algorithmic solutions must be

1.

By efficient algorithm we mean an algorithm that runs in worst-case polynomial time in the size
of the problem instance [65, pp. 6-9]. Conversely an inefficient algorithm runs in worst-case expo-
nential time on the size of each problem instance.

2

devised. Common algorithmic solutions attempt to be

effective

, and thus perform well on a large

number of problem instances, even though the worst-case behavior is still exponential in the size

of the problem instance representation.

Two main algorithmic approaches exist for solving satisfiability problems in circuit analy-

sis tasks; search and set of solutions construction. Search can be organized in many different ways,

but the most often used is derived from backtracking search algorithms. Construction of sets of

solutions entails encoding all solutions to a given problem instance in some effective manner, most

often in canonical form. For example binary decision diagrams (BDDs) [3, 22] can be used to

encode solutions of different circuit analysis problems. The main drawback of encoding all solu-

tions is that the size of the representation can become exponential in the size of the problem

instance representation.

Search is most often the best compromise for solving circuit analysis problems, and is the

focus of the present work. Several search algorithms have been developed over the years for solv-

ing different circuit analysis tasks. Several search algorithms have also been developed to solve

satisfiability problems in different problem domains; for example conjunctive normal form (CNF)

satisfiability, constraint satisfaction problems, truth maintenance systems, among others. However,

algorithms for circuit analysis tasks have seldom been influenced by algorithmic techniques devel-

oped for other application domains. Furthermore, few attempts have been made to reduce the

amount of search in algorithms for circuit analysis, by using knowledge from other problem

domains and the specific structure of circuit analysis problems.

The Questions

The development of search-based algorithms for SAT should attempt to answer several

relevant questions. Given that search is based on ordered sequences of decision assignments, can

these assignments reveal facts that reduce the amount of search? How can these facts be inferred?

Given that conflicts are intrinsic to search, can conflicts provide facts that reduce the amount of

search? How can these facts be inferred? Can the structure of instances of satisfiability be used for

reducing the amount of search? Can the structure of the search be used to reduce the amount of

search?

In the more specific domain of path sensitization, several questions should also be

3

answered when developing algorithmic solutions. How to model path sensitization? Are different

instances of path sensitization somehow related? Can the representation of instances of path sensi-

tization be unified? What insights can such unification provide? Can SAT algorithms be adapted

for solving path sensitization?

Finally, from a more practical perspective, a few questions can also be formulated. How to

organize search algorithms for SAT and for path sensitization? How to configure those algorithms

for different circuit analysis tasks? What design tradeoffs must be considered?

The Thesis

In the present dissertation we endeavor to answer the above questions. We show that at

several stages of the search useful inferences can be identified which reduce the total amount of

search. These inferences can either be the consequence of decision assignments (referred to as

for-

ward reasoning

) or the consequence of understanding the causes of conflicts (referred to as

back-

ward reasoning

). Mechanisms for reducing the amount of search are devised primarily for SAT,

but are shown to be applicable to the path sensitization domain.

We propose a model for path sensitization that is independent of any target application,

and which can represent different circuit analysis tasks that involve path sensitization. In particu-

lar, we describe how fault detection in test pattern generation and circuit delay computation in tim-

ing analysis can be represented with the proposed path sensitization model. One key advantage of

the model is allowing the search algorithms proposed for SAT to be extended to path sensitization.

We describe how these search algorithms can be adapted to different target applications involving

path sensitization.

In all cases our thrust is to understand the structure of the problems being solved, and how

that structure can be used for reducing the amount of search. In addition, the structure of how the

search is conducted is important and can be used to reduce the amount of search. Most important,

search-based algorithms for circuit analysis problems have often considered the existence of con-

flicts as negative and as a potential indication that a solution might not be identified in a reasonable

amount of time. Throughout the dissertation we show that conflicts can be helpful. Conflicts can

identify useful facts related to the problem instance or the structure of the search. Conflicts

can

reduce the amount of search.

4

One significant advantage of

diagnosing

 conflicts is that no computational effort is spent if

no conflicts are identified. For time-critical applications such as test pattern generation or timing

analysis, the ability to invest computational resources as needed is significant, and may represent

an alternative and better solution over algorithms that spend computational resources trying to

avoid conflicts, even in situations where conflicts are not to be found.

The Practical Applications

The practical contribution of this dissertation is a toolset for the analysis of combinational

switching circuits, referred to as GRASP (General seaRch Algorithm for Satisfiability Problems),

and which is depicted in Figure 1.1. For solving path sensitization, GRASP is completed with

LEAP (LEvel-dependent Analysis in Path sensitization) which manipulates the information intrin-

sic to path sensitization. The kernel of GRASP consists of a satisfiability algorithm, which can be

used for solving distinct satisfiability problems, e.g. logic verification or satisfiability of conjunc-

tive normal form (CNF) formulas, and which can also be used as a component of LEAP. The ker-

Figure 1.1: The GRASP+LEAP toolset

GRASP kernel

LEAP kernelCNF-SAT Logic Verification

Test Generation Timing Analysis Delay Testing

5

nel of LEAP implements the proposed path sensitization model and is used for solving the

problem of path sensitization in different applications.

Different circuit analysis tools can be developed within the GRASP+LEAP toolset. In this

dissertation we describe tools for test pattern generation (TG-LEAP) and for timing analysis (TA-

LEAP), but the underlying algorithmic framework can be readily extended to other applications.

1.2 Search Algorithms

The purpose of the present section is to briefly review definitions associated with search

algorithms and strategies for organizing those algorithms. We explicitly assume that the search

algorithm is intended to solve some form of satisfiability problem. Other more general formula-

tions can be developed which also include solving optimization problems.

1.2.1 Basic Definitions

The process of searching for a solution of a given satisfiability problem is referred to as a

search process

 (or

decision procedure

). The search process implements a systematic enumeration

of a given search space and, as a result, a

decision tree

 (or

search tree

) is maintained. The decision

tree accounts for portions of the search space being searched, and implicitly identifies those por-

tions of the search space already searched and those yet to be searched.

A search algorithm for solving a satisfiability problem is said to be

sound

 whenever a

solution computed for a given problem instance is indeed a solution to that problem instance. A

search algorithm is said to be

complete

 if it identifies a solution to a problem instance if such a

solution exists [169, p. 31].

1.2.2 Search Strategies

Different strategies exist for organizing search algorithms. Different organizations lead to

different methods for constructing and traversing the decision tree, and to different space complex-

ities.

Backtracking

For satisfiability, the most commonly used search strategy is

backtracking

. The backtrack-

6

ing procedure was originally applied to solving several computational problems in the 1950’s. The

name backtracking is due to R. J. Walker, who first described backtracking in its most general

form [175]

2

.

The following description of backtracking follows, with minor modifications, the one in

[97]. Let us assume a problem description with

n

 variables,

x

1

, …,

x

n

, each with several possible

values. For each ordered sequence of variables

x

1

, …,

x

k

 a property

P

k

(

x

1

, …,

x

k

), that can assume

values true or false, is defined such that:

(1.1)

These predicates are used to define the implementation of the backtracking procedure. The organi-

zation of backtracking is shown in Figure 1.2. The procedure recursively extends a set of value

assignments to the problem variables. Whenever all variables are assigned and

P

n

(

x

1

, …,

x

n

) holds,

then a solution has been identified. Clearly, property

P

n

(

x

1

, …,

x

n

) must be defined to hold true if

and only if a solution to the problem has indeed been identified.

Example 1.1.

In order to illustrate the application of backtracking, we consider the

N

-queens

problem [128, 169]. The

N

-queens problem entails the placing of

N

 queens on an

N

 ×

N

 board such

that no queen attacks any other queen. One approach for solving the

N

-queens problem is to create

2.

Some authors [11, 74] have attributed the name backtracking to D. H. Lehmer. However, D. H.
Lehmer in [107, p. 26], attributes the origin of the name to R. J. Walker.

Pk 1+ x1 … xk xk 1+, , ,() Pk x1 … xk, ,()⇒ for 0 k n<≤,

Backtracking (k)

{
if (k == n) return SUCCESS; // Solution found — return

Sk = { values of xk + 1 | Pk + 1(x1, …, xk, xk + 1) is true };
for (each value y in Sk) {

set xk + 1 to y; // Define next value of xk + 1

status = Backtracking (k + 1);
if (status == SUCCESS) return SUCCESS; // Solution found

}
return CONFLICT; // All values of xk + 1 tested

}
Figure 1.2: The backtracking procedure

7

N variables x1, … , xN each taking a value in the set { 1, …, N } , i.e. variable xi with value j indi-

cates that the queen of the ith column is placed in the jth row. Property Pk(x1, …, xk) can be defined

as follows:

Consequently, given the definition of the variables x1, … , xN and their possible values, invoking

Backtracking(0) computes a solution to the N-queens problem if and only if a solution exists.

Predicate Pk is defined informally, but could readily be formalized given the definition of the prob-

lem variables and associated values.

Let us assume a problem instance with n variables, x1, … , xn where each variable can take

values in domain D1, … , Dn, respectively. Then, the worst-case space required for implementing

backtracking (as described in Figure 1.2) is,

(1.2)

which is optimal, since all values for each variable must be made available. On the other hand, the

worst case time required for finding a solution with backtracking is,

(1.3)

For example if , then the worst-case time becomes , i.e. a

worst-case exponential time procedure.

Backtracking has been extensively studied. D. E. Knuth, in [97], shows that the backtrack-

ing procedure is complete and describes a method to estimate the average complexity of comput-

ing all solutions to a given problem instance.

Other Strategies

Depth-first search is a strategy commonly used in artificial intelligence [128]. Its operation

is equivalent to backtracking. (J. Pearl [128] claims a minor organization difference between back-

tracking and depth-first search, related to how at a given stage of the search process the possible

extensions are identified. The organization of backtracking in [11, 97] and in Figure 1.2 is equiva-

Pk x1 … xk, ,() “No two of the first k queens attack each other”=

O D1 D2 … Dn+ + +()

O D1 D2 … Dn⋅ ⋅ ⋅()

D1 D2= …= Dn 2= = O 2n()

8

lent to the organization of depth-first search in [128] in that all possible extensions are identified

prior to entering a new recursion level.)

While depth-first search and backtracking implement a LIFO (last-in-first-out) organiza-

tion of how nodes in the search tree are visited, breadth-first search [128] implements a FIFO

(first-in-first-out) organization of how to visit nodes in the search tree. The differences between

backtracking and breadth-first search are illustrated in Figure 1.3. While in backtracking the num-

ber of active nodes corresponds to a path in the decision tree, in breadth-first search all nodes at the

same depth in the decision tree are active. For a satisfiability problem instance with n variables,

which requires assignments on all n variables, the space and time complexity of breadth-first

search is necessarily exponential in n, since all nodes at all levels in the decision tree have to be

visited before visiting level n where a solution can be identified.

Other search strategies exist. For satisfiability problems, iterative deepening [98] and iter-

ative broadening [67] are of hypothetical interest. Iterative deepening exhaustively searches, using

depth-first search, increasing depths of the decision tree until a solution is identified, thus guaran-

teeing that the shortest solution is computed. Iterative broadening imposes a cutoff limit on the

number of backtracks to each node in the decision tree and backtracks further when that limit is

reached. In order to ensure completeness, the search is executed for increasing values of the cutoff

limit until a solution is found. Even though both procedures have been shown to exhibit interesting

theoretical properties, their practical application to satisfiability problems is questionable. Iterative

deepening enumerates all decision assignments of length less than the length of the computed

solution. Iterative broadening becomes impractical if a large number of cutoff limits needs to be

considered and it is less useful if the number of branches at each decision node is small.

Figure 1.3: Difference between backtracking and breadth-first search

1

5

3

2

4 6 7

1

3

4

2

5 6 7 nodes in tree

(a) Traversal order in backtracking (b) Traversal order in breadth-first search

9

Search-based algorithms for satisfiability problems are often based on the backtracking

search algorithm, since other search strategies can be less effective. Breadth-first requires expo-

nential space, whereas iterative deepening is exponential in the size of the computed solution. Iter-

ative broadening can be useful for problem instances with large variable domains. For the

satisfiability problems addressed in this dissertation, variable domains are of size two (i.e. vari-

ables assume values in the set { 0, 1 }), and thus the potential advantages of iterative broadening

cannot be exploited.

1.3 Solving Satisfiability Problems

A satisfiability problem is defined as the task of identifying assignments for variables x1,

… , xn such that a given set of constraints must be satisfied, and where each variable domain is the

set { 0, 1 } . A further restriction is to require each constraint to be specified in clausal form in

which case the satisfiability problem is referred to as SAT [65]. This definition of satisfiability

problem corresponds to a restriction of the formulation of constraint satisfaction problems (CSPs)

[99, 111, 169], but which is sufficient to capture circuit analysis tasks in combinational switching

circuits. By restricting the variable domains, specific algorithmic techniques can be developed, as

will be described in the following chapters.

Several algorithmic approaches can be applied to the solution of satisfiability problems.

We distinguish search-based, non-search based and algorithms from other problem domains.

1.3.1 Using Search-Based SAT Algorithms

The best-known search-based algorithm for SAT is the Davis-Putnam procedure [39,

110]3 which implements a backtracking search procedure completed with several rules for simpli-

fying the CNF formula. Several algorithmic variations of the Davis-Putnam procedure have been

proposed in the past [64, 125]. Monien and Speckenmeyer [125] propose a backtracking algo-

rithm, based on the Davis-Putnam procedure, whose main distinct feature is that decision assign-

ments always ensure that a clause is satisfied. Consequently, each node in the decision tree can

contain several branches, each of which denotes a solution to a chosen clause. The decision proce-

3. The Davis-Putnam procedures [38, 110] are studied in Section 2.5.3 and Section 2.5.4.

10

dure also ensures that redundant sets of assignments are not considered. Gallo and Urbani [64]

propose to generate Horn4 relaxations of a CNF formula, and then conduct the search process in

such a way that the sub-formula of Horn clauses is always satisfied. The organization of the algo-

rithm is similar to the Davis-Putnam procedure described in [110], in that the backtracking search

strategy is not explicitly enforced.

Test pattern generation algorithms can be used for solving satisfiability problems in com-

binational circuits. Furthermore, in the context of test pattern generation several SAT algorithms

have been proposed in recent years [104, 105, 162], which can be viewed as variations of the

Davis-Putnam procedure in terms of how the search is conducted.

1.3.2 Using Non-Search Based SAT Algorithms

Several algorithms have been proposed for solving SAT which are not based on systematic

search. Recent work has focused on local (non-systematic) search algorithms, with very promising

results [76, 77, 146, 147]. In these algorithms the search for a solution consists in iteratively mod-

ifying components of an initial complete but invalid assignment in an attempt to eventually iden-

tify a valid solution to the problem instance. The major drawback of most local search algorithms

is that they are not complete, and thus they cannot be used to prove unsatisfiability. Gu [77] has

suggested complete algorithms based on local search and plain backtracking, but does not describe

the implementation in detail and gives no experimental results. An example of the application of

optimization techniques for solving SAT is the use of Boltzmann machines [4], but these algo-

rithms are also not complete. Ginsberg [68] has recently proposed a new search paradigm where

conflict handling methods are integrated in a search algorithm that implements local search; the

same approach can be applied to SAT.

Satisfiability problems can be solved with algebraic methods, that are briefly reviewed in

Section 2.5.3. Mixed algorithmic solutions also exist. For example, Billionet and Sutter in [10]

propose an algorithm based on search, which uses restricted forms of consensus operations for

constraining the search process.

Another algorithmic approach is to estimate whether a solution exists. Iwama in [86] pro-

4. A Horn clause contains at most one positive literal (see for example [64, 131]).

11

poses counting the number of maxterms covered by a given CNF formula; if the Boolean space is

covered, then the formula is unsatisfiable. This algorithm does not compute a solution assignment

in the case the formula is satisfiable. In addition, counting maxterms involves considering all sub-

sets of clauses not involving the same literals, which in the worst-case can be in exponential num-

ber in the number of such subsets. No experimental results are presented in [86]. In a related work,

Tanaka [165] provides conditions under which it is possible to test satisfiability. However, the pro-

posed algorithm is not complete, since it may be possible to estimate a formula as satisfiable when

it actually is not. As with Iwama’s algorithm, Tanaka’s will not provide a solution assignment that

satisfies the formula.

1.3.3 Using Other Problem Domains

Algorithms for solving constraint satisfaction problems (CSPs) can be applied to solving

satisfiability problems, which represent a restriction of CSPs. A large body of work has been dedi-

cated to the development of algorithmic techniques for solving CSPs [41, 42, 61, 111, 126, 127,

133, 143, 169]. These techniques can be categorized as consistency methods [111, 126, 169] and

as search-based methods [41, 42, 127, 143, 169]. Integrations of the two types of methods has also

been reported [127]. However, CSPs are a very general formulation, that is unable to deal effec-

tively with the specific structure of satisfiability problems. Evidence of this fact will become

apparent in subsequent chapters.

Satisfiability problems can also be solved with truth maintenance systems (TMSs) [43-46,

54, 60, 69, 115, 116]. A truth maintenance system identifies a general framework for maintaining a

knowledge database and interface procedures for testing the validity of the knowledge database

given a set of assumptions with respect to objects on the database. The formulation of TMSs and

their variations is not directed towards efficiency; in most cases the objective is to complete the

knowledge database with information deemed of interest to the application domain. Notwithstand-

ing, in the following chapters we will adapt several concepts commonly used in TMSs, in particu-

lar logical TMSs [60, 115], in describing algorithms for satisfiability problems.

Other fields of research have developed algorithms that, with adequate adaptations of the

problem representation, can be used for solving satisfiability problems. This is the case, for exam-

12

ple, of logic programming and constraint logic programming (CLP) [88]. An example of applying

constraint logic programming to the satisfiability problem of propositional formulas can be found

in [157]. Another example is the application of integer programming methods for solving SAT [12,

82].

Even though satisfiability problems can be solved with algorithms from several different

areas, existing experimental results suggest that knowledge intrinsic to each problem domain can

be applied in developing application-specific algorithms that perform better than mapping satisfi-

ability problems to more general problem domains. As a result, we conjecture that for time-critical

applications such as circuit analysis tasks, the development of algorithmic solutions specific to

these applications provides the most effective algorithmic solutions.

1.4 Application of Satisfiability Algorithms to Circuit Analysis

The most common satisfiability problem in the analysis of a combinational switching cir-

cuit is to answer the query: identify a logic assignment at the circuit inputs that is consistent with a

logic objective (set of logic objectives) at a given circuit output (set of circuit outputs). The circuit

by itself may already encode the representation of another fairly different satisfiability problem.

Other more elaborated satisfiability problems can be formulated in circuit analysis tasks.

Logic verification entails the comparison of two (possibly structural) descriptions of a

combinational circuit. Let E and F be two circuit descriptions each with primary inputs and

 primary outputs. (If the number of primary inputs or of primary outputs of E and F were dif-

ferent, then the two circuit descriptions would certainly be different.) Let n identify the common

primary inputs to both circuits, and let oE and oF respectively denote the primary outputs of E and

F. In this situation, define the equation:

(1.4)

If the above equation is satisfiable, then there exists at least one logic assignment to the primary

inputs such that at least one of the outputs of E and F differ. The graphical representation of (1.4)

is shown in Figure 1.4, and is referred to as a miter in [16]. As a result, we can apply any satisfi-

PI

PO

oi
E

n1 … n PI, ,() oi
F

n1 … n PI, ,()⊕[]
i 1=

PO

∑ 1=

13

ability algorithm to solve the logic verification problem.

A large body of work has been dedicated to the logic verification of combinational cir-

cuits, which involves knowledge from different areas of Computer Science [16, 22, 27, 100, 112,

142, 172, 173, 176]. Currently, practical solutions to the logic verification problem in combina-

tional circuits are either based on BDD representation and manipulation [22, 112], or on algo-

rithms using test pattern generation techniques [16, 100, 142, 176].

In recent years, SAT algorithms have been used for solving the path sensitization problem

in test pattern generation [24, 104, 105, 162], timing analysis [119, 120, 150, 152] and delay fault

testing [120]. In all cases a set of logical conditions, that captures the conditions of the path sensi-

tization problem, is created and a satisfiability objective is specified. The resulting problem formu-

lation is tested for satisfiability with a dedicated SAT algorithm.

SAT algorithms can be applied to other tasks of the computer-aided analysis and design of

digital circuits. For example placement and routing [48] and asynchronous circuit synthesis [136].

1.5 Path Sensitization

As mentioned earlier, path sensitization in a combinational circuit entails the identification

of circuit input assignments that permit some form of relevant information to be made observable

at the circuit outputs. For example, path sensitization can be used to solve the problem of fault

detection in test pattern generation and circuit delay computation in timing analysis.

In recent years, extensive research work has been done on developing effective algorith-

Figure 1.4: The logic verification problem

E

F

z = 1

n1

n PI

o PO
F

o PO
E

o1
F

o1
E

14

mic techniques to solve path sensitization in different application domains. In the following sec-

tions we define the goals of path sensitization in two of these applications and briefly review

proposed algorithmic solutions.

1.5.1 Test Pattern Generation

Test pattern generation concerns the identification of circuit input patterns that permit

detecting failures in digital circuits after fabrication. Failures are assumed to be caused by fabrica-

tion defects, and circuits subject to failures are said to be faulty. Different fabrication defects can

occur, which are the source of different types of incorrect behavior. For example, a fabrication

defect may cause a circuit node x to always assume the same logic value v. Node x is then said to

be stuck-at v (referred to as x s-a-v). If fabrication defects cause two nodes x and y to be connected,

then a logic function between the two nodes is defined, which affects other nodes in the transitive

fanout of the two nodes. These defects are referred to as bridging faults [1, pp. 289-292].

Fault models define which types of improper behavior can be modeled. For circuits

described at the gate abstraction level, the single-stuck fault (SSF) [1, pp. 110-118] model is the

most commonly used and is the model assumed in this dissertation. Experimental evidence sug-

gests that tests computed with the SSF model usually provide good coverage of other types of

faults [1, pp. 110-118]. In the SSF model, each node x in a circuit is characterized by two faults, x

stuck-at 0 and x stuck-at 1. The interconnection between two nodes x and y, (x, y) that denotes the

fanout branch between x and y, can also be subject to the same two stuck-at faults.

Assuming the SSF model, and for a combinational circuit, the fault detection problem is

defined as the identification of circuit input logic values that permit the effect of a given stuck-at

fault to be observed at the circuit outputs. If this problem is satisfiable, the circuit input logic val-

ues define a test T that detects the fault. The partial paths along which the effect of the stuck-at

fault reaches the circuit outputs are said to be sensitizable under T. If the problem is not satisfiable,

then the fault is said to be redundant.

The D-Calculus

Algorithmic solutions for fault detection are most often based on the D-calculus [141] or

on its algebraic derivations [2, 23, 33, 37]. The D-calculus augments the two-value Boolean alge-

15

bra with two discrepancy values, D and D, that denote a difference between the logic values of the

correct and faulty circuits. If the logic value of a node is v in the correct circuit and vf in the faulty

circuit, then D represents v/vf = 1/0, and D represents v/vf = 0/1. The D-calculus has been shown to

be valid for the fault detection problem; if the D-calculus is used to model the behavior of a stuck-

at fault, then a test T detects that fault if and only if under the D-calculus at least one circuit output

assumes value D or D [141]. The algebraic definition of the D-calculus is given in Figure 1.5

(where X denotes the unassigned value).

Example 1.2. Examples of stuck-at faults are shown in Figure 1.6. Each fault needs to be activated

and so the node associated with the fault must assume value opposite to the value forced by the

fault. For fault x6 s-a-0, the test x1 = 0, x2 = 0, x3 = 1 and x4 = 0 enables the effect of the fault to be

observed at circuit output z1. For fault (x6, z2) s-a-1 to be activated, it is necessary to have x6 = 0,

which implies x2 = x3 = 1, which then imply z1 = 0 and z2 = 1. Hence the fault cannot be detected

and is said to be redundant.

Figure 1.5: Definition of the D-calculus

NOT OUT

0 1

1 0

D D

D D

X X

OR 0 1 D D X

0 0 1 D D X

1 1 1 1 1 1

D D 1 D 1 X

D D 1 1 D X

X X 1 X X X

AND 0 1 D D X

0 0 0 0 0 0

1 0 1 D D X

D 0 D D 0 X

D 0 D 0 D X

X 0 X X X X

Figure 1.6: Example of detectable and redundant faults

x3 x7

x6

x5

x4

x2

x1

z1

z2
s-a-1

x3 x7

x6

x5

x4

x2

x1

z1

z2

s-a-0

16

Other approaches for fault detection exist. For example algebraic formulations based on

the boolean difference can be used to capture fault detection in test pattern generation. However, it

is generally accepted that algebraic formulations for fault detection are not adequate for practical

algorithmic implementations.

In recent years, other models for fault detection in test pattern generation have been pro-

posed which formulate the path sensitization problem in terms of a satisfiability problem [24, 104,

162]. For example, the approach of [104] consists in creating XORs between each primary output

of the correct and faulty circuits, where the faulty circuit exhibits the effect of the target fault. A

test T that detects the fault must set the output of at least one XOR to 1.

Algorithms for Test Pattern Generation

The D-algorithm [141] represents one of the first complete algorithms for test pattern gen-

eration. It implements a decision procedure that at each state of the search either attempts to prop-

agate an error signal to a circuit output or attempts to justify internal circuit node assignments. For

some practical circuits, the organization of the D-algorithm may lead to large decision trees, since

a large number of internal nodes may participate in the decision process.

PODEM [72] is the first test pattern generation algorithm to propose implicit enumeration

of the circuit inputs as an effective technique to reduce the complexity of the D-algorithm for sev-

eral problem instances. In addition, the practical implementation can be much simpler than that of

the D-algorithm since the search process is restricted to enumeration of the circuit inputs. For

example, PODEM does not implement justification, which significantly facilitates the process of

backtracking. Decision making in PODEM is guided by simple backtracing [160] that traces

objectives through the combinational circuit and decides assignments on the circuit inputs.

FAN [62] proposes several improvements with respect to PODEM. First, the notion of

unique sensitization point (USP) is introduced, that identifies logic assignments that constrain the

search. In FAN, USPs are only viewed statically (without considering the effects of logic assign-

ments) and preprocessing methods are suggested for their identification. FAN introduces the con-

cept of head line, i.e. the output of a fanout-free subcircuit. Head lines permit reducing the total

number of decision variables with respect to PODEM. The authors of FAN observed that the

absence of justification affected negatively the overall performance of PODEM, and so FAN

17

implements justification. Another contribution of FAN is multiple backtracing, that extends simple

backtracing by tracing multiple objectives to the circuit inputs and deciding assignments based on

the objectives traced.

TOPS [92] and SOCRATES [144, 145] represent evolutions of FAN. TOPS formalizes the

notion of unique sensitization points and proposes preprocessing algorithms for their identifica-

tion. In addition, TOPS extends the notion of head line to basis nodes, i.e. nodes of complete

reconvergence. SOCRATES introduces the concept of static [144] and dynamic learning [145], i.e.

the identification of non-local implications. In [144] several variations on the identification of

static USPs are proposed. Moreover, in [145] the concept of dynamic USPs is introduced (that

consider the effects of logic assignments) and a procedure for their identification is described.

EST [70, 71] proposes recording state information associated with conflicts or with identi-

fied solutions. This recorded information can then be used to simplify the search for subsequent

faults. Information recording takes place at each stage of the search process and consists of a cut of

logic values (driving unassigned nodes) as well as a copy of the D-frontier. EST has been used to

improve TOPS in [70] and SOCRATES in [71] with promising experimental results.

Other algorithms for test pattern generation have been proposed. QUEST [37] and recur-

sive learning [101] describe methods targeted at hard-to-detect faults, but which may not be practi-

cal in practice. The same holds true for TRAN [24], which proposes using transitive closure

algorithms for identifying implications. TRAN is directed at hard-to-detect faults, and relies on

random test pattern generation and fault simulation for detecting most faults. In TRAN, NEMESIS

[104] and TAGUS [162], the test pattern generation problem is formulated as a SAT problem and

solved with a SAT algorithm. Experimental results for TAGUS suggest that this approach can be

particularly efficient, even though it must resort to different decision making procedures for

detecting all faults.

1.5.2 Timing Analysis

Timing analysis of digital circuits is concerned with identifying the timing properties of

circuits that limit circuit performance. Each circuit component (or interconnect wire) causes signal

transitions to be delayed, and so signal transitions are subject to a non-zero propagation delay

18

between the inputs and outputs of the circuit. Propagation delays are defined by the sum of ele-

ment and interconnect wire delays along paths in the circuit, and the largest propagation delay

determines the maximum frequency at which a circuit can operate when it drives memory and syn-

chronization elements.

Early timing analyzers computed circuit delay solely based on topological information,

where the longest topological path in a circuit defined the circuit delay [81, 93, 122]. However,

there can be paths along which signal transitions cannot propagate under any circuit input assign-

ment. These paths are referred to as false paths.

Example 1.3. An example of a circuit with a false path (adapted from [9]) is shown in Figure 1.7.

A signal transition in x1 can propagate to z. However, there are only two propagation paths over

which a signal transition can propagate, 〈x1, x4, x5, x7, z〉 and 〈x1, x3, x5, x8, z〉 . Note that x6

assumes the complemented value of x2. Hence, a signal transition propagates from x4 to x5 if

x2 = 1, which immediately causes x6 = 0, and so a signal transition can no longer propagate from

x8 to z. As a result the largest propagation delay from x1 to z is 34 time units and not 44 time units

as is defined by the longest topological path delay.

Most of the early timing analyzers provided mechanisms for either discarding some paths

[81] or forcing logical conditions to determine whether a signal transition could propagate along

the path [122]. This latter procedure was referred to as case analysis. Both solutions for removing

false paths have serious drawbacks. First the designer must have extremely good knowledge of

how a circuit operates in order to avoid inadvertently removing true paths. Second, case analysis

must be applied to all false paths, which may be an extremely large number.

Figure 1.7: Example of a circuit with a false path

Delay = 10

Delay = 20

Delay = 10

Delay = 20

MUX
D = 2

0

1

x1

x2

x3

x4

x5

x6

x7

z

x8

D = 2

MUX
D = 2

0

1

19

The notion of false path can be traced to [83], where it was first shown that the circuit

delay can be less than the delay of the longest topological path5. First attempts to identify false

paths and compute better estimates of the circuit delay were described in [8, 15] and involve dif-

ferent models of path sensitization, i.e. definition of valid conditions for a signal transition to prop-

agate along a path. Since then extensive research work has been done on delay computation for

combinational circuits with two main purposes: accurate timing modeling and effective algorith-

mic procedures.

It is commonly accepted that algorithmic complexity for path sensitization is directly

related to the accuracy of the assumed timing model. In the following review of methods for cir-

cuit delay computation, we emphasize methods based on simple timing models, since path sensiti-

zation is a particularly hard satisfiability problem, even for the most simple timing models.

Single Path Sensitization

Early work on path sensitization for circuit delay computation was dedicated to a path-by-

path analysis, where each potential longest path was individually tested for sensitization. Different

approaches for enumerating paths were proposed. In [55] each path is individually tested using a

path extraction algorithm first described in [177]. Other approaches attempt to extend a sensitiz-

able path to a primary output so that the propagation delay is maximized [8, 117]. Strategies for

extending partial paths can be based on depth-first or best-first search [128].

The most important aspect of early solutions for circuit delay computation was the

assumed timing model. Proposed models range from very precise representations of circuit timing

behavior [103, 149] to models targeted to simplify algorithmic implementations [8, 15, 32, 118,

129]. The models describe different criteria for establishing whether a signal transition propagates

along a path, and reviews of the different criteria can be found in [32, 118, 151, 153]. In recent

years, the most popularized path sensitization criteria assume floating-mode operation, in which

the state of each circuit node is assumed to be unknown, though probably going through several

signal transitions, before its stabilizes to a known logic value. These criteria include static sensiti-

zation [8], viability [117] and the floating-mode criterion [31] and trade off some accuracy on the

5. V. Hrapcenko [83] formalized the notion of a false path. The fact that the circuit delay could be
less than the longest topological delay was known before that, and justified the design techniques
for high-speed adders.

20

computed circuit delay estimate by being more amenable to algorithmic implementation. While

static sensitization can underestimate and overestimate the circuit delay, viability and floating-

mode sensitization provide the same upper bound to the circuit delay [31, 32, 153].

A characterization of the different criteria for floating-mode operation is shown in Figure

1.8 (adapted from [153]), and identifies logical and temporal constraints on the side inputs to each

node x in a path. τ(x) denotes the propagation delay of a signal transition to node x along a given

path. The side inputs values can either be controlling (c) or non-controlling (nc). Symbol C indi-

cates that a given circuit node value is unknown and can experience changes in time. For floating-

mode operation, the primary input stimuli assumes that the initial value of each primary input is

unknown and changes to a known logic value at the specified arrival time. In the floating-mode

sensitization criterion, a node y in the fanout of a node x stabilizes as a direct consequence of node

x stabilizing if x is either the earliest controlling value to stabilize or all fanin nodes assume non-

controlling values and x is the latest node to stabilize. Dynamic sensitization [117, 118, 151, 153]

is also included in Figure 1.8, since it computes the exact circuit delay under the assumption of

fixed gate delays and one transition (between two known logic values) primary input stimuli.

Concurrent Path Sensitization

Single path sensitization faces two complex problems. First, even for a single path, the

Figure 1.8: A characterization of path sensitization criteria

Static

Dynamic

Floating-mode

Viability

nc
nc

nc

side

X

nc

nc

nc
τ(x)

C

c

nc

nc

τ(x)

τ(x)

C

C

C

node x

of x
inputs

side

node x

of x
inputs

cC

nc

nc

C

C

C

nc

nc

τ(x)

C

C

C

cC

21

validation of the sensitization conditions corresponds to a satisfiability problem. Second, the num-

ber of long false paths can be extremely large, and even approaches based on extending partial

sensitizable paths are unable to handle circuits with a large number of false paths.

In recent years several procedures have been proposed that are based on concurrent path

sensitization [30, 50, 120, 152, 156]. A delay range is specified, and the satisfiability problem is

then to identify valid conditions for sensitizing any path with delay within the given range. For

most practical approaches the delay range considered is , where LTP denotes the longest

topological path delay in a circuit. Concurrent path sensitization was first proposed by S. Devadas

et al. in [49].

While for single path sensitization the major emphasis has been the accuracy of the path

sensitization criterion, for concurrent path sensitization the emphasis is the algorithmic implemen-

tation, and most approaches uniformly assume floating-mode operation. (Other approaches based

on more precise timing models [51] use floating-mode operation delay as an initial estimate to a

more precise computation of the circuit delay.)

Concurrent path sensitization is characterized by two main algorithmic approaches:

1. Logic-based, that consists in defining logical conditions for each node to be part of a sensitiz-

able path with delay no less than ∆ [5, 119, 120, 150, 152]. The search procedure then oper-

ates on the established logical conditions, and all approaches are either based on SAT algo-

rithms or test pattern generation algorithms [5].

2. Delay-based, that consists in some form of guided timed simulation, based on implicit enu-

meration of the primary inputs, in which propagation delay estimates to each circuit node are

maintained. Different delay estimates can be used, which distinguishes the different algorith-

mic approaches [29, 30, 50, 52, 156]. (Note that for [156] structural and logical information

is maintained, which is used to prune the search. This approach is described in Chapter IV

and in Chapter VI.)

Other Approaches

The algorithmic solutions for circuit delay computation described above implement some

form of search process. Other solutions not based on search have been developed. For example, [7]

proposes using ADDs (Algebraic Decision Diagrams). The circuit delay computation problem can

∆ LTP,[]

22

be solved with ADDs by creating an algebraic decision diagram that encodes the logical condi-

tions for each sensitizable path delay. This approach faces two major drawbacks. First, the number

of paths delays can be exponential in the size of the circuit. Second, the representation of the logi-

cal conditions may also require an exponential size ADD. Results reported in [7] indicate that

ADDs work well for some classes of regular circuits (e.g. carry-skip adders) but are considerably

inefficient for other more general classes of circuits.

1.6 Dissertation Organization

The dissertation is divided into three main parts. In the first part, we lay the foundations

for solving SAT with search-based algorithms. An algorithm for solving satisfiability of conjunc-

tive normal form (CNF) formulas, GRASP, is described and compared with other algorithms for

CNF SAT. Afterwards, we address models and algorithms for path sensitization and describe their

applications. Finally, the third part includes experimental results for circuit analysis tools and

delineates future research work.

We start, in Chapter II, by defining a formal framework for representing combinational

circuits as CNF formulas. Algebraic methods for solving SAT are reviewed, since they are

exploited in later chapters for improving search-based SAT algorithms. Chapter III concludes the

first part of this dissertation; it describes GRASP and the main ideas on how to organize search-

based SAT algorithms.

Chapter IV begins the second part of the dissertation, and describes a new model for path

sensitization, the perturbation propagation model. The major objective of Chapter IV is to

describe LEAP, a search-based algorithm for path sensitization based on the perturbation propaga-

tion model, and which follows the organization of GRASP. Subsequent chapters describe the

application of the perturbation propagation model to target applications. Chapter V details the

model and algorithm for test pattern generation, and Chapter VI details the model and algorithm

for timing analysis.

Experimental results for test pattern generation and timing analysis tools are analyzed in

Chapter VII. Chapter VIII concludes the dissertation with an overview of the contributions and a

discussion of directions for future research work.

23

CHAPTER II

FUNDAMENTAL CONCEPTS

2.1 Introduction

The purpose of this chapter is to introduce the mathematical framework that will be used

throughout the remaining chapters. Emphasis is given to the definition and algebraic manipulation

of conjunctive normal form (CNF) formulas.

We start, in Section 2.2, by defining CNF formulas which provide a unified representation

for instances of satisfiability problems (SAT). CNF formulas are interchangeably referred to as

clause databases. We then illustrate, in Section 2.3, how other problem representations of SAT,

described either as propositional formulas or as combinational circuits, can be mapped into CNF

formulas. These mappings were originally proposed by G. S. Tseitin [170], in the context of prop-

ositional formulas, and guarantee CNF formulas of size linear in the size of the original represen-

tation.

The next step is to formalize the derivation of logical implications of CNF formulas by

relating this concept to the unit clause rule originally proposed by Davis and Putnam [38]. The

iterated application of the unit clause rule is referred to as Boolean constraint propagation [116]

which is examined in some detail.

Algebraic techniques to manipulate CNF formulas are described in Section 2.5. We review

some well-known concepts, e.g. consensus and resolution, briefly analyze the generation of prime

implicates, and conclude by studying different algebraic and search-based techniques for solving

SAT. These algebraic techniques are shown to be analogous to procedures for generating prime

24

implicates and some of their simplifications.

The chapter concludes by formalizing how satisfiability tests are executed on CNF formu-

las. These tests are defined in terms of queries on a clause database and some conditions that char-

acterize valid queries are examined.

2.2 Basic Definitions

In this section we define the basic formal framework that will be used to describe satisfi-

ability algorithms in the following chapters. We propose to uniformly represent different instances

of satisfiability problems as conjunctive normal form (CNF) formulas. The composition of these

formulas can be modified by satisfiability algorithms. Consequently, CNF formulas will be

referred to as clause databases, over which SAT algorithms can operate.

In the following definitions, and throughout the remainder of this dissertation, the two-ele-

ment Boolean algebra (also known as switching algebra) is assumed [79, pp. 160-171].

2.2.1 Variables and Literals

The definitions introduced in the sequel assume a set of variables V, each of which is iden-

tified by a symbol in the set of symbols . The size of V is interchangeably iden-

tified by |V| or N.

Each variable y ∈ V is characterized by a logic value, denoted by ν(y), with ν(y) ∈ { 0, 1,

X } . When clear from the context, ν(y) is also referred to by y. Whenever y = X we say that y is

unassigned; otherwise y is assigned.

Example 2.1. An example of a set of variables is { x1, y2, t1 } , with N = 3. Assuming x1 = 1, then

x1 is assigned. y2 = X indicates that y2 is unassigned.

The assignment of a logic value vy ∈ { 0, 1, X } to a variable y ∈ V is denoted by y ← vy

and identifies the action of setting ν(y) to value . y ← vy is defined as a predicate that always

evaluates to 1. Predicate y = vy evaluates to 1 or 0 depending on whether ν(y) is equal to or differ-

ent from . It is always true that,

rstuwxyz[] 0 9–[] *

vy

vy

25

(2.1)

An assignment set A is defined as a mapping from U ⊆ V into { 0, 1 } and is always treated

as a set A ⊆ V × { 0, 1 } of variable-value pairs (y, vy). We say that an assignment set A is commit-

ted whenever each variable-value pair (y, vy) ∈ A denotes an assignment of value vy to variable y;

otherwise the assignment set is uncommitted. Variables not specified by a committed assignment

set A assume X as a default value. A committed assignment set A is said to be a partial variable

assignment whenever |A| < |V|; otherwise the committed assignment set is said to be complete.

Unless stated otherwise, assignment sets are always assumed to be committed.

Example 2.2. Let y ∈ V. y ← 0 indicates that 0 is assigned to y. Subsequent to the assignment,

proposition (y = 0) holds true. Similarly, let V = { x1, x2, x3, x4, x5, z1 } and A = { (x1, 0), (x3, 0),

(z1, 1) } . Then, given A the following holds true,

A literal l is defined by l = yi, y ∈ V and i ∈ { 0, 1 } , where i = 1 corresponds to the com-

plemented literal, also referred to as l = ¬y, and i = 0 corresponds to the uncomplemented literal,

also referred to as l = y. y0 is said to be a positive literal, and y1 is said to be a negative literal.

Given an partial variable assignment A, the value of a literal yi under A is defined by,

(2.2)

which is equal to X if (y, vy) ∉ A.

2.2.2 Clauses and CNF Formulas

A clause is defined as a disjunction of literals,

(2.3)

y vy←() y vy=()⇒

x1 0=() x2 X=() x3 0=() x4 X=() x5 X=() z1 1=()∧ ∧ ∧ ∧ ∧

y
i

A
y i⊕=

ω li
i 1=

ω

∑=

26

where each li is a literal, and the clause contains |ω| literals. A clause can also be viewed as a set of

literals ω = { l1, …, l|ω| } and this representation is used when convenient. Given a partial variable

assignment A, the value of a clause ω under A is defined as follows:

(2.4)

If then ω is said to be satisfied. If then ω is said to be unsatisfied. Otherwise ω

is said to be unresolved. Under a partial variable assignment, the unassigned literals of an unre-

solved clause ω are called the free literals of ω. An unresolved clause is said to be a unit clause

whenever it contains only one free literal.

Example 2.3. An example of a clause is . Let us consider the assignment set

. Then is given by,

A clause ω1 is said to subsume another clause ω2 if ω1 logically implies ω2 [28]. In par-

ticular, ω1 ⊆ ω2 if and only if ω1 subsumes ω2.

Example 2.4. For example, subsumes because whenever

ω1 is satisfied, then ω2 is also satisfied, and if ω2 is unsatisfied, then ω1 is necessarily unsatisfied.

Conversely, the two clauses can be represented by ω1 = { y, ¬w } and ω2 = { y, ¬w, z } , hence ω1 ⊆

ω2 and so ω1 subsumes ω2.

In general, two clauses ω1 and ω2 defined on V may not exhibit a containment relation. In

those cases, we can still relate the two clauses. We say that ω1 is stronger than ω2 if and only if

|ω1| < |ω2|, i.e. stronger clauses have more complete variable assignments that unsatisfy them.

A CNF formula ϕ is defined as a conjunction of clauses,

(2.5)

ω
A

li A
i 1=

ω

∑=

ω
A

1= ω
A

0=

ω y w¬ z+ +()=

A w 1,() y 0,(),{ }= ω
A

ω
A

X 0⊕ 1 1 0 0⊕+⊕+ X= =

ω1 y w¬+()= ω2 y w¬ z+ +()=

ϕ ω j
j 1=

ϕ

∏=

27

where each ωj is a clause, and the formula contains |ϕ| clauses. The number of literals in ϕ is

referred to as the size of ϕ and is given by,

(2.6)

A formula can also be viewed as a set of clauses ϕ = { ω1, …, ω|ϕ| } and this representation is used

when convenient. Given a partial variable assignment A, the value of a formula ϕ under A is

defined as follows:

(2.7)

If then ϕ is said to be satisfied. If then ϕ is said to be unsatisfied. Otherwise ϕ

is said to be unresolved.

Example 2.5. An example of a CNF formula is,

Let A = { (x, 0), (z, 1) } . Then , because .

2.2.3 Consistency Functions and Satisfiability

The consistency function ξ of a CNF formula ϕ is defined by the values of ϕ given each

assignment set A defined in V, i.e. for all A. As a result, each clause ω ∈ ϕ defines an

implicate1 of ξ . A clause ω is said to be a prime implicate of ξ if and only if no other implicate of

ξ subsumes ω. Observe that several CNF formulas can correspond to the same consistency func-

tion ξ.

In general, a CNF formula ϕ does not necessarily include all the implicates of the associ-

ated consistency function ξ . A formula that includes all implicates of ξ is referred to a . A for-

1. An implicate of a switching function ξ is defined as a disjunction of literals ω such that ξ
implies ω (see for example [79, p. 288]).

ϕ ω j
j 1=

ϕ

∑=

ϕ
A

ωj A
j 1=

ϕ

∏=

ϕ
A

1= ϕ
A

0=

ϕ x¬ y¬ z+ +() x z¬+() y z¬+()⋅ ⋅=

ϕ
A

0= x z¬+()
A

0=

ξ
A

ϕ
A

=

ϕ̂

28

mula that contains all the prime implicates of ξ is said to be a complete product of sums (POS)

representation of ξ, and is referred to as ϕP.

In the next few chapters, while studying search algorithms for SAT, we allow implicates of

ξ to be identified and used to complete the original CNF formula. As a result, we shall refer to ϕ as

a clause database. Acceptable transformations on the clause database include adding clauses or

sets of clauses, and removing clauses or sets of clauses. The precise meanings of these transforma-

tions to the clause database depend on how clauses are added or removed, as is described in the

following chapters.

Given a CNF formula ϕ , the satisfiability problem, denoted by SAT, consists in the identi-

fication of an assignment set A such that . If such an assignment set exists, then ϕ is said

to be satisfiable, and A is referred to as a satisfying assignment. Otherwise, ϕ is said to be unsatis-

fiable. The CNF formula ϕ is said to be consistent for any assignment set A such that . An

assignment set A is said to yield a conflict, or to make ϕ inconsistent, if and only if , i.e.

the value of at least one clause ω of ϕ under A is 0. SAT has been shown to be NP-complete in

[34], and it is currently conjectured (and generally accepted) that any algorithm for SAT requires

at least worst-case exponential time in the size of the CNF formula [65].

The algorithms for satisfiability described in this dissertation provide the interface speci-

fied in Figure 2.1. Given an initial clause database ϕi and an initial assignment set Ai, the SAT

algorithm implements the following computation:

(2.8)

ξ
A

1=

ξ
A

1=

ξ
A

0=

Figure 2.1: Interface to SAT algorithms

// Input arguments: Initial clause database ϕi

// Initial assignments Ai

// Output arguments: status ∈ { SUCCESS, FAILURE }
// Return values: Final clause database ϕf

// Final assignment set Af

SAT(ϕi, Ai, &status)
{

… // Implementation of SAT algorithm
return (ϕf, Af);

}

ϕ f A f,() SAT ϕ i Ai, status,()←

29

that yields an updated clause database ϕf and a resulting assignment set Af. The above computation

can be invoked from other procedures in a program. The output argument status can take values

FAILURE and SUCCESS, which indicate respectively whether the clause database is unsatisfiable

or satisfiable given the initial assignment set Ai.

It is important to note that several restrictions of SAT can be solved in polynomial time.

This is the case of 2SAT (i.e. SAT restricted to CNF formulas with at most 2 literals per clause)

and HSAT (i.e. SAT restricted to Horn clauses2). 2SAT can be solved in linear time in the size of

the clause database [6, 58]. HSAT was shown to be solvable in polynomial time in [80, 89]. More-

over, several polynomial time algorithms for solving HSAT have been proposed in the past (see for

example [53, 64, 80, 124]). The algorithms of [53, 64, 124] have linear time complexity. These

restrictions of SAT and associated algorithms have been used to solve the more general SAT prob-

lem [64, 105, 106].

2.3 Conjunctive Normal Form Representations

In some situations the formulations of instances of SAT are not in conjunctive normal

form. Accordingly, a unified treatment of CNF-based satisfiability algorithms must provide meth-

ods to represent such instances of SAT as CNF formulas. In this section we discuss how to repre-

sent the satisfiability problem of propositional formulas and of combinational switching circuits as

CNF formulas.

2.3.1 Representation of Propositional Formulas

Let V denote a set of propositional variables. A well-formed propositional formula is

defined as follows (adapted from [40, p. 231]):

1. Any propositional variable x ∈ V is a well-formed formula.

2. If ρ is a well-formed formula, then so is ¬ρ .

3. If ρ and σ are well-formed formulas, then so are (ρ ∧ σ), (ρ ∨ σ) and (ρ ↔ σ). (With the

sole purpose of simplifying the discussion, we disallow logical implication as a valid propo-

sitional operator.)

2. A Horn clause contains at most one positive literal (see for example [64, 131]).

30

There are several ways to represent a propositional formula in CNF. A straightforward

procedure to map a propositional formula ψ into CNF is defined as follows (adapted from [40, pp.

236-237]):

1. Expand logical equivalence operations: (x ↔ y) ≡ (¬x ∧ ¬y) ∨ (x ∧ y).

2. Repeatedly apply De Morgan’s laws to all negation operators involving formulas other than

single variables. Remove duplicate negations. After this step, all negations are associated

only with propositional variables.

3. Repeatedly apply the distributive law (l1 ∧ l2) ∨ (l3 ∧ l4) ≡ (l1 ∨ l3) ∧ (l1 ∨ l4) ∧ (l2 ∨ l3) ∧ (l2

∨ l4). After this step a CNF formula is obtained.

Example 2.6. The expression ψ = [¬ (¬x ∨ y) ∧ ¬ (w ∨ z) ∨ ¬ (x ∧ ¬w)] is a well-formed proposi-

tional formula. Step 1 of the above procedure need not be applied to this formula. The application

of step 2 yields the formula [(x ∧ ¬y ∧ ¬w ∧ ¬ z) ∨ ¬x ∨ w]. Finally, step 3 computes the CNF for-

mula [(¬y ∨ ¬x ∨ w) ∧ (¬ z ∨ ¬x ∨ w)].

Example 2.7. Consider the propositional formula ψ = ((…(x1 ↔ x2)…) ↔ xn). There are

complete variable assignments for which ψ holds true. Expanding ψ results in clauses that

cannot be further simplified, since no two adjacent complete variable assignments to variables x1,

…, xn yield the same propositional value for ψ.

As the last example suggests, the above procedure can produce a CNF formula of expo-

nential size even though the size of the original propositional formula is polynomial in N. The

solution to this problem was originally proposed by G. Tseitin in 1968 [170]. Let ψ define a prop-

ositional formula. Associate a new propositional variable η with each subformula contained in ψ,

such that η and the associated subformula of ψ always assume the same propositional value. If

η = ρ ∧ σ, then define clauses (¬η ∨ ρ) ∧ (¬η ∨ σ) ∧ (η ∨ ¬ρ ∨ ¬σ). If η = ρ ∨ σ, then define

the clauses (η ∨ ¬ρ) ∧ (η ∨ ¬σ) ∧ (¬η ∨ ρ ∨ σ). If η = ρ ↔ σ, then define clauses (¬η ∨ ρ

∨ ¬σ) ∧ (¬η ∨ ¬ρ ∨ σ) ∧ (η ∨ ρ ∨ σ) ∧ (η ∨ ¬ρ ∨ ¬σ). If η = ¬ρ , then define clauses (¬η ∨

¬ρ) ∧ (η ∨ ρ). (Note that in [170], Tseitin describes the representation of logical implication

instead of not and logical equivalence, but both the not and the equivalence operations can be eas-

ily derived from logical implication, disjunction and conjunction.) Finally, define clause ψ, to test

2n 1–

2n 1–

31

the satisfiability of ψ to true. The set of defined clauses is satisfiable if and only if propositional

formula ψ is satisfiable.

Tseitin’s transformation guarantees that the derived CNF formula is linearly related to the

size of the original propositional formula. Note, however, that it requires V to include the auxiliary

variables created by the transformation.

Example 2.8. For the propositional formula of Example 2.6, let t1 = ¬x, t2 = ¬w, t3 = (t1 ∨ y),

t4 = ¬ t3, t5 = (w ∨ z), t6 = ¬ t5, t7 = (t4 ∧ t6), t8 = (x ∧ t2), t9 = ¬ t8, and ψ = (t7 ∨ t9). The resulting

CNF formula becomes:

which can be used to test whether ψ can be satisfied to true. Observe that no attempt was made to

simplify the resulting CNF formula. For example, all clauses that result from negations could be

removed if templates of negated formulas were considered (e.g. η = ¬ (ρ ∧ σ) mapped into (η ∨ ρ)

∧ (η ∨ σ) ∧ (¬η ∨ ¬ρ ∨ ¬σ)).

Example 2.9. For the formula of Example 2.7, we can create a formula η i for each partial σ ↔ xi,

i.e. η i = σ ↔ xi, by adding the following clauses: (¬η i ∨ xi ∨ ¬σ) ∧ (¬η i ∨ ¬xi ∨ σ) ∧ (η i ∨ xi

∨ σ) ∧ (η i ∨ ¬xi ∨ ¬σ). Hence, n − 1 additional variables are generated, and the resulting CNF

formula contains 4 × (n − 1) + 1 clauses. Consequently, the size of the CNF formula is linear in the

size of the original propositional formula.

Besides Tseitin’s transformation, other polynomial size mappings of propositional formu-

las into CNF formulas have since been developed (see for example [12, 75, 132]).

t1¬ x¬∨() t1 x∨() t2¬ w¬∨() t2 w∨()∧ ∧ ∧ ∧

t3 t1¬∨() t3 y¬∨() t3¬ t1 y∨ ∨() t4¬ t3¬∨() t4 t3∨()∧ ∧ ∧ ∧ ∧

t5 w¬∨() t5 z¬∨() t5¬ w z∨ ∨() t6¬ t5¬∨() t6 t4∨()∧ ∧ ∧ ∧ ∧

t7¬ t4∨() t7¬ t6∨() t7 t4¬ t6¬∨ ∨() t8¬ x∨() t8¬ t2∨() t8 x¬ t2¬∨ ∨()∧ ∧ ∧ ∧ ∧ ∧

t9¬ t8¬∨() t9 t8∨() ψ t7¬∨() ψ t9¬∨() ψ¬ t7 t9∨ ∨() ψ∧ ∧ ∧ ∧ ∧

32

2.3.2 Representation of Combinational Circuits

2.3.2.1 Combinational Circuits

A well-formed combinational circuit is defined as follows (adapted from [78]):

1. A single gate, either simple (i.e. AND, OR, NAND, NOR, NOT, BUFFER) or XOR/XNOR

is a well-formed circuit.

2. Let C1 and C2 be two disjoint well-formed circuits. Then their juxtaposition is a well-formed

circuit. By connecting a primary output of C1 to a primary input of C2 a well-formed circuit

is obtained.

3. If C1 is a well-formed circuit, then by joining input lines of C1 a well-formed circuit is ob-

tained.

In the sequel, a well-formed combinational circuit is referred to as a combinational circuit.

Thus, only acyclic combinational circuits are considered. Each circuit is characterized by a set PI

of primary inputs and a set PO of primary outputs3. The set of circuit nodes is referred to as V, as

defined in Section 2.2.1. Hence, we may interchangeably refer to the elements of V as either circuit

nodes or variables. Whenever V identifies nodes in a circuit, a partial variable assignment is also

referred to as a partial node assignment. The function of a gate with output y, y ∈ V, and inputs w1,

…, wj is denoted by y = gy(w1, …, wj).

Each combinational circuit is represented by a directed acyclic graph C = (V, E), referred

to as the circuit graph, where V is the set of circuit nodes, and E, the set of edges, corresponds to

the gate input-output connections in the circuit. We further assume that each gate has bounded

fanin, and hence |E| = O(|V|) = O(N). Under this assumption, an algorithm with worst-case run

time of O(|E| + |V|) is said to run in time linear in the size of V, because O(|E| + |V|) = O(|V|) =

O(N). For each circuit node y, the following definitions apply:

1. I(y) denotes the set of fanin nodes of y. For a primary input y, I(y) = ∅ . denotes the set

of nodes in the transitive fanin of y.

2. O(y) denotes the set of fanout nodes of y. For a primary output y, O(y) = ∅ . denotes

3. Without loss of generality we assume that each primary output is fanout-free. For the current and
following chapters this assumption suffices. More general circuit representations are described in
Chapter IV.

I∗ y()

O∗ y()

33

the set of nodes in the transitive fanout of y.

Example 2.10. An example of a well-formed combinational circuit and associated circuit graph

are shown in Figure 2.2.

Logic assignments to circuit nodes can be further characterized. A node y is said to be

unjustified whenever (y = X) ∨ (gy(I(y) = X). y is said to be justified whenever (y ≠ X) ∧ (I(y) = ∅ ∨

y = gy(I(y))). Consequently, a justified node y is assigned, and either its value is implied by the

value of its fanin nodes or y is a primary input. Predicate Just(y) is defined to hold true if and only

if y is justified.

2.3.2.2 CNF Representation

As with propositional formulas, algebraic expansions that correspond to combinational

circuits can result in exponential size CNF formulas. Example 2.7 can be adapted to combinational

circuits by considering a fanout-free tree of XNOR gates with n primary inputs. Nevertheless, and

as with propositional formulas, we can apply Tseitin’s transformation to combinational circuits.

Each gate with output y, such that in a combinational cir-

cuit is characterized by a gate consistency function ξy defined over y and I(y),

(2.9)

 evaluates to X if either y = X or gy(I(y)) = X; otherwise, it evaluates to 1 whenever the

Figure 2.2: Example circuit and associated circuit graph

x1

x2

x3
x5

x4

z1

x1

x3

x2

x5

x4

z1

(a) Circuit (b) Circuit graph

I x4() x1 x2,{ }=

O x5() z1{ }=

z1 gz1
x4 x5,() x4 x5⋅= =

O∗ x3() x5 z1,{ }=

y gy w1 … w j, ,() gy I y()()= =

ξy I y() y,() ξy w1 … w, j y, ,()≡ gy I y()() y⊕[]=

ξy I y() y,()

34

gate input values are consistent with the gate output value (i.e. y = gy(I(y))), and evaluates to 0

whenever these values are not consistent (i.e. y ≠ gy(I(y))). For each simple gate consistency func-

tion ξy(I(y), y), ϕy denotes the CNF formula obtained by product of sums (POS) simplification of

the truth table of ξy(I(y), y). The different logical relations between each gate output y and gy(I(y))

are shown in Figure 2.3. Whenever the values of y and gy are specified, the gate is either justified

(J) or a conflict (C) is defined; otherwise the gate is unjustified (J).

Example 2.11. For a two-input AND gate y = w1 ⋅ w2, shown in Figure 2.4, the CNF formula can

be obtained from product of sums simplification of ξy. The resulting expression is given by,

(2.10)

J

J

J

J

JJJ

C

C

0 1 X

0

1

X

gy
y

• J = (y = X) + (gy = X)

• J = (y ≠ X) ⋅ (gy = y)

• C = (y ≠ X) ⋅ (gy ≠ X) ⋅ (gy ≠ y)

Figure 2.3: Value relation between y and gy

assigned

assigned

Figure 2.4: Example of the consistency function of a gate

w1 0 0 0 0 1 1 1 1

w2 0 0 1 1 0 0 1 1

y 0 1 0 1 0 1 0 1

ξy 1 0 1 0 1 0 0 1

w1

yw2

w1w2
y

0

00 0

00 01 11 10

0

1

(a) Example gate

(b) Consistency function truth table

(c) POS simplification

ϕy w1 y¬+() w2 y¬+() w1¬ w2¬ y+ +()⋅ ⋅=

35

The construction of this expression immediately suggests how to extend it to a larger number of

gate inputs, without explicitly building the truth table. The same procedure can be used to con-

struct the CNF formulas for other simple gates. Finally, note that the derived CNF formula is iso-

morphic to Tseitin’s transformation in the case of the ∧ operator.

Gate consistency functions and associated CNF formulas can be easily derived for the

remaining simple gates, as well as for more complex gates for which it is computationally feasible

to construct and simplify the truth table. For simple gates, the approach used to derive (2.10) can

be extended to a larger number of inputs, as shown in Table 2.1. As a result, for simple gates, the

size of ϕy is linearly related to the number of gate inputs. For AND, NAND, OR and NOR gates

with j inputs, the CNF formula requires j+1 clauses. For NOT and BUFFER, two clauses define

the consistency function. XOR and XNOR gates are represented in terms of the simple gates. For

an XOR gate we have the following:

Gate type Gate function ϕy

AND

NAND

OR

NOR

NOT

BUFFER

Table 2.1: CNF formulas of simple gates

y AND w1 … w j, ,()= wi y¬+()
i 1=

j

∏ wi¬ y+

i 1=

j

∑ 
 
 

⋅

y NAND w1 … w j, ,()= wi y+()
i 1=

j

∏ wi¬ y¬+

i 1=

j

∑ 
 
 

⋅

y OR w1 … w j, ,()= wi¬ y+()
i 1=

j

∏ wi y¬+

i 1=

j

∑ 
 
 

⋅

y NOR w1 … w j, ,()= wi¬ y¬+()
i 1=

j

∏ wi y+

i 1=

j

∑ 
 
 

⋅

y NOT w1()= y w1+() y¬ w1¬+()⋅

y BUFFER w1()= y¬ w1+() y w1¬+()⋅

36

(2.11)

and for an XNOR gate it is only necessary to consider the negation of (2.11). The CNF formula of

these gates and all other complex gates can be constructed as the CNF formula of a subcircuit. As

with propositional formulas, set V must contain any auxiliary variables that are used for represent-

ing the internal nodes of a subcircuit.

Given a combinational circuit, described by a circuit graph C = (V, E), the CNF formula

for the circuit is defined to be the conjunction of the CNF formulas of each of its gates:

(2.12)

where ϕy is the CNF formula associated with each gate output node y in the circuit. (Note that ϕ

can also be viewed as the set union of the CNF formulas of each circuit gate.) Consequently, ϕ

defines a consistency function ξ for the circuit such that for any assignment A, .

Example 2.12. An example circuit and corresponding CNF formula are shown in Figure 2.5,

where for each gate, the CNF formula is adapted from Table 2.1.

The number of clauses in ϕ is linearly related to the number of circuit nodes. For each

simple gate with j inputs, j+1 clauses are created. For a 2-input XOR (or XNOR) gate and from

(2.11), the CNF formula of a subcircuit representing the gate requires 4 auxiliary nodes (one for

each gate in the expansion of the XOR/XNOR gate) for a total of 11 clauses. The CNF formula of

a j-input XOR/XNOR gate requires auxiliary variables and clauses. Since

y XOR w1 w2,() w1 w2⊕ w1¬ w2⋅ w1 w2¬⋅+= = =

y XOR w1 … w j,,() … w1 w2⊕() …⊕() w j⊕= =

ϕ ϕ y
y V∈
∏=

ξ
A

ϕ
A

=

x1

x3

z1
x2

y2

y1 ϕ x1 y1¬+() x2 y1¬+() x1¬ x2¬ y1+ +()⋅ ⋅ ⋅=

x2 y2¬+() x3 y2¬+() x2¬ x3¬ y2+ +()⋅ ⋅ ⋅

y¬ 1 z1+() y¬ 2 z1+() y1 y2 z1¬+ +()⋅ ⋅

Figure 2.5: Consistency function for an example circuit

V = { x1, x2, x3, y1, y2, z1 }

4 j 1–()× 11 j 1–()×

37

bounded fanin is assumed, each gate contributes a constant number of clauses, and thus |ϕ| = O(N).

Moreover, under the bounded fanin assumption, in the worst-case there are O(N) literals contained

in the clauses of ϕ .

In some cases the CNF formula for a circuit can contain at most three literals per clause

and the associated satisfiability problem is then referred to as 3-SAT. In such a situation, each sim-

ple gate with k inputs is replaced by a subcircuit of k − 1 two-input gates of the same type. The

resulting CNF formula for each gate contains at most three literals per clause, and so does the CNF

formula of the circuit. This same solution holds for circuits containing complex gates, where each

gate expansion must then be in terms of two-input simple gates.

It is interesting to note that the above construction of the CNF formula of a circuit is based

on Tseitin’s transformation for propositional formulas, but where the creation of auxiliary vari-

ables is unnecessary since we have access to each gate output. This transformation was rediscov-

ered in recent years by T. Larrabee in [106], in an application of SAT algorithms to test pattern

generation in combinational circuits. In [24] Chakradhar et al. proposed the representation of the

false function of a circuit, which corresponds to the complement of the consistency function, also

in the context of test pattern generation. Independently, in [35, pp. 940-945], the transformation of

a combinational circuit into a product of clauses is also described, with the objective of proving

polynomial-time reducibility of the circuit satisfiability problem into SAT.

2.4 Implications

Besides identifying conflicts and consistent assignments, CNF formulas (henceforth

referred to as clause databases) provide one possible formal framework for the definition of logical

implications. For example, in the clause database of the AND gate of Figure 2.4, suppose that

y = 1; then, for any consistent assignment, w1 must assume value 1 due to (w1 + ¬y) and w2 must

assume value 1 due to (w2 + ¬y), since otherwise the consistency function of the AND gate would

evaluate to 0 and a conflict would be identified. Hence, we say that y = 1 implies the assignments

w1 ← 1 and w2 ← 1. In general, given a unit clause (l1 + … + lk) of ϕ with unique free literal li,

consistency requires li ← 1, since this represents the only possibility for the clause to be satisfied.

If x is the variable associated with literal li, and li is a positive literal of a variable x (i.e. li = x), then

38

the value of x must be set to 1; otherwise if li is a negative literal of a variable x (i.e. li = ¬x), then

the value of x must be set to 0. The assignment of x, caused by the requirement to satisfy a clause

of the clause database, is referred to as a logical implication of x, and we say that the assignment

of x is implied.

By formulating implications as the required assignments to satisfy unit clauses, we relate

the concept of logical implication (commonly used in computer-aided analysis of combinational

circuits [1, p. 187]) to the unit clause rule (or one-literal clause rule) of the procedure for solving

propositional satisfiability proposed by M. Davis and H. Putnam in 1960 [38]. The unit clause rule

states that if there exists only one literal assignment that can satisfy a clause, then that assignment

must be made4. The iterated application of the unit clause rule to a CNF formula is often referred

to as propositional (or Boolean) constraint propagation [46, 115, 116, 178]. In view of the previ-

ous discussion, the derivation of implications in a combinational switching circuit will be referred

to as Boolean constraint propagation (BCP) throughout this dissertation.

The pseudo-code description of BCP is shown in Figure 2.6. An original assignment set Ai

is assumed, which may imply other assignments due to the unit clause rule. A variable, status,

identifies the existence of a conflict. The procedure returns Af as the resulting assignment set,

being invoked as Af ← BCP(Ai, status).

Theorem 2.1. With Ai and Af defined above, the following holds true: (1) Ai ⊆ Af; and (2) each

pair (x, v) ∈ Af identifies a necessary assignment for the clause database to be satisfiable given Ai.

Proof: The first claim must hold, since BCP() only identifies assignments for unassigned

nodes. For proving the second claim, we assume that there exists a consistent assignment set A,

such that Ai ⊆ A, and show that then we must have Ai ⊆ Af ⊆ A. We use induction on the number of

assigned nodes.

Basis step (k = 1). The first implied assignment results from a unit clause where all literals

but one are assigned due to Ai. Hence, the assignment is necessary for Ai to be included in a con-

sistent assignment A.

4. In the original formulation [38], the application of the unit clause rule is defined in terms of alge-
braic operations on the clause database, but the final result is equivalent to assigning a literal to 1
(see for example [12, 64, 178] for a similar conclusion).

39

Induction Hypothesis (k = m). Assume that the first m implied assignments are necessary for

Ai ⊆ A.

Induction step (k = m + 1). The (m + 1)th assignment is implied due to a unit clause where all

literals but one are assigned due to either Ai or one or more of the first m implied assignments.

Since by hypothesis all these m assignments are necessary for Ai ⊆ A, then the (m + 1)th assign-

ment is also necessary.

We can thus conclude that all implied assignments are necessary for Ai ⊆ A, and so we must

have Af ⊆ A.

Let the assignment of a variable x be implied due to a clause ω = (l1 + … + lk). In such a

situation, the antecedent assignment of x, referred to as A(x), is defined as the set of assignments of

variables other than x with literals in ω:

Figure 2.6: Boolean constraint propagation

// Input arguments: The initial assignment set Ai

// Output arguments: status ∈ { SUCCESS, CONFLICT }
// Return values: The final assignment set Af

//
BCP (Ai, &status)
{

status = SUCCESS;
Af ← Ai; // Initialize final assignment set
commit assignment Af; // Set initial partial variable assignment
while (clauses unsatisfied or unit clauses in ϕ) {

if (exists unsatisfied clause ω) {
status = CONFLICT;
return Af;

}
if (exists unit clause ω with free literal l = xi) {

; // Assignment: l is set to 1

Af ← Af ∪ { (x, ¬ i) }; // Update final assignment set
}

}
return Af;

}

x 1 i⊕ i¬≡←

40

(2.13)

Given the definition of antecedent assignment, the antecedent set of the assignment of x, referred

to as α (x), is defined as the set of variables, other than x, that are associated with the literals of ω:

(2.14)

where each variable in α (x) is referred to as an antecedent of x. Intuitively, the antecedent set of x

denotes a set of nodes whose logic values are directly responsible for implying the assignment of

x.

Example 2.13. Consider a clause ω = (w + ¬y + ¬x) associated with a clause database, and let

w = 0 and y = 1. With these assignments ω is a unit clause. This implies x ← 0, the antecedent

assignment of x is given by A(x) = { (w, 0), (y, 1) } and the antecedent set of x is defined by α (x) =

{ w, y } .

Given the definitions of implication of variable assignment, antecedent assignment and

antecedent set we have the following result:

Theorem 2.2. Let the logic value of x be . Let α (x) be the antecedent set of x and let

A(x) be the antecedent assignment of x. In such a situation, for any assignment set A such that

, either the partial variable assignment A implies or a conflict is identified.

Proof: Immediate from the definitions of implication of variable assignment, antecedent

assignment and antecedent set. Consider a partial variable assignment A, with . By

hypothesis, the antecedent assignment of x is A(x), and thus there exists a clause ω in ϕ for which

the assignments denoted by in A(x) imply . If, on the other hand, some other clause in ϕ

implies , then ω becomes unsatisfied because of the value assigned to x and of the assign-

ments identified by A(x). Hence, a conflict is identified.

As mentioned earlier, clause databases do not necessarily contain all implicates of the

associated consistency function. In general, it is not practical for a clause database to contain all

A x() y ν y(),() yi ω∈ y x≠∧{ }=

α x() y y vy,() A x()∈{ }=

vx 0 1,{ }∈

A x() A⊆ x vx←

A A x()⊇

x vx←

x vx←

41

implicates, since that can be exponential in the number of variables. Consequently, the structure of

most clause databases does not reveal all logical relations among their variables. In some situa-

tions, however, it may be of interest to augment the initial clause database with other implicates of

the consistency function, to help identify some of these logical relations.

Example 2.14. Consider the example circuit of Figure 2.5 on page 36. If z1 assumes value 1, then

x2 cannot assume value 0, and hence it must assume value 1. Assuming that z1 is the only assigned

node, the requirement that x2 be assigned value 1 is not identified by Boolean constraint propaga-

tion over the clauses of the given clause database. The assignment z1 ← 1 satisfies clauses (¬y1 +

z1) and (¬y2 + z1), but implies no additional assignments. We note, however, that for any complete

node assignment, if z1 assumes value 1, then x2 must also assume value 1 for the consistency func-

tion to evaluate to 1. As a result, the set of clauses describing the consistency function can be aug-

mented with clause (¬ z1 + x2).

As the example illustrates, augmenting the set of implicates of the consistency function

facilitates the identification of implications and of conflicts given certain partial variable assign-

ments. Because BCP does not identify all logical consequences of an assignment, it is said to be

logically incomplete [116]. Conversely, a procedure for identifying implications is said to be logi-

cally complete if it identifies all logical consequences of an assignment. In general, it is not feasi-

ble to expect an implication procedure to be logically complete, since any known algorithm for

derivation of all logical consequences would require an exponential amount of work in the worst-

case [116]. Other procedures, more complex than BCP, can be devised, examples of which are

described in the following chapter and which identify no fewer implications than BCP. Even

though BCP is logically incomplete in most clause databases, we show below that it is logically

complete if the clause database is defined by all prime implicates of ξ (i.e. ϕP). In general, we say

that a node assignment is derivable if the considered implication procedure can imply that assign-

ment through some sequence of implied assignments over a fixed clause database.

In the development of SAT algorithms, we will consider identifying implicates of the con-

sistency function and adding them to the clause database. As mentioned above, these implicates

help BCP in identifying more implications. In addition, these implicates are of key importance in

42

implementing several features of search-based SAT algorithms.

2.5 Algebraic Background

In this section we review a few concepts commonly used in Boolean algebra [18] and,

with different names, in mechanical theorem proving [28, 110], and highlight some of their appli-

cations. These concepts are used throughout the description of search-based satisfiability algo-

rithms.

2.5.1 Consensus and Ground Resolvent

Consider clauses ω1, , ω2, , such that there exists a literal lx associated with a vari-

able x (i.e. either lx = x or lx = ¬x) and,

(2.15)

In this situation, the consensus [138]5 of the two clauses ω1 and ω2, with respect to variable x is

given by:

(2.16)

In the mechanical theorem proving literature [28, 110, 140], the consensus of two clauses is com-

monly referred to as the ground resolvent (or ground resolution operator) of the two clauses. The

ground resolution operator can be generalized over formulas of First Order Logic, being then

referred to as the resolution operator. Consensus is commonly used to derive prime implicates (or

implicants) of Boolean functions, whereas resolution and its variations constitute a fundamental

5. Although the name consensus is apparently due to Quine [138], the operation finds its roots in
Mathematical Logic, where it is sometimes called hypothetical syllogism (see for example [94, p.
60]): , that indicates that if a propositional symbol A
implies B and B implies C then we can conclude that A implies C. An equivalent form for this
expression is , which illustrates the relationship with
consensus. According to Brown [18], the consensus operation had previously been used by Blake
in [13], for Boolean function simplification, under the name syllogistic result. Kneale and Kneale
[95, pp. 105-110] indicate that hypothetical syllogisms were most likely discovered by a Greek
Philosopher, Theophrastus, a pupil of Aristotle, around 300 B.C., as a direct consequence of Aris-
totle’s work on Logic.

ω'1 ω'2

ω1 ω'1 lx+()=[] ω2 ω'2 lx¬+()=[]∧

A B→() B C→()∧[] A C→()[]⇒

A¬ B∨() B¬ C∨()∧[] A¬ C∨()[]⇒

c ω1 ω2 x, ,() ω'1 ω'2+=

43

component of theorem proving algorithms.

From (2.16) we can also conclude that ω1 and ω2 logically imply c(ω1, ω2, x), i.e. if ω1

and ω2 are true, then c(ω1, ω2, x) is also true, and if c(ω1, ω2, x) is false, then either ω1 is false or

ω2 is false.

We should note that the unit clause rule introduced by Davis and Putnam [38] (see

Section 2.4) is a special case of consensus/resolution, being also referred to as unit resolution [10,

64]. Without loss of generality, let , with lx defined above. In

such a situation, (2.16) is given by , which is to say that if ω1 and ω2 are satis-

fied, then must be satisfied. Applying consensus between every clause containing literal lx and

ω2 is therefore equivalent to setting literal lx to 0 in every clause containing lx, thus satisfying

{ ¬ lx } .

2.5.2 Generation of Prime Implicates

Let us assume a Boolean function ξ described by a CNF formula ϕ . As mentioned earlier,

each clause of ϕ identifies an implicate of ξ . Following the work of Quine [137, 138, 139], the

iterated application of consensus operations to ϕ yields the set of prime implicates of ξ [138].

Subsumption operations (see Section 2.2.2) ensure that non-prime implicates are removed from

the clause database. Given a consistency function ξ defined over N variables and represented with

|ϕ| implicates, then from [25] an upper bound on the number of prime implicates is

, and hence an upper bound on the size of final clause database is

. We further assume the improvement proposed by Tison [168] in which the

variables are ordered, and consensus operations are successively applied with respect to each vari-

able. The algorithm for the generation of prime implicates given ϕ is shown in Figure 2.7. An

order of the variables is assumed. The algorithm consists of a sequence of subsumption and con-

sensus operations. The consensus operation is described in Figure 2.8. For each clause ω contain-

ing literal x, the consensus of ω with respect to every clause containing literal ¬x is computed. The

definition of sets C0(x) and C1(x) implicitly capture the operation of consensus. The process is iter-

ated for all clauses ω containing literal x. The temporary formula ϕ (x) contains all the resulting

consensus clauses.

ω1 ω'1 lx+()=[] ω2 lx¬()=[]∧

c ω1 ω2 x, ,() ω'1=

ω'1

O min 3N 2 ϕ,()()

O N min 3N 2 ϕ,()⋅()

44

A simple implementation of the subsumption procedure (in Figure 2.7) is to compare each

clause ω1 with each other clause ω2 of ϕ , and test whether ω1 subsumes or is subsumed by clause

ω2
6. The generation of the prime implicates of a given function ξ (associated with a clause data-

base ϕ) computes a new clause database ϕP.

In order to derive time and space complexity bounds we note that at any stage of proce-

dure Generate_Prime_Implicates() there can never be more than clauses, because of

6. A more efficient subsumption procedure can be found in [47], which is based on representing
clauses in a trie data structure [96, pp. 481-499], to reduce the average time to decide subsumption
relations and to remove subsumed clauses.

Figure 2.7: Algorithm for the generation of prime implicates

// Input arguments: Clause database ϕ
// Output arguments: None

// Return values: Clause database ϕP

//
Generate_Prime_Implicates(ϕ)
{

Order variables to be resolved;
ϕ ← Subsume(ϕ); // remove subsumed clauses
while (x is next variable in order to be resolved) {

ϕ ← Consensus(ϕ, x); // consensus over x
ϕ ← Subsume(ϕ);

}
return ϕ; // return ϕ as ϕP

}

Figure 2.8: Consensus operation with respect to variable x

// Input arguments: Clause database ϕ, consensus variable x

// Output arguments: None

// Return values: Consensus clause database ϕ ∪ ϕ(x)
//
Consensus(ϕ, x)
{

; // Remove x from clauses
; // Remove ¬x from clauses

; // Pairwise consensus
return ;

}

C0 x() ω x0{ }– ω ϕ∈ x0 ω∈∧{ }=

C1 x() ω x1{ }– ω ϕ∈ x1 ω∈∧{ }=

ϕ x() ω0 ω1∪ ω 0 C0 x()∈ ω 1 C1 x()∈,{ }=

ϕ ϕ x()∪

3N

45

subsumption being applied. Consequently, at every stage the number of clauses is , each of

which is size O(N). Subsumption operations require comparing each clause with each other clause,

and hence requires in the worst-case time, given that each comparison takes in the

worst-case O(N) time. is also an upper bound on time required by the consensus

operation, because, in the worst case, consensus may be required between clauses and

another clauses, and consensus between two clauses requires in the worst-case O(N) time.

Since we have to iterate over N variables, then an upper bound on run time of the algorithm of Fig-

ure 2.7 is:

(2.17)

It is important to note that procedure Generate_Prime_Implicates() converts a

clause database ϕ into a canonical form of the associated function ξ , because the set of all prime

implicates of a Boolean function is unique. Similarly, the disjunction of all prime implicants is

also a canonical form and is referred to as the Blake Canonical Form [18, pp. 71-86]. Furthermore,

we note that there are more recent and efficient algorithms for computing the prime implicants/

implicates of a Boolean function (see for example [36, 121, 164]). However, for the purposes of

the present dissertation, the basic algorithms described above suffice.

Example 2.15. An example of the application of the algorithm for prime implicate generation is

shown in Figure 2.9, where the graphical notation proposed by Tison [168] is used. The objective

is to compute the set of prime implicates of the switching function:

At each iteration only the non-tautologous resulting clauses are represented. For example, the con-

sensus of with , with respect to variable x, is a tautology (i.e. the

resulting clause is 1) and so it is not represented. For this example, we note that, after resolving on

x, y and z, resolving on w introduces no new prime implicates.

2.5.3 Algebraic Solutions for SAT

The same principle that is used to generate the prime implicates of Boolean functions is

O 3N()

O N 3N()2⋅()

O N 3N()2⋅()

O 3N()

O 3N()

O N2 32N⋅()

f x y z w, , ,() x y z+ +() x y w z¬+ + +() x¬ y z+ +() x¬ y¬ w¬+ +()⋅ ⋅ ⋅=

x y z+ +() x¬ y¬ w¬+ +()

46

used in theorem proving while establishing the validity of formulas of first-order logic [28, 110,

140]. For propositional CNF formulas, this process is referred to as ground resolution.

Different forms of resolution have been proposed [28, 110]. Saturation resolution [110, p.

66] for the propositional calculus is equivalent to Tison’s algorithm for deriving prime implicates

[168], but without subsumption operations. Consequently, the algorithm of Figure 2.7 can be used

to test the satisfiability of a CNF formula. Let ϕP be the clause database in which each clause is a

prime implicate of ξ . Suppose that clause ω = ∅ is derived, i.e. ω is identically false. Then ω is

the only clause in ϕP, since it vacuously subsumes all other clauses, and ξ is identically 0. Other-

wise, ξ is shown to be satisfiable, and we only need to provide a mechanism to recreate an assign-

ment after the resolution steps are completed. As we show next, such a mechanism runs in linear

time in the size of ϕP, which may nevertheless be exponential in the number of variables.

Suppose that the first assignment y = vy is chosen. Since ϕP contains all the prime impli-

cates of ξ , then either y = vy sets ξ to 0, or there is at least one combination of values of the remain-

ing variables that can satisfy ξ ; otherwise would be a clause of ϕP. The process of electing

assignments is iterated for all variables, and at each step either the value vw of a variable w is

accepted or it must be complemented. In any case, it is never necessary to reconsider both elected

Figure 2.9: Example of identification of prime implicates

x¬ y z+ +()

x y w+ +()

x¬ y¬ w¬+ +()x y w z¬+ + +()x y z+ +()

resolve on x

y z+()

S S

y z+()x y w z¬+ + +() x¬ y¬ w¬+ +()

resolve on y

x¬ w¬ z+ +()

resolve on z

y z+()x y w z¬+ + +() x¬ y¬ w¬+ +() x¬ w¬ z+ +()
S

f x y z w, , ,() y z+() x¬ y¬ w¬+ +() x y w+ +() x¬ w¬ z+ +()⋅ ⋅ ⋅=

subsumed

yvy()

47

assignments for any variable w. To prove this fact, let us suppose that both elected assignments to a

variable w had to be reconsidered. Then there would be an inconsistent assignment set A1 which

would be discovered only after specifying two assignment sets A2 and A3, with A1 ⊆ A2, A1 ⊆ A3

and A2 = [A3 − { wi }] ∪ { w¬ i } . But then the assignments included in A1 would identify an impli-

cate of the consistency function not subsumed by all prime implicates of ξ ; a contradiction.

After processing all variables, a satisfying assignment is identified. We further note that

Boolean constraint propagation (BCP) can complement the above procedure by identifying addi-

tional assignments, thus reducing the number of conflicts. Since BCP only identifies assignments

that are necessary for the identification of a solution (from Theorem 2.1), then we are again guar-

anteed that the proposed procedure never needs to reconsider both assignments to any variable.

Furthermore, we have the following result:

Theorem 2.3. Given a clause database ϕP that identifies the set of all prime implicates of a

switching function ξ , then BCP (as defined in Figure 2.6) is logically complete, i.e. given an elec-

tive decision assignment, BCP identifies all possible logical consequences of such assignment.

Proof: The proof revisits and formalizes the ideas described in the above paragraph, but

applied to BCP. Let be an elective assignment and let the assignment set A denote all logi-

cal consequences identified by BCP as a result of the elective assignment. Suppose the existence

of a logical consequence , which BCP does not identify (i.e.). In such a situ-

ation, would be an invalid assignment, and so we could construct the implicate,

which would then be a non-subsumed new implicate of ξ . Hence, a contradiction.

A different formulation and proof of the above theorem can be found in [46] in the context

of Truth Maintenance Systems. We further note that even though BCP is logically complete for a

clause database composed of prime implicates, it will not necessarily identify the assignment of all

variables. As a result, it is necessary to elect some node assignments when applying the procedure

described above.

x vx←

w vw← w vw,() A∉

w vw,()

ω wvw svs

s vs,() A∈
∑+=

48

Example 2.16. Let us consider the example function f(x, y, z, w) shown in Figure 2.9. The decision

assignment z = 0 implies the assignment y = 1, but no other node assignments are implied. This

fact just indicates that, to satisfy f, we still have non-unique options with respect to the values of

the other variables.

It is interesting to note that one of the first algorithms for CNF satisfiability, proposed by

Davis and Putnam in [38], is based on a slightly modified form of saturation resolution. With

respect to procedure Generate_Prime_Implicates() given in Figure 2.7, the consensus

procedure to be invoked is now defined in Figure 2.10. (Observe that in [38] the consensus opera-

tion is implemented by two different phases of the algorithm: the rule for eliminating one variable

and the procedure for reconstructing a new CNF. The operation of these two steps is equivalent to

the resolution procedure of Figure 2.10.) The Davis-Putnam resolution procedure ensures that

after resolving with respect to a variable x, all clauses containing literals on x are deleted from the

clause database, since these clauses are irrelevant for the goal of proving satisfiability. Let ϕk − 1 be

the current clause database and let ϕk be the clause database that results from applying the Davis-

Putnam resolution procedure with respect to a variable x, ϕk ← Consensus(ϕk − 1, x).

Theorem 2.4. Given the definitions of ϕk − 1 and ϕk, ϕk − 1 is satisfiable if and only if ϕk is satisfi-

able.

Figure 2.10: The Davis-Putnam resolution procedure

// Input arguments: Clause database ϕ, consensus variable x

// Output arguments: None

// Return values: Consensus clause database ϕ ∪ ϕ(x)
//
Consensus(ϕ, x)
{

; // Remove x from clauses
; // Remove ¬x from clauses

; // Pairwise consensus
// Delete all clauses containing x

;

return ;
}

C0 x() ω x0{ }– ω ϕ∈ x0 ω∈∧{ }=

C1 x() ω x1{ }– ω ϕ∈ x1 ω∈∧{ }=

ϕ x() ω0 ω1∪ ω 0 C0 x()∈ ω 1 C1 x()∈,{ }=

ϕ ϕ ω x0{ }∪ ω C0 x()∈{ } ω x1{ }∪ ω C1 x()∈{ }∪[]–←

ϕ ϕ x()∪

49

Proof: Suppose an assignment set A such that the value ϕk − 1 is 1. Now suppose, without

loss of generality, that x = 0. Then every clause in C0(x) must be satisfied by hypothesis. The

Davis-Putnam procedure replaces the set of clauses containing a literal in x by ϕ (x) (see Figure

2.10). Now all clauses in ϕ (x) are satisfied, since each resulting clause contains a clause in C0(x),

which is satisfied. Hence, ϕk is satisfied. The same reasoning applies for x = 1.

Conversely, suppose an assignment set A (not containing x) such that the value of ϕk is 1. We

show that the value of x can be set so that ϕk − 1 also evaluates to 1. Suppose such that

ω0 is unsatisfied under A. By definition, ϕ (x) contains the set . Hence,

because ω0 is unsatisfied, all clauses in C1(x) must be satisfied, since ϕ (x) valuates to 1. In such a

situation, just set x = 1 and ϕk − 1 is also satisfied. A similar reasoning applies for such

that ω1 is unsatisfied under A. Note that it is not possible to have clauses ω0 and ω1,

and , such that both are unsatisfied under A, because, by definition of ϕ (x), ϕk would

not be satisfied; a contradiction.

By applying this analysis to all resolution steps we are ensured that the clause database that

results from iterated application of the Davis-Putnam resolution procedure is satisfiable if and only

if the original clause database is satisfiable.

The above proof is based on the proof given in [40, theorem 6.2, p. 248], thus proving the

resolution-based Davis and Putnam procedure to be sound and complete. Interestingly, another

proof of correctness and completeness of an inference rule equivalent to this form of resolution

was established by T. Skolem in 1928 [158]. Furthermore, the application of this form of consen-

sus is also implicit in Boole’s work [14, see Chapter VII on elimination].

We note that the size of the clause database that results from applying the Davis-Putnam

resolution procedure is strictly smaller than for the previous procedure (i.e. saturation resolution).

It can also be concluded that the Davis-Putnam resolution procedure cannot be used to identify all

the prime implicates of a Boolean function, since some sets of non-subsumed clauses are dis-

carded at each step of the procedure. The original satisfiability algorithm proposed by Davis and

Putnam also uses a few additional rules to simplify the CNF formula, particularly the unit clause

rule (discussed in Section 2.4) and the pure literal rule. These rules are analyzed in more detail in

the next section. We further note that the search-based SAT algorithm commonly referred to as the

ω0 C0 x()∈

ω0 ω1∪ ω 1 C1 x()∈{ }

ω1 C1 x()∈

ω0 C0 x()∈

ω1 C1 x()∈

50

Davis-Putnam procedure is actually described in [39, 110], and is based on the plain backtracking

search procedure (there the backtracking operation being referred to as the splitting rule).

The description of the resolution-based Davis-Putnam procedure does not provide mecha-

nisms to construct a satisfying assignment given that a CNF formula is proved to be satisfiable. In

order to identify the satisfying assignment for the original CNF formula, we study formula ϕk that

results from resolving formula ϕk − 1 with respect to a variable x, ϕk ← Consensus(ϕk − 1, x).

Suppose ϕk is known to be satisfiable. Then, from our analysis above, either all clauses of C0(x)

evaluate to 1, or all clauses in C1(x) assume value 1. Hence, we choose x so that all clauses in

 are satisfied. The process is repeated for all

k in decreasing order, and hence if the problem is satisfiable, then a satisfying assignment is iden-

tified.

Saturation resolution and the resolution-based Davis-Putnam procedure incur significant

computational overhead in both time and space. There are several variations and improvements to

saturation resolution that can potentially be applied to SAT, even though such improvements are

typically proposed for First-Order Logic (see for example [28, 110], and [131, 163] for more

recent results). Currently, practical and complete algorithmic approaches to solving SAT are in the

vast majority of cases variations of the plain backtracking search procedure.

As a final note, we study one possible extension of consensus for solving instances of

SAT, which builds on a specialization of the generalized definition of consensus proposed by Tison

[168]. Let us assume a set of M clauses µi, 1 ≤ i ≤ M, defined over m variables { x1, … , xm } such

that:

1. .

2. For some µl, .

Assume a set of J clauses γj and a set of K clauses υk defined over other variables not

including the variables { x1, … , xm } . Further, let the clause database be given by:

ω x0{ }∪ ω C0 x()∈{ } ω x1{ }∪ ω C1 x()∈{ }∪

µi
i

∏ 0=

µi
i l≠
∏ 0≠

51

(2.18)

where µl, , is one of the clauses defined over the variables { x1, … , xm } . In such a situ-

ation, ξ associated with ϕ is satisfiable if and only if the following clause database is satisfiable:

(2.19)

In order to justify the proposed transformation, we note conditions 1 and 2 above. An assignment

to the variables in { x1, … , xm }, that satisfies all clauses other than µl, must set µl to 0. On the

other hand, any assignment that satisfies µl must set some other clause µi to 0, and so the clause

database becomes inconsistent. We can thus conclude that only assignments to the variables in

{ x1, … , xm } that set µl to 0 can be part of a consistent assignment for ϕ . Hence, (2.19) follows.

The transformation of (2.18) into (2.19) is a generalization of the unit clause rule (see page 38),

and thus it is also logically incomplete. (Note that the case m = 1 corresponds to the unit clause

rule.) The above generalization can potentially lead to more simplifications than the unit clause

rule.

Example 2.17. Let us consider the following clause database:

Even though the unit clause rule cannot be applied, its generalization can. Let the set of variables

be then, using the transformation of (2.18) into (2.19), the resulting clause database

becomes .

The generalization of the unit clause rule is useful in situations where the set of variables

 and associated clauses can be easily identified. Even though this rule is theoretically

appealing, given its apparent simplification ability, its practical use is questionable. For example,

the identification of resolution sets of variables requires considering all subsets of

variables of size less than or equal to a threshold value m, that must satisfy the conditions required

ϕ υ k
k

∏ γ j µl+()
j

∏ µi
i l≠
∏⋅ ⋅=

1 l M≤ ≤

ϕ υ k
k

∏ γ j
j

∏⋅=

y w¬ s¬+ +() y w s x z¬+ + + +() y¬ s x z¬+ + +() x z+() x¬ z¬+() x¬ z+()⋅ ⋅ ⋅ ⋅ ⋅

x z,{ }

y w¬ s¬+ +() y w s+ +() y¬ s+()⋅ ⋅

x1 … xm, ,{ }

x1 … xm, ,{ }

52

for transforming (2.18) into (2.19). Testing such conditions is in the worst-case exponential in m.

In addition, and for clause databases derived from combinational circuits, the sparse nature of the

generated clause databases suggests that the extension to the unit clause rule might be seldom

applied.

2.5.4 Search-Based Davis-Putnam Procedure

In this section we review the search-based formulation of the Davis-Putnam procedure for

solving SAT that is described in [39, 110]. In particular, we follow the description of [39]. This

procedure (referred to as DP-SAT) forms the basis of a large number of other search algorithms for

SAT and is composed of the following main steps:

1. Unit clause rule: If there is a unit clause , then remove literal from any clause con-

taining it. This can be viewed as assigning value ¬ i to variable x, and consequently, setting to

0 any occurrence of literal .

2. Pure literal rule7: If a variable x is monoform, i.e. if the clause database just contains literals

on variable x of the form , then remove from the clause database all clauses containing

. This can be viewed as the ability to disregard a set of clauses containing the same literal

which does not appear complemented. In this situation, the literal will never need to be com-

plemented, and so it can assume value ¬ i.

3. Splitting rule: If steps 1 and 2 cannot be applied, choose a variable and split the clause data-

base into two. The first one with all clauses containing removed, and removed from

all clauses. The second one with all clauses containing removed, and removed

from all clauses. Each resulting clause database is processed separately. (Note that the split-

ting rule is just a different organization of the plain backtracking algorithm. Furthermore, in

[39] generated clause databases are maintained in a FILO queue, that corresponds to back-

tracking.)

4. Repeat steps 1 through 3 while queue of clause databases is not empty. Discard clause data-

7. The pure literal rule was so named by Davis and Putnam [38] in 1960, even though the same idea
was first described in [56] in 1959, in a search-based algorithm for proving the satisfiability of bool-
ean formulas, and whose only inference rule was the pure literal rule. This algorithm did not con-
vert a boolean formula into normal form; the rule was described for formulas with connectives ∨
and ∧ , and ¬ only associated with literals.

xi{ } x i¬{ }

x i¬{ }

xi{ }

xi{ }

x0{ } x1{ }

x1{ } x0{ }

53

bases where the empty clause is derived (i.e. unsatisfiable clause).

5. If the queue becomes empty, then the formula is unsatisfiable. Otherwise, if the empty formula

is derived (i.e. ϕ = ∅), then a solution exists.

From the above description the following facts are clear. DP-SAT derives no fewer impli-

cations than BCP, and it may derive more implications. This fact results from the pure-literal rule,

that can be used to remove some variables that BCP does not. Due to its simplicity, the worst-case

and average-case complexity of DP-SAT, and of some of its simplifications and improvements,

have been extensively studied (see for example [59, 73, 125]). As a side remark, note that after

applying BCP, the pure literal rule may identify a few more implications. However, no more unit

clauses will be created until another decision assignment is made, and so BCP needs not be

invoked again. A straightforward corollary is that the pure literal rule will not identify a conflict

that BCP fails to identify (provided that BCP has been invoked prior to applying the pure literal

rule).

2.6 Queries on Clause Databases

Let us assume a clause database ϕo. The most general form of instance of the satisfiability

problem is to specify a (possibly empty) set of variable assignment objectives, and evaluate

whether a satisfying assignment can be identified. For this purpose, the set of objectives is repre-

sented by a CNF formula ϕq, which we refer to as a query. The objective of SAT algorithms is to

identify a satisfying assignment to each query.

The operation of a SAT algorithm on an original clause database ϕo, given a query ϕq, is

defined by the following computation:

(2.20)

which assumes the interface to SAT algorithms defined in Figure 2.1. The SAT algorithm identifies

whether the original clause database ϕo, appended with a query ϕq, is satisfiable. The outcome is

made available through status. The resulting clause database ϕ r is given by the (modified) clause

database returned by the SAT algorithm, but with the original query removed. The computation is

said to be valid if and only if for every assignment set A.

ϕr Ar,() SAT ϕo ϕq∪ ∅ status, ,() ϕq ∅,()–←

ϕr A
ϕo A

=

54

Example 2.18. For the example circuit of Figure 2.5 on page 36, an example of a set of objectives

is x3 = 1 and z1 = 1. Consequently, ϕq = (x3) ⋅ (z1). Another query would be to specify no objec-

tives, thus testing whether the clause database is itself satisfiable. Hence, ϕq = ∅ .

In the description of SAT algorithms in the following chapters we restrict queries to

denote cubes in the N-dimensional Boolean space. Consequently, a query is represented by a

clause database where each clause has exactly one literal. Such a query can be viewed as a restric-

tion of the consistency function ξ (associated with ϕo) to the cube specified by ϕq, and is denoted

by ξq.

The proposed search algorithms for SAT can identify and add clauses to the initial clause

database ϕo ∪ ϕ q, which are implicates of ξq. Since ξq is a restriction of ξ to the cube specified by

ϕq, these clauses are also implicates of ξ . Hence, these clauses can be added to the original clause

database ϕo, independently of the query. We can thus conclude that implicates of ξq identified by

execution of a SAT algorithm can be used for solving other queries, as long as each query defines

a cube in the N-dimensional Boolean space.

In the following analysis of SAT algorithms, a query is always implicitly assumed. The

usefulness of allowing the SAT algorithm to modify the clause database, even in the presence of a

query, will become apparent as we study search-based SAT algorithms.

2.7 Summary

In this chapter we introduced the mathematical framework that serves, in the remaining

chapters, to formalize the description and analysis of search-based SAT algorithms. The defini-

tions introduced can be categorized as follows:

• Definition of variables, literals, clauses and CNF formulas, with the objective of defining a

unified representation for instances of SAT.

• Definition of the consistency function associated with a CNF formula, and motivation for

CNF formulas to be referred to as clause databases.

• Representation of instances of SAT as CNF formulas. In particular, we described how to cre-

ate the CNF formula for a propositional formula and for a combinational circuit.

• Formalization of implications in CNF formulas. Definition of Boolean constraint propaga-

55

tion. The concepts of antecedent assignments and antecedent set were also introduced, which

play a key role in the description of SAT algorithms in the remainder of the dissertation.

• Review of the concepts of consensus and resolution. Description of simple procedures for

generating prime implicates. Study of how these concepts can be applied to solving SAT

algebraically. Study of the search-based Davis-Putnam SAT algorithm.

• Definition of queries on clause databases, which define how distinct sets of objectives can be

examined on the same clause database.

56

CHAPTER III

SEARCH ALGORITHMS FOR SATISFIABILITY

3.1 Introduction

In this chapter we undertake the study of search algorithms for the satisfiability problem

(SAT). As mentioned in Chapter I, a search algorithm entails a decision procedure that implicitly

enumerates a given search space. For SAT, and under the definitions of the previous chapter, the

search space is given by . Our approach for solving SAT is to augment the plain back-

tracking search algorithm (see Chapter I on page 6) with several engines for inferring facts, in

order to reduce the amount of search. These engines can be categorized as follows:

1. Selection engine, which decides the sequence of assignments to guide the search process.

The degree by which the selection engine reduces the amount of search is referred to as the

selection ability.

2. Deduction engine, which infers necessary assignments as a result of other assignments, that

result from decisions or from implications. Deduction engines are characterized by their de-

duction ability, that quantifies the capability of the deduction engine to identify logical con-

sequences.

3. Diagnosis engine, which infers the causes of conflicts, and can generate adequate informa-

tion to prevent the same conflicts from occurring later during the search. Diagnosis engines

are characterized by their diagnosis ability, that measures the capability of the diagnosis en-

gine to identify the causes of conflicts.

Deduction engines implement a form of forward reasoning as a result of decision assign-

0 1,{ } N

57

ments. In contrast, diagnosis engines implement a form of backward reasoning as a result of iden-

tified conflicts.

The above engines are applied during the search for a solution to a query. In addition,

other engines can be applied before the search or after a solution is identified:

1. Preprocessing engines identify stronger implicates of the clause database, that can be used to

increase the deduction ability of the deduction engines. Preprocessing ability quantifies how

effectively the preprocessing engine computes implicates of the clause database.

2. Postprocessing engines remove redundancies from computed solutions to queries, and can

cache signatures of computed solutions. These cached signatures can be used during the

search for subsequent queries to reduce the amount of search.

Selection engines are largely heuristic, in the sense that the sequence of assignments cho-

sen is not guaranteed to reduce the amount of search. In contrast, deduction, diagnosis and prepro-

cessing engines infer facts that are guaranteed not to increase the amount of search. The

information cached by postprocessing engines is also guaranteed to reduce the amount of search,

but only for subsequent queries.

3.1.1 Chapter Objectives

The first objective of this chapter is to describe GRASP, a search algorithm for SAT, that

can be customized with different engines. As a result, we are able to provide, with the same algo-

rithmic framework, a wide range of search pruning ability as a function of the computational effort

to conduct the search. The second objective is to detail each engine, as well as related simplifica-

tions and improvements. In particular, we propose to describe families of engines for identification

of implications, diagnosis of conflicts and preprocessing of clause databases. Moreover, we

describe engines for postprocessing and for making decisions.

With respect to other algorithms for SAT, the most significant contribution of GRASP is

its ability to diagnose the causes of conflicts. Three different methods, referred to as pruning meth-

ods, are proposed for diagnosing conflicts:

1. Conflict-Directed Backtracking (CDB) is a form of non-chronological backtracking based on

conflict diagnosis that, under some conditions, allows the search process to backtrack over

58

several decision assignments that can be shown not to be relevant for the identification of a

solution.

2. Conflict-Based Equivalence (CBE) identifies sufficient conditions for two different stages in

the search process to lead to the same conflicts. Conflict-based equivalence conditions permit

early backtracking instead of requiring conflicts to be explicitly identified.

3. Failure-Driven Assertions (FDAs) denote required assignments to variables that are identi-

fied as a result of a conflict. Different forms of FDAs can be defined, some of which exploit

the structure of the conflicts in order to derive stronger assertions.

3.1.2 Chapter Outline

Section 3.2 introduces all the structures required for the description of GRASP. The top-

level organization of GRASP is introduced in Section 3.3, followed by a definition of the main

conflict analysis methods in Section 3.4. The next step is to describe the different engines that cus-

tomize GRASP. We start with the deduction engines, followed by the diagnosis engines. A particu-

lar emphasis is given to diagnosis engines, since they have seldom been applied to SAT

algorithms.

Preprocessing engines are described in Section 3.7. These engines resemble advanced

deduction engines and are used to complete the structure of the clause database by computing

additional implicates of the consistency function.

We then analyze the postprocessing engine, which is specific to combinational circuits.

This entails removing redundancies from solutions, i.e. decision assignments that are provably

irrelevant for satisfying the query, and caching signatures of each solution, in order to simplify the

search for solutions to subsequent queries.

An orthogonal issue is how to guide the search process by appropriately making decision

assignments. Decision making procedures are studied in Section 3.9. We also describe methods to

reduce the number of decision variables whenever clause databases represent combinational cir-

cuits.

Section 3.10 concludes the chapter by highlighting the major contributions of GRASP and

motivating the application of the ideas in GRASP to other domains.

59

Although most examples in this chapter are based on combinational circuits and clause

databases are usually assumed to be derived from circuits, the techniques described, unless other-

wise noted, are applicable to any clause database. Furthermore, all formal results in this chapter

are stated without proof; proofs are provided in Appendix A.

3.2 Structures for Search

As described in Chapter I, a backtracking search algorithm implements a search process

that creates a decision tree and implicitly traverses the search space. Each node in the decision tree

specifies an elective assignment to a chosen variable, referred to as the decision assignment. In the

case of a combinational circuit, decision assignments can be restricted to the primary inputs1, since

assigning all primary inputs guarantees that all circuit nodes become assigned.

A decision level is associated with each decision assignment to denote its depth in the

decision tree; the first decision assignment at the root of the tree is at decision level 1, and the

objectives are specified at decision level 0. A decision level δ(x) is associated with every assigned

variable x, and denotes the decision level at which the assignment of x is decided or implied. At

any stage of the search process, the entries in the decision tree define the active decision assign-

ments.

Every time a decision assignment is made it triggers other assignments that define an

implication sequence. The node that triggers each implication sequence is referred to as the trigger

node2. During the search process the implication sequences resulting from active decision assign-

ments are represented by an implication graph, IC, that is defined as follows:

1. The current assignment (x = vx) defines a vertex in the implication graph.

2. The incoming edges to each vertex (x = vx) in the implication graph correspond to the vari-

able assignments identified by A(x) (given by (2.13) on page 40).

3. In the presence of a conflict, a conflict node, κ , is added to the implication graph such that its

incoming edges are the node assignments that force a clause ω of ϕ to be unsatisfied. Conse-

1. Actually, in some cases decisions may be made with respect to other nodes, as will be discussed
in Section 3.9.
2. Besides decision assignments, other assignments that trigger implication sequences do exist and
are described later in this chapter. Moreover, implication sequences may be triggered by sets of
assignments.

60

quently, the antecedent assignment of κ, A(κ), is defined as the set of variable assignments

associated with the unsatisfied clause ω that is identified as causing the conflict:

(3.1)

Accordingly, the antecedent set, α (κ), is defined for each conflict due to clause ω:

(3.2)

Each assigned node x is also characterized by an implication level, ι (x), that denotes the

length of the longest path in the implication graph from the trigger node to x. Implication levels

provide a partial order on the implications, and are central for implementing conflict diagnosis.

With the exception of the trigger node, the decision and implication levels of each

assigned node x are defined according to:

(3.3)

For the trigger node, the decision level is defined as the current decision level of the search pro-

cess, and the implication level is 0.

When referring to an assigned node x, the notation x = v @ d / i is used to denote that the

value of x is v, x is assigned at decision level d and implication level i. Whenever the implication

level is not significant, the notation x = v @ d is used instead. Finally, if only the value of x is rele-

vant then the notation x = v is used.

For a combinational circuit, JF(c) denotes the set of unjustified assigned nodes in the cir-

cuit at a decision level c:

(3.4)

JF(c) is commonly referred to as the j-frontier in test pattern generation [1, pp. 192-193].

Example 3.1. Examples of a decision tree and implication graph are shown in Figure 3.1. It is

assumed that a conflict is detected after the decision assignment x3 = 1 is made. As illustrated in

A κ() y ν y(),() y ω∈ y¬ ω∈∨{ }=

α κ() y y ν y(),() A κ()∈{ }=

δ x() max δ y() y α x()∈{ }=

ι x() 1 max ι y() y α x() δ y() δ x()=∧∈{ }+=

JF c() y V∈ ν y() X≠ Just y()¬∧{ }=

61

Figure 3.1-c, and according to the definition of implication graph, the incoming edges to each ver-

tex x = vx in the implication graph are associated with the assignments in the antecedent assign-

ment of x.

3.3 Backtracking Search Algorithm

The top-level description of GRASP is shown in Figure 3.2. It assumes a clause database

ϕ and an assignment set A as global variables. Initially, the clause database ϕ contains the original

clause database ϕo augmented with a query ϕq. Note, however, that when referring to the consis-

tency function ξ , the original clause database ϕo is assumed. The main purpose of GRASP is to

invoke procedure Search(), which implements the search process. Two other procedures can be

invoked; Preprocess() and Postprocess():

• Preprocess() implements the preprocessing engine. It can complete the clause database

with additional implicates of the consistency function and may imply necessary assignments.

Figure 3.1: Examples of decision tree and implication graph

conflict

1

2

3

4

decision
level

decision
node

(b) Decision tree

1 0

0

1

implication
sequences

(c) Implication graph IC

current
decision
level c

x2

x3

x1

x1

x2

x3
x5

x4

x6

(a) Example circuit

0

x3 = 0 @ 1 / 0

x6 = 0 @ 3 / 2

x5 = 1 @ 2 / 1

x4 = 1 @ 3 / 1
x1 = 1 @ 3 / 0

x2 = 0 @ 2 / 0

Key: x = v @ d / i indicates that node
is x assigned value v at decision level
d and implication level i

62

The operation of Preprocess() is characterized by the operations ϕi → ϕf and Ai → Af,

Ai ⊆ Af. In general, the preprocessing engine can be applied to either ϕ or ϕ0.

• Postprocess() implements the postprocessing engine. This engine is solely developed for

combinational circuits. It can remove redundancies from computed solutions and can cache

// Global variables: Clause database ϕ
// Partial variable assignment A

// Return value: FAILURE or SUCCESS

// Auxiliary variables: Backtracking decision level βL

//
GRASP()

{
if (Preprocess() == SUCCESS and Search (0, βL) == SUCCESS) {

Postprocess();
return SUCCESS;

}
return FAILURE;

}

// Input argument: Current decision level c

// Output argument: Backtracking decision level βL

// Return value: CONFLICT or SUCCESS

//
Search (c, &βL)

{
if (Select (VAR+VAL) == SUCCESS) // Make decision

return SUCCESS;
while (TRUE) {

if (Deduce() != CONFLICT) { // Imply assignments
if (Search (c + 1, βL) == SUCCESS) return SUCCESS;
else if (βL != c) { Erase(); return CONFLICT; }

} // Diagnose conflict
if (Diagnose (c, βL) == CONFLICT) { Erase(); return CONFLICT; }
Erase();
Select (VAL); // Modify decision assignment

}
}

Figure 3.2: Description of GRASP

63

solutions for subsequent use. The operation of redundancy removal is characterized by

Ai → Af, Ai ⊇ Af. The clause database is not changed by the postprocessing engine.

Depending on the configuration of GRASP, the actual implementation of the two proce-

dures above can realize no functionality.

The interface to the SAT algorithm is defined by . The pseudo code

for procedure Search() is shown in Figure 3.2. At each decision level c in the decision tree a

decision variable and associated logic value are chosen with procedure Select(VAR+VAL), pro-

vided that a decision assignment can still be made; otherwise a consistent complete node assign-

ment has been identified and the search process can terminate. If a decision assignment is chosen,

logical implications are derived with Deduce(). If no conflict is identified, the search algorithm is

recursively invoked at decision level c + 1. Afterwards, if a solution has been identified, a termina-

tion indication is passed on to the previous decision levels. Otherwise, the backtracking decision

level is tested, and if different from the current decision level, further processing at the current

decision level is skipped. In the presence of a conflict, the last implication sequence is analyzed

with Diagnose(), and used to decide whether backtracking is needed and where to backtrack to.

Finally, procedure Select(VAL) allows defining the next decision assignment with respect to the

current decision variable, provided another decision assignment can be made on that variable. As

we will see below, Select(VAL) may be defined to implement no functionality, since conflict

diagnosis may create conditions for implying the assignment that would correspond to the second

branch at each decision level.

The search process creates a sequence of partial variable assignments A0, A1, …, Ac,

where c denotes the current decision level, and guarantees that , since other-

wise completeness of the search algorithm would not be guaranteed. At each decision level c, the

operation of each engine can cause modifications to either the clause database ϕc or the current

partial variable assignment Ac. The operation of each engine is defined as follows:

• Select(VAR+VAL) implements the selection engine. It selects a variable and a logic value

to assign to that variable. The decision variable is kept until the search process backtracks

below the current decision level. Select(VAR+VAL) causes no modifications to the clause

database and only adds the decision assignment to the current partial variable assignment

outcome GRASP()←

A0 A1 … Ac⊆ ⊆ ⊆

64

.

• Deduce() implements the deduction engine, which creates implication sequences caused by

trigger assignments. The operation of the deduction engine is characterized by and

by .

• Diagnose() implements the diagnosis engine, which identifies the causes of conflicts. The

operation of the deduction engine is characterized by and .

• Erase() clears the implication sequence defined at the current decision level. It causes no

modifications to the clause database, and the resulting partial variable assignment becomes

.

• Select(VAL) selects another value for the variable chosen at the current decision level as

the decision variable. It causes no modifications to the clause database and the resulting par-

tial variable assignment becomes , assuming

the original decision assignment to be x = vx.

The actual operations on the clause database and on the partial variable assignments

depend on how each engine is implemented. GRASP, as described in Figure 3.2, can be configured

to realize different SAT algorithms, each of which is characterized by how the clause database and

the partial variable assignments evolve with the search process.

The purpose of the following sections is to detail each engine invoked by GRASP() and by

Search() and study different tradeoffs between pruning ability and computational overhead

requirements. For the deduction and diagnosis engines several implementations are possible, and

special emphasis is given to the basic engines, which can be implemented in linear time in the size

of the clause database. Given the definition of the basic implementations of Deduce() and Diag-

nose() in the following sections, the following holds:

Theorem 3.1. The search algorithm for solving SAT, described in Figure 3.2, customized with the

basic implementations of Select(VAR+VAL), Deduce() and Diagnose() is sound and com-

plete.

The proof of the above theorem, as well some complexity bounds for the search algorithm,

can be found in Appendix A. The proof of the theorem hinges on the fact that each clause that can

Ac
i Ac 1–=() Ac

f Ac 1– x vx,(){ }∪=[]→

ϕc
i ϕc

f→

Ac
i Ac

f→ Ac
i Ac

f⊆,

ϕc
i ϕc

f→ Ac
i Ac

f=

Ac
i Ac

f Ac 1–=()→

Ac
i Ac 1–=() Ac

f Ac 1– x vx,(){ }∪=[]→

65

be added to the clause database is indeed an implicate of the consistency function, and that partial

assignment sets associated with a sequence of decision levels satisfy a containment relation, i.e.

.

3.4 Conflict Analysis

The analysis of the causes of conflicts is central to the implementation of the different

engines. In this section we describe the basic mechanism for identifying sufficient conditions for a

conflict to occur. These conditions are used with different purposes, the most relevant being the

definition of implicates of the consistency function.

Example 3.2. The derivation of an implication sequence, based on Boolean constraint propagation

(BCP), that yields a conflict is shown in Figure 3.3. The decision assignment x1 = 0 at decision

level 5 implies the assignments of x2, x3, x6, x7, x8, x9 and x10, which result in a conflict involving

the assignments of x9, x10 and z1. The portion of the implication graph that is relevant for this

implication sequence is shown in Figure 3.3-b. Only the implication levels of the nodes assigned at

decision level 5 are shown. In terms of the clause database, the gate with output z1 (an OR gate) is

characterized by the following consistency function (adapted from Table 2.1 on page 35):

The implication sequence causes clause to become unsatisfied since x9 = x10 = 0

and z1 = 1. By definition, the antecedent assignment of κ is given by A(κ) = { (x9, 0), (x10, 0),

(z1, 1) } , which explains the edges connected to κ in Figure 3.3-b. (In the following, the derivation

of implications in terms of the clause database is omitted and implications are described in terms

of propagation of logic values in a circuit. However, in any situation we could readily create the

clause database for the consistency function of the circuit, and justify the assignment of any circuit

node as the requirement to satisfy a unit clause of the clause database.)

In the remainder of this section we describe methods for identifying the causes of con-

flicts. In all situations, the purpose of conflict analysis is to identify implicates of the clause data-

base that describe the causes of identified conflicts. Two methods are described; the first is the

A0 A1 … Ac⊆ ⊆ ⊆

ϕz1
x¬ 9 z1+() x¬ 10 z1+() x9 x10 z1¬+ +()⋅ ⋅=

x9 x10 z1¬+ +()

66

standard formulation of conflict analysis, whereas the second exploits the structure of implication

sequences.

3.4.1 Conflicting Clauses

Conflict analysis is based on traversing the portion of the implication graph associated

with the current decision level and establishing a set of conditions that are responsible for the con-

flict. Suppose that the current decision level is c and that the current decision assignment leads to a

conflict. In terms of the implication graph this is represented by an implication sequence of nodes

assigned at decision level c that terminates at a conflict node κ . For each node x assigned at deci-

Figure 3.3: Example circuit and partial implication graph

(a) Example circuit

(b) Partial implication graph

κ

x1

x6

x7
x10

x8

x2
x9

x3

x4

x5

x12

x11

conflict

w1 = 0 @ 2

w2 = 0 @ 2

w3 = 1 @ 3

z1 = 1 @ 0

z2 = 1 @ 0 z3 = 1 @ 0

w1 = 0 @ 2

w2 = 0 @ 2

x1 = 0 @ 5 / 0

x6 = 1 @ 5 / 2

x3 = 0 @ 5 / 1

x9 = 0 @ 5 / 4

x7 = 1 @ 5 / 2

x2 = 0 @ 5 / 1

x8 = 0 @ 5 / 3
z1 = 1 @ 0

x10 = 0 @ 5 / 4

67

sion level c, and for the conflict node κ , the antecedent assignment is divided into two disjoint sets,

of assignments Λ(x) at lower decision levels, and assignments Σ(x) at the current decision level c:

(3.5)

Example 3.3. For the implication graph of Figure 3.3-b, the antecedent assignment of x6 is parti-

tioned into Λ(x6) = { (w1, 0) } and Σ(x6) = { (x2, 0) } , since δ(w1) = 2 and δ(x2) = 5.

The partition of A(x), for each variable x assigned at decision level c, is used to identify the

causes of a conflict and to represent those causes by a conflicting assignment set (ACS), which is

defined as follows:

(3.6)

where and,

(3.7)

causesof(x) identifies the node assignments that create an implication sequence leading to the

assignment of x. In particular, causesof(κ) identifies a set of node assignments which represent a

sufficient condition for a conflict to occur. Note that , where x is the

trigger node, and so the causes of the conflict are contained in the partial node assignment before

the last implication sequence. This is clear from the definition of conflicting assignment set in (3.6)

and (3.7), which can only contain assigned nodes, all of which must be included in Ac − 1 ∪

{ (x, ν(x)) } .

A conflicting assignment set can also be viewed as a conjunction of node assignments that

are identified as a sufficient condition for a conflict to be identified. The negation of this conjunc-

tion of node assignments provides a conflicting clause that represents an implicate of the consis-

Λ x() y ν y(),() A x()∈ δ y() δ x()<{ }=

Σ x() y ν y(),() A x()∈ δ y() δ x()={ }=

ACS causesof κ()=

causesof : V κ{ }∪ 2V 0 1,{ }×→

causesof x()

x ν x(),() if A x() ∅=,

Λ x() causesof y()
y ν y(),() Σ x()∈

∪ otherwise,∪









=

ACS Ac 1– x ν x(),(){ }∪⊆

68

tency function of the circuit3. The clause to be created from the conflicting assignment set is

defined by:

(3.8)

which guarantees that the value of ω is 0 if and only if all node assignments specified the conflict-

ing assignment set occur simultaneously. ω is added to the clause database, which is to say that if

each assignment in a conflicting assignment set is satisfied, then the same conflict is identified

without the same implication sequence being recreated.

The definition of conflicting clause also implies that at most one literal of ω is assigned at

the current decision level. In such a situation, if the last implication sequence is erased, then ω

becomes a unit clause and thus it implies the assignment that will trigger another implication

sequence at decision level c. In contrast with most search-based SAT algorithms, which exhaust

the possible node assignments for each decision without establishing relations among the decision

branches, the procedure we propose generates a second branch at decision level c that results from

an implication and not from a decision. Such an implication is referred to as an assertion, and

denotes a node that is assigned at decision level c even though all nodes in its antecedent set are

assigned at decision levels less than c. Any implication that results from a conflicting clause is

referred to as a failure-driven assertion (FDA). Note that since FDAs are derived and create the

second branch at decision level c, procedure Select(VAL) in GRASP realizes no functionality.

Suppose that ω is created due to a conflict, associated with assigning a decision node x.

Then ω adds additional information to the clause database. Without ω in the clause database the

assignment of x creates an implication sequence that leads to the same conflict; with ω in the

clause database the assignment of x to the complemented value would be implied without the deci-

sion being made, because it would be the only free literal in ω. In this situation, the same conflict

would either not be identified or be identified without a decision assignment being made.

Example 3.4. To illustrate the derivation of conflicting assignments and associated clauses, con-

3. Conditions similar to implicates of ξ are referred to as nogoods in truth maintenance systems
[60, 116, 161] and in some algorithms for constraint satisfaction problems [143]. Nevertheless, the
basic mechanism for creation of conflicting clauses differs, since conflicting clauses are not neces-
sarily expressed in terms of decision variables, whereas nogoods are.

ω xν x() x ν x(),() ACS∈{ }=

69

sider the example of Figure 3.3-a. Given the conflict of Figure 3.3-b, the following conflicting

assignment set is derived using (3.6):

because Λ(κ) = { (z1, 1) } , Λ(x6) = { (w1, 0) } , Λ(x7) = { (w2, 0) } and A(x1) = ∅ . From (3.8), the

following conflicting clause is created:

(3.9)

which states that the assignment x1 = w1 = w2 = 0 and z1 = 1 cause a conflict, as the partial implica-

tion graph of Figure 3.3-b shows. This clause is now added to the clause database, thus providing

stronger conflicting conditions in the presence of partial node assignments. After erasing the con-

flicting implication sequence, ω becomes a unit clause with x1 as its free literal. This implies x1 ←

1 and x1 is said to be asserted. As a result, the second branch at decision level 5 is no longer

elected, but forced by ω, which produces a failure-driven assertion and implies the assignment of

x1 to 1. (The second branch can only be specified as an assertion because each node can only

assume two logic values. In more general search problems (e.g. constraint satisfaction problems

[169]), this form of assertion is not derivable because the domain of each variable can have more

than two possible values.)

3.4.2 Unique Implication Points

An implication sequence at a given decision level c defines a subgraph contained in the

implication graph IC. Assuming a conflict is detected, let U = { (u1, ν(u1)) , …, (uk, ν(uk)) } denote

the set of dominators [166] of κ , with respect to the decision assignment or set of asserted assign-

ments in the implication graph at decision level c, that trigger the conflicting implication sequence.

Each (ui, ν(ui)) is referred to as a unique implication point (UIP), and can be viewed as triggering

an implication sequence at decision level c that leads to the same conflict.

Theorem 3.2. Let a conflict be identified at decision level c, and let U = { (u1, ν(u1)) , …,

(uk, ν(uk)) } denote the set of UIPs. Then the isolated assignment of each UIP is a sufficient condi-

ACS x1 0,() w1 0,() w2 0,() z1 1,(), , ,{ }=

ω x1 w1 w2 z1¬+ + +()=

70

tion for causing the same conflict.

Example 3.5. To illustrate the application of UIPs, let us consider again the implication sequence

of Figure 3.3-b (see page 66). The set of dominators of κ with respect to x1 is { (x1, 0), (x8, 0) } .

The assignment x8 = 0 is a sufficient condition to trigger an implication sequence leading to the

same conflict. Hence, clause identifies an implicate of the consistency function.

On the other hand the node assignments on x1, w1 and w2 imply the assignment of x8. Hence, we

can create another clause, , which states that the assignments x1 = w1

= w2 = 0 imply x8 ← 0. This fact is clear from the circuit structure and derivable from the clause

database with BCP. However, the same clause also states that the assignments x8 = 1 and w1 = w2 =

0 imply x1 ← 0, which is no longer derivable from the clause database with BCP. We can thus con-

clude that ω1 and ω2 represent two implicates of the consistency function that can potentially pro-

vide additional implications in the presence of partial node assignments.

In the following we assume an implication sequence leading to a conflict and a set of UIPs

U = { (u1, ν(u1)) , …, (uk, ν(uk)) } . Let (u, ν(u)) ∈ U and let (x, ν(x)) be an assignment that is part

of the implication sequence triggered by (u, ν(u)). Then, the causes of the assignment (x, ν(x))

given (u, ν(u)) are defined as follows:

(3.10)

Hence, causesof(x, u) identifies a set of assignments that imply the assignment (x, ν(x)), restricted

to assignment (u, ν(u)) as the trigger of the implication sequence. Given the definition of cause-

sof(x, u), the following conflicting clauses are created and added to the clause database:

ω1 x8 z¬ 1+()=

ω2 x1 w1 w2 x8¬+ + +()=

causesof x u,()

u ν u(),() if x u=(),

Λ x() causesof y u,()
y ν y(),() Σ x()∈

∪∪ otherwise,









=

71

(3.11)

ω1 states that the assignments in causesof(κ , uk) are a sufficient condition for the same conflict to

be identified. ω2 states that the assignments in causesof(uk, uk − 1) cannot imply the assignment of

uk to a logic value other than ν(uk). The structure of the implication sequence is used to associate

the causes of the conflict with each UIP. Hence, the conflicting clauses provided by (3.11) are nec-

essarily stronger than the ones provided by (3.8). Note that clauses ω2 through ωk establish suffi-

cient conditions for the identification of conflicts that were not actually identified. The motivation

for these conditions is that they provide implications that otherwise would not be derivable by the

deduction engine.

Example 3.6. For the previous example, conflicting clause is associ-

ated with a conflict that was not identified. However, if w1 = w2 = 0 and x8 = 1, then it is clear from

Figure 3.3-a that x1 cannot assume value 0 and thus it must assume value 1. Furthermore, this

implication is not derivable from the original clause database with BCP, but adding ω2 to the

clause database makes such implication explicit.

In some cases we may have two UIPs, ui and ui+1, such that there is only one implication

path between (ui, ν(ui)) and (ui+1, ν(ui+1)). In this situation, either assignment (ui, ν(ui)) or

(ui+1, ν(ui+1)) implies the other assignment, and so all implications identified by the conflicting

clause created with (3.11) for (ui, ν(ui)) and (ui+1, ν(ui+1)) are already derivable with the current

clause database. Consequently, each pair of UIPs connected by only one implication path does not

contribute with a conflicting clause to the clause database. Creating this conflicting clause is

avoided by removing (ui, ν(ui)) from set U.

There can be situations where several asserted assignments, W = { (w1, ν(w1)) , …,

(wm, ν(wm)) } , create an implication sequence that leads to a conflict. In such situations, (u1, ν(u1))

ω1 xν x() x ν x(),() causesof κ uk,()∈{ }=

ω2 xν x() x ν x(),() causesof uk uk 1–,()∈{ } uk
ν uk()

 
 
 

∪=

…

ωk xν x() x ν x(),() causesof u2 u1,()∈{ } u2
ν u2()

 
 
 

∪=

ω2 x1 w1 w2 x8¬+ + +()=

72

does not correspond to the trigger node, because all assignments in W are actually responsible for

triggering the implication sequence. As a result, (3.11) can be completed with an additional con-

flicting clause ωk + 1. The derivation of ωk + 1 requires extending (3.10) to the following form:

(3.12)

and consequently ωk + 1 is given by:

(3.13)

that is analogous to ω2 through ωk in (3.11) but where the assignment of u1 is triggered by a set of

node assertions.

Example 3.7. Even though conflict analysis has been exemplified exclusively with circuit exam-

ples, it also finds application in more general clause databases. Moreover, the structure revealed by

UIPs can also be found in those general clause databases. An example of such a clause database is

shown in Figure 3.4. The decision assignment x1 ← 1 triggers an implication sequence that yields

a conflict. Two UIPs are identified that are associated x1 and x4. Hence, two conflicting clauses are

created and added to the original clause database.

3.4.3 Maintenance of the Clause Database

As shown above, conflict analysis involves creating conflicting clauses which are then

added to the clause database. These clauses are used with two distinct purposes:

1. They imply additional assignments, which we refer to as failure-driven assertions. For each

conflicting clause that is also a unit clause at a given stage of the search process, an implica-

tion is derived, which attempts to prevent a known conflict from occurring and which could

not be prevented by the sole application of the deduction engine.

causesof x W,()

x ν x(),() if x ν x(),() W∈(),

Λ x() causesof y W,()
y ν y(),() Σ x()∈

∪ otherwise,∪









=

ωk 1+ xν x() x ν x(),() causesof u1 W,()∈{ } u1
ν u1()

 
 
 

∪=

73

2. Whenever one of these clauses becomes unsatisfied, a conflict is identified, which corre-

sponds to conflicting conditions previously inferred during the search process. As a result,

the current partial node assignment, created by the search process, is said to lead to a conflict,

because it shares with some other partial node assignment the same assignments that were

identified as responsible for yielding a conflict (or set of conflicts). This form of early identi-

fication of conflicting conditions is referred to as conflict-based equivalence.

As the search process evolves, the number of added conflicting clauses may become sig-

nificantly large. In addition, some of these clauses can either be removed from the clause database,

as is the case with subsumed clauses, or be simplified by combining pairs of clauses. In general,

subsumption operations are computationally expensive. From Section 2.5.2 (see page 44), the cost

of a subsumption operation is , where |ϕ| is the number of clauses in ϕ. However, if we

Figure 3.4: CNF-based example

• Current assignments: y1 = 0 @ 1, y2 = 0 @ 3, y3 = 0 @ 3

• Decision assignment: x1 ← 1

ϕ x1¬ x2+() x1¬ x3 y1+ +() x2¬ x3¬ x4+ +()⋅ ⋅ ⋅=

x4¬ x5 y2+ +() x4¬ x6 y3+ +() x5¬ x6¬+()⋅ ⋅ ⋅

κ

(a) Initial conditions

(b) Implication graph

• Conflicting clauses: ω1 = (y2 + y3 + ¬x4) and ω2 = (y1 + ¬x1 + x4)

(c) Computed conflicting clauses

y1 = 0 @ 1

x1 = 1 @ 5 / 0

y2 = 0 @ 3

y3 = 0 @ 3

x5 = 1 @ 5 / 3

x4 = 1 @ 5 / 2

x2 = 1 @ 5 / 1

x3 = 1 @ 5 / 1 x6 = 1 @ 5 / 3

O N ϕ 2⋅()

74

allow subsumption operations only with respect to each added conflicting clause, then computa-

tional cost is reduced to O(N ⋅ |ϕ|).

Furthermore, in some situations pairs of clauses can be combined and simplified. If two

clauses, and of the clause database contain the same

number of literals and differ only in two literals, l1,i and l2,i, such that , then a new

clause can replace ω1 and ω2 in the clause database. In this sit-

uation we say that ω3 results from merging ω1 and ω2.

Theorem 3.3. With the definitions of ω1, ω2 and ω3 given above, . Clause ω3 is an

implicate of the consistency function ξ . Moreover, ω1 and ω2 can be removed from the clause

database if ω3 is added to the clause database.

Example 3.8. Let and . Then the two clauses can be

merged and replaced by a new clause .

Merging operations can be applied whenever a new conflicting clause is added to the

clause database. The computational cost is the same as that of the restricted subsumption opera-

tion, i.e. O(N ⋅ |ϕ|).

Despite the above restrictions, subsumption and merging operations still incur in signifi-

cant computational overhead. Consequently, and by default, these operations are not part of the

diagnosis engine described below in Section 3.6. Nevertheless, they can be optionally applied.

3.5 Deduction Engines

The purpose of this section is to describe deduction engines. The simplest deduction

engine, referred to as the basic deduction engine, implements Boolean constraint propagation but

it also updates the structures associated with the search process. Other deduction engines are

described. For example, in conflict diagnosis it is often useful to analyze multiple conflicts, and

thus we describe a simple extension of BCP that identifies multiple conflicts. Other, more complex

deduction engines, can be devised, which are based on the identification of conflicts and creation

of implicates of the clause database.

ω1 l1 1, … l1 j,, ,{ }= ω2 l2 1, … l2 j,, ,{ }=

l1 i, l2 i,¬=

ω3 ω1 l1 i,{ }– ω2 l2 i,{ }–= =

ω1 ω2⋅ ω3↔

ω1 x y z¬+ +()= ω2 x y¬ z¬+ +()=

ω3 x z¬+()=

75

3.5.1 Basic Deduction Engine

The basic deduction engine is shown in Figure 3.5. It implements Boolean constraint

propagation, as is described in Figure 2.6 (see page 39), but modified to maintain additional infor-

mation required by the search process. For each assigned node an antecedent set is identified,

which then implicitly defines the antecedent assignment. Furthermore, in the presence of a con-

flict, a conflict node κ is defined. The basic deduction engine causes no modifications to the clause

database.

Let Deduce() compute the assignment set . Then, from Theorem 2.1 (see page

38), and with , we have . Furthermore, noting the definition

of procedure Erase() (see page 64) that is applied to every identified conflict, and iterated appli-

cation of Theorem 2.1 yields:

Theorem 3.4. Assume a sequence of active decisions and let c be the current decision level. Then

Figure 3.5: Description of the basic deduction engine

// Global variables: Implication graph IC

// No input or output arguments
// Return value: CONFLICT or SUCCESS

//
Deduce()

{
while (clauses unsatisfied or unit clauses in ϕ) {

if (exists unsatisfied clause ω) {
define new conflict node κ;
define α(κ) as the elements of ω;
return CONFLICT;

}
if (exists unit clause ω with free literal) {

define α(x) as the set of the elements of ω other than x;
compute δ(x) = c and ι (x); // Using (3.3)

; // i.e. l is set to 1

}
}
return SUCCESS;

}

l xi=

x 1 i⊕ i¬≡←

Ac
f Ac=

Ac
i

Ac 1– x vx,(){ }∪≡ Ac 1– Ac⊆

76

.

Implementation

A direct implementation of the proposed deduction engine can be used. The most relevant

implementation detail is that every time a variable x is assigned, only the clauses with literals on x

need be examined for implying additional assignments. Consequently, we can immediately guar-

antee a run time that is linear in the size of the clause database. Furthermore, by maintaining a

counter of unassigned literals, a clause just needs to be examined when it is known to be unit; this

reduces the overhead of clause manipulation.

For combinational circuits, and given the assumption of gates with bounded fanin, the

identification of unit clauses or unsatisfied clauses requires constant time for each assigned node.

Since the number of assigned nodes is in the worst case O(N), the worst-case run time of the

deduction engine at each decision level is O(N), which is also the amortized4 worst-case run time

over all decision levels (assuming that no conflicts are identified). If the number of clauses in the

clause database is allowed to grow (due to information derived by the search process), then this

bound on the run time of the deduction engine no longer holds. Furthermore, the bound on the

amortized worst-case time does not hold if conflicts are detected.

The order in which clauses are ordered for implying assignments is relevant, and two sim-

ple ordering mechanisms can be envisioned. In the first one, unit clauses are kept in a FIFO (first-

in-first-out) queue, which defines the processing order and causes implications to evolve in a

breadth-first manner. The second mechanism keeps the unit clauses in a FILO (first-in-last-out)

queue that causes implications to evolve in a depth-first manner. The practical implementation of

Deduce() uses breadth-first implications, mainly because they ensure the shortest implication

paths from the trigger node to a conflict. Although choosing breadth-first implications is heuristic,

its justification is that shorter implication sequences are likely to facilitate the operation of the

diagnosis engine.

3.5.2 Deduction Engine with Multiple Conflicts

An implication sequence that yields one conflict can in some cases yield other conflicts.

4. A definition of amortized complexity can be found in [35, pp. 356-377].

A0 A1 … Ac⊆ ⊆ ⊆

77

For conflict diagnosis it is often useful to be able to choose, among different conflicts, the one that

leads to more pruning of the search. The deduction engine of Figure 3.5 can be readily modified to

identify multiple conflicts. Basically, we allow for any number of conflict nodes κ to be added to

the implication graph. These conflict nodes can then be used by the diagnosis engine for conflict

analysis.

A deduction engine that handles multiple conflicts is shown in Figure 3.6 and is referred to

as Deduce_MC(). It basically implements BCP, but relaxation on unit clauses can continue

despite unsatisfied clauses being detected. Each unsatisfied clause is recorded and associated with

a different conflict node.

3.5.3 Advanced Deduction Engines

The basic deduction engine does not identify all logical consequences of a decision

assignment. This results from Boolean constraint propagation (BCP) being logically incomplete.

Figure 3.6: Description of the deduction engine for detecting multiple conflicts

// Global variables: Implication graph IC

// Return value: CONFLICT or SUCCESS

//
Deduce_MC()

{
status = SUCCESS; j = 1;
while (exists unit clause) {

if (exists jth unsatisfied clause ω) {
define new conflict node κ [j]; // Define κ j

define α(κ [j]) as the elements of ω;
status = CONFLICT; j++;

}
if (exists unit clause ω with free literal) {

define α(x) as the set of the elements of ω other than x;
compute δ(x) = c and ι (x); // Using (3.3)
x ← ¬i; // i.e. l is set to 1

}
}
return status;

}

l xi=

78

For some instances of SAT, deduction engines that can identify more logical implications than

BCP can be particularly useful. The purpose of this section is to describe a hierarchy of such

deduction engines.

Example 3.9. Two examples illustrating the drawbacks of BCP are shown in Figure 3.7. For the

example circuit of Figure 3.7-a, z1 = 0 does not directly imply other assignments. However, the

only consistent value for x is 0, which is not identified by BCP. For example, if we test the assign-

ment x = 1 and derive implications, then a conflict with z1 is identified. The derived conflicting

assignment set yields the conflicting clause , which implies and identifies the

causes of such assignment (i.e. antecedents of x are w and z).

A more complex example is shown in Figure 3.7-b. The assignment x = 0 is not consistent.

However, this fact only becomes apparent after considering both logic value assignments to node y.

The assignments x = 0 and y = 0 trigger an implication sequence that yields a conflict identified by

conflicting clause , whereas x = 0 and y = 1 cause a conflict identified

by clause . Both clauses denote implicates of the consistency func-

tion. If the clause database is satisfiable for some complete variable assignment, then both clauses

will be satisfied, and the consensus c(ω0, 0, ω0, 1, y) will also be satisfied. Conversely, whenever

c(ω0, 0, ω0, 1, y) evaluates to 0, then either ω0, 0 or ω0, 1 evaluates to 0. The resulting clause ω0 =

c(ω0, 0, ω0, 1, y) = (x + w1 + w2 + z1 + ¬z2) is also an implicate of the consistency function ξ and

Figure 3.7: Boolean constraint propagation is logically incomplete

w1 0=

w2 0=

z2 1=

z1 0=x

y

(b) The assignment x = 1 is also inconsistent

x
z1 0=

(a) The assignment x = 1 is inconsistent

w = 0

x¬ w z+ +() x 0←

ω0 0, x y w2 z2¬+ + +()=

ω0 1, x y¬ w1 z1+ + +()=

79

can be added to the clause database. Furthermore, ω0 implies the assignment x = 1 because all

other literals in the clause are assigned value 0. The derived implicate ω0 is minimal with respect

to the set of variables that is used in its derivation, i.e. ω0 cannot be further simplified just by inde-

pendent analysis of x and y. We observe that this implicate is not necessarily a prime implicate of

ξ , because it can be combined with implicates derived from other sets of variables. The two exam-

ples of Figure 3.7 also suggest a generic procedure for implementing arbitrary complex deduction

engines, which we now detail.

We propose to use Boolean constraint propagation as the basic building block of a hierar-

chy of deduction engines, each with increasing deduction ability at the cost of added complexity in

processing each decision assignment. For a given number k, Deduce_k() ensures that at each

decision level all combinations of assignments of all subsets of k unassigned variables are tested

for consistency using Deduce(). The algorithm for prime implicate generation (from Figure 2.7

on page 44) is then used to simplify the conditions associated with any identified conflicts. This

may result in nodes being asserted, which in turn is used to imply further assignments. The need to

use the algorithm for prime implicate generation was previously motivated with the example cir-

cuit of Figure 3.7-b. If Deduce_k() does not terminate in a conflict, then there is at least one com-

bination of assignments, for each subset of k nodes, which does not cause a conflict. For this

reason, we refer to operation of Deduce_k() as k-consistency5.

The generic implementation of Deduce_k() is described in Figure 3.8, and it invokes pro-

cedure Deduce() given in Figure 3.5. As suggested above, for every set γ of k unassigned nodes,

each possible logic value assignment is applied to the variables. For each assignment, Boolean

constraint propagation is used to imply assignments and identify any conflicts. Whenever a conflict

is identified, a new conflicting clause is added to a dedicated clause database ϕγ. After all logic

value assignments to the nodes in γ are processed, the prime implicates of ϕγ are computed, and a

temporary clause database ϕk for all sets γ is updated. (Note that while computing the prime impli-

cates of ϕγ, consensus operations can only be done with respect to the k variables in γ, since the

other variables in the conflicting assignment set assume fixed values, which will not be modified

5. We note that this definition is markedly different from k-consistency in constraint satisfaction
problems (see for example [169, pp. 55-57]). In the present and remaining chapters, and unless oth-
erwise stated, k-consistency refers to the application of Deduce_k() as described in this section.

80

between assignments to the variables in γ.) After all sets γ are processed, the clause database ϕ is

updated with ϕk. Observe that updating the clause database is deliberately done after all sets γ are

processed. This solution ensures that the final composition of the clause database is independent of

the order in which the sets γ are processed.

Before adding ϕγ to ϕk, the prime implicates of the Boolean function associated with ϕγ

are derived. This entails consensus operations among all variables in γ. As a result, we can claim

that the implicates that are derived are minimal in the variables of γ. This result follows immedi-

ately from the implementation of Generate_Prime_Implicates(). We note, however, that

the implicates due to a given γ may be further simplified when combined with the implicates of

Figure 3.8: Advanced deduction engine — without relaxation

// Global variables: Implication graph IC

// Clause database ϕ
// Return value: CONFLICT or SUCCESS

//
Deduce_k()

{
if (Deduce() == CONFLICT) return CONFLICT;
status = SUCCESS; ϕk ← ∅;
Let Γ be the set of all sets of k unassigned nodes;
for (each set γ ∈ Γ and while status != CONFLICT) {

status = CONFLICT; ϕγ ← ∅;
for (each distinct logic value assignment to the nodes in γ) {

if (Deduce() == CONFLICT) {
ω = Create_Conflicting_Clause(); // With (3.6), (3.8)
ϕγ ← ϕγ ∪ { ω };

} else status = SUCCESS;
Erase_Last_Assignments();

}
Generate_Prime_Implicates (ϕγ); // See Figure 2.7 on page 44
ϕk ← ϕk ∪ ϕ γ;

}
if (SIMPLIFY_ϕk)

Generate_Prime_Implicates (ϕk); // It is optionally invoked
ϕ ← ϕ ∪ ϕ k;
return Deduce(); // Create κ or derive more assignments

}

81

other subsets. In addition, even though Generate_Prime_Implicates() is applied to ϕγ, the

resulting clause database does not necessarily contain prime implicates of ξ . In general, this

should not be the case, since only a subset of the variables associated with ξ is considered. Proce-

dure Generate_Prime_Implicates() can be optionally invoked on ϕk if the flag

SIMPLIFY_ϕk is set.

Deduction engines can be further improved. A simple enhancement is to continue invok-

ing Deduce_k() while more conflicting clauses are added to the clause database. This procedure

is referred to as k-consistency with relaxation, referred to as Deduce_k,R(). Clearly, relaxation

introduces some computational overhead, but may also contribute to reducing the search. The pro-

cedure for k-consistency with relaxation is shown in Figure 3.9. The main loop is iterated while the

clause database is modified by Deduce_k(). The motivation is that if more implications are iden-

tified, then they may contribute to identify additional implications or yield a conflict. It is worth

noting that Deduce_k,R() identifies no fewer implications than Deduce_k() if both procedures

start from the same partial node assignment.

Example 3.10. The application of Deduce_k() is illustrated with the example circuit of Figure

3.7-b, assuming k = 2. As illustrated before, the assignments x = 0 and y = 0 cause the derivation of

conflicting clause , whereas x = 0 and y = 1 cause the derivation of

conflicting clause . The remaining assignments to x and y yield no

conflicting clauses. Invoking procedure Generate_Prime_Implicates() then produces

Figure 3.9: Advanced deduction engine — with relaxation

// Global variables: Implication graph IC

// Clause database ϕ
// Return value: CONFLICT or SUCCESS

//
Deduce_k,R()

{
do {

let ϕ i denote current ϕ;
status = Deduce_k(); // From Figure 3.8

} while (ϕ != ϕ i and status != CONFLICT);
return status;

}

ω0 0, x y w2 z2¬+ + +()=

ω0 1, x y¬ w1 z1+ + +()=

82

. Other subsets of nodes of size two are processed and can also

contribute with additional implicates. Eventually ω0 is added to the clause database. Given the

assignments of the other literals, ω0 is a unit clause, and hence it implies the assignment x = 1, as

intended. We note that other subsets of variables involving x would lead to the same conflicting

clause. In this situation, subsumption operations (on ϕk) ensure that no repeated clauses are added

to the clause database.

The example circuit of Figure 3.3 (see page 66) can also be used to illustrate the applica-

tion of Deduce_k(), assuming k = 1. For this example, after the set of objectives is specified,

Deduce_1() identifies a conflict for both logic value assignments to x8. Hence the query is proved

to be unsatisfiable without any search. Deduce_1() also derives the implicate (¬ z1 + ¬ z3), which

states that z1 and z3 cannot be simultaneously 1.

Let us consider Deduce_k() as described in Figure 3.8 and Deduce_k,R() as described

in Figure 3.9. Then the algorithmic complexity of these procedures is given by the following:

Theorem 3.5. Let ϕ be a clause database. Let |IC| be the current number of vertices of the implica-

tion graph, and let N − |IC| identify the total number of unassigned nodes. Then, the worst-case run

time of Deduce_k(), assuming that SIMPLIFY_ϕk does not hold, is bounded by:

(3.14)

The worst-case run time of Deduce_k,R() is bounded by,

(3.15)

For both procedures the worst-case space is bounded by,

(3.16)

and the overall space growth if bounded by .

ω0 x w1 w2 z1 z2¬+ + + +()=

O
N IC–

k 
  ϕ 2k⋅ N k 3k()2⋅ ⋅+()⋅ 

 

O
N IC–

k 
  ϕ N

N IC–

k 
  3k⋅ ⋅+ 2

k⋅ N k 3k()2⋅ ⋅+
N IC–

k 
  3k⋅⋅ ⋅ 

 

O ϕ N
N IC–

k 
  3k⋅ ⋅+ 

 

O N 3N⋅()

83

Deduce_k() with k = 0 corresponds to Deduce(). For k = 1 an upper bound on the worst-

case run time complexity is . For the worst-case run time com-

plexity is . Hence, ensures that all possible combi-

nations of node assignments are examined, and consequently that a query is solved without search.

However, the complexity of this consistency procedure is prohibitive in most practical examples.

1-consistency leads to a worst-case quadratic time deduction engine (assuming),

which in some applications can be useful in reducing the amount of search, even if applied only at

decision level 0 (see for example [37, 145, 162]).

With relaxation, k = 1 yields a worst-case running time of . Assum-

ing , then relaxation transforms a quadratic time procedure, i.e. Deduce_1(), into a

cubic time one, Deduce_1,R().

It is worth noting that k-consistency effectively reduces the worst-case size of the decision

tree to be traversed. Consider a circuit with primary inputs, and a k-consistency deduction

engine. As a result, the largest depth of the search tree, before backtracking, is , because

the last k unassigned primary inputs either are consistent, and a solution can be identified, or are

inconsistent, and the search process is forced to backtrack. Consequently, the worst-case size of

the decision tree becomes . This reduction on the size of the decision tree is compensated

by the added overhead to process each decision. Furthermore, for combinational circuits, the larg-

est k of interest is given by k = |PI|, since for any primary output objective all combinations of pri-

mary input assignments suffice to determine whether a solution can be identified.

Deduce_k() ensures that the clause database does not change until all conflicting clauses

are derived and simplified. Nevertheless, the actual implementation can allow the clause database

to be updated as different subsets are processed. This option provides additional implications with-

out the overhead of full relaxation. The problem is that now the final composition of the clause

database depends on the order in which the variables are processed. In addition, the added over-

head may increase the run time to some degree.

Although we described a procedure that ensures a given level k of consistency for each k,

we may inquire whether for a fixed k one can identify all possible logical consequences of a deci-

sion assignment on every clause database. Clearly, this should not be the case, since SAT is an NP-

O ϕ N IC–()⋅() k N IC–=

O N N IC–() 3N IC–()2⋅ ⋅() k N IC–=

ϕ O N()=

O ϕ N IC–()2⋅()

ϕ O N()=

PI

PI k–

2
PI k–

84

complete problem, and any algorithmic procedure is expected in the worst case to require expo-

nential time in the size of the problem. Accordingly, the following holds:

Theorem 3.6. For each deduction engine Deduce_k() with fixed k, it is always possible to con-

struct a clause database for which the identification of all implications requires a deduction engine

Deduce_m(), with m > k.

The advanced deduction engine described in Figure 3.8 does not attempt to identify UIPs.

As shown before, UIPs contribute to identifying stronger implicates. If the advanced deduction

engine identifies UIPs, then the average run time of Generate_Prime_Implicates() is

reduced, since implicates of smaller size will be created prior to generating prime implicates. For

reasonably large k, Deduce_k() based on UIP identification can thus prove useful.

Other Approaches

The description of Deduce_k() and Deduce_k,R() assumes a procedure for generation

of prime implicates, which is used to simplify implicates of ξ . One can envision other algorithmic

solutions not based on Generate_Prime_Implicates(). For example, one possible solution

(for k-consistency) is to process all subsets of variables with size j ranging from k down to 1, in

this order. For each j, all possible subsets and associated assignments are tested. Any conflicts

result in conflicting clauses being added to the clause database. If any of these conflicting clauses

can be simplified, then for some size i, less than j, this fact will become apparent and a new con-

flicting clause will be created. Eventually, derivable assertions are identified for j = 1. Our imple-

mentation of Deduce_k() is preferable for small k, because the overhead of procedure

Generate_Prime_Implicates() is negligible and only one size k of subsets is processed.

Perspective

Some special cases of the family of deduction engines defined by Deduce_k() and

Deduce_k,R() can be related to deduction procedures proposed by other authors, both in the con-

text of satisfiability algorithms and in other areas. With respect to satisfiability algorithms, the

deduction engines entailed by Deduce_k() and Deduce_k,R() comprise several distinct algo-

rithms proposed by other authors, most notably in test pattern generation [24, 101, 145, 162],

85

which we review in Chapter V. In backtracking search algorithms there are techniques to predict

the best variable to branch upon, which consider sets of assignments to unassigned variables in

order to decide the most promising decision variable [11, 134, 178]. Such techniques are com-

monly referred to as (multi-level) search rearrangement. k-consistency algorithms are used in con-

straint satisfaction problems (CSPs) to preprocess a given problem prior to searching for a solution

[61, 169]. These algorithms also examine combinations of assignments with the objective of

reducing the number of acceptable domain values for each variable. Our proposed procedure is

distinct in a few significant ways. First, Boolean constraint propagation is applied for every combi-

nation of assignments. This is not the case with k-consistency in CSPs. For SAT, BCP increases the

likelihood of finding conflicts. Second, our procedure generates and manipulates conflicts, using

procedures for generating prime implicates, so as to imply further assignments. This technique is

apparently new, and for SAT algorithms it is particularly useful for levels of consistency greater

than 1. Finally, the procedure can be readily used within the search framework of GRASP. This

implies that a search algorithm can be based on k-consistency and implement all pruning methods

associated with conflict diagnosis. At the time of this writing, the integration of k-consistency with

procedures for diagnosing conflicts is still an open problem in CSPs [169, p. 152].

3.6 Diagnosis Engines

In this section we describe diagnosis engines. The prime objective of conflict diagnosis is

to derive implicates of the consistency function, using the conflict analysis methods described in

Section 3.4. These implicates allow implementing the different pruning methods, including con-

flict-directed backtracking, that requires computing the backtracking decision level whenever

backtracking is required. Consequently, conflict diagnosis consists of identification of implicates

and computation of backtracking decision levels.

Several diagnosis engines can be devised. We start by describing a basic formulation based

on the conflict analysis methods described in Section 3.4. Next, we describe simple extensions that

allow computing lower backtracking decision levels, by examining more than one conflict.

Another concern is the computational overhead of adding a large number of implicates to the

clause database. Accordingly, we propose variations of conflict diagnosis which guarantee bounds

86

on the growth of the clause database. Finally, we briefly describe extensions to conflict analysis,

which are based on specifying conflicting assignments sets in terms of decision assignment sets

and simplifying those sets.

3.6.1 Basic Diagnosis Engine

After each conflict is detected, the basic conflict diagnosis engine creates a conflicting

clause with the conflict analysis methods of Section 3.4. If the derived clause involves assignments

at the current decision level, then failure-driven assertions are defined and the search process pro-

ceeds. A different situation occurs whenever all elements of a conflicting assignment set are

assigned at decision levels less than the current decision level c. This situation can only take place

when the current conflict results from diagnosing a previous conflict, after which a decision node

had been asserted with an antecedent assignment composed of assignments implied at decision

levels less than c. If all elements of a conflicting assignment set are assigned at decision levels less

than c, then it is established that the conflicts found are only caused by those lower decision levels,

and hence the search process can only find a solution if it backtracks directly to the source of the

conflicts. The backtracking decision level is identified by the highest decision level of the assign-

ments in the conflicting assignment set:

(3.17)

βL corresponds to the decision level that is returned as a reference argument by the diagnosis

engine, which is invoked in the procedure of Figure 3.2. βL = c means that no backtracking is

required, whereas the condition βL < c − 1 corresponds to non-chronological backtracking. We

note that by creating a clause ω specified by a conflicting assignment set using (3.8), and by back-

tracking to the decision level βL specified by (3.17), at this decision level a conflict is now defined

by ω. This forced conflict is used to analyze the implication sequence at decision level βL, which

can then be used to either assert the decision node or to decide a new backtracking decision level.

Example 3.11. For the example circuit of Figure 3.3-a (see page 66), and after diagnosing the con-

flict due to x1 = 0 (shown in Figure 3.3-b), the assertion x1 = 1 is obtained, with antecedent assign-

ment . The resulting implication sequence is shown in Figure 3.10-a

βL max δ x() x ν x(),() ACS∈{ }=

w1 0,() w2 0,() z1 1,(), ,{ }

87

and results in a conflict with the assignment z2 = 1. From (3.6) the following conflicting assign-

ment set is obtained: . In this situation, all

elements of the conflicting assignment set are assigned at decision levels less than 5, which means

that there exists a set of node assignments that is in conflict at decision levels less than the current

decision level. Thus, the search process needs to backtrack, and from (3.17) the backtracking deci-

sion level is evaluated to be 3, due to the assignment of w3 at decision level 3. Consequently, the

implication sequences at decision levels 5 and 4 can be erased and the implication sequence at

decision level 3 will now force a conflict that must be diagnosed. The result of non-chronological

backtracking is illustrated in Figure 3.10-b.

In addition, the conflicting assignment set is used to derive another implicate of the consis-

tency function: , which is added to the clause database, and

which states that w1 = w2 = 0 and w3 = z1 = z2 = 1 are not consistent assignments for the circuit of

Figure 3.3-a. Although this fact is not derivable with the Boolean constraint propagation procedure

(described in Figure 3.5), it is deduced by the search process. Whenever the same node assign-

ments are specified, ω will cause a conflict, thus avoiding the need to repeat the work of the search

process to derive the same conclusion again. Moreover, ω can be used to derive FDAs; if for exam-

ple w1 = w2 = 0 and z1 = z2 = 1, then ω implies w3 = 0, which would not be derivable, assuming

BCP, without the added conflicting clause.

After backtracking to decision level 3, ω is unsatisfied and so it causes a conflict node to

Figure 3.10: Implication sequence and backtracking due to assertion x1 = 1

κ

antecedent
assignment

10

x1 5

4

3

decision
level

(a) Conflicting implication sequence (b) Decision tree

w1 = 0 @ 2

w2 = 0 @ 2

z1 = 1 @ 0

of x1

x1 = 1 @ 5 / 0

x4 = 1 @ 5 / 1

x5 = 1 @ 5 / 1 w3 = 1 @ 3

z2 = 1 @ 0

ACS w3 1,() z2 1,() w1 0,() w2 0,() z1 1,(), , , ,{ }=

ω w1 w2 w3¬ z1¬ z2¬+ + + +()=

88

be added to the implication graph. From this conflict node the conditions for asserting the decision

node are identified. The assertion on the decision node will represent the second branch at decision

level 3.

The non-chronological backtracking procedure described above relies on (1) traversing

implication sequences in order to identify the causes of conflicts; and (2) representing the causes

of conflicts as conflicting clauses. We refer to this form of non-chronological backtracking as con-

flict-directed backtracking.

Identification of unique implication points (UIPs) can be applied during conflict diagnosis,

with the goal of deriving stronger implicates and potentially lower backtracking decision levels.

Example 3.12. For the implication sequence of Figure 3.3-b (see page 66), and using (3.11), the

clauses derived are ω1 = (x8 + ¬z1) and ω2 = (x1 + w1 + w2 + ¬x8). After erasing the last implica-

tion sequence, ω1 implies the assignment x8 = 1. (We should note that the second branch at deci-

sion level 5 results from an assertion on a node other than the decision node, i.e. x8 instead of x1.)

The resulting implication sequence leads to a conflict that is shown in Figure 3.11-a. In this situa-

tion the conflicting assignment set is { (z1, 1), (z3, 1) } and the backtracking decision level is 0

from (3.17). Hence, the problem is proved unsatisfiable by backtracking directly to decision level

0. In addition, (3.11) is used to derive the clause ω4 = (¬x8 + ¬z3) which states that if z3 = 1, then

x8 must be implied to 0. The evolution of the search process when unique implication points are

taken into consideration is shown in Figure 3.11-b. For this example, UIPs allow deriving stronger

κ

antecedent
assignment

Figure 3.11: Implication sequence and backtracking due to assertion x8 = 1

(a) Implication sequence

0

x1 5

4

0

decision
level

(b) Evolution of the search process

x11 = 1 @ 5 / 1

z3 = 1 @ 0

z1 = 1 @ 0
x8 = 1 @ 5 / 0

x12 = 1 @ 5 / 1

of x8

1
x8

89

backtracking conditions that prove unsatisfiability with two conflicts, whereas without UIPs the

two conflicts found only allow backtracking to decision level 3 (see Figure 3.10-b). In Table 3.1,

the conflicting clauses derived for the example of Figure 3.3-a, with and without the identification

of UIPs, are shown. Note that ω4 = (¬ z1 + ¬z3) is created with (3.8) from ACS. For this example,

the use of UIPs permits the derivation of more conflicting clauses that are also stronger than the

clauses derived without UIPs.

As the above example suggests, the identification of unique implication points helps in

identifying more implicates of the consistency function, which are stronger than the implicates

derived without the identification of UIPs. A set of k UIPs partitions a conflicting assignment set

into k assignment sets, each of which defines a conflicting clause. As a result, each derived con-

flicting clause necessarily contains no more literals than the clause associated with the original

conflicting assignment set, and thus represents a stronger implicate of the consistency function.

UIPs may also prove useful in identifying tighter conditions when deciding the backtracking deci-

sion level.

Even though the implicates of ξ derived with UIPs are necessarily stronger, we note that

the computed backtracking decision level β1 may be greater than it would be without UIPs, β2,

because a different conflict may identified. However, we note that in this situation a sequence of

conflicts will eventually force backtracking to the lower decision level (i.e. β2), due to the fact that

the clause database has been updated with conflicting clauses, that will imply assignments (from

failure-driven assertions) and cause conflicts until the conflict forcing backtracking to β2 is identi-

fied.

The pseudo-code for the diagnosis engine (invoked from the top-level search algorithm) is

without UIPs with UIPs

Table 3.1: Comparison of conflicting clauses

ω1 x1 w1 w2 z1¬+ + +()= ω1 x8 z¬ 1+()=

ω2 w1 w2 w3¬ z1 z2¬+¬+ + +()= ω2 x1 w1 w2 x8¬+ + +()=

ω3 x8¬ z¬ 3+()=

ω4 z1¬ z¬ 3+()=

90

shown in Figure 3.12, and it illustrates the main features of basic conflict diagnosis in GRASP. The

procedure basically implements the steps described in the previous sections to compute conflicting

clauses, update the clause database, identify the need to backtrack and compute the backtracking

decision level. Subsumption and merging operations can be optionally applied, provided

REDUCE_DATABASE is set to true. Even though not shown, the above procedure can be easily

modified for computing implicates with unique implication points. Because conflict diagnosis

updates the clause database with conflicting clauses, the search algorithm is able to implement

conflict-directed backtracking, failure-driven assertions and conflict-based equivalence.

Implementation

The fundamental aspect of conflict diagnosis is the definition of conflicting assignment

sets. We note that the deduction engine generates all the antecedent assignment information

required to create conflicting assignment sets. Consequently, a breadth-first traversal of the impli-

cation graph, from the conflict node, through nodes assigned at decision level c, and terminating at

Figure 3.12: Description of the basic diagnosis engine

// Global variables: Implication graph IC

// Clause database ϕ
// Input variable: Current decision level c

// Output variable: Backtracking decision level βL

// Return value: CONFLICT or SUCCESS

//
Diagnose (c, &β L)

{
ω = Create_Conflicting_Clause(); // Using (3.6) and (3.8)
Update_Clause_Database (ω); // Add clause to database
if (REDUCE_DATABASE) // Subsume/merge clauses

Subsume_Merge_Clauses (ω);
βL = Compute_Max_Level(); // Using(3.6) and (3.17)
if (βL != c) {

define new conflict node κ; // Set up new conflict node
define α(κ) as the elements of ω;
return CONFLICT;

}
return SUCCESS;

}

91

the trigger node, is sufficient for constructing the conflicting assignment set. We further note that

the overhead of this traversal is asymptotically no worse than the derivation of the implication

sequence. Furthermore, overhead is analogous, since conflicting assignment set identification is

solely based on tracing implication sequences.

UIPs are identified in the same traversal of the implication sequence that is used to build

the conflicting assignment set, thus reducing overhead considerably. A levelized breadth-first tra-

versal6, on the implication level of each assigned node, is used to define the global conflicting

assignment set, and to identify UIPs; dominators of the implication subgraph correspond to stages

of the levelized traversal when the traversal width is set to 1. Thus, UIPs and associated conflicting

clauses are identified in time linear in the size of the clause database.

3.6.2 Reducing the Backtracking Decision Level

The purpose of this section is to describe two methods that can be used to reduce the back-

tracking decision level computed with the basic diagnosis engine. Given that the backtracking

decision level depends on which conflicts are diagnosed, the proposed methods diagnose sets of

conflicts in a number of different ways.

3.6.2.1 Iterated Conflicts

We can envision a simple extension to the identification of unique implication points.

Whenever it is necessary to backtrack, a conflicting clause is created which accounts for all the

elements in the conflicting assignment set. Nevertheless, assuming UIPs have been identified, we

may be able to generate other conflicts that yield lower backtracking decision levels.

Example 3.13. The example circuit shown in Figure 3.13 illustrates how identification of conflicts

can be iterated to reveal more aggressive backtracking decision levels. Let the current decision

level be 5, and assume decision assignment x1 = 0. The resulting conflict yields conflicting clause

ω1 = (x2 + ¬z1). Consequently, the second branch at decision level 5 corresponds to the asserted

assignment x2 = 1, which causes a conflict with z2, yielding conflicting clause ω2 = (x3 + w1 +

6. A levelized breadth first traversal visits nodes in breadth-first manner but using a chosen level
order [155]. A width is defined which measures the number of nodes to be visited.

92

¬ z2). The basic diagnosis engine would then create conflicting clause ω3 = (¬ z1 + ¬z2 + w1 +

¬w2) and decide the backtracking decision level to be 3. However, for this particular example,

other conflicts can be generated, which improve the backtracking decision level.

Let us assume that instead of creating ω3 and backtracking, the search process iterates

assertions at decision level 5. Therefore, ω2 implies the assignment x3 = 1, which causes a conflict

with z4 and yields conflicting clause ω4 = (¬x4 + ¬z4). (Observe that this conflict is detected

before the conflict with x2, assigned due to ω1, is identified. Further note that clause (w1 + ¬w2 +

¬ z4 + ¬z3) would be created if backtracking was decided.) Moreover, ω4 implies the assignment

Figure 3.13: Example of iterated conflict identification

x1

w1 = 0 @ 3

z1 = 1 @ 0

3

2

1

decision
level

z2 = 1 @ 0

z3 = 1 @ 1

z4 = 1 @ 1

x3

x4

x3 = 1

4

5

(1)

(2)

(a) Example circuit

(b) Decision tree

(1) Diagnose() with UIPs
(2) Diagnose() with UIPs and iterated conflicts

x2

x4 = 0

w2 = 1 @ 3

0
x1

1
x2

93

x4 = 0, which causes a conflict with z3 and yields conflicting clause ω5 = (x4 + ¬z3).

Note that the last conflict can be used to create the conflicting clause ω6 = (¬ z3 + ¬z4),

which sets the backtracking decision level at 1. Further note that if the search process backtracks to

decision level 3, the conflicting clause implying the assignment of x3 to 1 is no longer a unit

clause. Hence, the pair of conflicts between z3 and z4 is not revealed and the search process does

not necessarily backtrack further.

As the above example suggests, after backtracking conditions are identified, conflicts are

iterated while a different conflict is found and the computed backtracking decision level does not

increase. Eventually, either a known conflict is revisited or the backtracking decision level

increases, in which case no more conflicts are iterated. The backtracking decision level is then the

minimum of the computed backtracking decision levels. Besides computing a lower backtracking

decision level, iterated conflicts reveal additional implicates of the clause database that can con-

tribute to pruning the search.

For combinational circuits, the iterated identification of conflicts can prove useful when-

ever the size of the j-frontier is large, since this facilitates finding distinct conflicts, and whenever

conflicts result from long implication sequences, since this facilitates finding other conflicts before

identifying known conflicts. However, the worst-case time complexity is quadratic in the size of

the clause database, and the existence of large j-frontiers is application-dependent. As a result, the

iterated identification of conflicts should only be optionally applied and reserved for those specific

circuit structures that create large j-frontiers. In case iterated conflicts are applied, we can limit the

number of iterated conflicts to a fixed value m, thus ensuring that conflict diagnosis is performed in

time linear in the size of the clause database.

3.6.2.2 Multiple Conflicts

As mentioned earlier in Section 3.5.2, implication sequence can yield multiple conflicts.

In this section we show that manipulation of multiple conflicts can be used to compute lower back-

tracking decision levels. Let be the set of conflicts identified by a given implica-

tion sequence using Deduce_MC(), described in Figure 3.6 on page 77. Equation (3.6) is used to

associate a conflicting assignment set with each conflict node κ i. Implicates of the consis-

κ1 κ2 … κm, , ,{ }

ACS
i

94

tency function are created with (3.8) or with (3.11), in which case a different set of UIPs is defined

for each κ i. By considering multiple conflicts, a larger number of conflicting clauses can be cre-

ated and added to the clause database. The backtracking decision level is computed according to:

(3.18)

Hence, the existence of multiple conflicts is used to find a minimum backtracking decision level

among the possible backtracking decision levels. From the results of Appendix A we can conclude

that the conflicting clause ωi for each κ i is a valid implicate of the consistency function ξ . Further-

more, each conflicting clause identifies an independent and sufficient set of assignments for a con-

flict to be detected; thus the backtracking decision level given by (3.18) is correct and

completeness is guaranteed.

Example 3.14. Figure 3.14 illustrates the application of multiple conflicts for identifying more

conflicting clauses and for finding lower backtracking decision levels. x1 is assumed to be asserted

due to a previous conflict with z1, denoted by the conflicting clause ω1 = (z1 + ¬w1 + ¬x1). As

shown in Figure 3.14-b, the resulting implication sequence leads to two conflicts, with z3 and with

z2, that are represented by the conflict nodes κ1 and κ2, respectively. A conflicting assignment set

is associated with each conflict node:

with κ1 and with κ2, respectively. As a result, the

two conflicting assignment sets are used to compute the backtracking decision level using (3.18),

i.e. due to κ2. We note that without multiple conflicts the backtracking deci-

sion level would be 4, provided κ1 was identified first (as would be the case with breadth-first

implications). Moreover, x1 is the only UIP of any of the conflicts, and thus the following conflict-

ing clauses are created:

βL min
1 i m≤ ≤

max δ x() x ν x(),() ACS
i∈{ }[]=

ACS
1 z1 0,() w1 1,() w3 0,() w4 0,() z3 1,(), , , ,{ }=

ACS
2 z1 0,() w1 1,() w2 1,() z2 1,(), , ,{ }=

βL min 4 2,() 2= =

ω2 z2¬ w2¬ x1+ +()=

ω3 z3¬ w3 w4 x1+ + +()=

ω4 z1 w1¬ w3 w4+ z3¬+ + +()=

ω5 z1 w1¬ w2¬ z2¬+ + +()=

95

where ω2 and ω3 are derived using (3.11), ω4 is associated with and ω5 with . The

effect of considering multiple conflicts is shown in Figure 3.14-c.

The actual implementation of the procedure for diagnosing multiple conflicts defines its

complexity. We start by analyzing a conflict diagnosis procedure that analyzes each conflict sepa-

rately, by computing its UIPs and associated conflicting assignment set. After processing all con-

flicts, (3.18) is used to compute the backtracking decision level.

x1

x6

x7

x8

x2

x9

x3

x4

x5

κ1

antecedent
assignment

01

x1 5

4

3

decision
level

Figure 3.14: Application of multiple conflicts

(a) Example circuit

(b) Implication graph

κ2

(c) Decision tree

2

κ1

κ1 and κ2

z1 = 0 @ 0

z2 = 1 @ 0

w3 = 0 @ 4

w4 = 0 @ 4

z3 = 1 @ 0

x1 = 0 @ 5 / 0

x7 = 1 @ 5 / 1

x5 = 1 @ 5 / 1

x6 = 1 @ 5 / 1

x8 = 1 @ 5 / 1

x9 = 1 @ 5 / 2

w1 = 1 @ 2

w2 = 1 @ 2

w1 = 1 @ 2

z1 = 0 @ 0

 of x1

w3 = 0 @ 4

w4 = 0 @ 4

w2 = 1 @ 2

z2 = 1 @ 0

z3 = 1 @ 0

ACS
1 ACS

2

96

Theorem 3.7. Diagnosis of multiple conflicts, where each conflict is separately diagnosed and

, has a lower bound on the worst-case run time of .

For most practical examples, the number of expected conflicts is usually small and so the

overhead of diagnosing all conflicts should in general be smaller than the bound given above.

Moreover, diagnosing multiple conflicts may contribute to significantly prune the search. A possi-

ble simplification for diagnosing multiple conflicts consists in relaxing the requirement to compute

UIPs for each conflict, thus accepting the derivation of conflicting clauses only for the conflict that

defines the backtracking decision level. In this situation, the worst-case time complexity for diag-

nosing multiple conflicts is still linear in . The procedure for diagnosing multiple conflicts is

shown in Figure 3.15. The implication sequence is traversed, and the highest decision level Dy that

contributes to the assignment of each node y is recorded. Afterwards, the conflict node κ with the

lowest recorded decision level is chosen. κ is then used for diagnosing the conflict. The procedure

given in Figure 3.15 computes UIPs for the chosen conflict node, and generates conflicting clauses

accordingly. Note that a conflicting clause involving the conflicting assignment set must be created

if backtracking is required, since it identifies the causes of conflicts at the backtracking decision

level.

Although the procedure shown in Figure 3.15 is more efficient in the worst case, it sacri-

fices the derivation of some information that would otherwise be computed by separately diagnos-

ing each conflict. Thus the number of identified conflicting clauses can be significantly smaller,

and conflicts for which a conflict clause is not created may be found later at other stages of the

search process. As with other tradeoffs of GRASP, the procedure that is best suited for diagnosing

multiple conflicts depends on the structure of the application problems.

Identification of multiple conflicts can be further improved. We start by identifying a set of

conflicting assignment sets that yield the same backtracking decision level βL. Any of these con-

flicting assignment sets can be chosen to generate a conflict at decision level βL. However, we can

create multiple conflicts at decision level βL by using the identified conflicting assignment sets. As

a result, if backtracking is required at decision level βL, then multiple conflicts can be diagnosed in

order to choose a lower backtracking decision level at decision level βL.

ϕ O N()= Ω N2()

ϕ

97

3.6.3 Implementation Tradeoffs

The proposed basic diagnosis engine and its variations add one or more conflicting clauses

to the clause database after diagnosing each conflict. For a large number of backtracks, the size of

the clause database grows accordingly, and this can introduce significant computational overhead

for processing subsequent queries. The purpose of this section is to describe other diagnosis

engines which guarantee that the size of the clause database does not grow exponentially in the

number of variables. We start by describing a diagnosis engine that guarantees a constant size

clause database, by trading off some diagnosis ability and by not implementing conflict-based

Figure 3.15: Linear-time diagnosis engine with identification of multiple conflicts

// Global variables: Implication graph IC

// Clause database ϕ
// Input variable: Current decision level c

// Output variable: Backtracking decision level βL

// Return value: CONFLICT or SUCCESS

//
Diagnose_MC (c, &β L)

{
traverse implication subgraph at decision level c

{ compute highest decision level Dy implying each y ← vy; }
find conflict node κ with lowest decision level Dκ;
set κ as chosen conflict node;

// Diagnose conflict on κ
U = Identify_UIPs(); // From implication graph
ΩU = Create_Conflicting_Clauses (U); // Using (3.11) and (3.13)
Update_Clause_Database (ΩU); // Update database with set Ω
βL = Compute_Max_Level(); // Using (3.6) and (3.18)
if (βL != c) {

ω = Create_Conflicting_Clause(); // Using (3.6) and (3.8)
Update_Clause_Database (ω);
define new conflict node κ; // Set up new conflict node
define α(κ) as the elements of ω;
return CONFLICT;

}
return SUCCESS;

}

98

equivalence. Afterwards, we describe a family of diagnosis engines that guarantee a polynomial

size growth of the clause database in the number of variables.

3.6.3.1 Constant Size Clause Database

In this section we discuss one alternative diagnosis engine that targets reducing the over-

head associated with maintaining the clause database during the search process. The main purpose

of this engine is to implement some of the pruning methods described in previous sections, while

guaranteeing that the size of the clause database remains constant throughout the search process.

The main differences of the new procedure are as follows:

1. A conflicting assignment set (referred to as level conflicting assignment set) is asso-

ciated with each decision level i.

2. A failure-driven assertion (FDA) is now defined as a 3-tuple that indicates a node

x whose value cannot be other than vx at decision levels greater than dx (i.e. that include the

global assignment set).

3. The antecedent assignment of an assertion is defined as follows7:

(3.19)

Every time a conflict is detected, a temporary conflicting assignment set ACS is computed

(with (3.6) on page 67). This conflicting assignment set is then used to update the level conflicting

assignment sets as follows:

(3.20)

An assertion is created for every UIP (u, ν(u)) of the implication sequence leading to a conflict. Its

value is and the assertion decision level is defined as the highest decision level that is identi-

fied as contributing to the conflict, where (u, ν(u)) is assumed to trigger the conflicting implication

sequence. The assertion decision level can be computed through causesof(x, u) defined in

7. In the actual implementation, a predicate asserted(x) indicates whether x is asserted. The sole
purpose of introducing (3.19) is to allow the conflict analysis equations of Section 3.4 and of
Section 3.6 to be used.

ACS i[]

x vx dx, ,〈 〉

Adx

x vx dx, ,〈 〉

A x() ACS i[]
i 1=

dx∪=

ACS i[] ACS i[] x vx,() ACS∈ δ x() i={ }∪←

ν u()

99

Section 3.4 (see page 70). As with the basic diagnosis engine, backtracking is required whenever

the node triggering the conflicting implication sequence is already asserted. In this situation, the

backtracking decision level βL is defined as follows:

(3.21)

Note that βL is always well-defined since the causes of any conflict must be assigned at some deci-

sion levels. At decision level βL (if βL ≠ 0) a conflict node is defined, which involves all the nodes

in CS[i], for all i less than or equal to βL. This forced conflict is diagnosed, and either the decision

node at decision level βL is asserted or a new backtracking decision level is computed (if the node

triggering the implication sequence at decision level βL was already asserted).

The pseudo-code for the diagnosis engine described above is shown in Figure 3.16 (which

is referred to as Diagnose_C()8). With respect to Diagnose(), the most relevant differences

are:

8. C indicates that the diagnosis engine guarantees a constant size clause database.

βL max i 0 i PI≤ ≤ ACS i[] ∅≠∧{ }=

// Global variables: Implication graph IC

// Input variable: Current decision level c

// Output variable: Backtracking decision level βL

// Return value: CONFLICT or SUCCESS

//
Diagnose_C (c, &β L)

{
Update_Level_ACS(); // Using (3.6) and (3.20)
U = Identify_UIPs(); // From implication graph
Create_FDAs (U); // Failure-driven assertions
βL = Compute_Max_Level(); // Using (3.21)
clear ;
if (βL != c) {

create new κ with incoming edges from all nodes in ;
return CONFLICT;

}
return SUCCESS;

}

ACS c[]

CS i[]
0 i βL≤ ≤∪

Figure 3.16: Pseudo-code for simplified diagnosis engine

100

1. The size of the clause database ϕ remains constant, since no conflicting clauses are explicitly

identified and added to ϕ .

2. Antecedent assignments of assertions are implicitly maintained with the conflicting assign-

ment sets . Hence, the overhead of manipulating large antecedent sets is eliminated.

3. Conflict-based equivalence is no longer implemented. This would require updating ϕ with

clauses derived from conflicts, which is exactly what Diagnose_C() avoids.

4. Each level conflicting assignment set is updated after a temporary conflicting assign-

ment set is computed.

5. Whenever backtracking is required, a conflict node κ is defined. The incoming edges to κ are

defined as all the elements of , where i ranges from 0 to βL.

6. must be cleared after diagnosing each conflict at decision level c.

7. Procedure Create_FDAs() defines each assertion as a 3-tuple 〈x, vx, dx〉 . As a result, proce-

dure Erase() (see Figure 3.2 on page 62) must ensure that assertions at each decision level d

are cleared as a consequence of the search process backtracking to d.

The proposed diagnosis engine also identifies FDAs due to unique implication points. In

addition, the diagnosis engine could handle iterated conflicts and multiple conflicts. Note, how-

ever, that implementation of iterated conflicts would be irrelevant, since all identified conflicts

update the level conflicting assignments sets, which would prevent finding lower backtracking

decision levels.

Theorem 3.8. The search algorithm for solving SAT, described in Figure 3.2 (see page 62), cus-

tomized with Select(VAR+VAL), Deduce() and Diagnose_C(), is sound and complete.

The proof of the above theorem hinges on the fact that, after each conflict, the union of the

level conflicting assignment sets is an implicate of the consistency function.

Although the diagnosis engine proposed in this section is simpler to implement and

ensures a constant size clause database, it has a few drawbacks. First, conflict-based equivalence is

no longer implemented. Second, the computation of the backtracking decision level is not pruned

as much as the one computed by Diagnose().

Example 3.15. The difference in computed backtracking decision levels is illustrated with the

ACS i[]

ACS i[]

ACS i[]

ACS c[]

101

example of Figure 3.17. Assume that the decision assignments on x1 and x2 imply the assignments

on w2 and w1, respectively. Further, let us consider first the application of Diagnose_C(). At

decision level 3, assume decision x3 ← 0, which causes a conflict with z2. Hence, is

updated with (w1, 0) and is updated with (z2, 1). Conflict diagnosis causes x3 to be

asserted to 1 at decision level 2. The next decision, x4 ← 1, satisfies the objective on z1 (note that it

actually satisfies y1 = 1@ 3 due to x3). The search process then tries to satisfy the objective on z4.

Let the next decision assignment be x5 ← 1. This assignment leads to a conflict with z3, such that

 is updated with (w2, 1), is updated with z3, and x5 is asserted to 0. (Note that

 is updated with (x5, 1), but is cleared after diagnosing the conflict.) The resulting implica-

tion sequence causes a conflict with z4. Thus, is updated with (z4, 1). Since x5 is asserted,

it is necessary to backtrack. The highest i such that is non-empty is 2. Hence the search

process backtracks to decision level 2, as shown in Figure 3.17-b. On the other hand, Diagnose()

would compute 1 as the backtracking decision level, because the two conflicts associated with x5

do not depend on assignments at decision level 2.

Figure 3.17: Difference in computed backtracking decision level

x3

1

1

x1

x3

x4

x2

1

0

1

x5

1

0

(2)

(1)

x4

x5

(a) Example circuit
(b) Backtracking decision levels

1

2

3

4

5

y1

w2 = 1 @ 1

w1 = 0 @ 2

z1 = 0 @ 0

z2 = 1 @ 0

z3 = 1 @ 0

z4 = 1 @ 0
(1) Diagnose_C()
(2) Diagnose()

ACS 2[]

ACS 0[]

ACS 1[] ACS 0[]

ACS 5[]

ACS 0[]

ACS i[]

102

In order to reduce the overhead of manipulating conflicting clauses and antecedent assign-

ments of assertions, the search process maintains a level conflicting assignment set for

each decision level i, each of which represents dependencies with respect to that decision level.

Whenever backtracking is required, this global dependency information is considered, and thus

unrelated conflicts are now related by considering the union of every . Consequently, for a

given conflicting condition of a search process, we can conclude that the backtracking decision

level computed with Diagnose_C() is always no less than the one computed with Diagnose().

Implementation

Identification of conflicts sets in Diagnose_C() is implemented as in Diagnose().

However, the level conflicting assignment sets are updated directly with references to the traced

variables, thus guaranteeing a total size of the level conflicting assignment sets of O(N). Conse-

quently, all decision level processing is implemented in time linear in the size of the initial clause

database. For combinational circuits with bounded fanin, this implies that processing each deci-

sion level (either implications or conflict diagnosis) is accomplished in O(N) time. Further note

that all asserted nodes have antecedent sets implicitly defined by the level conflicting assignment

sets. Hence, the definition of failure-driven assertions does not significantly increase the computa-

tional overhead of processing each decision level.

3.6.3.2 Polynomially Bounded Clause Database

We now describe diagnosis engines that represent possible compromises between Diag-

nose() and Diagnose_C(), by allowing restricted forms of conflict-based equivalence. Instead

of not adding conflicting clauses to the clause database, as in Diagnose_C(), we allow clauses of

size no larger than m to be added, while conflicts due to larger clauses are used to update the level

conflicting assignment sets . Each of these diagnosis engines is referred to as

Diagnose_Pm()9. A direct consequence of this approach is that the size of the clause database

can only grow polynomial in N, even if an exponential number of backtracks is assumed. When-

ever it is necessary to backtrack, if the causes of the conflict can be solely attributed to conflicting

9. Pm indicates that the diagnosis engine can cause a worst-case growth of the clause database that
is polynomial in N due to the conflicting clause size constraint m.

ACS i[]

ACS i[]

ACS i[]

103

clauses, then these clauses define the backtracking decision level. Otherwise, the level conflicting

assignment sets are consulted, by (3.21), for computing the backtracking decision level.

Diagnose_Pm() defines a hierarchy of diagnosis engines that guarantee a polynomial size

increase of the clause database, and that implement restricted forms of conflict-based equivalence.

It is worth noting that the identification of UIPs extends the usefulness of

Diagnose_Pm(), since UIPs reduce the size of conflicting clauses. The identification of UIPs

does not change the worst-case time complexity of Diagnose_Pm(), and it increases the likeli-

hood of creating clauses over updating the level conflicting assignment sets.

A related diagnosis engine consists of limiting the total number of added conflicting

clauses, without regard to the size of each clause. As with Diagnose_Pm(), the level conflicting

assignment sets are required to ensure that all dependencies are properly accounted for. This

approach guarantees a constant size increase of the clause database. Another variation is to con-

sider Diagnose_Pm() but where the total number of added conflicting clauses is bounded. This

diagnosis engine ensures a constant increase in the size of the clause database, and such that each

added clause has at most m literals.

Note that the most significant advantage of Diagnose_Pm() over Diagnose() is that

the space requirements are bounded by a polynomial in N. Hence, the time required to process a

given decision level never becomes exponential in N.

These different diagnosis engines provide different tradeoffs between computational over-

head at each decision level and the amount of search. Depending of the end application, each pro-

cedure may represent the best solution. For example, in the course of our work and in the context

of test pattern generation, a conflict diagnosis procedure similar to Diagnose_C() was described

in [155]. Experimental data suggests that the diagnosis ability of Diagnose_C() may be a bal-

anced solution for most practical test pattern generation problems.

3.6.4 Advanced Diagnosis Engines

The basic diagnosis engine, described in Section 3.6.1, is not guaranteed to identify con-

flicting assignment sets of minimum size. The purpose of this section is to study techniques to

remove redundancies from conflicting assignment sets.

104

Example 3.16. An example where a conflicting assignment set contains redundant information is

shown in Figure 3.18. The decision assignment x3 = 0 creates an implication sequence that leads to

a conflict. The conflicting assignment set that is identified (with (3.6) on page 67) is ACS = { (x3,

0), (y1, 0), (y2, 1), (z1, 0) } . We now express the conflicting assignment set in terms of the decision

assignments and assignments at decision level 0 (i.e. objective assignments), thus obtaining

. Now suppose the independent application of the

assignment set . In such a situation, the same conflict is

detected. Consequently, we can conclude that the assignment (r1, 0) is redundant since it does not

represent a necessary condition for identifying the same conflict. The derivation of this fact

required considering one subset of the original conflicting assignment set containing one element

less. The reduced conflicting assignment set can be used to reduce the number of backtracks. For

the above example, backtracking to the first decision level will no longer be required (assuming

that no other dependencies on r1 are identified).

In order to relate the size of conflicting assignment sets with the number of backtracks, we

minimize the size of conflicting assignment set defined in terms of decision variables and objective

assignments. As a result, if a (decision) variable assignment can be removed from a conflicting

assignment set, then the dependency of a conflict with respect to a decision level is eliminated.

When backtracking is required, removed decision variables will not be considered as target back-

tracking points. Consequently, by minimizing the size of the conflicting assignment set as pro-

posed, we are guaranteed to require no more backtracks, and we increase the likelihood of

reducing, in some situations, the total number of backtracks. As the above example suggests, it is

necessary to represent conflicting assignment sets in terms of decision variables and objective

Figure 3.18: Over-specified conflicting assignment set

r1 = 0 @ 1

x2 = 0 @ 2

x3 = 0 @ 3

y1 = 0 @ 1

z1 = 0 @ 0
y2 = 1 @ 2

AI r1 0,() x2 0,() x3 0,() z1 0,(), , ,{ }=

A x2 0,() x3 0,() z1 0,(), ,{ }=

105

assignments. Otherwise, we might reduce the size of a conflicting assignment set, but create condi-

tions for increasing the number of backtracks by introducing dependencies on other decision levels

not contained in the original conflicting assignment set.

Procedure Simplify_Conflict_Set_j(), for minimizing conflicting assignment

sets, is divided into three distinct phases:

1. Specify the conflicting assignment set in terms of its decision variables and objective assign-

ments, i.e. create AI. Erase all assignments.

2. For all i, , and for each subset A of AI, of size and composed only of deci-

sion assignments, use BCP() (described in Figure 2.6 on page 39) to test whether implica-

tions derived from A yield a conflict. If A yields a conflict, then record the associated conflict-

ing assignment set (referred to the primary inputs and objective assignments).

3. Pick one of the recorded conflicting assignment sets with the smallest size. (For example, one

acceptable heuristic is to pick the one involving the smallest decision levels.)

This procedure ensures that we identify the smallest set of node assignments of size rang-

ing from to , included in AI, that also causes a conflict. The complexity of the proce-

dure for any given j is:

(3.22)

where the term denotes the overhead of executing BCP(). The contribution of phase 1 is ,

it is negligible and it is not considered. Diagnosis engines based on the above procedure, referred

to as Diagnose_j(), can be readily implemented by appropriate modifications to procedure

Diagnose().

The idea of simplifying dependency sets has been extensively studied in constraint satis-

faction problems [19, 41, 42, 143, 169], truth maintenance systems [43, 44, 54] and logic program-

ming/automated deduction [20, 21, 130]. In satisfiability algorithms for combinational circuits,

redundancies on conflicting assignment sets require different forms of reconvergent fanout that in

practice are difficult to find. For example, that is the case for the example we used in Figure 3.18.

Therefore, we conjecture that minimizing conflicting assignment sets in clause databases associ-

1 i j≤ ≤ AI i–

AI j– AI

O ϕ
AI

AI i– 
 
 

i 1=

j

∑⋅
 
 
 

ϕ ϕ

106

ated with combinational switching circuits may not provide significant search pruning.

3.7 Preprocessing the Clause Database

Preprocessing a clause database entails the identification of implicates of the consistency

function, prior to searching for a solution to a query. In the SAT algorithm of Figure 3.2 (see page

62), preprocessing the clause database is performed by the preprocessing engine Preprocess().

The effort one is willing to spend in preprocessing a clause database defines the preprocessing

ability, and so a family of preprocessing engines Preprocess_m() can be defined.

Note that each deduction engine Deduce_k() can be used for preprocessing purposes.

Nevertheless, each of these deduction engines can be modified to identify more implicates. While

each Deduce_k() is based on diagnosing conflicts for creating implicates, Preprocess_m()

also examines the structure of implication sequences with the goal of deriving additional impli-

cates. As we show in the sequel, deriving implicates from the structure of implication sequences

can introduce a large number of redundant implicates. While the overhead of detecting and remov-

ing these redundancies can be acceptable from a preprocessing perspective, it can be prohibitive

for a deduction engine. The objective of this section is to illustrate how deduction engines can be

modified for preprocessing purposes.

For example, let us suppose the assignment x ← vx, that implies the assignment ,

with and causesof(y) = { (x, vx) } . This also implies that, in terms of the implication

graph, more than one path is involved in implying the assignment of y. On the other hand, the

assignment does not necessarily imply , even though this latter assignment is nec-

essary for a consistent assignment. Consequently, is an implicate of the consistency

function and may identify implications that otherwise might not be derivable.

Example 3.17. Let us consider the example circuit of Figure 3.19-a. x ← 1 implies z ← 1. Hence,

we can derive the implicate ω = (z + ¬x). Without this implicate z ← 0 would not imply x ← 0. ω

ensures that this assignment is implied.

In a more general situation, consider the assignment set { (x1, v1), …, (xm, vm) } , that

implies the assignment . Let us further assume that causesof(y) = { (x1, v1), …, (xm, vm) } .

y vy←

α y() 1>

y vy← x vx←

xvx yvy,{ }

y vy←

107

In such a situation, denotes an implicate of the consistency function. Note that

this implicate is only relevant if it identifies otherwise non-derivable implications. Suppose now

that there are other independent assignments, i.e. y is assigned due to the assignment set and due to

other assignments already specified for the circuit. Then, causesof(y), from (3.7) on page 67, can

be used to identify which nodes are actually responsible for implying the assignment of y. In such

a situation, the implicate to be created is given by:

(3.23)

which denotes the general form for the generation of implicates by preprocessing. The objective of

Preprocess_m() is to derive and simplify all implicates of the above form, for all assignments

of all subsets of size m of unassigned variables. The procedure for preprocessing a clause database

is given in Figure 3.20 and it follows the implementation of Deduce_k(). However, besides ana-

lyzing conflicts, any node assignment that is implied due to multiple implication paths causes a

new implicate to be added to the clause database. For each subset of nodes of size m, all possible

logic value assignments are tested. For each assignment, implications are derived. If a conflict is

detected, then the procedure generates a conflicting clause as Deduce_k() does. Otherwise, the

structure of the implication sequence is examined, and conflicting clauses are generated with

respect to each assigned node with an antecedent set of size larger than 1. (As mentioned earlier,

Figure 3.19: Example of preprocessing

x1
x2 x

z

x3

x z

(a) Applying Preprocess_1() (c) Redundancy in preprocessing

x

w

z = 1

(b) Effect of assignments on Preprocess_1()

x1
v1 … xm

vm yvy, , ,
 
 
 

ω wν w(){ }
w causesof y()∈

∪ yν y(){ }∪=

108

an antecedent set of size larger than 1 covers all cases of node assignments implied due to multiple

implication paths.) From the above discussion, we can conclude that preprocessing can introduce

some superfluous conflicting clauses, that are removed by Generate_Prime_Implicates().

Figure 3.20: Description of the preprocessing engine

// Global variables: Implication graph IC

// Clause database ϕ
// Return value: CONFLICT or SUCCESS

//
Preprocess_m()

{
if (!PREPROCESS_QUERY) return SUCCESS; // No preprocessing
if (Deduce() == CONFLICT) return CONFLICT;
status = SUCCESS; ϕm ← ∅;
Let Γ be the set of all sets of m unassigned nodes;
for (each set γ ∈ Γ and while status != CONFLICT) {

status = CONFLICT; ϕγ ← ∅;
for (each distinct logic value assignment to the nodes in γ) {

if (Deduce() == CONFLICT) {
ω = Create_Conflicting_Clause (); // Using (3.6), (3.8)
ϕγ ← ϕγ ∪ { ω };

} else { // No conflict detected
for (each assigned node y with) {

compute causesof(y); // Using (3.7) on page 67
create conflicting clause ω; // Using (3.23)
ϕγ ← ϕγ ∪ { ω };

}
status = SUCCESS;

}
Erase_Last_Assignments();

}
Generate_Prime_Implicates (ϕγ); // See Figure 2.7 on page 44
ϕm ← ϕm ∪ ϕ γ;

}
if (SIMPLIFY_ϕm) Generate_Prime_Implicates (ϕm);
ϕ ← ϕ ∪ ϕ m;
return Deduce();

}

α y() 1>

109

Preprocess_m() terminates in a conflict if it can establish that the clause database is not satisfi-

able.

Although not included in the procedure shown in Figure 3.20, UIPs can be identified

either if diagnosing a conflict, or for each assigned node due to multiple paths. UIPs reduce the

size of implicates, and as described below, can be applied in removing some forms of preprocess-

ing redundancy.

Further note that even though Preprocess_m() apparently derives more conflicting

clauses than Deduce_k(), the size of the clause databases computed by Deduce_k() and

Preprocess_m() are bounded by the final size of ϕ , i.e. the size of the prime implicate repre-

sentation ϕP. Hence, for k = m, Preprocess_m() tends to accelerate the derivation of prime

implicates. (This situation will not hold whenever Preprocess_m() just derives redundant

implicates.)

Preprocess_m() is defined without any form of relaxation. As with deduction engines,

we can define preprocessing with relaxation, Preprocess_m,R(). The procedure of Figure 3.9

(see page 81) can be straightforwardly adapted to implement Preprocess_m,R().

Example 3.18. A few more details of the operation of Preprocess_1() are described with the

example circuit of Figure 3.19-b. Suppose that the assignment z = 1 is given, and assume

Preprocess_1() is invoked. For γ = { w } , and for the assignment w = 0, then x ← 0. Hence,

from (3.7) the causes for assigning x are defined by { (w, 0), (z, 1) } . Consequently, the implicate

ω = (w + ¬z + ¬x) is created. Note that the implicate holds independently of the assignment to z,

i.e. it identifies a logical relation of the original clause database. Suppose now that for a different

query, x ← 1 and z ← 1. Then ω implies w ← 1, which would not be derived with Deduce()

alone.

The actual of implementation of Preprocess_m() may allow implicates to be added to

the clause database as they are identified. This solution increases the number of derived implicates,

but makes the final result dependent upon the order in which the subsets γ are processed. For

example, in the course of our work [155], and as a preprocessing step, we implemented

Preprocess_1() but allowing the clause database to be updated as new implicates were derived.

110

For combinational circuits, the best order of the variables consisted in starting from the primary

inputs and then proceed in level order to the primary outputs. This fact can be justified by noting

that by adding additional implicates, implication sequences are more likely to reach farther back-

wards than without dynamically adding implicates. Hence more implicates can then be created.

Despite the large body of research work on preprocessing techniques, particularly in test

pattern generation algorithms, the fact that preprocessing may introduce some redundant informa-

tion has been overlooked in the past.

Example 3.19. Consider the example circuit of Figure 3.19-c, and assume that the circuit is pre-

processed with Preprocess_1() without identifying UIPs (a related procedure is commonly

referred to as static learning in several algorithms for test pattern generation [70, 71, 102, 144,

145, 155, 162, 167, 174]). Preprocessing the circuit with Preprocess_1() yields the following

implicates (e.g. x ← 1 implies z ← 1, hence add clause to the clause database):

(3.24)

However, it is immediate that the first three implicates provide no additional implications than the

implications provided by the fourth implicate and by the original clause database. In fact, assume

z = 0; then the fourth implicate implies x ← 0, which then implies the assignments x1 ← 1, x2 ← 1,

and x3 ← 1, due to the NAND gate. Note that these assignments would otherwise be implied by the

first three implicates of (3.24). Even though these implicates are not subsumed by other implicates

in the clause database, they can be considered redundant.

The sole effect of these redundant implicates is to add computational overhead. Hence,

preprocessing ought to avoid introducing redundant implicates. In the case of Preprocess_1(),

the derivation of implicates based on UIPs can be used to prevent some of these redundant impli-

cates.

Example 3.20. For the example circuit of Figure 3.19-c, assume that Preprocess_1() identifies

UIPs. Let x1 = 0 be the first assignment. It then implies x ← 1, which in turn implies z ← 1. Node

x denotes a UIP, and so the clause added is (¬x + z). No other implicates are added because there is

only one implication path from x1 to x. Next, consider the assignment x2 = 0 (or x3 = 0). Again,

z x¬+()

z x1+() z x2+() z x3+() z x¬+()⋅ ⋅ ⋅

111

x ← 1 is implied and (from (¬x + z) due to breadth-first implications) z ← 1 is also implied. How-

ever, given the last implication sequence, no more implicates are derived. Finally, the assignment

x ← 1 implies z ← 1 (also due to (¬x + z)), but no more implicates are derived, since only one

implication path connects x to z. Consequently, identification of UIPs prevents Preprocess_1()

from creating redundant implicates.

As mentioned earlier in Chapter I, preprocessing methods are ubiquitous in algorithms for

constraint satisfaction problems [61, 99, 111, 126, 127, 169]. In test pattern generation restricted

forms of preprocessing techniques have been proposed in recent years as a possible solution to

reduce the complexity of search during the test generation phase [37, 71, 102, 105, 144, 145, 155,

162, 167, 174], as will be reviewed in Chapter V.

The hierarchy of preprocessing algorithms, described in this section, illustrates how any

degree of consistency can be attained prior to computing solutions to queries. The algorithms are

admittedly quite inefficient for large m, and more efficient procedures ought to be devised for those

cases. The advantages of preprocessing are dependent on the application. For example, in test pat-

tern generation, it is now commonly accepted that simplified forms of Preprocess_1() have

advantages over no preprocessing [37, 71, 102, 106, 144, 155, 162, 167, 174]. In Chapter VII, we

provide experimental results that show that this may not always be the case.

3.8 Postprocessing Engine

Solutions computed by the SAT algorithm can have redundancies. This means that some

decision assignments are irrelevant for satisfying the specified objectives and can be discarded. For

some applications, solutions of a smaller size may be particularly useful. In addition, the search for

different queries to the clause database may have portions of the decision tree that are isomorphic.

In this situation, cached information of the solution to each query can be used to simplify the

search for subsequent queries.

This section studies techniques for removing redundant decision assignments from solu-

tions and for caching information regarding identified solutions to queries. The techniques pro-

posed apply exclusively to clause databases derived from combinational circuits, and specifically

assume a circuit structure.

112

3.8.1 Removing Redundancies from Solutions

The solution computed for a given query can contain some redundancies because some

decisions may be irrelevant to satisfying the original objectives.

Example 3.21. Consider the example circuit of Figure 3.21-a. where the order of decisions of Fig-

ure 3.21-b is assumed. GRASP, configured with Deduce() and Diagnose() would compute the

following assignment set:

However, it is clear from the circuit that the assignments x1 = 1 and x2 = 1 are not relevant for sat-

Figure 3.21: Over-specification of satisfying assignment

x1

x6

x2

x3

x4

x5

(a) Example circuit

1

0

x1

x3

x4

x2

1

1

1

x6

x5

1

(b) Decision tree

• Computed solution:

• Another valid solution:

A x1 1,() x2 1,() x3 0,() x4 0,() x5 1,() x6 1,(), , , , ,{ }=

A x3 0,() x4 0,() x5 1,() x6 1,(), , ,{ }=

0

(c) Valid solutions to the satisfiability problem

y1

y2

y3

y4
y7

y5

solution

y8y6

z1 = 0 @ 0

A x1 1,() x2 1,() x3 0,() x4 0,() x5 1,() x6 1,(), , , , ,{ }=

113

isfying the original objective, and hence these assignments are said to be redundant. Accordingly,

 also constitutes a valid satisfying assignment. This lat-

ter assignment set is preferred in some applications of satisfiability algorithms. Moreover, we

observe that the assignment set A can be further simplified, as is shown below.

Even though the search algorithm does not provide direct mechanisms for simplifying sat-

isfying assignments, in this section we describe simple techniques for removing redundancies

from solutions.

The following analysis assumes that a solution to a query has been found, and that our

goal is to identify which decisions effectively contribute for satisfying the query. Let us consider

an assignment set AS with respect to the primary inputs,

 (3.25)

that satisfies a set of goals at the primary outputs. The resulting complete node assignment is used

to create the node justification graph (JG), which describes how the primary output node objec-

tives are justified, by recursively identifying how each assigned circuit node is justified by the

assignments to its fanin nodes.

The construction of JG requires a few preliminary definitions. For each assigned node y,

with y = vy, let M(y) denote the set of fanin nodes that justify y under the following conditions:

1. M(y) is a minimal subset of fanin nodes of y such that the assignments to the nodes in M(y)

justify the value of y.

2. M(y) has the least highest decision level over all possible sets M(y). If more than one candi-

date M(y) has the least highest decision level, choose the M(y) with the lowest highest impli-

cation level for the nodes assigned at the highest decision level in each M(y).

Note that for simple gates either M(y) contains all gate inputs or contains only one gate

input, depending on whether the gate respectively assumes a non-controlled or a controlled value.

(A definition of controlling/non-controlling values can be found in [1, p. 59].)

Example 3.22. For example, let y = 0 @ 0 be the output of an AND gate, , such

that x = 0 @ 1 / 3, w = 0 @ 1 / 5 and u = 0 @ 2 / 1. The value of y is justified by any of its inputs,

A x3 0,() x4 0,() x5 1,() x6 1,(), , ,{ }=

AS x ν x(),() x PI∈ ν x() X≠∧{ }=

y AND x w u, ,()=

114

and so any of these nodes can potentially define M(y). Node u is not considered because it is

assigned at a decision level higher than that of either x or w. Consequently, M(y) = { x } , because

both x and w are assigned at the same decision level and x has the lowest implication level.

Using the above definitions, the node justification graph JG = (VJ, EJ) is created as fol-

lows:

1. Every primary output objective z = vz corresponds to a vertex η (z) in VJ.

2. For each vertex η (y) in VJ, denoting the assignment y = vy and such that η (y) has no incom-

ing edges and y is not a primary input, identify M(y). For each node w in M(y), add η (w) to VJ

and let .

From the definition of JG, it is clear that there may be assigned nodes not in JG. In some

situations, as illustrated by the example of Figure 3.21, every assigned node at a given decision

level is not in JG. This then signifies that such decision assignments are irrelevant for satisfying the

original objectives. We further note that in some situations the node justification graph corresponds

to a subgraph of the implication graph, but in general this is not the case. Justifications are gate

input-output relations, whereas the implication graph denotes how implication sequences evolve,

which are not necessarily based on gate input-output relations.

The set of primary input assignments to be considered is defined as follows:

(3.26)

where, .

Example 3.23. The node justification graph for the example circuit of Figure 3.21 is shown in Fig-

ure 3.22. The construction of JG reveals that the decisions on x1 and x2 are redundant. Further-

more, from (3.26) the reduced assignment set becomes AS' = { (x3, 0), (x4, 0), (x5, 1), (x6, 1) } .

It is important to note that the assignment set defined by (3.26) is not minimal in the num-

ber of decision assignments. This fact results from the order in which decision assignments are

made, which may require considering a decision that otherwise could be made redundant. Con-

sider again the example circuit of Figure 3.21-a and let be an

assignment set. By inspection, we can conclude that is also a solution to the original query,

η w() η y(),() EJ∈

AS' x ν x(),() x PI∈ η x() V J∈∧{ }=

AS' AS⊆

AS'' x3 0,() x4 0,() x6 1,(), ,{ }=

AS''

115

because implies the assignments that were otherwise implied by the assignment of x5.

As the above example suggests, a solution assignment set can be further simplified by sep-

arately considering some of its subsets. For each such combination, logical implications are

derived, and one tests whether all the objectives are satisfied. If so, then the subset of the original

assignment set is indeed a solution to original set of objectives. The size of the subsets depends on

the amount of effort one is willing to spend reducing the size of the solution assignment set. In

general, we define redundancy removal of order k to signify that for an original solution assign-

ment set of size , all subsets of size or larger are analyzed. A straightforward imple-

mentation of these ideas is given in Figure 3.23. Basically, for each subset of variables of AS of

size greater than or equal to , a tentative solution for the objectives is checked. If one of

these subsets is indeed a solution, then it represents one possible reduced assignment set for the

original query. The procedure starts from the smallest subset of variables and proceeds to the larg-

est subsets (i.e. of size). The outer loop can be removed if one is only interested in solu-

tions of size . For each j, the number of subsets to be analyzed is:

Since testing whether a given assignment set is a solution requires time, then an upper

η (z1)
η (x3)

η (x4)

η (y5)

η (y3) η (y6)

η (y8)

η (x5)

η (y4)

Figure 3.22: Node justification graph (JG) for the example circuit of Figure 3.21

η (y1)

η (x6)

x6 1←

AS AS k–

AS k–

AS 1–

AS k–

AS

AS j– 
 
  AS

j 
 =

O ϕ()

116

bound on the run time of the procedure of Figure 3.23 is given by:

(3.27)

that basically limits the applicability of the procedure to small k. As a final remark, we emphasize

that for any k it is not possible to guarantee a solution of minimum size. Such minimum size solu-

tion may only be defined with decision assignments not even involved in the computed solution.

For k = |AS|, we can guarantee that the solution of minimum size is computed, given the original

solution.

The significance of removing redundancies from solutions to queries depends on the end

application. In Chapter V, we describe the extension of these ideas to test pattern generation. For

circuits where a large number of decisions are not relevant for the identification of a solution,

removing redundancies from a satisfying assignment has several advantages, most noteworthy,

testing time and test size.

3.8.2 Caching Solutions

In applications where a large number of queries is to be posed to the clause database, it is

often useful to record previously identified solutions so that similarities between distinct queries

can be used to reduce the search effort. For example, this is the case in test pattern generation,

Figure 3.23: Pseudo-code for removing redundancies from solutions

Remove_Solution_Redundancies_k (AS)

{
create_JG();
for (j = k down to 1) {

let Γ j be the set of all subsets of AS with size ;
for each (subset γ of Γ j) {

clear all assignments except objectives;
if (γ satisfies the objectives) return γ;

}
}
return AS;

}

AS j–

O ϕ
AS

j 
 

j 1=

k

∑⋅
 
 
 

117

where a large number of faults must be detected and detecting each fault can be viewed as an

instance of SAT. In situations where the search effort to identify the solution to a query is signifi-

cant, it can be useful to identify ways to encode that solution in order not to repeat the same search

effort again for subsequent queries. Such encoding can be viewed as caching the solution to the

query in order to use it again afterwards. In this section we analyze one possible procedure for

caching solutions to queries on clause databases.

Example 3.24. An example illustrating how cached solutions can be defined and used is shown in

Figure 3.24. The first set of objectives is assumed to be z1 = 1 and z2 = 0. Let us assume that the

ordered sequence of decision assignments is x1 = 0, x2 = 0, w1 = 0, w2 = 0, w3 = 0, w4 = 0. We

observe that after the second decision assignment (i.e. x2 = 0), s1 ← 1. Due to this assignment, and

because z2 = 0, u ← 0 is implied. As a direct consequence, the j-frontier10 after decision level 2

consists only of node u. Moreover, the above set of decision assignments denotes a solution to the

original set of objectives.

The second set of objectives is given by z3 = 1 and z4 = 0. Let us assume that the ordered

sequence of decisions is now y1 = 1, y2 = 1, w1 = 0, w2 = 0, w3 = 0, w4 = 0. However, for this sec-

ond query, after the second decision (i.e. y2 = 0) we have , which then implies (with z3 = 1)

. Hence the j-frontier becomes the same as in the previous case. Furthermore, with respect

10. Since combinational circuits are explicitly assumed, j-frontiers are well-defined. A definition of
j-frontier is given by (3.4) on page 60.

Figure 3.24: Example of caching solutions

x1

y1

w2

w4

w3

w1

y2

x2

u

z1

z2

z3

z4

s1

s2

t1

t2

t3

t5

t4

s2 0←

u 0←

118

to the first query, all decision nodes involved in decisions at decision levels greater than 2 are still

unassigned. The same holds true for all other nodes that were assigned at decision levels greater

than 2. Consequently, we can use the information of the previous solution to immediately identify

a solution to the current set of objectives. The solution to the current query uses the decision

assignments already made (i.e. y1 = 1 and y2 = 1) and extracts from the previous solution the set of

decision assignments required to satisfy u = 0 (i.e. w1 = 0, w2 = 0, w3 = 0, w4 = 0). For this second

query, the search process identifies a solution after two decisions. Further note that the two com-

puted solutions are actually distinct. Caching solutions allows extracting parts of a cached solution

to complete the solution currently being computed.

The procedure we propose identifies a set of node assignments (or lack of such assign-

ments) which guarantee that a solution to a new query can be constructed if the assignments of the

new query are adequately related with the assignments of some previously cached solution.

Let us assume that the solution to a query has been computed, and that the node justifica-

tion graph has been created. Given the definition of JG, the decision level at which each node y is

assigned, with η (y) ∈ VJ, provides a partition of VJ. Let K be the depth of the decision tree, and let

 denote each set in the partition of VJ, such that if and only if .

Note that from the discussion in the previous section, some sets Pj may be empty.

Define a predicate J(w, y) to hold true if and only if in JG either w contributes to justifying

y (i.e. w ∈ M(y)) or, conversely, y contributes to justifying w (i.e. y ∈ M(w)). Hence, J(w, y) holds

true if and only if either (η (w), η (y)) ∈ EJ or (η (y), η (w)) ∈ EJ. Furthermore, we define a level cut

Tj, for decision level j, as follows:

(3.28)

Tj contains the vertices p of VJ such that either:

1. p ≡ η(w), w is assigned at decision level j, and there exists y such that J(w, y) holds, with q ≡

η (y) and δ(y) > j.

2. p ≡ η (w), w is assigned at decision level i, with i < j, and there exists y such that J(w, y) holds,

with q ≡ η (y) and δ(y) > j.

P0 P1 … PK, , , η y() P j∈ δ y() j=

T j p V J∈ p P j∈ p q,() EJ∈ q p,() EJ∈∨[] q Pl∈ l j>∧ ∧ ∧{ } ∪=

p V J∈ p Pi∈ i j< p q,() EJ∈ q p,() EJ∈∨[] q Pl∈ l j>∧ ∧ ∧ ∧{ }

119

Consequently, level cut Tj contains all vertices associated with nodes assigned at decision

levels less than or equal to j such that these nodes contribute to justify or are justified by nodes

assigned at decision levels higher than j.

Example 3.25. Consider the example circuit of Figure 3.24. For the first query, at decision level 4

and after deriving implications (due to w2 = 0), T4 is defined by,

(3.29)

η (u) belongs to the second subset because u is assigned at decision level 2, and there are nodes

assigned at decision levels higher than 4 that contribute to justify u.

Each level cut Tj uncouples assignments at decision levels greater than j from assignments

at decision levels less than or equal to j. In particular, after defining Tj, any node y assigned at a

decision level greater than j, can only contribute to justify or be justified by nodes w assigned at

decision levels greater than j or such that η (w) is in Tj.

Lemma 3.1. Assume a solution to a query identified by an assignment set A, and let the associated

node justification graph JG be defined. For each decision level j, define Tj with (3.28). In such a sit-

uation, for any node y, such that J(y, x) holds for x assigned at a decision level greater than j, either

y is also assigned at a decision level greater than j or is such that η (y) ∈ Tj.

Let the assignment set A be a solution of size K to a query, and let Tj be a level cut associ-

ated with A. Suppose now a new query, such that at decision level c with current assignment set Ac,

the assignments implied by Tj are matched, and any assignment (under A) at a decision level

greater than j is not contradicted. Then a solution to the present query is to append to Ac the result

of the decision assignments in A after decision level j. These ideas form the basis for defining and

using cached solutions.

Define the assignment set associated with each Pj and each Tj as follows:

(3.30)

T4 η t1(){ } η u(){ }∪=

A P j() y ν y(),() η y() P j∈{ }=

A T j() y ν y(),() η y() T j∈{ }=

120

Assume a solution AS (from (3.26)) to a query, and define each Pj and Tj accordingly. Next,

assume a new query, such that the associated search process is currently at decision level c. Then, a

solution can be identified if the following condition holds for one of the decision levels j of the pre-

vious solution, with , and :

(3.31)

that basically requires that, under the current partial node assignment, the node assignments of the

elements of the level cut Tj to be matched, and assignments of the previous solution, defined at

decision levels greater than j, not be contradicted. The computed solution to the current query is

thus defined by:

(3.32)

where AS is the solution to the previous query, given by (3.26), that is associated with each C(j).

The following result guarantees that a solution can indeed be found if one of the conditions C(j) is

matched:

Theorem 3.9. If one of the conditions identified by (3.31) holds, then given by (3.32) is a

solution to the query.

The implementation of the above ideas requires maintaining a database of solutions, Σϕ,

where each entry of Σϕ is a 2-tuple (C, A), such that C encodes one of the conditions given by

(3.31) and A identifies the solution assignment set associated with the primary inputs that defines

C. Whenever a new query is being processed, and after deriving logical implications, the database

of solutions is consulted. If (3.31) holds for a condition C of some entry (C, A) of Σϕ, then (3.32) is

used, along with A, to construct the primary input assignment representing the solution for the cur-

rent query.

The definition of Tj can be simplified by not considering nodes in the j-frontier, i.e. by

only considering, in (3.28), nodes with outgoing edges to nodes assigned at decision levels greater

than j. In such a situation, each condition C(j) must require the j-frontier of the current query to be

1 j K≤ ≤ P j ∅≠ T j ∅≠

C j() ν y() vy=() ν y() vy≠()
y vy,() A Pl()∈

∏
l j 1+=

K

∏⋅
y vy,() A T j()∈

∏=

AS' x ν x(),() x PI∈ ν x() X≠∧{ } x vx,() x PI∈ ν x() X= x vx,() AS∈∧ ∧{ }∪=

AS'

121

included in the j-frontier of the cached solution. Let JFj denote the j-frontier at decision level j for

the previous query. Then (3.31) can be rewritten as follows:

(3.33)

This condition has some advantages over (3.31), particularly because we can just request the cur-

rent j-frontier to be included (and not to exactly match) the j-frontier, at decision level j, of the pre-

vious query. (Note, however, that the above condition can still be somewhat restrictive with respect

to the requirements on A(Pj) and A(Tj).)

Example 3.26. In order to illustrate how solutions are cached and used to reduce the amount of

search for subsequent queries, we consider again the example of Figure 3.24. The analysis

assumes (3.33), i.e. Tj does not include nodes in the j-frontier. After the solution to the first query

(i.e. z1 = 1 and z2 = 0) is computed, the constructed decision tree and resulting node justification

graph yield the data shown in Table 3.2. In particular, we record the j-frontier and the assignment

set A(Tj) associated with each element Pj of the partition of VJ. Consider now the second query

(i.e. z3 = 1 and z4 = 0). The first two decision assignments are y1 = 1 and y2 = 1. At this point, the j-

frontier becomes . Furthermore, none of the nodes with assignments in A(Pj), with , is

assigned. Hence, (3.33) is satisfied for decision level j = 2 of the previous query. Using (3.32), the

C j() JF c() JF j⊆() ν y() vy=() ν y() vy≠()
y vy,() A Pl()∈

∏
l j 1+=

K

∏⋅
y vy,() A T j()∈

∏⋅=

Decision level JF(j) A(Tj)
Assignments at higher

decision levels

j = 0 { z1, z2 }

1 { z1, z2 }

2 { u } w1, w2, w3, w4, t1, t2, t3, t4, t5

3 { u } w2, w3, w4, t1, t2, t3, t4, t5

4 { u } w3, w4, t2, t3, t4, t5

5 { u } w4, t2, t3, t4, t5

6 none

Table 3.2: Conditions for matching cached solution

∅

x1 0,(){ }

∅

w1 0,(){ }

t1 0,(){ }

w3 0,(){ }

∅ ∅

u{ } j 2>

122

solution to the current query becomes:

and hence the search effort of processing the last four decision assignments is saved.

Note that caching solutions poses a tradeoff between the number of saved decision assign-

ments and the overhead to manipulate the solutions database. Hence, caching solutions is only use-

ful when the effort to compute a related solution is significant. For example, we can just cache

solutions for which a significant number of backtracks is required or a large decision tree is con-

structed.

Note that redundancy removal for is not guaranteed to increase the ability to match

solutions in the solution database. Reducing the size of a solution implies that some later decision

assignments now guarantee the implications previously derived by earlier decision assignments.

Hence, the sequence of implications that allow finding a solution is changed. This may affect neg-

atively the ability to match partial node assignments with minimized (and cached) solutions. Con-

sequently, caching solutions must be handled independently of redundancy removal from

solutions.

Perspective

The proposed procedure for caching solutions is inspired by Giraldi and Bushnell’s work

in test pattern generation [70, 71], even though the idea of caching solutions to search problems

had been proposed before in other areas (see for example [57]). Nevertheless, our procedure intro-

duces two improvements. First, it is independent of the test pattern generation problem representa-

tion. Second, and more important, the node justification graph eliminates some of the redundant

decision assignments, whereas in Giraldi and Bushnell’s work all decision assignments are consid-

ered11. Results reported in [71] indicate that partial solutions are often matched, thus allowing the

11. The description of Giraldi and Bushnell’s algorithm (EST) [70, 71] does not specify how the j-
frontier is handled. Clearly, the information associated with a given stage of the search process (in
EST referred to as a state) must contain the j-frontier, since otherwise the procedure would be
incorrect. Assuming that the j-frontier is properly encoded, then each state representation in EST
includes some C(j) (in our approach) as well as some superfluous conditions on other node assign-
ments.

AS' y1 1,() y2 1,() w1 0,() w2 0,() w3 0,() w4 0,(), , , , ,{ }=

k 2≥

123

search process to terminate earlier. The extension of the method we propose to test pattern genera-

tion (see Chapter V) is guaranteed to identify no fewer matches than that of [71].

3.9 Decision Making Procedures

In this section we study techniques for guiding the search process. As with the analysis of

other techniques, we emphasize the non-heuristic aspects of decision making. Consequently, we

start by studying techniques for reducing the number of decision variables. We then study proce-

dures for selecting decision assignments. In the last subsection, we describe heuristic techniques to

choose decision variables in SAT algorithms which can be related to well-known heuristic princi-

ples of search. As in the previous section, we explicitly assume a clause database associated with a

combinational circuit. Hence, for each clause database a set of primary inputs is well-defined.

3.9.1 Reducing the Number of Decision Variables

Procedures for reducing the number of decision variables in circuit satisfiability proce-

dures date back to FAN [62], where the concept of (static) head line was first proposed. A head

line is the output of a fanout-free sub-circuit [1, pp. 208-209], and can thus be satisfied to any logic

value in linear time in the size of its transitive fanin12. During the course of our work, we proposed

the concept of dynamic head line [155]. A dynamic head line is a circuit node that becomes the

output of a fanout-free sub-circuit due to assignments to some of the remaining circuit nodes.

While static head lines are computed before starting the search process, dynamic head lines are

updated dynamically, as the search process evolves.

Another related concept is the notion of a (topological) don’t care node, first proposed in

[109]. Don’t cares denote circuit nodes whose logic value is irrelevant for the satisfiability (or path

sensitization) problem being solved. The identification of don’t care nodes is useful because it may

prevent long implication sub-sequences bearing no relevancy to the query being solved. An inte-

grated algorithm for the dynamic identification of don’t care nodes and head lines is described in

[155], and it is basically based on counting, either statically or dynamically, the number of effec-

12. Although not specified in [1], the function of each gate is assumed to be reasonable. For exam-
ple, if the circuit is composed of gates whose computed output function is always identically 0 (or
1), then the output of a fanout free sub-circuit is not be satisfiable in linear time.

124

tive fanout nodes of each node, and on relating fanout-free head lines.

In this section we propose to relate the identification of head lines and don’t cares in com-

binational circuits with the application of the consensus operation and the pure literal rule [38] on

clause databases. This relationship then provides a formal justification to the identification of head

lines and don’t cares; it also provides new insights on how to simplify the search space by further

reducing the number of decision variables in the clause database. The analysis is restricted to cir-

cuits composed of simple gates, where simple gates are represented with the template CNF formu-

las of Table 2.1 (see page 35).

Example 3.27. Let us assume a combinational circuit and let z = AND(x1, x2, x3), such that x1, x2

and x3 are fanout-free head lines. The corresponding CNF formula is given by:

(3.34)

Thus, each of the variables x1, x2 and x3 participates in exactly two clauses, in one as a positive lit-

eral, and in the other as a negative literal. Let denote the operation of

Davis-Putnam resolution (see Figure 2.10 on page 48); then is independent of x1. (Note that

since x1 is a fanout-free head line, then x1 is only input to z.) Furthermore, in , literals on x2 and

x3 only appear as positive. Recall, from Section 2.5.4 on page 52, that the pure literal rule states

that if a variable appears in only one literal form (either positive or negative), then all clauses con-

taining such a literal can be removed, because assigning that literal satisfies those clauses without

affecting any of the other clauses. Hence, the clauses containing a literal in x2 or in x3 can be

removed. After this sequence of operations, the resulting clause database does not contain literals

on x1, x2 and x3. Furthermore, by proper bookkeeping, z can now be identified as a new head line.

The application of restricted forms of consensus and the pure literal rule also permit the

identification of dynamic headlines. Let us assume that for the above AND gate x1 is not a head-

line. Further assume that x1 is assigned value 1. Consequently, (x1 + ¬z) is satisfied and literal ¬x1

is set to 0. The application of consensus with respect to x2 and the subsequent application of the

pure literal rule allow defining z as a new head line.

The above examples illustrate how the application of a restricted form of Davis-Putnam

x1 z¬+() x2 z¬+() x3 z¬+() x1¬ x2¬ x3¬ z+ + +() γ⋅ ⋅ ⋅ ⋅

ϕ' Consensus ϕ x1,()←

ϕ'

ϕ'

125

resolution and the pure literal rule can be used to describe the static or dynamic identification of

head lines. The same techniques can be applied to a node that does not contribute to satisfying the

set of objectives, i.e. a don’t care node. For example, consider a fanout-free primary output z. Con-

sensus with respect to z just yields tautologous clauses. This fact is justified by the CNF formula of

each gate. This formula has clauses with negative and positive literals on z. However, a clause with

a positive literal in z necessarily contains a literal l whose complement also appears in the clause

with the negative literal in z. Hence consensus yields a tautologous clause. We can thus conclude

that by iterated application of restricted consensus, don’t care variables are removed from the

clause database.

Example 3.28. Consider again the example gate, z = AND(x1, x2, x3), but now z is a don’t care

variable (without fanout nodes) and x1, x2 and x3 are internal circuit nodes. Let us consider consen-

sus with respect to z. The application of (3.34) only generates tautologous clauses, and thus all ref-

erences to z are erased from the clause database.

The application of consensus and the pure literal rule can be used to describe further sim-

plifications to the clause database that find an equivalent in its circuit counterpart.

Example 3.29. Consider the examples of Figure 3.25. For the example circuit of Figure 3.25-a, the

derived clause database is:

t
z = 1t

z1

z2

z3

y1

y2

y3

(a) With fanout (b) Early justification

Figure 3.25: Simplification of clause databases

u
γ

126

(3.35)

where γ is a CNF sub-formula on z1, z2, z3 and other variables, and where input variables t, y1, y2

and y3 are known to be head lines. Furthermore, y1, y2 and y3 are fanout-free, and t fans out only to

z1, z2, and z3. Consider the application of consensus with respect to y1, y2 and y3. Thus,

 becomes the new clause database, where clauses in y1, y2 and

y3 are removed. Now we observe that t only appears as a positive literal and thus, by the pure literal

rule, the clause database is further simplified to γ. Consequently, even with t not being fanout-free,

we are able to simplify the clause database and base further decision assignments on the new head

lines z1, z2 and z3.

With respect to the example of Figure 3.25-b, let t be a fanout-free head line. The original

CNF formula for the NAND gate is given by . Since z = 1, then

the binary clauses are satisfied, and the CNF formula reduces to (¬ t + ¬u). In this situation, the

value of z can be justified by t, since clause (¬ t + ¬u) can be satisfied by the pure literal rule (note

that t does not participate in any other clause because it is a fanout-free head line). In terms of node

assignments, we say that since t is a fanout-free head line, then we are free to assign to it the nec-

essary value to justify z. Finally, we conclude that the set of objectives (which includes z) is satisfi-

able if and only if it is satisfiable without objective z = 1. This operation is not a decision, and

hence it is no longer necessary to decide the assignment on t.

Simplification of the clause database, with the goal of identifying don’t care nodes and

head lines, is organized as follows:

1. For each variable with either only one positive or negative literal, apply Davis-Putnam con-

sensus.

2. Apply the pure literal rule to each variable whose literals are either all positive or all nega-

tive.

3. Repeat while the restricted consensus operation can be applied. Record changes to the set of

head lines.

y1 z1¬+() t z1¬+() t¬ y1¬ z1+ +()⋅ ⋅ ⋅

y2 z2¬+() t z2¬+() t¬ y2¬ z2+ +()⋅ ⋅ ⋅

y3 z3¬+() t z3¬+() t¬ y3¬ z3+ +() γ⋅ ⋅ ⋅

t z1¬+() t z2¬+() t z3¬+() γ⋅ ⋅ ⋅

t z+() u z+() t¬ u¬ z¬+ +()⋅ ⋅

127

This procedure can be readily applied to a clause database, and taking into consideration

the CNF formula of each gate, it can also be directly applied to structural circuit representations

composed of simple gates. For more general combinational circuits, the algorithm of [155] can be

used, and completed with the above procedure whenever it applies.

3.9.2 Deciding Assignments

The simplest decision making procedure is to assume a fixed order of the decision vari-

ables, and default assignments, and use that fixed order to guide the search process. It is commonly

accepted that such procedures may lead to decision trees larger than necessary (on average prob-

lems), and are seldom used. Some exceptions do exist however. In test pattern generation, exam-

ples of static ordering decision making procedures can be found in the work of Cox and Rajski

[37] and Larrabee [106]. Cox and Rajski’s decision making procedure just uses the original order-

ing of the variables and always starts by assigning 0 to the decision variable. In [37], the large

number of aborted faults for some of the benchmark circuits may be justified by this decision mak-

ing procedure. Larrabee’s algorithm orders variable assignments statically, by the expected num-

ber of implications they can (statically) cause. Different orders are proposed in [105]; for example,

start by assigning variables to true with the largest expected number of implications. This variable

order is then used to search for a solution.

Decision making procedures based on dynamic ordering basically choose the next deci-

sion assignment based on feedback from the search process. We distinguish two broad categories:

1. Trace based. These procedures use information, regarding the structure of the problem repre-

sentation and the objective to be satisfied, to decide the next decision. Examples are simple

backtracing [72, 160] and multiple backtracing [62, 144]. In all cases, a tentative goal (set of

goals) is specified, which we refer to as the decision objective(s). Backtracing then chooses a

decision assignment likely to satisfy the decision objective(s). Trace based procedures usually

use topological measures to decide which paths to trace and which nodes to assign.

2. Greed based. These procedures try to make decision assignments that satisfy an immediate

goal, while expecting that such decision simplifies identifying a solution to the query. Several

mechanisms exist to choose the (greedy) decision assignment. [162] proposes choosing a de-

128

cision assignment that satisfies at least one clause. A simple extension would consist of esti-

mating the number of satisfied clauses or assigned nodes and pick the decision assignment that

maximizes the estimate. Some other greedy procedures attempt to satisfy the smallest clause

in the clause database [64, 125].

Admittedly, one can devise a wealth of ways for deciding the next decision assignment.

Experimental evidence in test pattern generation tends to support the impression that almost all

reasonable decision making procedures are useful and that none is sufficient [26, 85, 123]. Usually,

most decision making procedures are able to handle a large number of faults. However, most deci-

sion making procedures also have tremendous difficulty with a small number of faults, which vary

with each procedure. As a result, in recent years some authors have proposed to dynamically

switch between decision making procedures whenever a threshold on the number of backtracks is

reached. Examples of the application of this idea can be found in [105, 123, 162, 174]. Experimen-

tal results proposed in [105, 123, 162, 174] suggest that dynamic switching can be particularly

helpful.

Note that GRASP can readily allow for dynamic switching between decision making pro-

cedures, assuming that conflicts are diagnosed with Diagnose(). With Diagnose(), all conflict

information is recorded as implicates of the clause database. Whenever the search process switches

to a new decision making procedure, all relevant information regarding conflict diagnosis has been

incorporated into the clause database, and can be used to prune the search for the new decision

making procedure. Note that Diagnose_Pm() can also be used with dynamic switching between

decision making procedures, but in this case the information of level conflicting assignment sets

must be erased every time a new decision making procedure is chosen. Assuming

Diagnose_C(), then we may define different search contexts for each decision making proce-

dure, and switch between contexts after a pre-defined number of backtracks. This solution allows

for dynamic switching while ensuring some form of conflict diagnosis.

3.9.3 Increasing the Number of Expected Implications

The fail-first principle [169, pp. 178-179] basically states that one should try to find con-

flicts as soon as possible in order to prevent the decision tree from becoming too hard to implicitly

129

enumerate. This principle can be used to justify decision making procedures proposed by some

authors in test pattern generation, as for example the one in [167].

Assume an instance of SAT and an associated set of decision variables; either the set of

primary inputs or the set of head lines. Given certain conditions, choosing other nodes to elect a

decision assignment may imply the assignment of several head lines.

Example 3.30. Let us consider once more the example of Figure 3.25-a, and let the inputs y1, y2

and y3 be head lines but not fanout-free. Suppose we are interested in satisfying an objective for

which z1 = 1 is traced, using either simple or multiple backtracing. Note that the assignment z1 = 1

would immediately imply the assignment of two head lines, y1 and t. Consequently, assigning z1

can be preferable than making two decision assignments (y1 and t) in order to attain the same

traced objective.

We refer to nodes that imply the assignment of several head lines as covering lines. (The

concept was first proposed in [167] under the name implying node, but restricted to static head

lines. The generalization to dynamic head lines is straightforward and only requires the necessary

bookkeeping to relate each covering line to each updated set of head lines.) Covering lines are used

to increase the average number of implications that result from a decision assignment. Results

reported in [167] for test pattern generation indicate that a significant reduction on the number of

decisions is obtained when covering lines are used as decision nodes. The major drawback of

electing decision assignments on covering lines is that it may increase the size of the decision tree

if backtracking is required. For the example above, if the search process backtracks to the decision

level associated with the decision assignment on z1, then z1 ← 0, that does not imply the assign-

ment of any head line. As a result, more decision assignments may now be required.

An extension of the previous technique is to predict, where possible, which covering lines

set a node x to either 1 or 0, referred to as the ON-SET and the OFF-SET of x, respectively. The

derivation of ON and OFF sets can be used by decision making procedures that decide assign-

ments on covering lines. In trace-based decision making procedures, the identification of ON and

OFF sets can help in making decisions that imply assignments close to the decision objective. The

(heuristic) motivation is that since more assignments are implied close to the traced objective, then

130

we are more likely to identify conflicts; this technique can be viewed as another example of apply-

ing the fail-first principle.

In the more general domain of SAT (in particular CNF-SAT), some decision making pro-

cedures have focused on the problem of satisfying a clause, and organizing the decision making

procedure accordingly [125, 135]. For example, Monien and Speckenmeyer’s [125] clause-based

decision making procedure chooses decision assignments at a given decision level such that a cho-

sen clause ω is to be satisfied. ω is associated with the decision level, and further assignments at

the same decision level specifically discard previous assignments that satisfy ω.

Example 3.31. Consider the formula , where γ is a CNF sub-formula. Let us

assume that decisions are to be made such that is satisfied. Then either x = 1 satisfies

the clause, or y = 1 satisfies the clause, and x can be set to 0, or w = 1 satisfies the clause, and x can

be set to 0 and y can be set to 1. Consequently, several decision assignments are collapsed into one

decision having m branches for a clause with m literals.

Experimental results on random instances of SAT suggest that this approach is more effi-

cient than variable-based decision making [64]. It is interesting to note that in TPG algorithms, a

related form of clause-based decision making for combinational circuits was proposed by Cha,

Donath and Özgüner in [23] in 1978 (this technique is also analyzed in [1, p. 195]). According to

[64], the notion of clause-based decision making can be traced back to the early 1970’s in algo-

rithms for solving the traveling salesman problem.

3.10 Summary and Perspective

In this chapter we described GRASP, a search algorithm for solving SAT, that can be con-

figured by defining several types of engines that implement different tasks of the search process.

The most significant contributions of GRASP with respect to other SAT algorithms can be summa-

rized as follows:

1. The development of a formal framework supporting the application of non-chronological

backtracking in search algorithms for SAT, based on the definition of implicates of the con-

sistency function associated with each clause database. The definition of implicates also per-

x y¬ w+ +() γ⋅

x y¬ w+ +()

131

mits the identification of equivalent conflicting conditions and the derivation of failure-driv-

en assertions. Even though the application of non-chronological backtracking with Boolean

constraint propagation was first suggested in 1980 by D. McAllester [115], and also de-

scribed in [60, pp. 265-308], in the context of truth maintenance systems, our algorithm is the

first to describe the integrated application of non-chronological backtracking, conflict-based

equivalence and failure-driven assertions (and other pruning methods described in the previ-

ous sections) to solving SAT. In contrast with [60, 115], the framework we propose is direct-

ed towards exploiting the structure of implication sequences, by imposing partial orders on

assigned nodes and thus defining stronger conflicting clauses in terms of these partial orders.

2. Development of several methods that exploit the structure of conflicts to further prune the

search. First, we described how the structure of implication sequences leading to conflicts

can be used for identifying unique implication points (UIPs). This fact increases the number

of identified failure-driven assertions and associated conflicting conditions. Second, we de-

scribed how UIPs permit implementing iterated conflicts, which can be used to identify more

aggressive backtracking decision levels. Third, we showed that the identification of multiple

conflicts can also increase the number of derived conflicting conditions and help identify

lower backtracking decision levels.

3. Analysis of several tradeoffs in implementing conflict diagnosis that guarantee constant or

polynomial increases in the size of the clause database.

4. The definition of a hierarchy of SAT algorithms based on scalable deduction and diagnosis

abilities, respectively Deduce_k() and Diagnose_j(). Advanced deduction engines have

been proposed before [24, 101, 145], but were not defined within a search framework that

implements non-chronological backtracking and the remaining pruning methods. Further-

more, the proposed advanced deduction engines are based on prime implicate generation

methods for identifying reduced implicates of the consistency function. The search frame-

work supporting GRASP allows for different tradeoffs between deduction and diagnosis abil-

ity. For example, any degree of deduction ability can be defined, within a search context that

implements several pruning methods for diagnosing conflicts.

5. The description of a scalable preprocessing procedure that completes the clause database

132

with implicates prior to answering queries. The proposed procedure expands preprocessing

procedures developed by other authors [102, 144, 162], in that any degree of consistency can

be attained. Its implementation follows that of advanced deduction engines, but the structure

of implication sequences is analyzed with the goal of deriving more implicates of the consis-

tency function.

6. A general procedure for postprocessing, in particular the removal of redundant decisions

from solutions and the caching of signatures of solutions. The notion of caching solutions in

search problems has been proposed before in other applications [57, 71]. [71] proposes cach-

ing solutions for test pattern generation, but as illustrated in Section 3.8.2, the information as-

sociated with each solution that is used in [71] can be somewhat redundant.

GRASP defines the basic algorithmic framework that is used in subsequent chapters for

solving more specific forms of satisfiability problems, particularly those associated with path sen-

sitization.

133

CHAPTER IV

A MODEL AND ALGORITHM FOR PATH

SENSITIZATION

4.1 Introduction

Path sensitization is the problem of identifying assignments to the primary inputs of a

combinational circuit in order to make some form of information observable at the primary out-

puts. The information to observe is application-dependent, and we abstractly refer to it as a pertur-

bation. In test pattern generation a perturbation denotes an error signal (D or D), whereas in timing

analysis a perturbation denotes a signal transition.

4.1.1 Motivation

As mentioned earlier in Chapter I, path sensitization can be cast as a SAT problem and

solved with SAT algorithms, and examples of this approach can be found in [24, 105, 120, 152].

Consequently, the algorithmic techniques described in the previous chapter could readily be

applied to instances of SAT encoding instances of path sensitization. However, by representing

instances of path sensitization as instances of SAT, the intrinsic topological structure of path sensi-

tization is lost, and more search effort may then be required to derive inferences otherwise clear

from the analysis of this structure. The ability to exploit this structure is then the main motivation

for developing dedicated models and algorithms for path sensitization. Throughout this chapter,

we show how search algorithms for path sensitization can use the structure of the problem in pro-

134

cesses of inference, either for deduction or for diagnosis purposes. Furthermore, structure also

plays a crucial role in the definition of general conflicting conditions that are used to prune the

amount of search.

4.1.2 Chapter Objectives

The first objective of this chapter is to introduce a new model for path sensitization, which

is referred to as the perturbation propagation (or p-propagation) model. The main characteristic of

the model is that it uncouples the logic value assumed by each node from the path sensitization

properties associated with that node. We note that this uncoupling is natural, since path sensitiza-

tion is a circuit analysis task that only seeks to identify valid conditions for propagating a perturba-

tion to a primary output; this task can be tackled orthogonally to the task of assigning consistent

logic values to the circuit nodes.

Besides providing a more natural representation for the path sensitization problem, the p-

propagation model offers the following additional advantages:

• It provides a common framework for representing path sensitization in distinct applications.

• It allows most pruning methods described in Chapter III to be extended to path sensitization.

• It provides new insights that lead to the development of pruning methods specific to path sen-

sitization.

• It permits pruning methods to be interchangeably used in different target applications.

The second objective of this chapter is to describe LEAP, a generic search-based algo-

rithm for path sensitization based on the p-propagation model, that follows the organization of

GRASP. Several concepts associated with the p-propagation model in the context of search are

defined and their application motivated. Furthermore, the major ideas regarding the engines asso-

ciated with the search algorithm for path sensitization are described. The description of conflict

diagnosis procedures is emphasized, since path sensitization algorithms have seldom implemented

conflict analysis techniques. Moreover, as mentioned above and as illustrated in the sequel, the p-

propagation model permits most pruning methods described in Chapter III to be naturally

extended to the path sensitization problem.

135

4.1.3 Chapter Outline

We start in Section 4.2 by introducing some additional definitions that are used in describ-

ing the model and algorithm for path sensitization. Section 4.3 describes the p-propagation model

and emphasizes the properties of the model that are common to all target applications. Section 4.4

describes the organization of implications with the p-propagation model, with the purpose of moti-

vating the implementation of search algorithms for path sensitization.

LEAP is described in Section 4.5. Its organization follows that of GRASP. In particular,

conflict diagnosis can be adapted from GRASP, with some required modifications for handling

conflicts due to propagation conditions.

4.2 Definitions

To facilitate the discussion of path sensitization we augment the definitions associated

with combinational circuits given in Chapter II with a few additional concepts:

• Controlling value of a node x, c(x) which is 0 for (N)AND, 1 for (N)OR, and inapplicable for

the remaining node types. A node that has a controlling value is said to be controllable; oth-

erwise, it is uncontrollable.

• Inversion polarity of a node x, i(x), which is 0 for AND, OR, and BUFFER, and 1 for NAND,

NOR, and NOT. It is inapplicable for XOR and XNOR.

• Edge predicates c(y, x) and nc(y, x) indicating, respectively, the presence or absence of a con-

trolling value on node y with respect to node x.When x is controllable, c(y, x) = [ν(y) = c(x)]

and nc(y, x) = [ν(y) = ¬c(x)]. When x is uncontrollable, c(y, x) = 0, and nc(y, x) = [ν(y) ≠ X].

• Controlling inputs .

• Unassigned inputs .

• Node predicate Cont(x) indicating if node x is “controlled.”

when x is a controllable node; Cont(x) = 0 when x is uncontrollable.

• Predicate Just(x) was introduced in Section 2.3.2.1 and is defined to hold true if and only if x

is justified, i.e. (x ≠ X) ∧ (I(x) = ∅ ∨ x = gx(I(x))). Node predicate Unjust(x) is defined by

Unjust(x) = ¬Just(x).

• Relevant outputs:

C x() y I x()∈ c y x,(){ }=

U x() y I x()∈ ν y() X={ }=

Cont x() ν x() c x() i x()⊕=[]=

136

(4.1)

For timing analysis purposes an edge (x, y) between nodes x and y is characterized by a

fixed nonnegative propagation delay D(x, y). A path P = 〈s1, s2, … , sk〉 is a sequence of connected

nodes; P is a partial path if it does not start at a primary input or end at a primary output. The

delay of a path P, D(P), is the sum of its edge delays:

(4.2)

Primary outputs are distinguished as separate circuit nodes of type OUT. The set of pri-

mary outputs PO is then defined as the set of all circuit nodes of type OUT. For example, for a gate

whose output is a primary output z, the circuit graph will now contain a node z' of type OUT,

whose only fanin node is z. Primary inputs are defined to be of type IN. The introduction of node

types IN and OUT allows us to add additional special purpose nodes to the circuit graph and still

be able to identify primary inputs and outputs.

A test T denotes a set of logic assignments to the primary inputs of a combinational cir-

cuit. The path sensitization problem involves computing tests for several distinct purposes, e.g. test

pattern generation, timing analysis and delay fault testing.

4.3 The Perturbation Propagation Model

4.3.1 Objectives of Perturbation Propagation

The p-propagation model seeks to identify primary input assignments that permit a pertur-

bation to be observed at a primary output. This is achieved by uncoupling the information associ-

ated with the propagation of a perturbation from the logic value assumed by each node. As a result,

in the p-propagation model, each circuit node is characterized by a logic value and a propagation

status (or p-status). Logic values have their usual semantic meaning and the definitions of Chapter

II apply, i.e. for a node x, ν(x) ∈ { 0, 1, X } . On the other hand, the p-status of a node x is repre-

sented by the symbol π(x), assuming values ν(π(x)) ∈ { 0, 1, X } , and denotes whether x propa-

R x() y O x()∈ c x y,() ν x() X=[] Cont y()¬∨ ∨{ }=

D P() D si si 1+,()

i 1=

k 1–

∑=

137

gates a perturbation. (When clear from the context, π(x) is used instead of ν(π(x)).) We say that a

node propagates a perturbation if the primary input logic assignments permit the intended pertur-

bation to propagate to the node. The p-status of a node x is defined as follows:

1. π(x) = 0, also referred to as a p-false (or p-F) node, indicates that node x cannot propagate the

perturbation. This should be interpreted to mean that x is not part of a sensitizable path given

the current set of assignments to the circuit nodes.

2. π(x) = 1, also referred to as a p-true (or p-T) node, indicates that a perturbation propagates to

node x. In general, π(x) = 1 if and only if under the current assignment to the primary inputs,

x is included in a sensitizable path. However, in the context of search this definition is re-

laxed, and π(x) = 1 is to be understood as signifying that, under the current assignments, one

cannot conclude that x is not part of a sensitizable path, and that conditions for propagating a

perturbation to the node have been established.

3. π(x) = X, also referred to as a p-X node, indicates that the p-status of x is unassigned. An un-

assigned p-status is to be understood as a potential ability to propagate a perturbation. Hence,

in the context of a search process, π(x) = X indicates that the current partial node assignment

does not allow us to conclude that a perturbation cannot propagate to x.

Example 4.1. Figure 4.1 illustrates how the p-status of each node can be defined. For test pattern

generation (Figure 4.1-a), the primary input assignments represent a test for fault x5 s-a-1. The

nodes that propagate the error signal are x5, x6 and z1, which are then said to be p-T.

For timing analysis (Figure 4.1-b), the same primary input assignments cause node z1 to

stabilize after 5 time units. Hence, there exists at least one floating-mode sensitizable path in the

circuit with delay no less than 5. The nodes that propagate such signal transition are x3, x4, x5, x6

and z1. For the specific case of timing analysis, note that not all signal transitions correspond to p-

T nodes; only nodes with transitions that cause primary output transitions at delay times no less

than 5 are defined p-T.

The p-propagation model can be viewed as considering two dimensions for characterizing

the state of each node. A logical dimension that represents the logic value assumed by the node,

and a propagation dimension that represents its propagation status. However, in contrast to the log-

138

ical dimension, the propagation dimension also assigns a p-status to the graph edges. For each

edge (x, y), ν(π(x, y)) ∈ { 0, 1, X } . (When clear from the context, π(x, y) is used instead of

ν(π(x, y)).) The semantics of p-status for an edge (x, y) is defined as follows:

1. π(x, y) = 0, also referred to as a p-false (or p-F) edge, indicates that a perturbation cannot

propagate from node x to node y. This may be due to the fact that π(x) = 0, or due to side in-

put conditions that block propagation from x to y.

2. π(x, y) = 1, also referred to as a p-true (or p-T) edge, indicates that a perturbation on node x

propagates to node y. We note that this definition is relaxed similarly to the definition of a p-

T node in the context of search.

3. π(x, y) = X, also referred to as a p-X edge, indicates that the p-status of the edge is unas-

signed. As with node p-status, and in the context of a search process, π(x, y) = X means that

the current partial node assignment does not allow us to conclude that a perturbation cannot

propagate from x to y.

Example 4.2. For the example of Figure 4.1-a, π(x6, z2) = 0 because the error signal on x6 does not

propagate through this edge. π(x6, z1) = 1, because the error signal reaches z1 through (x6, z1). For

the example of Figure 4.1-b, π(x6, z1) = 1, since the signal transition propagates from x6 to z1 with

delay greater than or equal to 5. Conversely, π(x6, z2) = 0, since z2 does not propagate a signal tran-

Figure 4.1: Representing path sensitization with the p-propagation model

(a) Test pattern generation (b) Timing analysis

x1 = 0

x4 = 1

x3 = 1

x2 = 0 z1 = D

x6 = D

x5 = 0
z2 = 1

x1

x4

x3

x2

z1

x6

x5
z2

x5' = D

s-a-1

Fault: x5 s-a-1

p-F nodes: x1, x2, x3, x4, z2

p-T nodes: x5, x6, z1

1

2

2

1
1

3

5

0

10

0

0

Path Delay: ∆ ≥ 5

p-F nodes: x1, x2, z2

p-T nodes: x3, x4, x5, x6, z1

gate
delay

139

sition on a path whose delay is greater than or equal to 5.

For each primary output z, let the Π(z) denote the set of partial paths P = 〈s1, s2, … , sk〉 ,

with z = sk, that can potentially propagate a perturbation from the source of the perturbation s = s1.

Then, the p-status of primary output z is given by:

(4.3)

Hence, a perturbation propagates to a primary output z if it propagates along the edges of a partial

path connecting the source of the perturbation s to primary output z. The objective of the path sen-

sitization problem is, then, to satisfy the condition,

(4.4)

subject to the logic assignments being consistent. This condition identifies the satisfiability prob-

lem associated with path sensitization. Any primary input assignment for which (4.4) holds is said

to be a solution to that satisfiability problem.

A path P = 〈s1, s2, … , sk〉 is said to propagate a perturbation if and only if the following

holds:

(4.5)

If condition (4.5) holds then P is said to be a sensitizable path.

While in the logical dimension the consistent assignments are defined by a clause database

ϕ that identifies a consistency function ξ, in the propagation dimension the consistent assignments

are captured implicitly by the structure of the combinational circuit and by condition (4.4). The

assignments for which (4.4) is satisfied define a propagation consistency function ξπ. Any primary

input assignment for which (4.4) does not hold is said to identify a propagation implicate of ξπ.

π z() π s j s j 1+,() 1=()
j 1=

k 1–

∏
s1 … sk, ,〈 〉 Π z()∈

∑=

π z()
z PO∈
∑ 1=

π si() 1=() π si si 1+,() 1=()⋅[]
i 1=

k 1–

∏ π sk() 1=()⋅

140

We note the global character of propagation implicates; only if all propagation options are blocked

does a conflict exist. Propagation implicates can be derived and used while searching for a solution

to a given instance of the path sensitization problem. Other, more general forms of propagation

implicates, denoting localized structural and functional blocking conditions, are described in the

sequel while studying search algorithms for path sensitization. In general, identified propagation

implicates are referred to as p-clauses, and are maintained in a p-clause database ϕπ.

Path sensitization can thus be viewed as the process of identifying a consistent assignment

to the global consistency function ξPS = ξπ ⋅ ξ, where ξ denotes the consistency function associ-

ated with the logical dimension. As with SAT, the search process can create implicates of ξPS,

which can either be logical implicates (of ξ) or propagation implicates (of ξπ). Such implicates

can be used to reduce the amount of search during the search process. Furthermore, the applicabil-

ity of each propagation implicate across path sensitization applications defines the degree of per-

vasiveness of the implicate. Different degrees of pervasiveness can be defined, as will be described

in this and subsequent chapters. Note, however, that logical implicates can be used in any circuit

analysis task, and thus are defined as pervasive.

4.3.2 Definition of Propagation Status

With each node x we associate two predicates, B(x) and P(x), which respectively identify

blocking and propagation conditions to node x. B(x) identifies conditions under which it can be

established that the perturbation cannot propagate to node x. P(x) identifies conditions that permit

the perturbation to propagate to node x, given that we cannot conclude that propagation of a pertur-

bation to that node is blocked. Consequently, the p-status of node x is defined as follows:

(4.6)

π(x) = 0 if B(x) holds, i.e. if the blocking conditions to node x have been established. Similarly,

π(x) = 1 if B(x) does not hold and P(x) holds. This definition is intended to simplify the definition

of P(x), given that P(x) is only considered whenever B(x) does not hold true. The p-status of a node

π x()

0 if B x()(),

1 if B x()¬ P x()∧(),

X if B x()¬ P x()¬∧(),





=

141

is X while both B(x) and P(x) do not hold.

A similar definition applies for the p-status of an edge (x, y):

(4.7)

Each target application involving path sensitization is required to specify the conditions

under which a node or an edge becomes p-false or p-true. These conditions involve logic values of

other nodes as well as the p-status of other nodes and edges, and thus define the predicates B and P.

In general, the blocking predicates B(x) and B(x, y) are defined as follows,

(4.8)

and,

(4.9)

where BC(x) and BC(x, y) are defined to be application-dependent. Given that some components of

B(x) and B(x, y) are defined to be application dependent, the propagation predicates P(x) and P(x,

y) must also be defined to be application-dependent.

4.3.3 General Blocking Conditions

Given the above definition of the blocking predicates several application-independent

blocking conditions become apparent.

(4.10)

indicates that if the p-status of a node x is 0, then a perturbation cannot propagate from x to any of

π x y,()
0 if B x y,()(),

1 if B x y,()¬ P x y,()∧(),

X if B x y,()¬ P x y,()¬∧(),





=

B x() π y x,() 0=()
y I x()∈
∏ π x y,() 0=()

y O x()∈
∏+ +=

π y x,() 0=() c y x,()⋅()
y I x()∈
∑ BC x()+

B x y,() π x() 0=[] π y() 0=[] BC x y,()+ +=

π x() 0=[] B x y,()
y O x()∈
∏ π x y,() 0←()

y O x()∈
∏⇒ ⇒

142

its fanout nodes. Hence, the p-status of each fanout edge of x can be assigned p-F.

(4.11)

indicates that if a node x cannot propagate a perturbation, then a perturbation that propagates to

any of its fanin nodes does not propagate further through x. Consequently, the p-status of each of

the fanin edges of x can be assigned p-F.

Conversely, edge p-status can be used to derive node p-status:

(4.12)

(4.13)

which signify, respectively, that propagation of a perturbation to a node is blocked if all of its fanin

edges or all of its fanout edges are blocked. For simple gates, another blocking condition is defined

when the fanin edge from node y to x is p-F and y assumes the controlling value of x:

(4.14)

The above blocking conditions are illustrated in Figure 4.2, where the equation numbers identify

the direction in which blocking is specified.

As mentioned above, propagation predicates are defined to be application-dependent since

they depend on how BC(x) and BC(x, y) are defined. The definition of these predicates for test pat-

tern generation and timing analysis is given in subsequent chapters. Nevertheless, in the remainder

of this chapter we need, in some cases, to illustrate how a node or edge can be set to p-T. Conse-

quently, the following definitions of propagation predicates are assumed:

π x() 0=[] B y x,()
y I x()∈
∏ π y x,() 0←()

y I x()∈
∏⇒ ⇒

π y x,() 0=()
y I x()∈
∏ B x() π x() 0←[]⇒ ⇒

π x y,() 0=()
y O x()∈
∏ B x() π x() 0←[]⇒ ⇒

π y x,() 0=() c y x,()⋅()
y I x()∈
∑ B x() π x() 0←[]⇒ ⇒

143

(4.15)

which states that the propagation condition to a node holds if all input nodes are assigned, and are

either associated with p-T edges or assume non-controlling values. For an edge,

(4.16)

which only requires the fanin node to be set to p-T. These conditions identify a valid subset of the

propagation conditions for both path sensitization applications (test pattern generation and timing

analysis) given the different definitions of BC(x) and BC(x, y) in the following chapters.

4.3.4 Search Framework

Path sensitization can be cast as a search problem. Besides requiring the definition of

blocking and propagation conditions associated with each target application, the p-propagation

model assumes an initialization phase that determines which nodes and edges are initially set to p-

true, to p-false and to p-X, where the initial set of p-T nodes and edges defines the source(s) of the

perturbation. This initialization phase characterizes the perturbation to be propagated and how

propagation can be attained, and thus defines how the search is to be conducted.

Changes to the p-status of each node and edge are characterized by how the search process

evolves. In general, as the search process evolves, p-X nodes or edges are allowed to be down-

graded to p-F or upgraded to p-T. The evolution of the p-status (for nodes and edges) with the

Figure 4.2: Application-independent blocking conditions

x x x

y
c(y, x)

(4.11)

(4.13)

(4.10

(4.12)

(a) Fanout conditions (b) Fanin conditions (c) p-F blocking

p-F
node

p-F
edges

p-F
node

p-F
edges

p-F
node

(4.14)

p-X
edges

P x() π y x,() 1=() ν y() X≠()⋅ π y x,() 0=() nc y x,()⋅+[]
y I x()∈
∏=

P x y,() π x() 1=[]=

144

search process is shown in Figure 4.3. As the search process evolves, decision assignments and

implications cause p-X nodes to either be downgraded to p-F or upgraded to p-T. Whenever the

search process backtracks, p-T and p-F nodes are reset to p-X. (Note that the definition of p-status

of a node/edge would allow a p-T node/edge to be downgraded to p-F. Although valid, this p-status

modification is not necessary from a search perspective, and it is only performed after a solution to

the path sensitization problem is found. If considered, these implications would increase the pro-

cessing overhead without pruning the search and would unnecessarily complicate the search algo-

rithms.)

We say that a propagation conflict is identified whenever no primary output can be set to

p-T (conversely, when all primary outputs are set to p-F). As a result, in the p-propagation model

there can be two types of conflicts: logical conflicts involving inconsistent gate input output

assignments, and propagation conflicts denoting the impossibility to propagate a perturbation to a

primary output. It is important to note that while logical conflicts have a local characterization due

to inconsistent node assignments, propagation conflicts are characterized globally, denoting the

impossibility to propagate a perturbation (over all potential propagation paths) to a primary output.

4.3.4.1 Propagation Cuts

We define a propagation cut (or p-cut) as a set of p-T nodes of which at least one must be

included in a sensitizable path. Propagation cuts identify the possible propagation options for a

perturbation, and in general we allow for several propagation cuts to exist at any given stage of the

search process. The set of p-X nodes driven by a propagation cut defines a propagation frontier (or

Figure 4.3: Evolution of the p-status with the search process

p-F p-T

p-X

backtracking

implications/
decisions

145

p-frontier). Given a propagation cut ζ, its associated p-frontier is specified by φ(ζ). As with propa-

gation cuts, we allow for several p-frontiers to exist at any given stage of the search process.

Example 4.3. Examples of p-cuts are shown in Figure 4.4, where y1 is assumed to be the source of

the perturbation. ζ1 = { y1 } identifies a propagation cut, and so do ζ2 = { y2, y3 } and ζ3 = { y4 } .

In general the number of propagation cuts can be exponential in the number of circuit nodes. How-

ever, only a few p-cuts are of interest, as is described below.

With each set of nodes ζ we associate a function pcut(ζ) that is true whenever ζ is a p-cut,

false whenever ζ cannot be a p-cut, and X whenever ζ may become a p-cut. In this situation, we

allow for the pair (ζ, 1) to be included in assignment sets to denote the fact that the set of nodes ζ

has been identified as a p-cut and so pcut(ζ) holds. Whenever appropriate, ν(ζ) assumes the value

of pcut(ζ).

Propagation cuts can require justification of two different types. Fanin justification of a

cut ζ denotes the process of propagating a perturbation to a node in ζ and which has propagated

from the initial source of a perturbation. Fanout justification denotes the process of propagating a

perturbation in a cut ζa to another cut ζb in the transitive fanout of ζa, or to propagate a perturba-

tion to a primary output. The original set of p-T nodes identifies a propagation cut ζi, that only

requires fanout justification. (In case there are no initial p-T nodes, the set of primary inputs is con-

nected to a source node σi, that defines a propagation cut ζi, i.e. ζi = { σi } , and which only

requires fanout justification.) The primary outputs of the circuit fan out to a sink node σo that

defines a propagation cut ζo, i.e. ζo = { σo } and which only requires fanin justification. Conse-

quently, the search entailed by path sensitization can be associated with the process of fanin and

fanout justification of propagation cuts. Propagation frontiers, defined above, are only associated

x1

x2

z1 = 0

p-X node/edge
p-T node/edgew1 = 1

y1 = 1

y4 = 1

y3 = 1

y2 = 1
φ(ζ3)ζ1

ζ2 ζ3

Figure 4.4: Examples of propagation cuts

146

with propagation cuts that require fanout justification. The set of propagation cuts requiring fanin

justification defines a propagation justification frontier (or pj-frontier). The set of propagation cuts

that require any form of justification is represented by Φ, and denotes the set of p-cuts considered

at any stage of the search process.

Given the above formulation of path sensitization in terms of justification of propagation

cuts, the process of fanin justifying a propagation cut ζ1 corresponds in any situation to the process

of fanout justifying another propagation cut ζ2 in the transitive fanout of ζ1. It is important to note

that the process of fanin and fanout justification of p-cuts can be used in the definition of different

types of propagation conflicts, as will be illustrated in the following sections.

Let us assume a propagation cut ζs with another propagation cut ζt in its transitive fanout

and another cut ζr in its transitive fanin. Fanin and fanout justification can be respectively formal-

ized as follows:

(4.17)

and

(4.18)

Fanin justification of a p-cut ζs requires a fanin p-cut ζr to be adjacent to ζs, and propagation from

ζr to ζs to be possible. Fanout justification requires the same property to hold but with respect to a

fanout cut ζt.

Example 4.4. For the example circuit in Figure 4.4, p-cuts ζ1 and ζ2 are fanout justified, since

(4.18) holds for both. (Observe that p-cut ζ1 identifies the source of the perturbation and conse-

quently only requires fanout justification.) p-cuts ζ2 and ζ3 are fanin justified since (4.17) holds for

both. Finally, p-cut ζ3 requires fanout justification.

4.3.4.2 Unique Sensitization Points

A node that must propagate a perturbation for such perturbation to reach a primary output

is referred to as a unique sensitization point (USP) [62, 92, 145, 155]. This concept has been

fi_just ζs() ζr Φ∈∃ x ζr∈∃ y ζs∈∃ x I y()∈() B y()¬ P y() π x y,() 1=()∧ ∧ ∧, , ,[]=

fo_just ζs() ζs Φ∈∃ x ζ t∈∃ y ζs∈∃ y I x()∈() B x()¬ P x() π y x,() 1=()∧ ∧ ∧, , ,[]=

147

extensively used in algorithms for test pattern generation, and only recently was it applied to tim-

ing analysis [156]. By definition, a USP x must propagate a perturbation, and hence it defines a

propagation cut ζ = { x } , that requires both fanin and fanout justification. Whenever a USP x is

identified by the search process, a new set of p-T nodes (of size 1) exists that must be in a path that

propagates a perturbation to a primary output. This new propagation cut is then added to the set of

propagation cuts Φ. Besides creating the propagation cut ζ, node x is assigned p-T, since it must

propagate a perturbation and is included in a propagation cut.

For the search algorithms described in the sequel, fanin justification is always restricted to

p-cuts of size 1, that are derived from identification of USPs. Consequently, the process of fanin

justifying p-cuts becomes simplified, since only one p-T node is involved.

Associated with USPs we have unique sensitization implications (USIs). A USI is defined

as the assignment of a node, in the logical dimension, that is required for the fanin justification of

the propagation cut (of size 1) associated with the USP.

Example 4.5. Examples of USPs and associated USIs are shown in Figure 4.5. Given that

ζ1 = { y1 } is a p-cut, then y4, y5 and z1 are USPs, and consequently define p-cuts of size 1, which

require fanin and fanout justification. The resulting USIs are, respectively, none for ζ2 = { y4 } , w1

= w2 = 1 for ζ3 = { y5 } and w3 = 0 for ζ4 = { z1 } . Given the definition of P(x) and P(x, y) in (4.15)

and (4.16), then ζ2 becomes fanout justified and ζ3 becomes fanin justified.

It is important to note that USPs and USIs can be viewed as unique implication points

(UIPs), that were defined in Section 3.4.2 (see page 69), but which can be identified as implica-

tions by the deduction engine and need not be identified by the diagnosis engine after conflicts are

found. Hence, identification of USPs can contribute to preventing conflicts from being identified.

Given the definition of p-cuts and USPs, and in terms of a given stage of the search pro-

cess, there may exist alternating sequences of sets of p-T nodes and sets of p-X nodes. Each set of

p-T nodes is associated with a p-cut that can require fanin or fanout justification.

4.4 Derivation of Implications

The goal of path sensitization is to identify a consistent primary input assignment for

148

which (4.4) is satisfied, thus requiring the value of the propagation consistency function ξPS to be

1. Hence, elective assignments in either the logical or propagation dimensions can imply other

assignments that are involved in satisfying (4.4).

The set of symbols V, defined in Chapter II, is now extended to include two copies of each

circuit node x (one for each dimension, x and π(x)) and one copy for each edge (x, y), π(x, y).

Accordingly, assignment sets are defined over the extended set of symbols V.

The derivation of implications in the p-propagation model is illustrated in Figure 4.6.

Either a logic assignment or a propagation assignment is assumed, which triggers a sequence of

implications, in either dimension. The pseudo-code for deriving implications is given in Figure

4.7. It consists of a loop that repeatedly invokes boolean constraint propagation (BCP), for logical

implications, and perturbation constraint propagation (PCP), for perturbation propagation implica-

tions. While deriving implications, updating application-specific state information is optionally

allowed with Target_Application_Update(). Procedure BCP() is defined in Figure 2.6 on

Figure 4.5: Example USPs and USIs

x1
x2

z1

p-X node/edge
p-T node/edge

y3

w2

w3 w3

y1

y7

y4

y2 y6

y5

x1

x2

z1

y3

w1 = 1

w2 = 1 w3 = 0

y1

y7

y4

y2 y6

y5

(a) Before USP/USI identification

(b) After USP/USI identification and resulting implications

ζ1

ζ1 ζ2 ζ3 ζ4

w4 = 0

w4 = 0

y8

y8

149

page 39, whereas propagation implications are described below.

The basic implication procedure for the derivation of propagation implications is shown in

Figure 4.6: Derivation of implications in the p-propagation model

propagation
dimension

implications

logical
dimension

implications

more logical implications

more propagation implications

trigger
propagation
assignment

trigger
logical
assignment

logical propagation
conflictconflict

Figure 4.7: Pseudo-code for derivation of implications

// Input arguments: The initial assignment set

// Output arguments: status ∈ { SUCCESS, CONFLICT }
// Return value: The final assignment set

//
PS_Constraint_Propagation(A, &status)
{

status = SUCCESS;

do {
A ← BCP(A, status);
if (status == CONFLICT) return A;
Target_Application_Update(); // Application-specific update
A ← PCP(A, status);
if (status == CONFLICT) return A;

}
while (changes to assignments in either dimension);
return A;

}

150

Figure 4.8. The implication procedure is adapted from BCP() for the logical dimension, but where

changes to p-X nodes either block or propagate a perturbation to a node/edge or identify a propa-

gation conflict. (Note that only p-X nodes can be assigned to either p-T or p-F, that guarantees that

a p-T node will not be re-assigned to p-F.) Assigning a node or an edge to p-T can be viewed as the

process of updating an existing propagation cut for the purpose of fanout justifying that cut. A con-

flict is identified whenever all primary outputs become p-F, denoting that a perturbation cannot

reach any primary output.

When describing the deduction engine in the context of search, the implication procedure

shown in Figure 4.8 requires manipulating additional information as Deduce() (Section 3.5 on

page 74) does with respect to BCP().

Example 4.6. An example of an implication sequence is shown in Figure 4.9. The assignment

w2 = 0 implies y3 ← 1 with BCP() and π(y3) ← 0 with PCP(), since π(w2, y3) = 0 and c(w2, y3)

holds, and consequently π(y3, y4) ← 0. Because c(y3, y4) holds and π(y3, y4) = 0, then π(y4) ← 0,

Figure 4.8: Perturbation constraint propagation (PCP)

// Input arguments: The initial assignment set Af

// Output arguments: status ∈ { SUCCESS, CONFLICT }
// Return value: The final assignment set Af

//
PCP (Ai, &status)
{

status = SUCCESS;
Af ← Ai; // Initialize final assignment set
commit assignment Af; // Set initial partial variable assignment
Let θ be a node or an edge;
while (θ is p-X and (B(θ) or P(θ)) or all POs are p-F) {

if (all POs are p-F) {
status = CONFLICT;

return Af;
}
else if (B(θ)) π(θ) ← 0;
else if (P(θ)) π(θ) ← 1;

}
return Af;

}

151

which blocks propagation to a primary output. Further note that the example is independent of any

target application, since only general blocking conditions were considered.

The description of the procedure for derivation of implications does not manipulate p-cuts

and does not identify USPs. Hence, conflicts are defined in terms of having all primary outputs set

to p-F. The application of p-cuts and USPs, and the definition of other types of conflicts will be

considered while describing the search algorithm.

4.5 Search Algorithms for Path Sensitization

Search algorithms for path sensitization based on the p-propagation model follow the gen-

eral structure proposed in Figure 3.2 on page 62. The description of LEAP is shown in Figure 4.10.

The main difference with respect to the organization of GRASP (shown in Figure 3.2) is that we

may need to downgrade some p-T nodes to p-F after a solution is computed. Furthermore, an

application-dependent problem specification is abstractly defined by ψ, that encodes the initializa-

tion associated with the given instance of path sensitization, and that includes the p-clause data-

base of propagation implicates.

The organization of the search algorithm for path sensitization, PS_Search(), is equiva-

lent to the Search() procedure described in Figure 3.2 (see page 62) for SAT. By properly defin-

ing the different engines, the search algorithm solves path sensitization. Moreover, most

algorithmic techniques described in Chapter III to prune the search find direct application in path

sensitization. In particular, the search algorithm for path sensitization (in both testing and timing)

can implement conflict-directed backtracking, failure-driven assertions and conflict-based equiva-

lence.

The selection engine is restricted to making decision assignments on the logical dimen-

Figure 4.9: Propagation implication sequence

p-X node/edge
p-T node/edge

w1

w2

y1
y4

y3

y2 w1

w2 = 0

y1
y4 = 1

y3 = 1

y2

152

sion and with respect to the primary inputs (or head lines when possible). The formulation of the

p-propagation model guarantees that by assigning all primary inputs, the p-status of all nodes and

edges either becomes p-T or p-F, and hence the set of logic assignments over all primary inputs is

// Global variables: Clause database ϕ
// Formulation of path sensitization ψ
// Partial variable assignment Α
// Return value: FAILURE or SUCCESS

// Auxiliary variables: Backtracking decision level βL

//
LEAP ()

{
if (Preprocess() == SUCCESS and PS_Search (0, βL) == SUCCESS) {

Postprocess();
Toggle_Propagation_Values(); // p-T to p-F downgrade
return SUCCESS;

}
return CONFLICT;

}

// Input argument: Current decision level c

// Output argument: Backtracking decision level βL

// Return value: CONFLICT or SUCCESS

//
PS_Search (c, &βL)

{
if (Select (VAR+VAL) == SUCCESS) // Make decision

return SUCCESS;
while (TRUE) {

if (PS_Deduce() != CONFLICT) { // Imply assignments
if (PS_Search (c + 1, βL) == SUCCESS) return SUCCESS;
else if (βL != c) { Erase(); return CONFLICT; }

} // Diagnose conflict
if (PS_Diagnose (c, βL) == CONFLICT) { Erase(); return CONFLICT; }
Erase();
Select (VAL); // Modify decision assignment

}
}

Figure 4.10: Description of LEAP

153

sufficient to implicitly enumerate the search space for path sensitization.

The selection, implication and diagnosis engines for path sensitization are necessarily dif-

ferent from those of SAT. In the remainder of this chapter we describe the general structure and

operation of the implication and diagnosis engines, but abstractly, without describing application-

dependent details. The implementation of these engines must necessarily reflect the two-dimen-

sional properties of the p-propagation model. In the following chapters, each of these engines, as

well as the selection, preprocessing and solution engines are detailed for each target application.

The soundness and completeness of the search algorithm for each target application are

argued in Appendix B, assuming the results of Appendix A for SAT and the algorithmic frame-

work described in this and the following chapters.

4.5.1 Search Structures

LEAP assumes the same definitions used for GRASP, but extends them to cover a few

additional search structures. The search information associated with logic assignments in GRASP

is now associated with nodes in both dimensions, edges in the propagation dimension and propa-

gation cuts. Any of these entities is referred to by θ, and thus θ can represent a node in the logical

dimension, x, a node in the propagation dimension, π(x), the p-status of an edge, π(x, y), or a p-cut

ζ. Consequently, for each θ we define ν(θ), A(θ), α(θ), δ(θ) and ι (θ). The decision and implication

levels are given by (3.3) on page 60. The notation θ = v @ d / i denotes that symbol θ is assigned

value v at decision level d and implication level i. The antecedent assignment and antecedent set of

p-status assignments are defined by how a node or edge is downgraded to p-F or upgraded to p-T.

For common blocking conditions, the antecedent assignment is defined by the set of assignments

involved in blocking, which is also used for defining the antecedent set. The antecedent assign-

ment and antecedent set of a p-cut are formally defined below. In general the antecedent assign-

ment of a p-cut is characterized by the assignments that lead to its definition.

Example 4.7. For the example circuit of Figure 4.5 (see page 148), the antecedent assignment of

ζ2 is given by A(ζ2) = { (ζ1, 1) } , since no node or edge assignments are involved in defining ζ2 as

a p-cut given that ζ1 is also a p-cut. On the other hand, A(ζ3) = { (ζ2, 1), (π(y4, y8), 0) } , since ζ3

can be defined as a propagation cut (and as a USP) because ζ2 is a propagation cut and because

154

propagation from y4 to y8 is blocked.

Definition of Conflicts

Throughout the description of search algorithms for path sensitization, instead of defining

propagation conflicts by the condition of all primary outputs being p-F, we say that a propagation

conflict is identified whenever a propagation cut cannot be either fanout justified or fanin justified.

If a propagation cut cannot be fanout justified, then a perturbation cannot reach the next propaga-

tion cut, and consequently propagation of a perturbation to a primary output is blocked. A propa-

gation cut that cannot be fanout justified is identified whenever its associated p-frontier becomes

empty. On the other hand, a propagation cut that cannot be fanin justified identifies a situation

where propagation of a perturbation becomes blocked at the input nodes to a p-cut. Both types of

propagation conflicts capture the same global path blocking condition.

Propagation conflicts are represented in the implication graph by propagation conflict

nodes π(κ), such that the antecedent assignment of π(κ) corresponds to the causes that directly cre-

ate the conflict. These causes may involve propagation cuts and node/edge assignments.

Example 4.8. An example of an implication sequence and resulting propagation conflict is shown

in Figure 4.11. Let us assume the propagation cut ζ = { y1 } , with δ(ζ) = 3, that requires fanout jus-

tification. Further assume that the current decision level is 4. The decision assignment w1 = 0

blocks propagation to y2 and to y3. Since all nodes in the p-frontier become p-F, then a propagation

conflict is identified. Conversely, note that eventually the only primary output z1 becomes p-F,

which would also identify a propagation conflict. The antecedent assignment of π(κ) is given by

the nodes in the propagation frontier that become p-F and by the propagation cut that defines the

propagation options that were blocked. Before the decision assignment, ζ = { y1 } identifies all

propagation options for a perturbation to reach a primary output. Since the assignment w1 = 0

blocks all propagation options, then propagation of a perturbation is blocked due to the fact that

some nodes and edges become p-F, and to the fact that ζ is a propagation cut. Note that if p-cut ζ

contained more elements, the propagation conflict would not be detected.

By allowing the existence of multiple propagation cuts and associated p-frontiers, we can

identify multiple propagation conflicts, as the following example illustrates.

155

Example 4.9. An example of multiple propagation conflicts is illustrated in Figure 4.12. The

assignments x1 = w1 = w2 = 0 and w3 = w4 = 1 block propagation of a perturbation that can be

attributed to four distinct causes: fanout justification of ζ2 and of ζ3 and fanin justification of ζ2

and of ζ3.

It is interesting to analyze the propagation conflict associated with the fanin justification

of ζ2. We have π(x2) = 1, π(x2, y1) = 1 and π(y1) = 1. However, the assignment π(y1) = 1 resulted

from ζ2 being a propagation cut, and propagation conditions to that node had not been established

yet. As a result, propagation of a perturbation to y1 is blocked by x1, ζ2 cannot be fanin justified,

and a propagation conflict π(κ) is defined. The antecedent assignment of π(κ) is given by

α(π(κ)) = { (ζ1, 1), (x1, 0), (π(x1, y1), 0) } ; propagation of a perturbation is blocked because ζ1 is a

Figure 4.11: Example of an implication sequence

x1

x2

z1

p-X node/edge
p-T node/edge

w1

w2 = 0

w3

w4

w5

y1 y4

y3

y2

(a) Example circuit

(b) Implication sequence

π(κ)
propagation

w3 = 0 @ 4 / 1
w1 = 0 @ 4 / 0

π(y2) = 0 @ 4 / 2

π(w3, y2) = 0 @ 0

π(y3) = 0 @ 4 / 2

w2 = 0 @ 2

conflict

p-frontier ≡ φ(ζ)ζ

ζ = 1 @ 3

π(w3, y2) = π(w3, y3) = 0 @ 0

ζ = 1 @ 3

π(w3, y3) = 0 @ 0

156

propagation cut, x1 assumes a controlling value, and π(x1, y1) = 0.

Assuming that the diagnosis engine can handle multiple conflicts, then the propagation

conflict yielding the best pruning conditions among the four conflicts can be chosen.

4.5.2 Basic Deduction Engine

The basic deduction engine for a search algorithm based on the p-propagation model is

shown in Figure 4.13 and is based on the procedure for derivation of implications described in Fig-

ure 4.7. After each successful implication sequence a new set of propagation cuts is created, each

of which is defined at the current decision level. The logical deduction engine corresponds to

Deduce() described in Figure 3.6 on page 77, whereas the propagation deduction engine is

described in Figure 4.14, and is referred to as Propagation_Deduce(). Given that a p-clause

database ϕπ is maintained, Deduce() is reformulated to also identify unsatisfied p-clauses of ϕπ.

Propagation_Deduce() basically implements PCP() as described in Figure 4.8, but

incorporates additional functionality associated with the search process. In particular, it imple-

ments defining antecedent sets, decision and implication levels for each assigned variable, identi-

fying USPs, and related USIs, detecting propagation conflicts with Propagation_Blocked(),

Figure 4.12: Different types of propagation conflicts

x1

x2

y3

w1

w2

y1

z2

y4

y2 z1
w3

w4

x1 = 0

x2

y3 = 0

w1 = 0

w2 = 0

y1

z2 = 1

y4 = 0
y2 = 0 z1 = 1w3 = 1

w4 = 1

propagation conflicts

(a) Initial condition

(b) Propagation conflicts detected

p-X node/edge
p-T node/edge

ζ2
ζ1

ζ3

157

and maintaining propagation cuts. Procedure Propagation_Blocked() identifies inconsistent

fanin and fanout justification conditions for propagation cuts.

The outer loop of the deduction engine repeatedly identifies USPs, with procedure

Identify_USPs(). While new USPs are identified, additional propagation assignments are

implied. (Note that even though the pseudo-code of all procedures assumes manipulation of ante-

cedent sets and all algebraic manipulation assumes antecedent assignments, conversion between

the two is straightforward.)

4.5.2.1 Maintenance of Propagation Cuts

Derivation of implications causes propagation cuts to change, and may yield propagation

conflicts. For each propagation cut ζi, any p-T node x in ζi that propagates to a fanout node y,

causes y to be added to ζi. Whenever all fanout nodes of x are either p-T or p-F, then x is removed

from ζi. Any propagation cut ζi that is modified at the current decision level c, causes a new prop-

agation cut ζf to be created (after all implications are identified) with δ(ζf) = c, and such that A(ζf)

is given by ζi and by the nodes/edge assignments that block propagation from nodes in ζi:

Figure 4.13: Deduction engine for path sensitization

// Global variables: Implication graph IC

// No input or output arguments
// Return value: CONFLICT or SUCCESS

//
PS_Deduce()

{
do {

if (Logical_Deduce() == CONFLICT)

return CONFLICT;
Target_Application_Update();
if (Propagation_Deduce() == CONFLICT)

return CONFLICT;
}
while (changes to assignments in either dimension);
Create_Propagation_Cuts(); // Create new p-cuts; add to Φ
return SUCCESS;

}

158

(4.19)

where blockedby(ζi) identifies the set of nodes/edges assignments that directly block propagation

from p-cut ζi. In general,

Figure 4.14: Basic propagation deduction engine

// Global variables: Implication graph IC

// No input or output arguments
// Return value: CONFLICT or SUCCESS

//
Propagation_Deduce()

{
do {

Let θ be a node or an edge;
while (θ is p-X and (B(θ) or P(θ)) or Propagation_Blocked()) {

if (Propagation_Blocked()) {
define new conflict node π(κ);
define α(π(κ)); // With either (4.22) or (4.23)
return CONFLICT;

} else if (B(θ)) {
π(θ) ← 0;
set α(θ) as elements causing B(θ) to hold;
set δ(θ) and ι(θ);

} else if (P(θ)) {
π(θ) ← 1;
set α(θ) as elements causing P(θ) to hold;
set δ(θ) and ι(θ);

}
Update_Propagation_Cuts(); // Update composition of p-cuts

}
}
while (Identify_USPs()== SUCCESS); // Iterate USP identification
return SUCCESS;

}

A ζ f() ζ i 1,(){ } blockedby ζ i()∪=

159

(4.20)

where,

(4.21)

where pcut({ y}) tests whether node y identifies a propagation cut. Note that in the proposed search

algorithm, only p-cuts of size 1 require fanin justification.

Example 4.10. Let us consider the example circuit of Figure 4.15, where ζ1 is the initially defined

p-cut. Assume that at the current decision level c, w1 and w2 are assigned as shown, whereas w3

had been assigned at a lower decision level. The assignments permit propagation from y1 to y4 and

y5. As a result, a new propagation cut ζ2 = { y4, y5 } can be created, such that δ(ζ2) = c and

A(ζ2) = { (ζ1, 1) } ∪ { (π(y3, y6), 0) } , and where blockedby(ζ1) = { (π(y3, y6), 0) } .

Let us assume first that a p-frontier becomes empty. In such a situation, a propagation cut

ζ cannot be fanout justified and a propagation conflict π(κ) is defined. The antecedent assignment

of π(κ) is given by,

blockedby ζ() blockedby x()
x ζ∈
∪=

blockedby x()

blockedby y() if π x y,() 1=() π y() 1=() pcut y{ }()¬∧ ∧,
π x y,() 0,(){ } if π x y,() 0=(),
π y() 0,(){ } if π x y,() 1=() π y() 0=()∧,

∅ otherwise,











y O x()∈
∪=

w2 = 1

y1 = 0
y2 = 1

y5 = 1

y4 = 1

ζ1

y6

y3 = 1

Figure 4.15: Identification of blocking conditions

w1 = 0

w3 = 1

ζ2

160

(4.22)

which follows from (4.19). Conversely, let us assume that the propagation conflict results from

fanin justification. The only situation in which an empty p-frontier is not identified is when, in

(4.17), either B(y) holds or P(y) does not hold. In such a situation, let AB denote the set of assign-

ments that cause the blocking situation to be identified. As a result, the antecedent assignment of

π(κ) is given by,

(4.23)

AB depends on the causes that lead (4.17) not to hold and, in some situations, it can be application-

dependent (even though that is not the case with Example 4.9). ζ is the p-cut in the fanin of the p-

cut that yields the conflict.

The pseudo-code description of Propagation_Blocked() is given in Figure 4.16.

Besides testing for p-cuts that cannot be fanout justified or fanin justified (and which require that

type of justification), the existence of unsatisfied propagation implicates is also tested. The con-

struction of these implicates is handled by the diagnosis engine.

4.5.2.2 Identification of Unique Sensitization Points

While deriving propagation implications, USPs denote the unique form for propagation

cuts that can be identified by the proposed deduction engine. Several algorithms have been pro-

posed for the identification of USPs in test pattern generation. In FAN [62] and TOPS [92], prepro-

A π κ()() ζ 1,(){ } blockedby ζ()∪=

A π κ()() ζ 1,(){ } blockedby ζ() AB∪ ∪=

Figure 4.16: Identification of propagation conflicts

Propagation_Blocked()

{
if (exists ζ ∈ Φ such that φ(ζ) = ∅)

return TRUE;
else if (exists ζ ∈ Φ that cannot be fanin justified) // (4.17)

return TRUE;
else if (exists unsatisfied propagation implicate)

return TRUE;
return FALSE;

}

161

cessing techniques are proposed, which require worst-case quadratic-time on the size of the

circuit, and do not identify dynamic USPs. In SOCRATES [145], a dynamic procedure is proposed

that is based on the intersection of lists of dynamic dominators for each node in the D-frontier.

This procedure requires worst-case quadratic time in the size of the circuit. In [87] a linear-time

procedure is claimed, but it is only sketched, and its actual complexity is difficult to assess. LEAP

[155] proposes a simple worst-case linear-time algorithm for identification of USPs based on lev-

elized breadth-first traversals.

Identify_USPs() follows the main ideas of the procedure described in [155]. How-

ever, given that several p-frontiers may exist, the identification of USPs must be accordingly

adapted. In addition, USPs correspond to implied p-cuts, and consequently, the antecedent assign-

ments of such p-cuts must be defined.

The pseudo-code description of Identify_USPs() is given in Figure 4.17. This proce-

dure identifies all USPs with respect to each p-frontier. No propagation conflicts need be detected,

since at least one potential propagation path exists to the primary outputs; otherwise a blocked p-

cut would have been detected by the deduction engine. Given that each p-frontier drives a disjoint

set of p-X nodes, then the above procedure runs in linear time in the number of circuit nodes. How-

ever, the deduction engine iterates calls to Identify_USPs(), and thus an upper bound on the

worst-case running time is (whereas the procedure proposed in SOCRATES would require

 time). The worst-case bound of on the run time should hardly be exercised, since it

would require a decision level where O(N) USPs would be identified. Although possible, it is hard

to find in practice path sensitization problems with O(N) USPs identified at a given decision level.

This observation is supported by experimental data given in [154] and replicated in Chapter VII;

the number of USPs is usually significant, but it is far from being on the order of the number of cir-

cuit nodes (or even the largest depth in the circuit).

Nevertheless, a few optimizations can be implemented. For example, we can restrict the

number of calls to Identify_USPs() to a fixed number k. This solution guarantees a worst-case

linear time, but it does not necessarily identify all USPs. Another solution is to restrict traversals to

sets of p-X nodes that were subject to changes to the p-status of some nodes or edges. Even though

this solution does not improve the worst-case time bound, it prevents useless traversals over sets of

O N2()

O N3() O N2()

162

p-X nodes where additional USPs are known not to be found.

The definition of the antecedent assignment of a newly created p-cut ζ as a function of

another p-cut ζs in the transitive fanin of ζ, is defined as follows:

Figure 4.17: Identification of USPs

Identify_USPs()

{
status = FAILURE;
for each (p-cut ζo in Φ with p-frontier φ(ζo)) {

schedule nodes in p-frontier φ(ζo) for levelized traversal;
α ← { ζ o } ∪ blockedby(ζo); // Initial causes for first USP
stop = FALSE;
while (x is next node to visit with lowest topological level

&& ! stop) {
if (x is the only node to visit) {

define new propagation cut ζ = { x };
α(ζ) = α; compute δ(ζ) = c and ι (ζ);
φ(ζ) = { y | y ∈ O(x) and π(x, y) = X };
//
set x to p-T;

α(π(x)) = { ζ }; δ(π(x)) = c; ι(π(x)) = ι(ζ) + 1;
α ← { ζ }; // Initialize antecedent set of next cut
status = SUCCESS; // USPs have been identified

}
for each (fanout node y of x) {

if (π(x, y) == 0) add π(x, y) to α;
else if (π(y) == 0) add π(y) to α;
else if (y is p-X) schedule y to be visited;
else if (y is in a propagation cut ζy)

{ stop = TRUE; break; } // Process another p-frontier
}
set x as unscheduled;

}
}
return status;

}

163

(4.24)

such that A is computed by procedure Identify_USPs(), while traversing the p-X nodes, and

identifies assignments that block propagation.

4.5.3 Basic Diagnosis Engine

In this section we describe how conflicts involving propagation information are diag-

nosed. In particular, the details for implementing conflict-directed backtracking, failure-driven

assertions and conflict-based equivalence are given. We note, however, that failure-driven asser-

tions are exclusively defined for the logical dimension. Assertions on the propagation dimension

would require a significantly more complex algorithmic framework, as is suggested below.

Basic conflict diagnosis, involving the propagation dimension, is based on the same prin-

ciples of conflict analysis for the logical dimension, but the global nature of propagation conflicts

requires some modifications. After each conflict, implication sequences are analyzed, dependen-

cies are recorded, and implicates of the propagation consistency function ξπ are created. These

propagation implicates identify a sufficient set of conditions for a propagation conflict to be identi-

fied. The format of propagation implicates (or p-clauses) is as follows:

1. A propagation cut ζ that is associated with the propagation conflict.

2. A set of assignments that, given the propagation cut, identifies sufficient conditions for a

propagation conflict to be identified.

Consequently, a p-clause ωπ is defined as a 2-tuple,

ωπ = 〈ζ, ω〉 (4.25)

such that whenever ζ identifies a propagation cut, then ω is an implicate of the consistency func-

tion of the path sensitization problem, that would cause (4.4) not to hold or a logical conflict to be

identified. The propagation cut of ωπ is assumed to be defined at a decision level less than c. A p-

clause ωπ = 〈ζ, ω〉 is said to be unsatisfied whenever ζ is a propagation cut and ω is unsatisfied. A

p-clause ωπ = 〈ζ, ω〉 is satisfied whenever either ω is satisfied or ζ cannot be a propagation cut.

The definition of ω follows the construction of conflicting clauses in Chapter III. A con-

A ζ() ζs 1,(){ } A∪=

164

flicting assignment set is defined by,

(4.26)

where causesof(π(κ)) is defined by (3.7) on page 67 extended to all elements of V and the set of all

p-cuts.

In the search framework based on the p-propagation model, conflicting assignment sets

can contain node and edge assignments, and propagation cut assignments. In the proposed conflict

diagnosis procedure, however, a conflicting assignment set is required to contain at most one p-cut

assignment. Let S denote a set of nodes, edges and one propagation cut, and let cutof(S) denote the

only element θ of S for which pcut(θ) holds. Further let cutofC(S) = S − { cutof(S) } . As a result, ω

for each p-clause is given by a modified form of (3.8) on page 68:

(4.27)

and ζ is defined to be cutof(ACS).

Since the characterization of propagation cut follows that of nodes and edges, the conflict

diagnosis structures used in the logical dimension can be extended to the propagation dimension.

As mentioned earlier, identified p-clauses are maintained in a dedicated clause database, ϕπ, and

the logical deduction engine can use ϕπ to derive additional implications in the logical dimension.

Example 4.11. Let us consider the example circuit of Figure 4.18-a. The current decision level is

7, δ(ζ) = 3, and the decision assignment is x1 = 0. The resulting implication sequence is shown in

Figure 4.5-b, and yields a propagation conflict because all nodes in the p-frontier become p-false.

As a result, we can create a p-clause ωπ, 1 = 〈ζ1, ω1〉 that identifies a propagation implicate of ξπ.

A(π(κ)) is given by and from (4.26),

Consequently, the propagation cut of ωπ, 1 is given by ζ1 = ζ = { y1, y2 } and the conditional clause

ω1 is defined by,

ACS causesof π κ()()=

ω θν θ() θ ν θ(),() cutof C ACS()∈{ }=

ζ 1,() π y3() 0,() π y4() 0,(), ,{ }

ACS ζ 1,() s1 0,() s2 0,() x1 0,() π w1 y5,() 0,() π w2 y6,() 0,(), , , , ,{ }=

165

Figure 4.18: Example of p-clause definition

(b) Implication subgraph for x1 = 0

(a) Example circuit

y1

y2

y3

y6

y5

x1

y4

u1

u2

w1

w2

w3

s1

s2

s3

s4 w4

s6

s5

y9

y7

y10

y8

• Assignments:

Unless otherwise stated, logic values are X. For nodes and edges, by default the p-status

is 0, assigned at decision level 0. p-X and p-T nodes and edges are shown. The current

decision level is 7 and the decision assignment considered is x1 = 0.

node y1 y2 s1 s2 s3 s4 y7 y8

logical — — 0 @ 2 0 @ 2 0 @ 3 0 @ 3 — —

propagation 1 @ 1 1 @ 1 — — — — 0 @ 5 0 @ 3

p-frontier

π(κ)

propagation

x1 = 0 @ 7 / 0

π(y5) = 0 @ 7 / 2

π(y6) = 0 @ 7 / 2

π(y3) = 0 @ 7 / 4

s1 = 0 @ 2

conflict

s2 = 0 @ 2

w1 = 0 @ 7 / 1

w2 = 0 @ 7 / 1

π(w1, y5) = 0 @ 0

π(w2, y6) = 0 @ 0
π(y4) = 0 @ 7 / 4

p-X node/edge
p-T node/edge

ζ

ζ = 1@ 3

δ(ζ) = 3

π(y3, y5) = 0 @ 7 / 3,

π(y4, y6) = 0 @ 7 / 3,

166

which signifies that whenever { y1, y2 } identifies a propagation cut, s1 = s2 = x1 = π(w1, y5) =

π(w2, y6) = 0 yield a propagation conflict. Finally, observe that for this example the propagation

conflict is due to an empty p-frontier.

It interesting to note that the p-clause defined in the above example can now be applied

during the search to prevent a known propagation conflict from occurring, thus permitting the

early identification of propagation conflicts due to the same conditions.

It is more interesting to note that no target application was actually specified. The p-clause

was derived based on general blocking properties, that apply in both testing and timing. Conse-

quently, the derived p-clause is said to be pervasive across path sensitization applications and can

thus be used in both applications. This example also shows that in the propagation dimension, it is

possible in some cases to define pervasive clauses, in addition to the pervasive clauses identified in

the logical dimension. In general, however, not all propagation clauses are pervasive across path

sensitization applications, or even in the same application. In the following chapters examples of

such clauses will be described. Whenever the causes of a propagation conflict can be traced to

blocking conditions that are pervasive across path sensitization problems, then the defined p-

clauses are also pervasive across path sensitization problems. That is the case with the previous

example.

Propagation implicates derived during the search can be used in a variety of situations and

identify conditions for which the basic deduction engine might not prevent conflicts from being

identified.

Example 4.12. Examples of propagation conflicts are shown in Figure 4.19. For the example cir-

cuit of Figure 4.19-a, let us assume the assignment w = 0. Then φ(ζ) eventually becomes empty

and a propagation conflict is identified. The resulting p-clause is given by,

ωπ = 〈ζ, ω〉 = 〈{ y1 }, (w)〉

which signifies that whenever ζ = { y1 } denotes a p-cut, then w must assume value 1. For the

example circuit of Figure 4.19-b, the same assignment is assumed and a propagation conflict is

also identified. The obtained p-clause is given by,

ω1 s1 s2 x1 π w1 y5,() π w2 y6,()+ + + +()=

167

ωπ = 〈ζ, ω〉 = 〈{ y1 }, (π(y3, y4) + w)〉

which means that whenever ζ = { y1 } is a propagation cut and propagation of a perturbation from

y3 to y4 is blocked, then w must assume value 1.

Backtracking Decision Level

The techniques used in SAT, for creating assertions and computing backtracking decision

levels, can be extended to path sensitization. The main differences stem from handling different

conflict types and propagation cuts. In path sensitization, backtracking can result from three possi-

ble conflict interactions:

1. Decision assignment and resulting assertion result in logical conflicts.

2. Decision assignment and resulting assertion result in propagation conflicts.

3. Either the decision assignment or resulting assertion results in a logical conflict, and the oth-

er in a propagation conflict.

The situation where both conflicts are logical, and the identified dependencies correspond

solely to the logical dimension, was addressed in Chapter III. The situation where a logical and a

propagation conflict are identified can be viewed, without loss of generality, as a special case of

the situation where both conflicts are propagation conflicts. Consequently, in the following analy-

sis we assume that a given decision level c, two propagation conflicts are identified. Manipulation

of p-clauses is also required for any logical conflict whose diagnosis yields a p-clause.

Figure 4.19: More examples of p-clause definition

p-X node/edge
p-T node/edge

w

y1 z1

y3

y2

φ(ζ)

ζ

w

y1

y2

z2

z1

φ(ζ)
ζ

y4

y3

(a) Example 1 (b) Example 2

168

Let ωπ, 1 = 〈ζ1, ω1〉 denote the first p-clause identified at a decision level c, and let some

variable w be asserted due to ωπ, 1. Now let us assume that another propagation conflict is identi-

fied. The resulting p-clause could contain two propagation cuts ζ1 and ζ2, one from asserting w

and the other from the last conflict. However, by definition, p-clauses and conflicting assignment

sets can have at most one propagation cut. Hence, we must express both propagation cuts in terms

of another common propagation cut ζ. Let ζ1 and ζ2 be two propagation cuts. Then, a common p-

cut is computed by join(ζ1, ζ2), where:

(4.28)

join(ζ1, ζ2) recursively searches for the case where ζ1 = ζ2, while adding node and edge assign-

ments associated with each visited propagation cut. The set of node/edge assignments computed

by join(ζ1, ζ2) includes the definition of the common propagation cut ζ. Hence, join(ζ1, ζ2) identi-

fies a set of conditions under which a propagation cut ζ ∈ join(ζ1, ζ2) causes both ζ1 and ζ2 to be

created. Given the definition of a conflicting assignment set, and assuming a computed conflicting

assignment set containing two conflicting assignment sets ζ1 and ζ2, we can use join(ζ1, ζ2)

to obtain a conflicting assignment set ACS containing just one p-cut as follows:

(4.29)

The backtracking decision level is then defined as follows:

(4.30)

that basically generalizes (3.17) on page 86.

Besides computing the backtracking decision level, a p-clause ωπ, 2 is created, ωπ, 2 = 〈ζ2,

ω2〉, such that ζ2 is defined by cutof(ACS) and ω2 is given by (4.27). At the backtracking decision

join ζ1 ζ2,()

ζ1 1,() if ζ1 ζ2=,

join cutof A ζ1()() ζ2,() cutof C A ζ1()()∪ if δ ζ1() δ ζ2()≥,

join ζ1 cutof A ζ2()(),() cutof C A ζ2()()∪ otherwise,








=

ACS
i

ACS ACS
i ζ1 1,() ζ2 1,(),{ }–[] join ζ1 ζ2,()∪=

βL max δ θ() θ ν θ(),() ACS∈{ }=

169

level βL, a propagation conflict is now forced by ωπ, 2, that serves to either derive additional p-

clauses or compute another backtracking decision level.

Another source of conflicts arises from unsatisfied p-clauses, which are detected by proce-

dure Propagation_Blocked() that is described in Figure 4.16. The antecedent assignment of

the conflict node due to an unsatisfied p-clause ωπ = 〈ζ, ω〉 is then defined by,

(4.31)

where θ in this case can either represent a node in either dimension or an edge in the propagation

dimension. It is worth noting that most of the concepts described in Section 3.6 for (logical) con-

flict diagnosis find application while diagnosing propagation conflicts, the major difference being

the manipulation of propagation cuts.

Example 4.13. To illustrate the computation of the backtracking decision level, let us continue

studying the example circuit of Figure 4.18. The generated p-clause (see Example 4.11) yields the

assertion x1 ← 1. The resulting implication sequence is shown in Figure 4.20 and it yields another

propagation conflict. Taking into consideration the antecedent assignment of x1, the p-clause

ωπ, 2 = 〈ζ2, ω2〉 that is created includes the same propagation cut as ωπ, 1, i.e. ζ2 = ζ, since ζ is

common to both conflicts and δ(ζ) < 7, and the associated conditional clause ω2 is defined as fol-

lows:

A π κ()() ζ 1,(){ } θ ν θ(),() θν θ() ω∈{ }∪=

Figure 4.20: Implication sequence triggered by x1 ← 1 for the circuit of Figure 4.5

π(κ)
x1 = 1 @ 7 / 0

π(y9) = 0 @ 7 / 2

π(y10) = 0 @ 7 / 2

π(y3) = 0 @ 7 / 6

s3 = 1 @ 3

s4 = 1 @ 3

w3 = 1 @ 7 / 1

w4 = 1 @ 7 / 1

π(w3, y9) = 0 @ 0

π(w4, y10) = 0 @ 0
π(y4) = 0 @ 7 / 6

π(y5, y7) = 0 @ 5

π(y6, y10) = 0 @ 3

π(y5) = 0 @ 7 / 4

π(y6) = 0 @ 7 / 4

π(y5, y9) = 0 @ 7 / 3

π(y6, y10) = 0 @ 7 / 3

ωπ, 1
ζ = 1 @ 3

π(y3, y5) = 0 @ 7 / 5,

π(y4, y6) = 0 @ 7 / 5,

170

From (4.30), the backtracking decision level is computed to be 5, due to the assignment of

π(y5, y7) to p-F at decision level 5. Hence, the search process backtracks to decision level 5. (Note

that at decision level 5, π(y5, y7) = 0 would now denote a unique implication point (UIP) and so the

assignment π(y5, y7) = 1 could be used to trigger the second branch at decision level 5. However,

assertions in the p-dimension are disallowed. This type of assertion would require justification for

p-status assignments, and consequently lead to a more involved formulation.) The newly derived

p-clause ωπ, 2 = 〈ζ2, ω2〉 states that if s1 = s2 = 0 and s3 = s4 = 1 there can be no propagation if the

possible propagation paths are as shown in Figure 4.5.

The conflict diagnosing equations proposed above for handling propagation conflicts can

also be used in situations where a logical conflict is identified, but which involves a propagation

cut in its definition. In these situations, even though a logical conflict is identified, the result of

diagnosing the conflict is a p-clause.

Example 4.14. An example of a logical conflict whose diagnosis yields a p-clause is shown in Fig-

ure 4.21. ζ1 = { x } identifies a propagation cut created at decision level 3. At decision level 5, the

assignment s3 = 1 triggers an implication sequence, which creates a new p-cut ζ2 = { z2 } . The pro-

cess of fanin justifying ζ2 implies y ← 0, which eventually yields a logical conflict with z1 = 1.

Even though a logical conflict is identified, its causes are a direct consequence of fanin and fanout

justification of p-cuts. As a result, the derived p-clause is given by,

which states that if ζ1 = { x } is a propagation cut, and π(y, z2) = π(s3, s4) = 0, then either z1 = 0 or

s1 = 1 or s3 = 0. For this example, we could avoid creating a p-clause by taking UIPs into account.

The derived clause would then be (¬ z2 + s1). This clause would block propagation to z2, and set

{ s4 } as a new propagation cut, which would imply s3 ← 0.

As the above example illustrates, we can use UIPs in the logical dimension. However, in

ω2 (s1 s2 s3¬ s4¬+ + + π w1 y5,() π w2 y6,()+ + +=

π y5 y7,() π y6 y8,() π w3 y9,() π w4 y10,()+ + +)

ωπ 1, ζ1 ω1,〈 〉 x{ } z1¬ s1 π y z2,() π s3 s4,() s3¬+ + + +(),〈 〉= =

171

order to guarantee that the decision assignment is implied to the complemented value (as the sec-

ond branch at the current decision level), a global clause must be defined. This fact results from

implications due to propagation cuts being unidirectional, and thus may not be re-created if deriva-

tion of p-clauses implements UIPs.

Organization of the Diagnosis Engine

The diagnosis engine for path sensitization, PS_Diagnose() is shown in Figure 4.22,

where Logical_Diagnose() corresponds to the basic diagnosis engine for the logical dimen-

sion described in Chapter III, whereas the basic diagnosis engine for propagation conflicts,

Propagation_Diagnose(), is described in Figure 4.23. The procedure basically follows the

steps described above. As mentioned earlier, p-clauses are maintained in a separate clause data-

Figure 4.21: Logical conflict that yields a p-clause

x

u1 z1 = 1 @ 0

s3 = 1 s4

s2

y

ζ1

ζ2

u2

u3

κ

conflict

ζ1 = 1 @ 3

z1 = 1 @ 0

π(s2, s4) = 0 @ 5 / 1

y = 0 @ 5 / 3

s3 = 1 @ 5 / 0

ζ2 = 1 @ 5 / 2

u1 = 0 @ 5 / 4 u3 = 0 @ 5 / 5

s1 = 0 @ 4

u2 = 0 @ 5 / 4

(a) Example circuit

(b) Implication sequence

s1 = 0 @ 4

π(y, z2) = 0 @ 0

z2
p-X node/edge
p-T node/edge

δ(ζ1) = 3
π(y, z2) = π(s3, s4) = 0 @ 0

π(s3, s4) = 0 @ 0

172

base, which is manipulated by the diagnosis engine to add new clauses, by the deduction engine

for deriving logical implications and by procedure Propagation_Blocked() for identifying

equivalent propagation blocking conditions.

As in the case of SAT algorithms, improvements and simplifications to conflict diagnosis

can be defined. For example, straightforward extensions allows us to compute UIPs (in the logical

dimension) and identify multiple conflicts (either logical or propagation). Simplifications to con-

flict diagnosis are also possible and are described in the following chapters. The simplified diagno-

sis engines bound the growth of the clause databases ϕ and ϕπ.

We can also identify conditions under which consensus operations between p-clauses can

be defined. Let us consider two p-clauses ωπ, 1 = 〈ζ1, ω1〉 and ωπ, 2= 〈ζ2, ω2〉 such that ζ1 = ζ2, and

that consensus between ω1 and ω2 with respect to a variable x is defined. Then the resulting con-

sensus p-clause becomes ωπ, 3 = 〈ζ3, ω3〉 = 〈ζ 1, c(ω1, ω2, x)〉 . (It is worth noting that consensus

between p-clauses is also suggested by how propagation conflicts are diagnosed.) Furthermore,

ωπ, 3 is an implicate of the consistency function ξπ. If both ωπ, 1 and ωπ, 2 are satisfied, then ωπ, 3

must also be satisfied. Conversely, if ωπ, 3 is unsatisfied then either ωπ, 1 or ωπ, 2 is unsatisfied.

These facts necessarily hold since all three clauses share the same propagation cut.

4.6 Summary and Perspective

This chapter introduces the perturbation propagation model, an abstract model for path

// Global variables: Implication graph IC

// Clause databases ϕ and ϕπ

// Input variable: Current decision level c

// Output variable: Backtracking decision level βL

// Return value: CONFLICT or SUCCESS

//
PS_Diagnose (c, &β L)

{
if (conflict uniquely dependent on logic values)

return Logical_Diagnose (c, βL);
return Propagation_Diagnose(c, βL);

}
Figure 4.22: Diagnosis engine for path sensitization

173

sensitization that can be used in different target applications. A search algorithm for path sensitiza-

tion based on the p-propagation model is described. The algorithm implements most of the prun-

ing methods described in Chapter III. In particular, the algorithm allows implementing conflict-

directed backtracking, conflict-based equivalence and failure-driven assertions in the context of

path sensitization.

The p-propagation model facilitates the implementation of several algorithmic techniques

described in the previous chapter in the context of SAT. For this purpose, the model and algorithm

allow the definition and manipulation of propagation implicates associated with the consistency

function for path sensitization. Propagation implicates can describe powerful properties of path

sensitization, and in some situations they can be application-independent.

Figure 4.23: Basic propagation diagnosis engine

// Global variables: Implication graph IC

// Clause databases ϕ and ϕπ

// Input variable: Current decision level c

// Output variable: Backtracking decision level βL

// Return value: CONFLICT or SUCCESS

//
Propagation_Diagnose (c, &β L)

{
ACS = Compute_Conflicting_Assignment_Set(); // Using (4.26)
if (ACS contains assignments of two p-cuts ζ1 and ζ2)

; // Using (4.28)

ζ = cutof(ACS);

ω = Create_Conflicting_Clause (cutofC(ACS)); // Using (4.27)
ωπ = 〈ζ, ω〉; // New p-clause
Update_P_Clause_Database (ωπ); // Add clause to database
βL = Compute_Max_Level (ACS); // Using (4.30)
if (βL != c) {

define new conflict node π(κ); // Set up new conflict node
define α(π(κ)); // Using (4.31)
return CONFLICT;

}
return SUCCESS;

}

ACS ACS ζ1 1,() ζ2 1,(),{ }–[] join ζ1 ζ2,()∪←

174

Throughout the description of the search algorithm, the details of the target application

were deliberately overlooked, being our goal to just describe properties intrinsic to the p-propaga-

tion model that are valid for path sensitization in general. In the following chapters we address two

target applications, test pattern generation and timing analysis. We describe how to represent path

sensitization for those applications with the p-propagation model, and detail the search algorithm,

as well as its improvements and simplifications. In this analysis, we illustrate which differences

must be considered when implementing test pattern generation or timing analysis tools.

Besides the details of the target application, other aspects of the search-based path sensiti-

zation algorithm were also skipped and must be further analyzed:

• We must specify which p-clauses can be considered pervasive, and how pervasiveness holds

across different target applications.

• The procedure for toggling p-T nodes into p-F nodes must be formalized for both test pattern

generation and timing analysis.

Another topic that must be addressed is comparing the p-propagation model with other

path sensitization models in each target application. For the particular case of test pattern genera-

tion, where more models have been proposed, we show that the p-propagation model can be scaled

to achieve any degree of precision that is achieved by other path sensitization models. We further

show that the p-propagation model can actually be made more precise than any other path sensiti-

zation model for test pattern generation proposed in the past.

One limitation of the proposed search algorithm for path sensitization is that assertions in

the propagation domain are disallowed. The difficulty of handling assertions in the propagation

domain is due to the computational overhead associated with maintaining a large number of prop-

agation cuts, requiring fanin and fanout justification, and in relating these propagation cuts when-

ever fanin and fanout justification takes place. The implementation of assertions in the propagation

dimension is left as future research work.

175

CHAPTER V

PATH SENSITIZATION FOR TEST PATTERN

GENERATION

5.1 Introduction

The purpose of this chapter is to detail, using test pattern generation as the target applica-

tion, the path sensitization model and algorithm described in the previous chapter. The p-propaga-

tion model is defined abstractly, and so it is independent of any specific target application.

Accordingly, we must define how the model is specified for path sensitization in test pattern gener-

ation.

Moreover, the path sensitization algorithm, LEAP, needs to be configured for test pattern

generation. The basic deduction and diagnosis engines are described and, as was done in Chapter

III for SAT, more advanced engines are analyzed. Simplifications to conflict diagnosis are pro-

posed and analyzed in some detail, since they represent the core of the experimental results

reported in Chapter VII. The description of the search algorithm is concluded with a brief discus-

sion of solution and selection engines. Furthermore, different configurations of LEAP() are com-

pared with algorithms proposed by other authors in the context of test pattern generation.

The formulation of the p-propagation model for test pattern generation is scalable, i.e.

depending on the amount of computational effort one is willing to spend, the precision with which

path sensitization facts are deduced can be increased. We show that the degrees of precision pro-

posed by other path sensitization models for test pattern generation can also be attained with an

176

adequate formulation of the p-propagation model. Moreover, we propose using the edge p-status

for increasing the reasoning ability of the model. This allows the precision of the p-propagation

model to surpass the precision of other models for path sensitization.

Outline

The top-level description of test pattern generation is given in Section 5.2. Section 5.3

describes how the p-propagation model can be used to represent path sensitization for test pattern

generation. Section 5.4 is dedicated to detailing the basic deduction and diagnosis engines, taking

into consideration the target application, and it is followed by an analysis of advanced deduction

engines in Section 5.5. Advanced deduction engines are based on the identification of propagation

implicates and application of consensus, and so we have to formalize consensus operations over p-

clauses characterized by different p-cuts.

Engines for postprocessing and for selecting decision assignments are studied in

Section 5.6 and Section 5.7, respectively. These engines are first described in Chapter III for SAT,

being our goal in the present chapter to describe the modifications required for test pattern genera-

tion.

Section 5.8 analyzes possible formulations of fault detection with the p-propagation

model. The emphasis is on how to increase the reasoning ability provided by the model, while

guaranteeing that the proposed pruning methods can still be implemented. This section provides

the basis for comparing, in Section 5.9, LEAP with algorithms proposed by other authors.

5.2 Fault Detection in Test Pattern Generation

The top-level algorithm for fault detection in test pattern generation in shown in Figure

5.1. A list of target faults is assumed. Random test pattern generation can be optionally invoked.

The algorithm then processes each fault until all faults are detected, proved redundant or aborted

due to resource constraints. For a detectable fault, and after a solution is identified, fault simulation

can be optionally executed. In general fault simulation is invoked, the exception being when the

goal is to exclusively evaluate the path sensitization algorithm. After all faults are detected,

reverse-order fault simulation can be optionally executed to reduce the test set size [144]. Algo-

rithms for random test pattern generation and fault simulation can be found in [1] and are not fur-

177

ther considered in the present dissertation.

The procedure for detecting each fault is described in Figure 5.2, and its main purpose is

to invoke LEAP() (described in Figure 4.10 on page 152). Note that given the definition of

PS_Search(), invoked by LEAP(), no faults are aborted. However, in practical implementations,

PS_Search() controls either the run time or the number of backtracks in order to decide whether

a given fault is deemed too hard to detect or prove redundant.

Internal to LEAP(), procedure Toggle_Propagation_Values() is invoked when-

ever the search process terminates successfully. Assuming a complete node and edge assignment

in both dimensions, this procedure sets to p-F nodes and edges assigned p-T, but which are not

included in sensitizable paths. Taking into consideration that nodes or edges that may be down-

Figure 5.1: Procedure for test pattern generation

// Global variables: List of faults fault_list

// List of detected faults detected_list

// List of redundant faults redundant_list

// List of aborted faults aborted_list

// Auxiliary variables: outcome ∈ { FAILURE, SUCCESS }
//
Test_Pattern_Generation()

{
define ϕ for circuit and initialize ϕπ;
if (RANDOM_TPG) Generate_Random_Tests (fault_list);
while (fault in fault_list) {

Delete_From_List (fault_list, fault);
outcome = Detect_Fault (fault);
if (outcome == SUCCESS) { // Detected fault

Add_To_List (detected_list, fault);
if (FAULT_SIMULATION) Fault_Simulation (fault_list);

}
else if (outcome == FAILURE) // Redundant fault

Add_To_List (redundant_list, fault);
else if (outcome == ABORTED) // Aborted fault

Add_To_List (aborted_list, fault);
}
if (FAULT_SIMULATION) Reverse_Order_Fault_Simulation();

}

178

graded from p-T to p-F are the result of fanout blocking conditions, then a simple levelized back-

ward circuit graph traversal can be used to visit nodes whose p-status must be toggled. It is clear

that such traversal does not change the p-status of any p-T primary output. This procedure is only

valid for test pattern generation, since for timing analysis additional conditions are involved in

downgrading p-T to p-F nodes and edges. Note that toggling the p-status of nodes and edges does

not affect the validity of computed tests, and it is only of interest if the sensitizable paths are to be

reported; otherwise toggling values may be skipped since it just increases the computational over-

head.

5.3 Modeling Fault Detection in Test Pattern Generation

In this section we detail how to represent path sensitization for test pattern generation

using the p-propagation model. The single stuck-at line fault model is assumed [1, pp. 110-118]

and two types of faults are distinguished. The stem fault x s-a-v to denote a node x whose logic

value is fixed to a logic value v, and a fanout-branch fault (x, y) s-a-v denoting that the connection

between x and y always assumes a fixed logic value v. Although the formulation of the model is the

same for both types of faults, the initialization phase differs.

Let us assume a fault x s-a-v. Node x is said to be the source of the perturbation. Hence, x

is initialized to p-T, all nodes and edges in its transitive fanout are initialized to p-X, because they

may propagate the perturbation, and the remaining nodes and edges are set to p-F. Consequently, a

perturbation can reach a primary output through any partial path connecting x to the primary out-

Figure 5.2: Procedure for detecting each fault

// Global structures: p-propagation model initialization ψ
// Input arguments: Fault specification fault

// Return value: status ∈ { FAILURE, SUCCESS }
//
Detect_Fault (fault)

{
define ψ for TPG given fault; // Initialize p-status for fault
status = LEAP();
return status; // It can either be SUCCESS, CONFLICT or ABORTED

}

179

puts. In addition, the fault must be activated, and so x must actually assume value v, thus defining

the original j-frontier.

For fault (x, y) s-a-v, the j-frontier is initialized in the same manner, i.e. x = v. However, the

p-status initialization differs. Edge (x, y) is set to p-T, all nodes and edges in the transitive fanout of

y are set to p-X, and the remaining nodes and edges are set to p-F.

Example 5.1. Examples illustrating the initialization of the p-status for both types of faults are

shown in Figure 5.3. For fault x5 s-a-1, the initialization of the p-propagation model sets node x5 to

p-T and nodes and edges in its transitive fanout to p-X. The remaining nodes and edges are set to

p-F. Node x5 is assigned value 0 to denote activation of the fault.

For fault (x4, x5) s-a-0, edge (x4, x5) is set to p-T, the nodes and edges in the transitive

fanout of x5 (including x5) are set to p-X, and the remaining nodes and edges are set to p-F. Node

x4 is assigned value 1 to activate the fault.

Following the definition of p-status in Section 4.3.2, the formulation of the p-propagation

model for test pattern generation will be completed by specifying predicates BC(x), BC(x, y), P(x)

and P(x, y).

Observe that the blocking predicate defined in (4.8) (see page 141) accounts for all possi-

ble blocking situations that can occur in test pattern generation with the exception of error signal

cancellation. Consequently, predicate BC(x) is defined as follows:

Figure 5.3: Initialization of p-status for test pattern generation

(a) x5 s-a-1 (b) (x4, x5) s-a-0

x1

x4

x3

x2

z1

x6

x5 = 0

z2s-a-1

p-X node/edge
p-T node/edge

x1

x4 = 1

x3

x2

z1

x6

x5

z2

s-a-0

p-X node/edge
p-T node/edge

180

(5.1)

which states that if two fanin nodes of x are p-T, and the two nodes are assigned and assume oppo-

site values, then error cancellation takes place, and propagation to x is blocked. This situation

would correspond, for example, to having a node y set to D and a node w set to D at the input of a

gate, thus cancelling propagation of the error signal to the output x. (Note that the above condition

explicitly assumes simple gates, but can be easily extended to XOR/XNOR gates.) From (4.8) with

BC(x) replaced with (5.1) we can define the blocking condition for test pattern generation as fol-

lows:

(5.2)

and whenever B(x) holds, then the p-status of x becomes p-F. Condition BC(x, y) is defined to be

identically 0 and so B(x, y) is given by (4.9) (see page 141).

The node propagation predicate is defined as follows:

(5.3)

that requires each fanin edge to either be p-T and the associated fanin node be assigned, or to be p-

F and the associated fanin node to assume a non-controlling value. The formulation of P(x) does

not require p-T edges to be driven by nodes assuming the same logic values, since the blocking

conditions take that into consideration, and the p-propagation model formulation gives preference

to blocking. Finally, P(x, y) is defined as follows:

(5.4)

BC x() π w() 1=() π y() 1=() ν w() ν y()⊕ 1=()⋅ ⋅()
y w, I x()∈

∑=

B x() π y x,() 0=()
y I x()∈
∏ π x y,() 0=()

y O x()∈
∏+ +=

π y x,() 0=() c y x,()⋅()
y I x()∈
∑ +

π w() 1=() π y() 1=() ν w() ν y()⊕ 1=()⋅ ⋅()
y w, I x()∈

∑

P x() π y x,() 1=() ν y() X≠()⋅ π y x,() 0=() nc y x,()⋅+[]
y I x()∈
∏=

P x y,() π x() 1=[]=

181

which states that an edge becomes p-T provided its fanin node becomes p-T.

It is worth noting that the definition of the edge p-status in test pattern generation is nones-

sential, and one can develop a formulation just based on node p-status. However, the proposed for-

mulation illustrates the relationship between different path sensitization applications. In

Section 5.8, the edge p-status definition is reformulated to allow for improved pruning ability.

Given the proposed configuration of the p-propagation model for test pattern generation

the following holds:

Theorem 5.1. Given a SSF fault in a combinational circuit, a test T detects the fault if and only if

under the p-propagation model T sets at least one primary output to p-T.

The above result is independent of how the computation of T is actually performed. Thus,

an immediate corollary is:

Corollary 5.1. A sound and complete search algorithm, based on the p-propagation model, com-

putes a test T for a given fault if and only if such test exists.

Example 5.2. The operation of the p-propagation model for test pattern generation is illustrated

with the example of Figure 5.3-a. First, the assignment x5 = 0 implies x3 ← 1 and x4 ← 1. As a

result B(z2) holds, since π(x4, z2) = 0 and c(x4, z2) holds. From (4.14) and (4.13), respectively,

π(z2) ← 0 and π(x6, z2) ← 0. In the logical dimension, z2 ← 1 is implied by the assignment to x4.

Because π(x5) = 1, then π(x5, x6) ← 1 from (5.4).

Now let x2 ← 0. Hence, P(x6) holds and so π(x6) ← 1. From (5.4), π(x6, z1) ← 1. Finally,

let x1 ← 0, that causes P(z1) to hold and so π(z1) ← 1. Figure 5.4 illustrates the logic values and

Figure 5.4: Applying the p-propagation model to test pattern generation

x1 = 0

x4 = 1

x3 = 1

x2 = 0

z1 = 1

x6 = 1

x5 = 0

z2 = 1
s-a-1

p-X node/edge
p-T node/edge

π(z1) = 1 → fault detected

182

propagation status after the above sequence of assignments. The assignment set { (x1, 0), (x2, 0),

(x3, 1), (x4, 1) } identifies a test for fault x5 s-a-1. For this example the existence of OUT nodes is

only implicitly assumed, since for test pattern generation if a perturbation reaches the output of a

gate connected to a OUT node z, then z also propagates a perturbation.

Perspective

The p-propagation model is significantly different from the D-calculus and derived alge-

bras. Nevertheless, a few other path sensitization models share similarities with the p-propagation

model, in particular the SPLIT model [33] and the SAT-directed models of [24] and [162]. All

these models characterize the state of each circuit node with three values. The semantics of each

value differ slightly between models.

In the SPLIT model the values of the good and faulty circuits are kept. In addition, a third

value, referred to as the difference value, identifies whether the good and faulty values are or can

be different. Hence, the third value is defined locally, as is the p-status of nodes and edges in the p-

propagation model. The definition of the difference value in the SPLIT model does not account for

fanout blocking information, as the formulation of the p-propagation model does.

The SAT-directed models of [24] and [162] also maintain the node values of the good and

faulty circuits. The third node value (referred to as the D-chain variable in [162] and the path vari-

able in [24]) indicates whether the node is part of a sensitizable path. This definition immediately

implies that a node is only said to be part of a sensitizable path after all logic assignments to the

relevant primary inputs have been made. Consequently, these two models require decision assign-

ments on some of the path variables in order to identify sensitizable paths, which may increase the

size of the decision trees for some instances of path sensitization.

The p-propagation model is unique in that the notion of error signal is only implicitly con-

sidered. This formulation has the following advantages:

• The p-propagation model avoids some of the redundant information used by the SPLIT

model and SAT-directed models.

• The model is scalable (as described in Section 5.8) and can be adapted such that it supersedes

other path sensitization models for test pattern generation. It also suggests applications for

the edge propagation status with the goal of increasing the reasoning precision of the model.

183

• In the context of search, as described in the previous chapter, it permits several pruning meth-

ods to be defined independently of the target application. In addition, it allows the diagnosis

engines described in Chapter III to be straightforwardly adapted.

The p-propagation model for test pattern generation is compared in more detail with other

models in Section 5.9.

5.4 Basic Deduction and Diagnosis Engines

The basic deduction and diagnosis engines for the propagation dimension are given by the

procedures described in the previous chapter. In order to formalize the description of these engines

for test pattern generation we only need to specify how antecedent assignments are established due

to blocking and propagation conditions. Moreover, implementation tradeoffs of the diagnosis

engine are described, which can be used to bound the maximum growth of the database of p-

clauses.

5.4.1 Deduction Engine

The basic deduction engine was described in Figure 4.13 (see page 157). In this section

we formalize the definition of antecedent assignments for each possible implied assignment. Let

us assume that a node x becomes p-F. Hence, (5.2) holds and the antecedent assignment of assign-

ing p-F to x is defined by one of the terms of (5.2) that holds true. Precedence is given to structural

blocking conditions (the first and second terms) followed by the controlling value condition and

then the error cancellation condition. The chosen precedence relation guarantees that antecedent

assignments common to several path sensitization applications are identified whenever possible.

Consequently, this contributes to defining propagation implicates common to other path sensitiza-

tion applications.

Example 5.3. The definition of the antecedent assignment for several blocking conditions is illus-

trated in Figure 5.5. In Figure 5.5-a, the antecedent assignment of π(x) is given by all fanout edges:

(5.5)

In Figure 5.5-b, the antecedent assignment is given by all fanin nodes in the propagation dimen-

A π x()() π x y,() 0,() y O x()∈{ }=

184

sion:

(5.6)

For the case of Figure 5.5-c, the antecedent assignment is given by the node that assumes the con-

trolling value and the associated edge:

(5.7)

Finally, for error cancellation, the antecedent assignment is defined by the two nodes whose p-sta-

tus cancel each other:

(5.8)

Thus, all antecedent assignments for blocking propagation to a node are defined.

Assuming that B(x) does not hold and P(x) holds, then x becomes p-T. The antecedent

assignment of π(x) is defined as follows:

(5.9)

Figure 5.5: Blocking antecedents in test pattern generation

x x

x

y
c(y, x)

p-F
node

p-F
edges

p-F
node

p-F
edges

p-F
node

p-X
edges

x
y

p-F
node

p-T
edges

w

v

v

(a) All fanout edges blocked (b) All fanin edges blocked

(c) p-F side input with controlling value (d) Error cancellation

A π x()() π x y,() 0,() y I x()∈{ }=

A π x()() y ν y(),() π y x,() 0,(),{ }=

A π x()() y ν y(),() π y x,() 1,() w ν w(),() π w x,() 1,(), , ,{ }=

A π x()() y ν y(),() π y x,() ν π y x,()(),(),{ }
y I x()∈
∪=

185

The antecedent assignments for the case of edge p-status are defined accordingly for both

blocking and propagation conditions. In all cases, the antecedent set is readily obtained from the

antecedent assignment with (2.14) on page 40.

We finally note that given the definition of antecedent assignment for propagation cuts,

introduced in the previous chapter, and for logic assignments, defined in Section 3.2, the anteced-

ent assignment of any element included in another antecedent assignment is well-defined, and so

conflict analysis can be implemented.

Value Probing

While identifying USPs we can check whether the logic value assumed by each USP can

be uniquely defined. If all propagation scenarios to a USP x require the same logic value to be

assumed by x, then x must be assigned that value, in order to fanin justify the p-cut associated with

the USP. The process of defining the logic value assumed by each USP is referred to as value prob-

ing. The antecedent assignment of this logic assignment is defined by the p-cut in the transitive

fanin of the p-cut associated with the USP, the values assumed by the nodes in that fanin p-cut, and

the assignments traced while defining the admissible values at each node in the transitive fanin of

the USP.

Example 5.4. An example circuit where the logic value assumed by a USP can be identified is

shown in Figure 5.6-a. The admissible pairs of logic and propagation values imposed solely by

forward conditions are shown for each node, and where X or p-X denotes that both values are

admissible in that dimension. While traversing the circuit graph for defining USPs, the admissible

pairs of values are propagated forward and related with other pairs of values, with the goal of iden-

tifying the possible combinations of values at each node. When node u1 is visited (denoting a

propagation cut that requires fanin justification) we can immediately conclude that the combina-

tion of values (0, p-F) for u1 would be the result of a propagation conflict and so the only admissi-

ble combination of values for u1 is (1, p-T). Consequently, u1 ← 1 is implied with antecedent

assignment defined by { (ζ1, 1) , (x1, 1), (x2, 0), (π(x1), 1), (π(x2), 1) } . The assignment of u1 in the

logical dimension implies several other assignments, which further constrain the search as shown

in Figure 5.6-c. It is interesting to note that for this example, the final p-status of y3 is actually

186

irrelevant for propagating the perturbation, and ζ2 could be said to be fanin justified, and ζ3

(derived from ζ1) to be fanout justified. However, by definition of the model, the final p-status of

y3 is required to be known. Nevertheless, we are guaranteed that no conflict will be identified

between ζ3 and ζ2.

The implementation of value probing can be incorporated into the algorithm for identifica-

tion of USPs, as was suggested by the previous example. Starting from a given p-frontier, all

admissible pairs of values, which can be defined only by forward propagation, are associated with

each visited node. For any node in a p-cut requiring fanin justification, for which only one logic

value is admissible with a p-T status, then that assignment must be made. The antecedents of the

node assignment are defined by the initial p-cut, by the nodes in the initial p-cut (in both dimen-

Figure 5.6: Example of application of value probing

y1 = (X, p-X)x1 = (1, p-T) u1 = (X, p-T)

ζ1

ζ2x2 = (0, p-T)
y2 = (X, p-X)

y3 = (X, p-X)

y5 = (X, p-X)
y4 = (X, p-X)

• Pairs of values not shown are assumed to be (X, p-F).

Node y1 y2 y3 y4 y5 u1

Admissible
values

(1, p-T)
(0, p-F)

(1, p-T)
(0, p-F)

(1, p-F)
(0, p-F)
(1, p-T)

(1, p-F)
(0, p-T)

(1, p-T)
(0, p-F)

(0, p-F)
(1, p-T)

w1

y1 = (X, p-X)x1 = (1, p-T) u1 = (1, p-T)

ζ3

ζ2x2 = (0, p-T)
y2 = (1, p-T)

y3 = (1, p-X)

y5 = (1, p-T)
y4 = (0, p-T)

w4 = 1

w3 = 0

w2

(c) Derived implications

(b) Effect of value probing

(a) Example circuit

w1 = 0
w2 = 1

187

sions), and by the edges blocking propagation (which contribute to defining the p-cut that requires

fanin justification).

It is important to note that value probing does not always identify the logic value of a USP

even if that value can be uniquely determined. On the other hand, whenever the logic value of a

USP is identified with value probing, then that assignment is guaranteed to be a necessary condi-

tion for the perturbation to propagate to a primary output, given the current stage of the search pro-

cess.

5.4.2 Diagnosis Engine

The basic diagnosis engine was described in Section 4.5.3, and can be readily imple-

mented given the antecedent assignment definitions of the previous section. In the remaining of

this section we focus on improvements to the diagnosis engine that can be implemented in linear

time. We start by reviewing the improvements described in Section 3.6.2. Afterwards, application-

specific techniques are described. In particular, the notion of subleveling is introduced, which pro-

poses to diagnose conflicts taking into account that implications are identified by two distinct

deduction engines, the logic and the propagation deduction engines.

The formulation of conflict diagnosis developed in the Section 4.5.3 allows straightfor-

ward extensions of UIPs, multiple conflicts and iterated conflicts to path sensitization. The imple-

mentation of each of these pruning methods increases the number of identified implicates.

However, for path sensitization the relevance of each of these implicates depends on its composi-

tion.

Logical implicates are associated with the consistency function of the circuit and conse-

quently are defined as pervasive. Hence, logical implicates can be derived within any target appli-

cation and applied to any other target application. For example, logical implicates identified in

logic verification can be used in timing analysis and in test pattern generation, or the ones derived

in timing analysis can be used while performing satisfiability tests to the primary outputs of the

circuit.

Propagation implicates are only valid where a propagation consistency function is defined,

i.e. in target applications involving path sensitization. For the applications described in this disser-

188

tation, and whenever propagation implicates are solely derived from common blocking conditions,

then the propagation implicates are pervasive across path sensitization applications. This was the

case with every example described in the previous chapter. On the other hand, and for the specific

case of test pattern generation, whenever a propagation implicate results from application specific

blocking or propagation conditions (e.g. error cancellation), then the derived propagation impli-

cates are no longer pervasive across path sensitization applications. Nevertheless, these implicates

are still pervasive for queries regarding test pattern generation. Thus, propagation implicates based

on blocking and propagation conditions specific to the test pattern generation are defined as perva-

sive within test pattern generation.

Diagnosis with Subleveling

Derivation of implications with the path sensitization deduction engine is divided into two

main phases: the identification of logical implications and the identification of propagation impli-

cations. Whenever a conflict is identified, the causes of the conflict are traced back to the decision

assignment. The general improvements mentioned above consider exploiting some of the structure

with which implications are derived. However, it is possible to identify other forms of structure

that result from having two cooperating deduction engines. This can be attained by forcing addi-

tional structure on how implications are identified. The basic idea is to define a decision sublevel

each time a new propagation cut is identified. In the presence of conflicts, the decision sublevels

define an order on how to trace the causes of the conflict to the decision assignment. This order can

be used to identify additional and stronger propagation implicates.

In order to implement subleveling, the state of each assigned symbol θ (node, edge or p-

cut definition) is characterized by a new term, σ(θ), referred to as the sublevel of that symbol. Sub-

levels can then be used to identify portions of the implication sequence that include sufficient con-

ditions for blocking propagation of a perturbation.

Example 5.5. The application of subleveling is illustrated with the example circuit of Figure 5.7-a.

The current propagation cut is assumed to be ζ1, and the decision assignment is w3 = 0. The result-

ing implication sequence is shown in Figure 5.7-b, where edge assignments are omitted for simpli-

fication purposes. Conflict diagnosis yields the p-clause:

189

Figure 5.7: Example of application of subleveling

ζ2

x1

y1

y2

w1 = 0

w2

ζ1

y3

y4

y5

y7

y6

w3

w4

(a) Example circuit

w3 = 0 π(y4) = 0 π(y5) = 0 ζ2 = 1 w4 = 1

y4 = 1

w2 = 1

w1 = 0 @ 2

y5 = 1

π(y6) = 0

π(y7) = 0
π(κ)

π(y3) = 0

w3 = 0 π(y4) = 0 π(y5) = 0 ζ2 = 1 w4 = 1

y4 = 1

w2 = 1

w1 = 0 @ 2

y5 = 1

π(y6) = 0

π(y7) = 0
π(κ)

π(y3) = 0

(b) Without subleveling

(b) With subleveling

UIP

x2

π(w3, y4) = 0 @ 0 π(w4, y3) = 0

π(w2, y5) = 0 @ 0

π(w3, y4) = 0 @ 0 π(w4, y3) = 0

π(w2, y5) = 0 @ 0

previous sublevel

current sublevel

c = 5

c = 5

ζ1 = 1 @ 3

ζ1 = 1 @ 3

190

If subleveling is considered, then the definition of ζ2 creates a new decision sublevel. The implica-

tion sequence at the new sublevel leads to a conflict, for which y5 is now a unique implication

point (UIP). Consequently, from Figure 5.7-c, the following propagation implicate can be defined,

(5.10)

that defines blocking conditions with respect to ζ2, which are independent of node assignments in

the fanin of ζ2. The implicate derived with subleveling identifies blocking conditions local to ζ2,

which can be used to constrain the value assumed by y5.

The above implicate, derived with subleveling, can now be used in other instances of path

sensitization. For example, let us assume a different stage of the search process with one p-cut

ζ3 = { x2 } . In this situation, the p-cut ζ2 = { y3 } is created due to USP y3. Consequently, the p-

clause of (5.10) is considered and y5 ← 0 is implied. Note that π(y5, y6) and π(y5, y7) must be p-F,

due to the composition of p-cut ζ3.

The structure of the implication and diagnosis engines can be modified so as to permit the

implementation of subleveling. A distinct decision sublevel is associated with assignments implied

by each newly defined p-cut. The decision sublevel associated with each symbol θ is defined as

follows:

(5.11)

After a conflict is detected, the sublevel of each element in the implication graph provides a parti-

tion of the implication subgraph at the current decision level, that can then be used to create local-

ized p-clauses.

5.4.3 Implementation Tradeoffs

As with SAT, the path sensitization algorithm proposed in the previous chapter may face

efficiency problems if the number of derived implicates becomes too large. In addition, mainte-

nance of p-cut information can introduce significant computational overhead, since p-cuts have to

be updated after each implication sequence. In this section we propose to adapt the simplified

ζ1 w1 w3 π w3 y4,() π w4 y3,() π w2 y5,()+ + + +(),〈 〉

ζ2 π y5 y6,() π y5 y7,() y5¬+ +(),〈 〉

σ θ() max σ θ'() θ' α θ()∈() δ θ'() δ θ()=()∧{ }=

191

diagnosis engine described in Section 3.6.3 on page 97 to path sensitization for test pattern gener-

ation. The major advantage of the simplified diagnosis engine is that is guarantees a constant size

clause database. Diagnosis engines that lead to worst-case polynomial size growths of the clause

database are also reviewed.

Constant Size Clause Database

The basic idea is to maintain global conflicting assignment set information with level con-

flicting assignment sets associated with each decision level. Each time a conflict is identified, a

conflicting assignment set is created, which is then used to update the level conflicting assignment

sets. Assertions are defined as in Section 3.6.3 (see page 97), but are restricted to the logical

dimension. The backtracking decision level is defined as the highest level of a non-empty level

conflicting assignment set.

Additional complexity reduction is attained by simplifying the definition of the antecedent

assignments of USPs. Every time a node or edge p-status becomes p-F, a global antecedent assign-

ment U for USPs is updated. Consequently, the antecedent assignment of any USP is contained in

U, and the antecedent assignments of USPs are only implicitly manipulated with references to set

U. This fact also implies that the computational effort to manipulate USPs can then be associated

solely to the performed graph traversals. All blocking conditions that define USPs and reduce the

potential propagation paths are maintained in set U, hence the computation of functions

blockedby() (see page 158) and causesof() (see page 67) is implicitly maintained by set U for every

p-cut.

Since set U records all blocking conditions, p-cuts need not be explicitly maintained; only

USP indications are required to be known, and their manipulation guarantees fanin and fanout jus-

tification of the associated p-cuts. Consequently, we can conclude that simplified conflict diagno-

sis and simplified p-cut maintenance can be implemented with small computational overhead

when compared to the basic diagnosis engine and associated antecedent assignment manipulation.

The above approximations trade off some pruning precision with a potential reduction of

the computational overhead involved in processing each decision level. As with the logical dimen-

sion situation (described in Section 3.6.3) we can easily construct examples where the effect of

these approximations leads to an increase in the computed backtracking decision level.

192

We finally note that simplified conflict diagnosis does not allow for conflict-based equiva-

lence, and so conflicts due to the same conditions may be identified more than once during the

search process.

Polynomially Bounded Clause Database

Diagnosis engines, where recorded implicates are bounded in size, can also be devised.

For p-clauses, two degrees of freedom exist. We may eliminate p-clauses with large p-cuts, or with

large conditional clauses. In any situation, the growth is guaranteed to be polynomial in the size of

the original representation for a maximum p-clause size of m. Note, however, that these diagnosis

engines will require the manipulation of p-cuts whereas the constant size diagnosis engine deals

with p-cuts implicitly.

Polynomially bounded diagnosis engines can be particularly useful in identifying and

recording small p-clauses, which can be used often to imply assignments or to find equivalent con-

flicting conditions, and in discarding large p-clauses, which are necessarily harder to be subse-

quently used for deriving implications and for finding equivalent conflicting conditions.

Finally, note that we can also allow for different growths in the logical and propagation

clause databases. For example, we may allow for a polynomial growth of the logical clause data-

base and restrict the propagation clause database to a constant size, which then avoids the over-

head of explicitly manipulating p-cuts.

5.5 Advanced Deduction Engines

In this section we describe advanced deduction engines for path sensitization, that extend

the ideas described in Section 3.5.3 (see page 77) to the p-propagation model, but which restrict

the subsets of variables to be tested to the logical dimension. This restriction is justified by the fact

that p-T assignments in the propagation dimension would have to be viewed as p-cuts, and in such

a situation the manipulation of p-cuts would become more complex. (This is the same reason why

assertions in the p-dimension are disallowed.) Note, however, that if the size of the subsets of vari-

ables is restricted to 1, then the requirement to manipulate several p-cuts no longer holds, and a

restricted form of deduction engine can then be defined, which assigns values in the propagation

dimension. Nevertheless, this restricted form of deduction engine is not extensible to larger sets of

193

variable assignments tested by the advanced deduction engine.

Given the above restriction, the basic ideas described in Section 3.5.3 can be used (with

the algorithm described in Figure 3.8 on page 80) to define Propagation_Deduce_k(). The

main difference results from the need to compute consensus between p-clauses. Since consensus

of two p-clauses is defined only when the two p-clauses have the same p-cut, the join operation,

defined in (4.28) on page 168, can be utilized to relate two p-clauses to a common p-cut.

Let ωπ, 1 = 〈ζ1, ω1〉 and ωπ, 2 = 〈ζ2, ω2〉 be p-clauses such that ω1 contains a literal θ and

ω2 contains a literal ¬θ . Furthermore, let us assume that ωπ, 1 and ωπ, 2 have been identified by

diagnosing conflicts associated with a given set of variables, i.e. ζ1 and ζ2 currently define propa-

gation cuts. We start by computing an assignment set that results from finding a p-cut common to

ζ1 and ζ2:

(5.12)

Now, let ζ = cutof(AJ). Then the resulting p-clause is defined as follows:

(5.13)

which adds the literals of the symbols included in cutofC(AJ) to the consensus of the conditional

clauses. Note that θ cannot be included in AJ, since it is unassigned at the current decision level

and only becomes assigned due to the assignments tested by the deduction engine, whereas join()

is computed without these assignments being defined.

Preprocessing

Different degrees of preprocessing can be implemented in test pattern generation. The log-

ical clause database can be preprocessed with the objective of identifying additional implicates of

the logical dimension consistency function. As described in Section 3.7 (see page 106), different

preprocessing engines can be applied, which identify different sets of implicates.

For each fault, and before starting the search process, preprocessing for the path sensitiza-

tion problem can be invoked. At this stage the objective is to identify propagation conflicts so that

incorrect decision assignments can be prevented while searching. Any advanced deduction engine

AJ join ζ1 ζ2,()=

ωπ ζ c ω1 ω2 θ, ,() µν µ() µ ν µ(),() cutof C AJ()∈{ }∪,〈 〉=

194

Propagation_Deduce_k() can be used for preprocessing, but for practical purposes k has to

be kept small. Note that the derived propagation implicates are pervasive for test pattern genera-

tion and consequently may be applied to the detection of other faults. The same necessarily holds

true for all derived logical implicates.

5.6 Postprocessing Engine

Solution processing involves two orthogonal activities: removing redundancies from solu-

tions and caching solutions for simplifying subsequent queries. The implementation of these tech-

niques follows the description given in Section 3.8 (see page 111), but the existence of

propagation information must be taken into consideration.

5.6.1 Removing Redundancies from Solutions

Computed solutions for path sensitization can include some redundancies, i.e. decision

assignments that are not relevant for satisfying the original objectives. The approach for removing

redundancies from path sensitization solutions is based on constructing the node justification

graph (defined in Section 3.8.1), now referred to as the variable justification graph. For path sensi-

tization, each p-T primary output defines by itself a sufficient condition for propagating a perturba-

tion, i.e. for sensitizing a path. Hence, we can create the variable justification graph with respect to

any single p-T primary output, and to the initial logical objective that activates the fault. Neverthe-

less, as we show below, for caching solutions the complete justification graph is useful, and so we

propose to construct the variable justification graph for all p-T primary outputs, and remove redun-

dancies with respect to a randomly chosen p-T primary output. (In practice, all p-T primary out-

puts can be analyzed and the one with the least number of decision assignments can be chosen.)

The definition of sets M(y) is extended to node and edge p-status. Hence M(θ) identifies

the conditions that (fanin) justify θ. In is important to note that any traced assignment in the prop-

agation dimension cannot be assigned due to fanout conditions, because such an assignment is in

the transitive fanin justification chain of a p-T primary output. For a p-T / p-F node or edge θ, set

M(θ) is defined by the antecedent assignment of θ. With respect to definitions for the node justifi-

cation graph JG = (VJ, EJ) given in Section 3.8.1 that apply for logic assignments, the following

195

modifications are required for the variable justification graph:

1. Every p-T primary output z corresponds to a vertex η (π(z)) in VJ. The initial logical objective

y = vy corresponds to a vertex η(y) in VJ.

2. For each vertex η (θ) in VJ, denoting the assignment of θ and such that η (θ) has no incoming

edges and y is not a primary input, identify M(θ). For each node µ in M(θ), add η (µ) to VJ

and let .

The next step is to choose one of the p-T primary outputs. Let z be such a primary output

and let Jz = (Vz, Ez) be the subgraph of JG defined from sink vertex η (π(z)) and from the initial log-

ical objective. Then, the set of primary inputs assignments to be considered as the solution to the

path sensitization problem is given by,

(5.14)

that is necessarily included in the solution assignment set AS. Any primary output z can be chosen

for defining .

Example 5.6. Redundancy removal from solutions is illustrated with the example of Figure 5.8-a,

which is based on the example circuit of Figure 3.21 (see page 112). The decision tree for the

search process is shown in Figure 5.8-b, and the corresponding variable justification graph is

shown in Figure 5.8-c. It is immediate that the assignments x1 = 1 and x2 = 1 are redundant. Con-

sequently the assignment set obtained from the variable justification graph becomes A = { (x3, 0),

(x4, 0), (x5, 1), (x6, 1) } , thus reducing the computed decision assignment set. Finally, note that A

can be further simplified (as was described in Section 3.8.1).

Another approach for removing redundancies from solutions is to consider subsets of the

assignments to the primary inputs, and test whether any subset identifies a solution to the path sen-

sitization problem. The complexity of this approach is given in Section 3.8.1 and depends on the

amount of solution simplification attempted.

η µ() η θ(),() EJ∈

AS' x ν x(),() x PI∈ η x() Vz∈∧{ }=

AS'

196

5.6.2 Caching Solutions

The node justification graph forms the basis upon which relevant information about com-

puted solutions can be identified so that it may be applied to simplifying the search for solutions of

subsequent queries. The construction of the variable justification graph includes all p-T primary

outputs. In the following, the restriction of the previous section is assumed, i.e. one primary output

is randomly chosen and a subgraph of that primary output and of the original logical objective is

created. The procedure described below can then be applied to each individual p-T primary output.

The steps described in Section 3.8.2 (see page 116) are implemented, such that the sets

Figure 5.8: Removing redundancies from solutions

x1

x6

x2

x3

x4

x5

(a) Example circuit

1

0

x1

x3

x4

x2

1

1

1

x6

x5

1

(b) Decision tree

0

y1

y2

y3

y4
y7

y5

solution

y8y6

z1

y9 = 0

s-a-1

η (y9)
η (x3)

η (x4)

η (y5)

η (y3) η (y6)

η (y8)

η (x5)

η (y4)

η (y1)

η (x6)

η (π(y4))

η (π(y9))

η (π(z1))

(c) Justification graph

197

P0, …, PK denote a partition of VJ and the level cuts Tj associated with each decision level are

defined using the partition and (3.28) on page 118. In such a situation, the conditions for matching

cached solutions are given by (3.31), whereas the resulting assignment set to the primary inputs is

defined by (3.32).

Note that since the variable justification graph may not include information regarding

some decision levels and is based on a sequence of required justification assignments, the condi-

tions created for solution caching are necessarily less redundant than those of EST [70, 71], which

creates conditions based on node assignments of cuts of the circuit graph and current D-frontiers,

and thus does not consider any dependency information for simplifying the created conditions.

5.7 Decision Making Procedures

The decision making procedures (or selection engines) described in Section 3.9 can be

used with the path sensitization algorithm, where decision assignments are restricted to the logical

dimension. Nevertheless, a few modifications must be introduced. First, the definition of new head

lines cannot include p-X nodes, since these nodes may become involved in propagating the pertur-

bation and so nodes in their transitive fanin must be assigned in the logical dimension. Second, the

definition of don’t care nodes cannot involve p-X nodes, since these nodes can potentially propa-

gate a perturbation. Finally, objectives for backtracing can be defined from any propagation fron-

tier as well as the justification frontier, whereas in the logical dimension, objectives are always

drawn from the j-frontier.

The selection engine can be organized in several different ways. For example, decision

assignments may always be based on the same procedure for making decisions, e.g. simple or mul-

tiple backtracing. Note, however, that the search framework also permits several decision making

procedures to be iteratively applied after a given threshold on the number of backtracks. Since the

search process records logical and propagation implicates, the search effort spent on a given deci-

sion making procedure provides additional information that can be used by subsequent decision

making procedures for pruning the search. We can thus conclude that most selection engines can

be used in LEAP().

The implementation of simple and multiple backtracing in the p-propagation model must

198

specify which nodes are to be traced. For test pattern generation, tracing is restricted to p-F nodes

and is conducted until elements in the current set of head lines are visited. Different controllability

and observability measures can be implemented [1, pp. 213-220], which can take into account the

potential existence of several p-frontiers. For the results reported in Chapter VII for test pattern

generation, the implemented selection engine can use simple and multiple backtracing and is

solely based on topological controllability and observability measures. Since the selection engine

is orthogonal to how the search process is implemented, other more elaborated measures can be

implemented, some of which can be based on dynamic testability considerations derived from the

test pattern generation process [26, 85].

5.8 Scaling the Perturbation Propagation Model

Path sensitization models based on the D-calculus have attempted over the years to

increase the reasoning ability on the cone of influence of the fault effect. The motivation for the

added reasoning ability is that conflicting conditions can be more easily identified, and therefore

the amount of search can be reduced. The quest for added reasoning ability has led to 5, 9, 10, 11

and 16-valued algebras (among others) [1, 2, 23, 33, 37] derived from the D-calculus.

We propose to show that the p-propagation model can incorporate any such degree of rea-

soning ability, without compromising any of the features that allow the search algorithm to imple-

ment conflict diagnosis.

As noted by other authors [37], m-valued algebras are approximations to considering all

possible values at each node in the cone of influence of the fault effect, and this corresponds to

considering a 16-valued algebra. Thus, let us consider for each node all admissible pairs of values

it can assume in both dimensions. For a complete node assignment, each node must assume one

out of four admissible pairs of values: (0, p-F), (1, p-F), (0, p-T) and (1, p-T). Let us assume a p-

cut ζ and for each node x in ζ let us consider all possible values it can assume; since x is a p-T

node, and assuming that it can be part of a sensitizable path, then at most two combinations of val-

ues are possible, (0, p-T) and (1, p-T), or (v, p-T) if x is already assigned value v. Afterwards, we

propagate through the circuit the admissible pairs of values for each node, relate those pairs of val-

ues with the ones of other nodes and compute the admissible pairs of values for the fanout nodes.

199

Whenever only one value in either dimension becomes admissible, an assignment is implied. The

antecedent assignment for such assignment is defined by all assignments in either dimension that

constrain the admissible pairs of values from the p-cut until the node is visited. Moreover, it should

be noted that this procedure is a generalization of value probing described in Section 5.4.1, where

probing is extended to any circuit node.

Example 5.7. Propagation of admissible values is illustrated in Figure 5.9. Let x = 1 and π(x) = 1,

and let π(z) = 1 (i.e. z is a USP). Now let us consider estimating the admissible logic and propaga-

tion values at each node in the transitive fanout of x, as shown in Figure 5.9-b. y1 can either assume

the pairs of values (1, p-F) or (0, p-T) and y2 can assume (1, p-T) or (0, p-F). As a result, the

admissible pairs of values at z would be (1, p-F) or (0, p-T). However, z must be p-T since it

denotes a USP, and consequently the assignment z ← 0 is implied. The antecedent assignment of z

is given by A(z) = { (ζ1, 1), (x, 1), (π(x), 1) }. The consequences of this assignment are shown in

Figure 5.9-c, and consequently ζ becomes fanin justified.

Figure 5.9: Potential value propagation

x = (1, p-T)

y1 = (X, p-X)

z = (X, p-T)

y2 = (X, p-X)

w1 = (X, p-F)

w2 = (X, p-F)

Node x1 w1 w2 y1 y2 z

Admissible
values

(1, p-T) (0, p-F)
(1, p-F)

(0, p-F)
(1, p-F)

(1, p-F)
(0, p-T)

(1, p-T)
(0, p-F)

(1, p-F)
(0, p-T)

ζ

(a) Example circuit

(b) Admissible values

x = (1, p-T)

y1 = (0, p-T)

z = (0, p-T)

y2 = (0, p-F)

w1 = (1, p-F)

w2 = (0, p-F) ζ
(c) Result of z = 0

ζ1

ζ3

200

Observe that for each node all possible cases for propagating a perturbation are consid-

ered, and so the formulation of the model identifies no fewer implications that the 16-valued D-

calculus based algebra. Furthermore, advanced deduction engines can also use the above analysis

to identify additional implications.

Changing the Semantics of Edge Propagation Status

The p-propagation model can be further improved. As mentioned earlier, the edge p-status

can be made redundant, provided blocking conditions are expressed solely in terms of node values.

We start by showing how edge p-status may not be considered in the formulation of the p-propaga-

tion model for test pattern generation. Afterwards, the semantics of the edge p-status is redefined

in order to increase the reasoning ability in the propagation dimension.

In test pattern generation if two connected nodes x and y are p-X, then π(x, y) is also p-X.

Consequently, the edge p-status can be made redundant, and the blocking condition is defined as

follows:

(5.15)

The propagation condition becomes,

(5.16)

where with respect to (4.19) and (4.20) on page 159, each edge p-status reference has been

replaced by the appropriate node p-status reference.

Edge p-status can now be used to identify situations where a perturbation may reach a

node but cannot propagate to a primary output. Given the stage of the search process we may not

be able yet to assign p-F to the fanout node, but we may use the edge information to focus the

B x() π y() 0=()
y I x()∈
∏ π y() 0=()

y O x()∈
∏+ +=

π y() 0=() c y x,()⋅()
y I x()∈
∑ +

π w() 1=() π y() 1=() ν w() ν y()⊕ 1=()⋅ ⋅()
y w, I x()∈

∑

P x() π y() 1=() ν y() X≠()⋅ π y() 0=() nc y x,()⋅+[]
y I x()∈
∏=

201

search on other potential propagation paths. The p-status of an edge is now defined as follows:

1. π(x, y) = 0 if either the edge cannot propagate a perturbation, or even if it propagates the per-

turbation, the edge will not be part of a sensitizable path.

2. π(x, y) = 1 the edge propagates a perturbation.

3. π(x, y) = X if the edge can potentially propagate a perturbation.

This modified formulation of the edge p-status can lead to situations where a p-F edge

connects two p-X nodes x and y. This then signifies that a perturbation does not propagate from x to

y, even if both nodes may propagate a perturbation. With the new formulation, edge p-status is

maintained separately from node p-status and logic value relations can be used to identify edges

that must be p-F. This is the case, for example, of every edge whose fanin node assumes a non-

controlling value of a controlled fanout node; a perturbation in the fanin node cannot propagate to

the fanout node and so the edge p-status can be assigned p-F.

Example 5.8. The application of the new definition of edge p-status is illustrated with the example

circuit of Figure 5.10-a. Let us assume the objective is to compute a test for fault x3 s-a-1. Logical

implications create the implication subgraph shown in Figure 5.10-b. Next we note that since the

value of x10 is 0, and the value of x11 is 1, then a perturbation in x10 will not propagate to x14; it

either cancels propagation from x11, if it becomes p-T, or allows perturbation to x14, if it becomes

p-F. The same holds true with respect to propagation from x12 to x15. These relations are high-

lighted in Figure 5.10-b, We can then say that π(x10, x14) = 0, and similarly π(x12, x15) = 0. As a

result, USP computation (over p-X nodes and edges) identifies x8 and x11 as USPs, since these

nodes must indeed propagate the perturbation for it to reach a primary output. The new p-cut

{ x11 } requires fanin justification and hence x9 ← 0 is implied. The consequence of these implica-

tions is shown in Figure 5.10-c, and a propagation conflict is identified. (σo identifies a p-cut

driven by the primary outputs, which requires fanin justification as defined in Section 4.3.4.1.)

Since no decisions have been made, the fault is proved redundant. Observe that a crucial step is to

set the edge p-status to p-F, so that the USPs can be defined and the propagation conflict identified.

Antecedent assignments for edge p-status assignments are defined by the assignments that

202

are involved in downgrading or upgrading the edge p-status. For the above example, A(π(x10, x14))

= { (x10, 0), (x14, 0) } .

For test pattern generation we can either use the basic definition of edge p-status, not con-

sider edge p-status at all, or use the modified definition of edge p-status with the goal of further

pruning the search. The first option simplifies the integration of test pattern generation with timing

Figure 5.10: Application of redefined edge p-status

x1

x5

x6

x7

x12

x4

x2

x8

x9

x10

z1

x3 = 0

x16

x11

x15

x13

z2

x14

s-a-1

(D)

x3 = 0
x8 = 1

x10 = 0

x15 = 0

x14 = 0

x12 = 0

x11 = 1

(a) Example circuit

(b) Blocking implication sequence

x9 = 0

x1 = 0
x13 = 1

x16 = 1

(c) Propagation blocked

π(z1) = 0

π(z2) = 0

(σo, 1)κ

x2 = 0

π(x13) = 0

π(x16) = 0

203

analysis in a common path sensitization framework. The second simplifies the implementation of

test pattern generation, and necessarily reduces the overhead of maintaining path sensitization

information. Finally, the third option increases the model precision which can be useful for diffi-

cult faults.

5.9 Comparison with other Test Pattern Generation Algorithms

The proposed test pattern generation algorithm introduces the following improvements

over most path sensitization algorithms:

• The development of diagnosis engines, that allow several pruning methods to be defined and

applied in an integrated procedure for handling conflicts. Most test pattern generation algo-

rithms such as PODEM [72], FAN [62], SOCRATES [144, 145], TOPS [92], QUEST [37],

TAGUS [162], SSR [167], TRAN [24] and recursive learning [101] do not provide any form

of conflict diagnosis. For combinational circuits, EST allows defining equivalent conflicting

conditions but, as shown earlier, the recorded conditions can be significantly redundant since

they do not directly reflect the causes of a conflict. For sequential circuits, the algorithms of

[113] and [114] propose restricted forms of non-chronological backtracking, but are only

informally sketched and, given the descriptions in [113] or [114], are incomplete.

• The definition of deduction and preprocessing engines that can identify implicates of the

consistency function (in both dimensions) with different degrees of precision. These engines

extend other procedures for derivation of implications [24, 37, 101, 145] in that any degree of

deduction can be achieved and implicates are added to the clause databases. Furthermore, in

some cases these implicates are identified as pervasive. In such a situation, derived implicates

can be permanently added to the clause databases and applied for subsequent problem

instances. They can also be potentially used in different target applications.

• The introduction of postprocessing engines that allow processing computed solutions for

path sensitization problems. Redundancy removal from solutions is a new concept, whereas

solution caching has been proposed before, with a different formulation, in EST [70, 71]. As

mentioned earlier in this chapter, the proposed procedure for caching solutions is necessarily

more precise than that of EST.

204

• The definition of a scalable path sensitization model, where different degrees of propagation

reasoning precision can be implemented within the same search framework. The most pre-

cise formulation supersedes existing models for path sensitization in test pattern generation.

Conflict diagnosis offers other interesting possibilities. As noted earlier, derived logical

implicates are pervasive across circuit analysis applications. Propagation implications are perva-

sive within test pattern generation and, under appropriate conditions, are pervasive across path

sensitization applications.

Finally we note that the proposed test pattern generation algorithm can be configured to

realize a large number of other test pattern generation algorithms, some of which have been pro-

posed by other researchers. For example, with an adequate formulation of the diagnosis and

deduction engines, and no realization of the preprocessing and postprocessing engines, we can

readily implement PODEM and FAN. SOCRATES can be implemented by allowing for restricted

preprocessing, and identification of USPs. (Our algorithm for identification of USPs is more effi-

cient than that of SOCRATES, and this leads to a more efficient implementation of SOCRATES.)

In order to emulate the aforementioned algorithms, the formulation of the p-propagation just needs

not consider fanout blocking conditions in order to emulate the D-calculus.

5.10 Summary

This chapter details the application of the path sensitization model and algorithm to test

pattern generation. Most of the concepts regarding the path sensitization algorithm were previ-

ously described in Chapter III and Chapter IV, and the purpose of this chapter is solely to describe

the necessary modifications given that the problem being solved is path sensitization for test pat-

tern generation.

The engines associated with the search algorithm for path sensitization are described, and

emphasis is given to conflict diagnosis. The concepts of subleveling and value probing are intro-

duced, which can be respectively used to derive smaller propagation implicates in the presence of

conflicts and identify more implications. Simplifications to conflict diagnosis are proposed, which

provide computationally inexpensive methods to diagnose conflicts and guarantee constant size

clause databases. Diagnosis engines with worst-case polynomial size growth of the clause data-

205

base are reviewed, which are based on equivalent engines described in Chapter III. Engines for

advanced deduction, postprocessing and selection are analyzed in the context of path sensitization

for test pattern generation.

The chapter concludes with a study of accuracy tradeoffs provided by the p-propagation

model, and describes how accuracy can be improved. In addition, the path sensitization algorithm

is compared with algorithms proposed by other authors.

206

CHAPTER VI

PATH SENSITIZATION FOR TIMING ANALYSIS

6.1 Introduction

As mentioned earlier in Chapter I, timing analysis poses key challenges to search algo-

rithms, since the final result of the search is most often to prove unsatisfiability of a given path sen-

sitization goal. Instances of path sensitization for timing analysis thus pose interesting test cases

for pruning methods associated with diagnosis engines.

This chapter describes how to apply the p-propagation model and LEAP to path sensitiza-

tion for timing analysis. The organization of LEAP proposed in Chapter IV is assumed. As in

Chapter V, the emphasis is how to solve a target application that is based on path sensitization. In

particular, we focus on how to represent path sensitization for timing analysis with the p-propaga-

tion model and how to configure LEAP() for timing analysis.

Simplifications to conflict diagnosis are described in some detail, since they represent the

core of the experimental results described in Chapter VII and can be particularly useful in timing

analysis, where delay-based dependencies can lead to large propagation implicates.

Outline

The general procedure for circuit delay computation is described in Section 6.2, where

several techniques for iterating threshold delays are analyzed. Section 6.3 describes how to repre-

sent path sensitization in timing analysis with the p-propagation model. Afterwards, in Section 6.4,

the basic deduction and diagnosis engines are detailed for timing analysis. For these engines, iden-

207

tification of antecedent assignments due to delay-based blocking conditions plays a key role. Other

engines that can be used for implementing timing analysis are described in Section 6.5. A compar-

ison of LEAP with other timing analysis algorithms is conducted in Section 6.6.

6.2 Circuit Delay Computation in Timing Analysis

The main objective of timing analysis is circuit delay computation, that entails computing

the maximum delay ∆C over the sensitizable paths of the circuit. Such delay is referred to as the

sensitizable path delay (or circuit delay). The general procedure for circuit delay computation is

shown in Figure 6.1. A procedure for iterating threshold delays is assumed. The search for the

largest sensitizable path iteratively defines the next threshold delay and invokes procedure LEAP()

that was described in Figure 4.10 on page 152. The process is iterated until a sensitizable path is

found for a chosen threshold delay and such that this delay is declared to be the last threshold

delay by procedure Circuit_Delay_Identified(). Note that this implementation permits

several procedures for iterating threshold delays to be modeled and used. Furthermore, the pro-

Figure 6.1: Circuit delay computation procedure

// Output argument: status ∈ { ABORTED, FAILURE, SUCCESS }
// Return value: Computed circuit delay

//
Circuit_Delay_Computation (&status)
{

define ϕ for circuit;
∆ = LTP; // Initial path delay is largest topological path
while (∆ > 0) {

define ψ for timing analysis given ∆;
status = LEAP(); // Attempt to sensitize path delay ∆
if (status == SUCCESS && Circuit_Delay_Identified())

return Define_Sensitizable_Delay (); // Return ∆
else if (status == ABORTED)

return −1; // Computational resources exceeded
∆ = Iterate_Next_Delay(); // Identify next path delay

}
return ∆;

}

208

posed circuit delay computation procedure is said to implement concurrent path sensitization

[152] since it considers the sensitization of all paths within a given delay range. In contrast with

the path-by-path analysis of initial solutions for circuit delay computation [8, 15, 31, 55, 117, 129,

149], concurrent path sensitization entails some mechanism to iterate path delays or delay thresh-

olds and, in each case, to specify the associated path sensitization problem. For example, threshold

delay iteration procedures can perform a binary search over the possible range of path delays or

enumerate threshold delays in decreasing order starting from the largest topological path delay.

One procedure for iterating path delays is described in [152]. However, if the number of

distinct path delays is large1, then the time to find the largest sensitizable path can become unac-

ceptable. Another procedure is to choose a fixed delay decrement d and at each iteration decrement

the target threshold delay by d. In such a situation, if a sensitizable path is found with delay ∆, then

the result reported must be ∆C = ∆ + d, and the largest delay error is d. Note, however, if the least

path delay above ∆ is larger than or equal to ∆ + d, then the delay value returned is ∆C = ∆; this is

the case, for example, whenever unit delays are assumed and d = 1.

More precise approaches can be developed. If ε is the allowed error in computing the larg-

est sensitizable path, then the following procedure can be used:

1. Let ∆ be the first threshold delay for which a sensitizable path is found, i.e. for ∆ + d no sen-

sitizable path was found.

2. Perform binary search in the delay range (∆, ∆ + d), starting with ∆' = ∆ / 2, until the delay

different between iterations is less than ε. Report delay ∆' + ε.

In such a situation, the computed delay is at most off by an excess of ε with respect to the

largest sensitizable path delay in floating mode operation. The number of iterations in the range (∆,

∆ + d) is then given by . Assuming that ∆ is computed by iterated decrements of d

with respect to the original longest topological path (LTP), then the number of iterations is

bounded by:

(6.1)

On the other hand, if binary search is used to compute the first sensitizable delay ∆ above, then the

1. In the worst-case the number of path delays is exponential in the number of circuit nodes.

O log2 d ε⁄()()

O LTP d⁄ log2 d ε⁄()+()

209

number of iterations is bounded by:

(6.2)

Note, however, that in most cases the largest sensitizable path delay is close to LTP, and conse-

quently the procedure based on iterated decrements requires fewer iterations. This is the case, for

example with all the ISCAS’85 benchmark circuits [156]. On the other hand, carry-skip adders

contain a large number of path delays for which no sensitizable paths exist. For some of these cir-

cuits, binary search requires fewer iterations than iterated decrements of the delay threshold.

In the remaining of this chapter a threshold delay ∆ is assumed to be defined prior to creat-

ing the path sensitization problem, with any of the above procedures.

Procedure Toggle_Propagation_Values() (invoked from procedure LEAP() in

Figure 4.10 on page 152) must also be defined. After a solution to the circuit delay computation

problem is identified, the set of sensitizable paths must satisfy (4.5) on page 139. All other p-T

edges and nodes are downgraded to p-F. A backward traversal from the primary outputs can be

used to visit each circuit node / edge and downgrade those for which the blocking condition holds.

6.3 Modeling Circuit Delay Computation in Timing Analysis

In this section we describe how the p-propagation model can be used to model the path

sensitization problem associated with the following question: Given a threshold delay ∆, are there

any floating-mode sensitizable paths with delay no less than ∆? Recall from Chapter I that a path is

said to be floating-mode sensitizable if and only if for a given primary input assignment, each node

on the path stabilizes as a direct consequence of its fanin node on the path also stabilizing [31, 50,

151, 153].

The definition of the p-propagation model for timing analysis assumes a set of delay esti-

mates at each node and at each edge. In particular, the following delay estimates are assumed:

1. DTo(x) denotes the estimate of the maximum propagation delay for a signal transition to

propagate from a primary input to x.

2. DFrom(x) denotes the estimate of the maximum propagation delay from x to any primary

output.

O log2 LTP d⁄() log2 d ε⁄()+() O log2 LTP ε⁄()()=

210

3. DThru(x) denotes the estimate of the maximum propagation delay for a signal transition to

propagate from a primary input to a primary output if that signal transition propagates

through x.

4. DThru(x, y) denotes the estimate of the maximum propagation delay for a signal transition to

propagate from a primary input to a primary output such that the signal transition propagates

through edge (x, y).

Each delay estimate is computed as follows:

(6.3)

The propagation delay estimate to a primary input is defined to be 02. If x is not controlled, then

the maximum propagation delay estimate to x is given by the maximum of the delay estimates to

its fanin nodes added with the corresponding edge delays. Otherwise, if x is controlled but unjusti-

fied, then the maximum delay estimate to x is given by the maximum of the delay estimates to its

unassigned fanin nodes added with the corresponding edge delays. Finally, if x is controlled and

justified, then the propagation delay to x is given by the minimum of the delay estimates to its con-

trolling fanin nodes added with the corresponding edge delays. Note that from a simulation per-

spective, (6.3) corresponds to modeling floating-mode operation and DTo identifies the stable time

of each node.

(6.4)

The propagation delay from a primary output is defined to be 0. If the set of relevant outputs of x is

not empty, then the maximum propagation delay estimate from x to a primary output is the maxi-

2. If each primary input x has a distinct arrival time, then DTo(x) is defined to be that arrival time.

DTo x()

0 if x PI∈,
max DTo y() D y x,()+ y I x()∈{ } if Cont x()¬,
max DTo y() D y x,()+ y U x()∈{ } if Cont x() Unjust x()∧,
min DTo y() D y x,()+ y C x()∈{ } if Cont x() Just x()∧,











=

DFrom x()
0 if x PO∈,
max D x y,() DFrom y()+ y R x()∈{ } if R x() ∅≠,
∞– if R x() ∅=,









=

211

mum delay over the outputs for which x can be relevant added with the corresponding edge delays.

If the set of relevant outputs is empty, then the propagation delay estimate from x to a primary out-

put is −∞, which means that a signal transition that reaches x does not propagate to a primary out-

put.

(6.5)

and finally,

(6.6)

since x can propagate to y provided it can be relevant to the propagation delay to y.

Example 6.1. An example of how delay estimations are updated is shown in Figure 6.2. For node

x6, with no logic assignments, DTo(x6) = 3 and DFrom(x6) = 2. The assignment x2 = 1, guarantees

that x6 stabilizes no later than time unit 2, i.e. DTo(x6) = 2. After all assignments are made,

DThru(x6, z1) = −∞ and DThru(x6, z2) = 3.

For each circuit, and with all nodes unassigned, the delay estimates can be initially com-

puted with two levelized breadth-first traversals of the circuit graph; one forward traversal for

computing DTo estimates, and one backward for computing DFrom as well as DThru estimates.

Given the initial delay estimates for each node and edge, the initialization of the p-propagation

model consists in setting to p-X all nodes x, with DThru(x) ≥ ∆, and edges (x, y), with DThru(x, y)

DThru x() DTo x() DFrom x()+=

DThru x y,()

∞– if y R x()∉,

DTo x() DFrom y() D x y,()+ + if y R x()∈,






=

Figure 6.2: Example of updating propagation delay estimates

x1

x4

x3

x2

z1

x6

x5
z2

1

2

2

1

Assignment DTo(x6) DFrom(x6)

none 3 2
x1 = 1 3 1
x2 = 1 2 1

212

≥ ∆.

Example 6.2. The example circuit (adapted from [83]) shown in Figure 6.3 illustrates the initial-

ization of the p-propagation model for timing analysis. For ∆ = 7, only two paths can propagate a

perturbation, respectively 〈x1, y1, y2, y3, y4, y6, y7, y8〉 and 〈x2, y1, y2, y3, y4, y6, y7, y8〉 . These paths

define the set of p-X nodes and edges. Note that since delay computation entails a given threshold

delay, the p-status definitions for each node or edge must include conditions on delay estimates

that will contribute to defining the final p-status of that node or edge.

The condition for the initialization of the p-status of each node, implies that every node in

each path P, such that D(P) ≥ ∆, is initialized to p-X. The same holds true for every edge associated

with each such path P. Conversely, we may have paths Q, with D(Q) < ∆, such that all its nodes

and edges are initialized to p-X. The algorithmic framework must then guarantee that no such path

Q is identified as sensitizable.

In timing analysis, and besides the common blocking conditions, propagation of a pertur-

bation to a node x becomes blocked if DThru(x) < ∆, meaning that a perturbation cannot reach a

primary output with propagation delay no less than ∆ if it propagates through x. This condition

defines BC(x); whereas condition DThru(x, y) < ∆ defines BC(x, y) for blocking propagation to

each edge (x, y). Consequently,

x4

x3

x6

x5

1

x1

x2
y1

y4

y3
y2

1
11

1

1 1

1

x7

y5

y8
y6

y8

Figure 6.3: Initialization of the p-propagation model for timing analysis

p-X node/edge
p-T node/edge

∆ = 7

213

(6.7)

and,

(6.8)

The conditions for propagating a perturbation to a node and edge are similar to the test

pattern generation case, and (5.3) and (5.4) (see page 180) can be adapted:

(6.9)

and,

(6.10)

Thus, propagation to a p-X primary input occurs when its logic value is assigned (i.e. a signal tran-

sition is defined). Edge propagation is the same as for test pattern generation.

Observe that we may have a gate output z set to p-T, that drives a primary output, but such

that the primary output is p-F. This situation can happen when the gate output drives other nodes,

some of which are or can become p-T. By specifically considering OUT nodes, a primary output

that becomes p-T indicates in fact the existence of a floating-mode sensitizable path with delay no

less than ∆.

Example 6.3. For the example circuit of Figure 6.3, let us consider the logic assignments x1 = 0

and x2 = 1. Immediately, DFrom(x1) = −∞, DThru(x1) = −∞ and DThru(x1, y1) = −∞. Hence,

π(x1) ← 0, π(x1, y1) ← 0, and π(x2, y1) ← 1. Since no blocking condition applies to y1, we have

π(y1) ← 1. Finally, no blocking conditions can be derived for (y1, y2) and so π(y1, y2) ← 1. The

new assignments are shown in Figure 6.4. Note that the final p-status of x1 could also be p-T, if the

B x() π y x,() 0=()
y I x()∈
∏ π x y,() 0=()

y O x()∈
∏+ +=

π y x,() 0=() c y x,()⋅()
y I x()∈
∑ DThru x() ∆<[]+

B x y,() π x() 0=[] π y() 0=[] DThru x y,() ∆<[]+ +=

P x() x PI∈ ν x() X≠∧[] +=

π y x,() 1=() ν y() X≠()⋅ π y x,() 0=() nc y x,()⋅+[]
y I x()∈
∏

P x y,() π x() 1=[]=

214

p-status was updated before updating delay information. However, such change to the p-status of

x1 is not relevant for the goal of path sensitization, and would eventually be toggled to p-F pro-

vided some other path was proved to be sensitizable. The order of implications in this example

assumes the implementation of the deduction engine described in Chapter IV.

Correctness of the p-propagation model for path sensitization in timing analysis is guaran-

teed by the following:

Theorem 6.1. A combinational circuit contains a floating-mode sensitizable path of delay no less

than ∆, for a test T, if and only if under the p-propagation model such test T sets a primary output

to p-T.

As in the case of test generation, an immediate corollary follows:

Corollary 6.1.

A sound and complete search algorithm, based on the p-propagation model, com-

putes a test

T

 that sensitizes a path with delay no less than

∆

 if and only if such test exists.

Perspective

Other models for path sensitization based on differently formulated delay estimates are

described in [29, 30, 50, 52]. While in these models only delay information is involved, in the p-

propagation model additional blocking conditions based on structural and functional relations are

defined, which permit, in the case of search-based algorithms, pruning the amount of search with

delay-independent information. As described in Chapter IV, the implementation of some of the

pruning methods becomes greatly simplified if conflicts can be associated with structural and

Figure 6.4: Updating p-status for timing analysis

x4

x3

x6

x5

1

x1 = 0

x2 = 1

y1
y4

y3
y2

1
11

1

1 1

1

x7

y5

y8
y6

y8

p-X node/edge
p-T node/edge

∆ = 7

215

functional blocking conditions. We further note that relying on structural and functional blocking

conditions can be particularly useful for the timing analysis of practical circuits, since circuits are

designed subject to structure and function and not necessarily signal delay interactions.

6.4 Basic Deduction and Diagnosis Engines

In contrast with test pattern generation, the implementation of a timing analysis tool based

on the p-propagation model requires defining

Target_Application_Update

(), with the

purpose of updating delay estimates after each implication sequence in the logical dimension is

derived. After each decision assignment causes an implication sequence in the logical dimension,

propagation delay estimates can be updated. This is done by traversing (on a per need basis) nodes

/ edges whose propagation delay estimates change. First a forward levelized traversal on these

nodes updates the

DTo

 propagation delay estimates. Afterwards, a backward levelized traversal

updates the

DFrom

 and

DThru

 estimates.

Observe that for p-

X

 nodes and edges, changes to the propagation delay estimates

are nec-

essarily

 the result of some other p-

X

 nodes / edges becoming p-

F

, since delay estimates of p-

X

nodes are defined from propagation delay estimates of other p-

X

 nodes. Furthermore, delay esti-

mates for p-

F

 nodes need not be updated. First, because these delay estimates do not contribute for

the delay estimates of p-

X

 nodes and edges. Second, because updating such delay estimates would

just increase the computational overhead. Consequently, whenever a node or edge is downgraded

to p-

F

 all its delay estimates are set to

−∞

. Since the delay estimates of p-

F

 nodes are fixed at

−∞

,

and only required delay estimates are otherwise updated, the computational overhead of updating

delay is reduced, in explicit contrast with other algorithms for timing analysis, which base all

deductive reasoning on delay estimates [29, 30, 50, 52].

6.4.1 Deduction Engine

The deduction engine described in Figure 4.14 (see page 158) is used for deriving implica-

tions in timing analysis. We only need to define how the antecedent assignments of propagation

assignments are defined.

For blocking propagation to a node, the antecedent assignment definitions of Section 5.4.1

216

(see page 183) are applied with the exception of error cancellation, which is not applicable to tim-

ing analysis. On the other hand, we need to define the antecedent assignments of nodes and edges

that are downgraded to p-

F

 due to delay conditions.

Some facts are useful for identifying the direct causes of delay changes. First, as men-

tioned above, delay changes are a direct consequence of downgraded nodes and edges, which may

not be connected to the nodes and edges upon which they cause changes to the delay estimates.

Second, delay changes may require several updates before a node/edge is finally downgraded to p-

F

. The identification of the specific set of downgraded nodes and edges that cause blocking due to

delay conditions is complicated by all the above facts. Our solution is to maintain global informa-

tion of the nodes and edges that are downgraded and consequently cause changes to the delay esti-

mates of other nodes. Each time a node or edge is downgraded and causes a change to the delay

estimates of any other node or edge, such node or edge is added to a set

U

 of nodes directly affect-

ing the delay estimates. Any node or edge that becomes downgraded due to delay conditions

assumes set

U

 as its antecedent assignment. (Note that this definition of antecedent assignment for

blocking due to delay estimates is an intermediate step to simplifying antecedent manipulation, as

was proposed in Chapter V (see page 191) for test pattern generation, but for timing analysis the

coupling introduced by delay estimates can only be efficiently handled by assuming a global defi-

nition of the antecedent assignment.)

Example 6.4.

The effect of delay conditions on the node and edge p-status is illustrated with the

example circuit of Figure 6.5. The specified threshold delay is

∆ =

17, and the current decision

assignment implies

u

1

 ←

1. As a result,

π

(

y

6

,

z

1

) = 0, and this then implies

π

(

y

6

)

 ←

0 and

π

(

y

5

,

y

6

)

 ←

0. Symbol

π

(

y

6

) is added to set

U

; because the p-status of edge (

y

5

,

y

6

) is downgraded,

the delay estimates of the nodes in the transitive fanin of

y

5

 are modified as shown in Figure 6.5-b.

The resulting delay estimates cause

y

2

,

y

4

, (

y

2

,

y

4

) and (

y

4

,

y

5

) to be downgraded to p-

F

. The ante-

cedent assignment of

π

(

y

4

,

y

5

) is defined by set

U

 (thus including

π

(

y

6

)), whereas structural con-

straints define the antecedent assignments for the remaining nodes and edges. The example

illustrates how delay-based blocking conditions may cause the antecedent assignment of nodes or

edges to include unconnected nodes and edges.

217

For a node that is upgraded, the antecedent assignment if given by (5.9) on page 184 if the

node is not a primary input. Otherwise, and due to (4.27) on page 164, the antecedent assignment

of a p-

T

 primary input

x

 is given by

{

(

x

,

ν

(

x

))

 }

. For upgraded edges, the antecedent assignment is

given by the assignment to p-

T

 of the fanin node.

Having defined the antecedent assignments for all types of implications, the deduction

engine of Figure 4.14 can now be applied to timing analysis.

• ∆ = 17

• DTo(x1) = DTo(x2) = 10; x1 and x2 are p-T and define a p-cut ζ

• y1 through y8, z1, z2 and z3 are the only p-X nodes in the circuit

• Current decision assignment implies u1 ← 1

Figure 6.5: Example of delay-based blocking conditions

(a) Example circuit

Initial estimates Final estimates

y1 y2 y3 y4 y5 y1 y2 y3 y4 y5

DTo 12 11 14 12 15 12 11 14 12 15

DFrom 7 6 5 5 4 5 4 3 3 2

DThru 19 17 19 17 19 17 15 17 15 17

(b) Delay estimates after assigning u1

x1 y1
2

1

2

1

1

2

1

2

1

u1 = 1

ζ

x2 y2

y3

y4

y5

y6

y7

z1

z2

1 1 z3

y8

s4

s3

w4

1
s2

w1 = 0 @ 1

w3 = 1 @ 2

s1 = 0 @ 3

w2

2

1 w5

2 1w6 w7

δ(ζ) = 0

218

Reverse Value Probing

Value probing, as described in Chapter V, can be extended to backward analysis of admis-

sible pairs of values. This technique can be of interest for timing analysis since the logic values of

USPs may help identifying the logic values of USPs in their transitive fanin; for test pattern gener-

ation this situation can never occur. Reverse value probing operates in the same way value probing

does. However, the definition of admissible pairs of values is done backwards, after reaching each

USP x with a specified logic value, and with respect to USP y in the transitive fanin of x. The ante-

cedent assignments of implied assignments due to reverse value probing are defined the same way

as for (direct) value probing.

Example 6.5. An example of applying reverse value probing is shown in Figure 6.6-a. The deriva-

tion of values is due to the assignment u2 = 1, which is implied because u3 is a USP and y3 ← 0.

Propagation of values from u1 to u2 can only occur if u1 assumes a value that propagates to u2 and

is compatible with the value of u2. Hence, u1 ← 0 is implied with antecedent assignment { (ζ2, 1),

(u2, 1) } . Furthermore, if a perturbation in u2 propagates to u3, then the value of u3 must be 1, and

thus u3 ← 1 is implied. The resulting assignments are shown in Figure 6.6-b. Note that p-cut ζ3

becomes fanin justified and ζ4 (that results from ζ2) becomes fanout justified.

6.4.2 Diagnosis Engine

The basic diagnosis engine is described in Figure 4.21 (see page 159), and can readily be

applied to timing analysis given the above definition of antecedent assignments. Note, however,

that propagation implicates involving nodes or edges downgraded due to delay estimate conditions

can become significantly large.

As with the test pattern generation case, improvements to the basic diagnosis engine are

possible. For example, one can implement UIPs, multiple conflicts and iterated conflicts. In addi-

tion, subleveling (described in Section 5.4.2 (see page 187)) can be applied whenever several

USPs are identified.

Implicates derived with conflict diagnosis in timing analysis can also be defined as perva-

sive under some conditions. Logical implicates are defined as pervasive across all circuit analysis

applications that use the circuit’s consistency function. Propagation implicates derived with block-

219

ing conditions common to both path sensitization applications are defined as pervasive across path

sensitization applications. Finally, propagation implicates derived from delay estimate blocking

conditions are defined as non-pervasive. Delay conditions are a function of the threshold delay

associated with each instance of the path sensitization problem. While computing the longest sen-

sitizable path, the delay threshold changes at every iteration; hence the propagation implicates

based on delay estimates cannot be applied in different iterations and must be declared non-perva-

sive. Note, however, that these implicates can still be used within the current instance of the path

sensitization problem.

Example 6.6. The derivation of propagation implicates for timing analysis is illustrated with the

Figure 6.6: Reverse value probing

x1

y1

u1

ζ3

x2

y2

y3 = 0

y4

y5

y6

y7

w1

ζ1

ζ2

u2 = 1
u3

w2

w3 = 1

w4

w5 w7

w6

• π(u2, y3) = 0 due to delay constraints

• u2 is USP and implies y3 ← 0, which implies u2 ← 1and w3 ← 1

x1

y1 = 1

u1 = 0

ζ3

x2

y2 = 1

y3 = 0

y4 = 0

y5 = 0
y6 = 0

y7 = 0

w1

ζ1

ζ4

u2 = 1
u3 = 1

w2

w3 = 1

w4 = 1

w5 = 1 w7 = 0

w6 = 0

(b) Resulting assignments

(a) Example circuit

220

example circuit of Figure 6.7 (that is the same as in Figure 6.5). For Figure 6.7-a, let us assume the

assignment u1 = 1. As a result (from Example 6.4), y1 becomes a USP and the assignment s2 = 0

results. This in turn implies s3 = 1, which blocks propagation to y3 and a propagation conflict is

identified. Diagnosis of the conflict yields the p-clause,

Figure 6.7: Derivation of propagation implicates in timing analysis

(a) Non-pervasive implicate

(b) Pervasive implicate

x1 y1
2

1

2

1

1

2

1

2

1

u1 = 1

ζ

x2 y2

y3

y4

y5

y6

y7

z1

z2

1 1 z3

y8

s4

s3

w4

1
s2

w1 = 0 @ 1

w3 = 1 @ 2

s1 = 0 @ 3

w2

2

1 w5

2 1w6 w7

x1 y1
2

1

2

1

1

2

1

2

1

u1

ζ

x2 y2

y3

y4

y5

y6

y7

z1

z2

1 1 z3

y8
s4 = 0

s3

w4

1
s2

w1 = 0 @ 1

w3 = 1 @ 2

s1 = 0 @ 3

w2

2

1 w5

2 1w6 w7

221

(6.11)

which is declared as non-pervasive, since propagation from x2 to z2 or z3 is blocked due to delay

conditions. Hence, this implicate is only valid for the current path sensitization problem and for

the specified threshold delay. If the threshold delay is decreased, the above condition is not neces-

sarily a propagation implicate.

For the example of Figure 6.7-b, let us assume that the assignment s4 = 0 replaces the

assignment u1 = 1 of the previous case. Once again a propagation conflict is detected, since s4

blocks propagation to y4, which is assigned value 0 and consequently blocks propagation to y5.

Conflict diagnosis yields the p-clause,

(6.12)

which immediately requires s4 = 1 whenever π(s4, y4) is p-F and { x1, x2 } is a p-cut. This last

propagation implicate is pervasive across path sensitization applications, since only general block-

ing conditions are involved in its derivation.

6.4.3 Simplifications to the Diagnosis Engine

As with test pattern generation, we can simplify the diagnosis engine by not creating

implicates and by maintaining potentially large antecedent assignments implicitly defined. The

proposed engine follows the procedures described in Section 3.6.3 and Section 5.4.3, in that level

conflicting assignment sets are defined and updated each time a conflict is identified. As in

Section 5.4.3, the antecedent assignments of USPs are maintained in a set of dependencies U,

which records all downgraded nodes and edges. (Note that this is the same set that is used for

recording dependencies for delay-based blocking conditions, but now no propagation implicates

are created. Furthermore, the manipulation of set U can be optimized by being ordered by decision

levels. Each level conflicting assignment set is then directly related to a corresponding partition of

set U.)

Example 6.7. Simplifications to conflict diagnosis trade off pruning precision for the guarantee of

ωπ 1, x1 x2,{ } u1¬ s1 π u1 z1,() π s2 y1,()+ + +(),〈 〉=

ωπ 2, x1 x2,{ } s4 π s4 y4,()+(),〈 〉=

222

fixed size clauses databases. The example circuit of Figure 6.8 illustrates how pruning precision

may decrease when simplified conflict diagnosis is considered. Let us assume that the current

decision level is 5, and that at decision level 4, u1 = 1 led to a conflict whose conflicting assign-

ment set is specified by (6.11), thus yielding the assertion u1 = 0. Consequently, the level conflict-

ing assignment set ACS[3] now contains entry (s1, 0), whereas the remaining dependencies are

assumed at decision level 0 and update ACS[0]. At decision level 5, let the first assignment be

w2 = 1, which implies w6 ← 1, and consequently a propagation conflict is identified. Conflict diag-

nosis causes level conflicting assignment set ACS[2] to be updated with (w3, 1), and the other p-sta-

tus dependencies to be added to ACS[0]. As a result, w2 is asserted to 0 at decision level 5. The

Figure 6.8: Pruning precision tradeoffs

(a) Example circuit

x1 y1
2

1

2

1

1

2

1

2

1

u1 = 0 @ 4

ζ

x2 y2

y3

y4

y5

y6

y7

z1

z2

1 1 z3

y8

s4

s3

w4

1
s2

w1 = 0 @ 1

w3 = 1 @ 2

s1 = 0 @ 3

w2

2

1 w5

2 1w6 w7

1

u1

w2

1 0

0

2

3

4

4

5

basic diagnosis engine

simplified diagnosis engine

(b) Backtracking decision levels

δ(ζ) = 0

223

resulting implication sequence also yields a propagation conflict, whose diagnosis causes ACS[1]

to be updated with (w1, 0), and other p-status dependencies to be added to ACS[0]. Since w2 is

asserted and yielded a conflict, it is necessary to backtrack, and the computed backtracking deci-

sion level (using (3.21) on page 99) is 3 due to s1 in ACS[3]. If propagation implicates were explic-

itly created the backtracking decision level would be 2 due to p-clause,

which for this example would be pervasive across path sensitization applications.

Completeness of simplified conflict diagnosis is guaranteed because all assignments that

contribute to conflicts are recorded in the level conflicting assignment sets. Hence, whenever a

conflict is identified, the union of the level conflicting assignment sets defines an implicate of the

propagation consistency function. Furthermore, simplified conflict diagnosis yields backtracking

decision levels that are always no less than the backtracking decision level computed with the

basic diagnosis engine.

For simplified conflict diagnosis, and as the above example suggests, dependencies on the

p-status that result from the initialization phase (i.e. at decision level 0) need not update ACS[0],

since no p-clauses are to be created and these dependencies are constant throughout the search

process. This fact allows further simplifying the manipulation of dependencies associated with p-

status assignments for simplified conflict diagnosis.

Diagnosis engines with worst-case polynomial size growth of the clause databases can

also be implemented. For a maximum propagation implicate size of m, the implementation can

decide whether to give preference to large p-cuts or to large conditional clauses. Furthermore,

given that propagation implicates due to delay-based blocking conditions are non-pervasive, we

may not add them to the p-clause database, and given preference to pervasive implicates.

6.5 Other Engines of LEAP

In this section other engines that are required to implement timing analysis are described.

Note that postprocessing engines are not relevant for timing analysis; redundancy removal is of

ωπ x1 x2,{ } w3¬ w1 π w6 y6,() π w7 z2,() π w7 z3,()+ + + +(),〈 〉=

224

reduced interest for circuit delay computation, and so is solution caching, since circuit delay com-

putation is to be executed only once for a given circuit.

Advanced deduction engines can be implemented for path sensitization in timing analysis,

and follow the implementation proposed in Section 3.5.3 and Section 6.5 for SAT and for test pat-

tern generation, respectively. However, implication sequences require updating the delay estimates

for each node and edge. Consensus of p-clauses is defined based on the join() operation and is

given by (5.13) (see page 193). For large p-clauses, derived from conflicts involving delay-based

blocking conditions, the application of advanced implications engines may produce implicates of a

reasonably large size that are not pervasive and that will hardly contribute to pruning the search.

Consequently, advanced deduction engines can be useful for identifying logical implicates and

propagation implicates in circuits where delay-based blocking seldom occurs.

Preprocessing engines can also be implemented. If applied to the logical clause database,

then a more complete database is used for circuit delay computation. If preprocessing is invoked

after the path sensitization goal is specified, then an advanced deduction engine can be used for

identifying propagation implicates.

The decision making procedures described in Section 3.9 and in Chapter V can be

straightforwardly adapted to timing analysis. As in test pattern generation, the existence of p-X

nodes constrains the definition of head lines and don’t care nodes, and constrains how backtracing-

based procedures can trace objectives. We have implemented simple and multiple backtracing pro-

cedures based on topological controllability and observability relations, and the results are given in

Chapter VII.

6.6 Comparison with other Timing Analysis Algorithms

The proposed path sensitization algorithm for timing analysis is unique in that it imple-

ments conflict diagnosis. Existing timing analysis tools do not implement any form of conflict

diagnosis [5, 29, 30, 50, 52, 119, 120]. In addition, we allow for structural properties of the circuit

to be identified and used to prune the search, whereas other search-based approaches are exclu-

sively based on delay considerations [29, 30, 50, 52]. For SAT-based formulations of timing analy-

sis, there can be worst-case exponential size problem instance representations [117, 119]. In

225

contrast, the p-propagation model guarantees representations linear in the size of the combina-

tional circuit.

Constructive approaches, which compute all logical conditions for a number of (poten-

tially all) path delays, perform reasonably well in certain forms of regular circuits (e.g. carry-skip

adders), but perform particularly poorly in random circuits such as the ISCAS’85 benchmark cir-

cuits [7]. The advantage of these approaches is that all the path sensitization information is com-

puted in one step; the problem being that the size of the representation may be unacceptably large.

The potential advantages of the proposed algorithm can be characterized as follows:

• Framework for implementing conflict diagnosis, where different pruning methods can be

integrated and several forms of implicates, some of which pervasive across several applica-

tions, can be identified.

• Specific consideration of the structure of the path sensitization problem, in particular USPs,

which permit identifying more logical implications and consequently further prune the

search.

• Configurable path sensitization algorithm, where different degrees of deduction and diagno-

sis ability can be implemented and applied to timing analysis.

• Linear size representation of the path sensitization problem, which makes the representation

of the problem independent of the distribution of delays in a given combinational circuit.

6.7 Summary

In this chapter the path sensitization algorithm for timing analysis is detailed. It mostly

follows the algorithm delineated in Section 4.5, with suitable modifications to take into consider-

ation the formulation of the p-propagation model for timing analysis. Simplifications to conflict

diagnosis were described, which guarantee constant size clauses databases, and a reduction in the

overhead for manipulating large antecedent assignments.

Other engines, required for implementing the timing analysis tool were also described.

Finally, we compared the proposed path sensitization algorithm with algorithms proposed by other

authors. The main difference resides in the ability of the proposed algorithm to exploit the struc-

ture of the problem and to diagnose the causes of conflicts.

226

CHAPTER VII

EXPERIMENTAL RESULTS

The algorithms proposed in the past chapters constitute the main components of the

GRASP+LEAP toolset for the analysis of combinational circuits, proposed in Chapter I and shown

in Figure 7.1. In this chapter we describe the implementation details of some of those algorithms,

and study experimental results obtained with each tool.

7.1 Tool Implementation

At the time of this writing, the following tools have been implemented:

1. A test-pattern generation tool, TG-LEAP, first described in [155].

2. A timing analysis tool, TA-LEAP, first described in [156].

3. An experimental SAT algorithm, associated with the kernel of GRASP, that can be interfaced

with a front-end for solving SAT problems on CNF formulas. This algorithm is based on the

simplified diagnosis engine. Results of a preliminary implementation were described in [150,

152] where the generated instances of SAT were related to circuit delay computation.

Implementation of TG-LEAP

The test pattern generation tool (TG-LEAP) follows the implementation described in

Chapter V but with the following configuration:

• Use of a simplified diagnosis engine, that is based on level conflicting assignment sets and

records blocked nodes and edges in a dedicated set U . This engine, as described in Chapter

V, guarantees a constant size representation of the path sensitization problem and avoids the

227

explicit manipulation of propagation cuts and multiple p-frontiers. The diagnosis engine cre-

ates assertions based on unique implication points.

• Implementation of the basic deduction engine. Logical implications and propagation impli-

cations are identified directly on the circuit structure, and the logical clause database needs

not be constructed. Furthermore, manipulation of propagation cuts is simplified due to using

the simplified conflict diagnosis engine. Unique sensitization points (USPs) are identified

and used to derive unique sensitization implications (USIs) in the logical dimension.

• Preprocessing restricted to the logical dimension and restricted to Preprocess_1(), i.e.

implicates of size two are derived (in the absence of other assigned nodes). The implementa-

tion of Preprocess_1() adds implicates to the clause database as they are identified.

(Hence the final set of identified implicates depends on the order in which assignments are

tested.)

• No postprocessing engine has been implemented. In a practical tool, the postprocessing

Figure 7.1: The GRASP+LEAP toolset

GRASP kernel
(CSAT)

LEAP kernelCNF-SAT Logic Verification

Test Generation Timing Analysis Delay Testing
(TG-LEAP) (TA-LEAP)

228

engine can be useful for reducing the test set size, and for simplifying the search for some

instances of path sensitization.

• The decision making engine can implement simple and multiple backtracing based on topo-

logical controllability and observability measures.

Implementation of TA-LEAP

The timing analysis tool (TA-LEAP) implements the circuit delay computation procedure

described in Chapter VI but configured as follows:

• The delay iteration procedure iteratively decrements threshold delays starting from the long-

est topological path (LTP).

• Use of a simplified conflict diagnosis engine equivalent to the one of TG-LEAP.

• Implementation of the basic deduction engine, but with the simplifications to the deduction

engine described for TG-LEAP.

• Preprocessing solely based on Preprocess_1().

• The same decision making procedure of TG-LEAP is used, i.e. simple and multiple backtrac-

ing can be used.

7.2 Results

The tools described above have been implemented in the C++ programming language, and

all the results were obtained on a DEC 5000/240 workstation with 32 MByte of RAM using the

ATT C++ compiler (version 3.0.1). The ISCAS'85 benchmark circuits [17] are used for all test pat-

tern generation results. For timing analysis, the same circuits are used, but other circuits proposed

in [50, 52] are also tested.

7.2.1 Results for Test Pattern Generation

Some statistics of the ISCAS'85 benchmark circuits are shown in Table 7.1. Of interest are

the total number of faults for each circuit, as well as the number of redundant faults. The set of

faults considered corresponds to the faults specified in the original distribution of the ISCAS’85

benchmark circuits [17]. The number of implicates identified with Preprocess_1() for each

benchmark circuit is also shown. These implicates are commonly referred to as non-local (or glo-

229

bal) implications [106, 144].

In the following, the results shown correspond to detecting every specified fault for each

circuit. The purpose of the experiments is to evaluate the path sensitization algorithm, and hence

we are interested in the largest number of faults. In a practical test pattern generation tool, fault

simulation would be employed to detect some faults and reduce the test set size.

7.2.1.1 Benchmarking Run Time Options

The test pattern generation tool can be configured to implement several algorithms for test

pattern generation. In the following tests, ten different algorithms were tested as described in Table

7.2, which correspond to different combinations of the following options:

1. How to manipulate head lines. Head lines may either not be computed (option N), computed

statically (option S), or computed dynamically (option D).

2. How to preprocess the circuit structure (to identify implicates of size 2, also referred to as

non-local implications). A circuit may either not be (option N) or be (option Y) preprocessed.

3. The computation of unique sensitization points (USPs). USPs may either not be computed

(option N), computed only when the size of p-frontier is 1 (option Y1, solely used to emulate

Circuit Gates PIs POs Faults
Redundant

faults
Pre-processing

time (in sec)
Implicates

of size 2

C432 160 36 7 524 4 0.082 138

C499 202 41 32 758 8 0.176 40

C880 383 60 26 942 0 0.207 116

C1355 546 41 32 1574 8 0.902 208

C1908 880 33 25 1879 9 1.644 1310

C2670 1193 233 140 2747 117 2.421 1951

C3540 1669 50 22 3428 137 14.600 6906

C5315 2307 178 123 5350 59 4.137 3609

C6288 2406 32 32 7744 34 0.832 830

C7552 3512 207 108 7550 131 12.060 10139

Table 7.1: Statistics for the ISCAS’85 benchmark circuits

230

FAN), or be dynamically computed (option Y).

4. The backtracking option. Backtracking can either be chronological (option C) or non-chro-

nological (option N).

5. The failure-driven assertions option. Assertions can either identified (option Y) or not be

identified (option N). With option Y, unique implication points are computed.

Decision making procedures rely on either simple or multiple backtracing. Because our

main goal is to compare the pruning ability of each configuration of the algorithm, only structural

controllability/observability measures are used [1]. The tested backtracing schemes were the fol-

lowing:

1. Simple backtracing, starting by trying to satisfy the most difficult controllability problems

and afterwards trying to satisfy the most simple observability problems.

2. Multiple backtracing, as proposed in [62], but using structural controllability/observability

measures.

It is important to note that in TG-LEAP backtracing is always performed to a head line in

opposition to the backtracing schemes used in FAN and SOCRATES, where backtracing can stop

at fanout points [62, 144]. Our goal is to guarantee that decision assignments are restricted to head

lines, even though this may increase the size of the decision tree is some cases.

Some of the algorithms shown in Table 7.2 can be viewed as customized implementations

of well-known test pattern generation algorithms. In particular, A0 is a modified implementation of

a. PODEM*
b. FAN*
c. SOCRATES*
d. TG-LEAP

Algorithms A0
a A1 A2 A3 A4

b A5 A6
c A7 A8 A9

d

Head lines [N/S/D] N S D D S S S S S S

Preprocessing [N/Y] N N N Y N Y Y Y Y Y

USPs [N/Y1/Y] N N N N Y1 Y1 Y Y Y Y

Backtracking [C/N] C C C C C C C N C N

Assertions [N/Y] N N N N N N N N Y Y

Table 7.2: Combinations of options tested

231

PODEM, which we refer to as PODEM*, A4 corresponds to FAN, referred to as FAN*, and A6

corresponds to SOCRATES, referred to as SOCRATES*. Finally, A9 denotes the actual implemen-

tation of TG-LEAP.

The customized implementations of PODEM [72], FAN [62] and SOCRATES [144] have

some differences with respect to the original algorithmic descriptions. PODEM* can perform both

forward and backward implications, and thus must maintain a j-frontier. FAN* identifies unique

sensitization points whenever the size of the (only) p-frontier is one, using the algorithm described

in Section 4.5.2.2 (see page 160). SOCRATES* implements the concepts described in [144] and

also computes dynamic unique sensitization points, but using the algorithm proposed in this dis-

sertation. Hence, SOCRATES* corresponds to a more efficient implementation of the pruning

methods described in [144] and [145] until phase DYN_1, but without the implementation of

instruction 2 of the unique sensitization procedure1. Moreover, the results given for SOCRATES*

are based on the preprocessing with Preprocess_1().

The results shown below assume multiple backtracing for all configurations and that the

backtracking limit is 500. Table 7.3 contains the total CPU times for each algorithmic configura-

tion and for each benchmark circuit. The total number of aborted faults for each benchmark circuit

is given in Table 7.4. The total number of backtracks and of decisions are given in Table 7.5 and in

Table 7.6, respectively.

From the number of aborted faults for each algorithm, we can conclude that the identifica-

tion of unique sensitization points (USPs), failure-driven assertions (FDAs) and non-chronological

backtracking (CDB) are of key significance for pruning the search in test pattern generation. Note

that by applying USPs and then by applying FDAs, the number of aborted faults decreases sharply.

It is worth noting that preprocessing may not always perform well. Algorithm A3 uses preprocess-

ing with respect to A2 and performs worse. This fact is justified due to non-local implications cre-

ating larger j-frontiers, which may cause multiple backtracing to make incorrect decision

assignments. Without pruning methods that can handle these incorrect decisions, larger j-frontiers

may in some cases lead to increased backtracking.

1. Phase DYN_2 [145] corresponds to dynamic learning, which in our framework can be modeled
with Deduce_1(), whereas instruction 2 attempts to identify logic assignments which, if do not
hold, block propagation [144].

232

Finally, we note the variation in the total number of backtracks over all benchmark cir-

cuits. The identification of head lines leads to mixed results, which we conjecture to be related to

the decision making procedure chosen. Over all algorithms, the total number of backtracks

decreases significantly as more pruning methods are considered. For TG-LEAP (i.e. A9) the total

Circuit A0 A1 A2 A3 A4 A5 A6 A7 A8 A9

C432 30.63 26.94 27.86 28.36 29.80 22.14 21.57 25.72 13.39 13.55

C499 118.00 102.60 110.60 108.70 71.26 68.77 70.13 71.86 70.86 70.55

C880 23.24 27.92 30.67 30.58 27.68 27.00 27.42 27.16 27.44 27.49

C1355 402.00 397.70 414.90 411.50 365.20 357.20 362.50 360.40 360.60 360.50

C1908 306.10 286.80 304.80 265.60 208.50 209.20 174.10 173.90 173.60 174.1

C2670 625.60 616.10 763.20 966.7 508.40 515.90 526.00 584.70 359.20 358.10

C3540 738.80 676.80 541.00 641.9 430.60 392.50 400.40 401.70 390.40 389.80

C5315 541.70 696.70 798.20 799.30 645.00 647.30 667.60 649.60 643.00 642.30

C6288 3446.00 3443.00 3694.00 5003.00 3405.00 4912.00 4617.00 3760.00 3278.00 3275.00

C7552 2784.00 2852.00 3223.00 3250.00 2416.00 2504.00 2455.00 2609.00 2056.00 2051.00

Table 7.3: CPU times for test pattern generation

Circuit A0 A1 A2 A3 A4 A5 A6 A8 A8 A9

C432 3 3 4 4 3 2 2 2 0 0

C499 8 8 8 8 0 0 0 0 0 0

C880 0 0 0 0 0 0 0 0 0 0

C1355 8 8 8 8 0 0 0 0 0 0

C1908 12 14 13 11 6 2 0 0 0 0

C2670 49 51 51 64 33 26 24 12 0 0

C3540 33 33 30 25 12 0 0 0 0 0

C5315 7 7 6 6 0 0 0 0 0 0

C6288 7 7 7 16 2 15 15 4 0 0

C7552 119 188 187 184 124 120 105 95 2 0

Total 246 319 314 326 180 165 146 113 2 0

Table 7.4: Number of aborted faults

233

number of backtracks reaches a minimum, far from the total number of backtracks of the other

algorithms.

Another data point of interest is to identify which types of faults are actually aborted. For

this purpose, PODEM*, FAN*, SOCRATES* and TG-LEAP were run with simple and multiple

backtracing and a backtracking limit of 500. The results obtained with simple backtracing are

Circuit A0 A1 A2 A3 A4 A5 A6 A7 A8 A9

C432 2041 2002 2379 2379 1876 1376 1376 1376 90 76

C499 4078 4078 4078 4078 74 74 74 74 74 74

C880 0 0 0 0 0 0 0 0 0 0

C1355 4002 4002 4002 4002 0 0 0 0 0 0

C1908 8223 9160 9009 5920 3308 1091 59 51 57 53

C2670 27585 28615 28592 32876 16563 13037 12647 8191 666 254

C3540 18479 18479 17643 14684 6769 699 763 687 216 206

C5315 5558 5537 5321 4961 1091 1029 1636 263 181 125

C6288 8717 8717 8717 13318 3405 10661 10661 4184 2092 1796

C7552 65576 101069 100929 100151 62733 62381 54925 49734 14275 12507

Total 144259 181659 180670 182369 95819 90348 82141 64560 17651 15091

Table 7.5: Total number of backtracks

Circuit A0 A1 A2 A3 A4 A5 A6 A7 A8 A9

C432 13466 13356 13905 13820 12197 9458 9458 9458 5765 5765

C499 36960 36960 36944 36944 26620 26620 26620 26620 26618 26618

C880 8251 8149 8103 8077 6953 6930 6965 6965 6965 6965

C1355 59537 59537 59537 58951 52182 51426 51426 51426 51426 51426

C1908 42746 42584 42128 36733 29147 26068 24420 24420 24199 24199

C2670 89388 89816 90347 115033 68568 72982 71112 84996 47884 47834

C3540 76559 76556 73704 69461 45052 34714 34662 34522 33566 33566

C5315 70885 70742 70350 69863 57244 57413 58415 55798 55463 55411

C6288 200043 200028 200021 242541 188644 235028 235022 221051 214785 214785

C7552 283499 325693 329831 322738 244017 247798 222420 235219 168314 170012

Table 7.6: Total number of decisions

234

shown in Table 7.7. Note that TG-LEAP aborts 4 detectable faults (given a backtracking limit of

500 and simple backtracing). As can be seen the remaining algorithms abort a much larger number

of faults. The results obtained with multiple backtracing are shown in Table 7.8. In this situation,

TG-LEAP aborts no faults. With respect to the simple backtracing case, the number of aborted

faults decreases for PODEM* and SOCRATES*, but increases for FAN*. With multiple backtrac-

ing, and for C6288, FAN* performs better than SOCRATES*. The reason for this result is attrib-

uted to the larger j-frontiers created by SOCRATES* with non-local implications. As mentioned

earlier, the existence of larger j-frontiers may cause some wrong initial decisions, which are diffi-

cult to correct when the size of the decision tree becomes large. Although TG-LEAP uses the same

decision assignments as SOCRATES*, the initial wrong assignments are overcome by conflict

diagnosis; conflict-directed backtracking and failure-driven assertions.

For both tests above, the average run times per fault (in seconds) are shown in Table 7.9,

where columns labeled S denote simple backtracing, and columns labeled M denote multiple

backtracing. For circuits where several faults are aborted by the other algorithms, TG-LEAP per-

forms better. However, in circuits where SOCRATES* does not abort any fault (e.g. C499, C880,

Circuit
PODEM* FAN* SOCRATES* TG-LEAP

#D #R #A #D #R #A #D #R #A #D #R #A

C432 519 0 5 519 1 4 519 2 3 520 4 0

C499 750 0 8 750 8 0 750 8 0 750 8 0

C880 942 0 0 942 0 0 942 0 0 942 0 0

C1355 1566 0 8 1566 8 0 1566 8 0 1566 8 0

C1908 1864 6 9 1868 9 2 1868 9 2 1868 9 2

C2670 2626 62 59 2630 86 31 2630 93 24 2630 117 0

C3540 3282 114 32 3287 132 9 3291 137 0 3291 137 0

C5315 5291 55 4 5291 59 0 5391 59 0 5291 59 0

C6288 7675 34 35 7700 34 10 7710 34 0 7710 34 0

C7552 7375 62 113 7388 73 89 7390 77 83 7417 131 2

Total 273 145 112 4

Table 7.7: Test generation results with simple backtracing

235

C1355, C1908, C3540 and C5315), the average running time per fault for TG-LEAP can be

Circuit
PODEM* FAN* SOCRATES* TG-LEAP

#D #R #A #D #R #A #D #R #A #D #R #A

C432 520 1 3 520 1 3 520 2 2 432 4 0

C499 750 0 8 750 8 0 750 8 0 750 8 0

C880 942 0 0 942 0 0 942 0 0 942 0 0

C1355 1566 0 8 1566 8 0 1566 8 0 1566 8 0

C1908 1861 6 12 1866 7 6 1870 9 0 1870 9 0

C2670 2630 68 49 2628 86 33 2630 93 24 2630 117 0

C3540 3281 114 33 3284 132 12 3291 137 0 3291 137 0

C5315 5290 53 7 5291 59 0 5291 59 0 5291 59 0

C6288 7703 34 7 7708 34 2 7695 34 15 7708 34 0

C7552 7369 62 119 7349 77 124 7368 77 105 7419 131 0

Total 246 180 146 0

Table 7.8: Test generation results with multiple backtracing

Circuit
PODEM* FAN* SOCRATES* TG-LEAP

S M S M S M S M

C432 0.054 0.058 0.025 0.057 0.023 0.041 0.013 0.026

C499 0.066 0.156 0.038 0.094 0.038 0.093 0.039 0.093

C880 0.020 0.025 0.025 0.029 0.025 0.029 0.025 0.029

C1355 0.123 0.255 0.103 0.232 0.102 0.230 0.103 0.229

C1908 0.120 0.163 0.113 0.111 0.084 0.093 0.090 0.093

C2670 0.166 0.228 0.109 0.185 0.112 0.191 0.072 0.130

C3540 0.164 0.216 0.093 0.126 0.079 0.117 0.080 0.114

C5315 0.069 0.101 0.097 0.121 0.099 0.125 0.099 0.120

C6288 0.324 0.445 0.199 0.440 0.221 0.596 0.210 0.423

C7552 0.218 0.369 0.206 0.320 0.211 0.332 0.186 0.272

Table 7.9: Run time per fault with simple and multiple backtracing

236

slightly larger. The main reason for the larger run times is related to the overhead of diagnosing

conflicts, that leads to larger run times when the number of backtracks of SOCRATES* and TG-

LEAP are similar. For circuits where SOCRATES* aborts faults, TG-LEAP has smaller run times.

However, if the backtrack limit is reduced, SOCRATES* would eventually have smaller run times

at the cost of some aborted faults.

As Table 7.9 indicates, the average CPU times using the multiple backtracing scheme are

most often larger than the average CPU times using simple backtracing. In several of the circuits,

the average run time per fault almost doubles with multiple backtracing. The main reason for this

discrepancy in run times is due to the difference in the number of nodes traversed by multiple

backtracing and by simple backtracing. Consequently, simple backtracing is most often the better

option, the problem being that TG-LEAP can abort a few faults with simple backtracing. These

results immediately suggest using one the algorithms with simple backtracing to detect most

faults, and use another algorithm (e.g. TG-LEAP) to detect or prove redundant the remaining

faults.

7.2.1.2 Asymptotic Behavior With Time and Backtrack Limits

In general, limited resources are available for detecting each fault or proving that the fault

is redundant. Consequently, we tested how hard can it be for detecting each fault with each of the

above algorithms. PODEM*, FAN*, SOCRATES* and TG-LEAP were run, using multiple back-

tracing, with increasing backtracking limits and with increasing maximum allowed CPU time per

fault.

The results of running the algorithms with increasing maximum allowed time per fault are

shown in Figure 7.2. As can be concluded, TG-LEAP may require a reasonable amount of time for

detecting a few faults. On the other hand, the remaining algorithms abort a significant number of

faults even when the maximum CPU time per fault is on the order of hundreds of seconds.

The results of running the different algorithms with increasing backtrack limits are shown

in Figure 7.3. Once more, we can conclude that TG-LEAP may require a reasonably large number

of backtracks for detecting a few faults. On the other hand, the remaining algorithms abort a large

number of faults even if tens of thousands of backtracks are allowed. Further note that after a back-

237

track limit of 50, the number of aborted faults for PODEM*, FAN* and SOCRATES* decreases

slightly with increases in the number of allowed backtracks per fault.

7.2.1.3 Handling Difficult Faults

TG-LEAP is primarily targeted at difficult faults, either hard to detect or redundant. With

the purpose of comparing TG-LEAP with the other algorithms on difficult faults, a small set of

redundant and hard to detect faults was chosen from some of the benchmark circuits. The results

obtained are shown in Table 7.10; columns labeled #B denote the number of backtracks and the

column labeled #A denotes the number of assertions identified by TG-LEAP. The backtrack limit

was set to 50000 for all algorithms and for all faults. For all the redundant faults, TG-LEAP proves

redundancy with a small number of backtracks. On the other hand, the other algorithms cannot

prove redundancy in some cases, given a backtrack limit of 50000. The difference in the number of

backtracks between SOCRATES* and TG-LEAP illustrates the strength of the pruning methods

incorporated into TG-LEAP. For both algorithms, the decision tree created for each fault is the

Figure 7.2: Number of aborted faults versus CPU time per fault

238

same until backtracking is required. Afterwards, while SOCRATES* usually requires a very large

number of backtracks, TG-LEAP manages to derive the information required to skip several deci-

sion assignments, thus proving redundancy with a very small number of backtracks. Furthermore,

in each of the examples shown, which require backtracking, several assertions are determined by

analyzing the causes of conflicts.

PODEM*, FAN* and SOCRATES* abort fault 2282 s-a-1. It interesting to analyze the

difference of run times for each of these algorithms. PODEM* is the simplest and executes 50000

backtracks faster than the others. SOCRATES* is the slowest. The reasons are the non-local impli-

cations that must be processed, and which introduce some overhead, and the requirement to com-

pute unique sensitization points at each decision level. Even though the procedure for computing

unique sensitization points has linear time complexity, its overhead increases the run time, which

Figure 7.3: Number of aborted faults versus number of backtracks

239

becomes noticeable when a large number of backtracks is required. FAN* does not process non-

local implications, and hence the excess of run time is only due to the procedure for the identifica-

tion of unique sensitization points (when the size of the p-frontier is 1).

For fault 2417 s-a-1 of C2670, FAN* manages to prove redundancy with fewer backtracks

than SOCRATES*. As mentioned earlier, the reason is conjectured to be the larger j-frontier in

SOCRATES* caused by non-local implications, that in some situations may cause the multiple

backtracing scheme to make several wrong assignments, and which can result in SOCRATES* not

being able to either detect the fault or prove the fault redundant. For the particular case of fault

2417 s-a-1 of C2670, this fact causes SOCRATES* to require an order of magnitude more back-

tracks than FAN*.

For fault 3695 s-a-1 in circuit C7552, although LEAP requires 107 backtracks to find a

test pattern to detect the fault, none of the other algorithms is able to detect the fault in less than

50000 backtracks. This example further illustrates the applicability of the pruning methods used in

TG-LEAP when compared to SOCRATES*.

Circuit
R: redundant
D: detectable

PODEM* FAN* SOCRATES* TG-LEAP

#B Time #B Time #B Time #B #A Time

C432 (R)
259gat s-a-1

> 50000 92.86 5618 50.09 793 4.29 35 66 0.33

C432 (R)
347gat s-a-1

> 50000 127.90 5740 38.20 921 5.92 11 20 0.09

C1908 (R)
565 s-a-1

> 50000 331.80 > 50000 569.30 0 0.03 0 0 0.03

C2670 (R)
2282 s-a-1

> 50000 460.50 > 50000 650.80 > 50000 882.50 9 16 0.20

C2670 (R)
2417 s-a-1

> 50000 476.80 1872 41.54 15592 242.20 4 6 0.12

C7552 (D)
3695 s-a-1

> 50000 438.00 > 50000 390.00 > 50000 397.50 107 48 1.80

Table 7.10: Handling difficult faults

240

7.2.1.4 Statistics for TG-LEAP

Some of the relevant statistics of running TG-LEAP with simple and multiple backtracing

on each of the benchmark circuits are shown in Table 7.11; columns labeled S denote simple back-

tracing whereas columns labeled M indicate multiple backtracing. The results were obtained with

dynamic head line evaluation, in order to also obtain data with respect to head lines. For TG-

LEAP, the number of decision assignments is usually small when compared with the number of

primary inputs of each circuit. The average number of decision assignments depends on the back-

tracing scheme chosen, and none of the backtracing schemes implemented seems to be definitely

better. On average, the number of backtracks per fault is negligible; the only exception being

C7552. The same holds true with the number of failure-driven assertions. Since the average num-

ber of backtracks is small, the number of assertions is also necessarily small. Except for specific

circuits (C499, C1355 and C6288), a reasonable number of unique sensitization implications is

determined for each fault. These implications are crucial for pruning the amount of search, as the

results of Table 7.4 show.

For several circuits, static as well as dynamic head lines are found and reduced. C432,

Circuit
Decisions Backtracks Assertions USIs Head lines

S M S M S M S M S M

C432 12.49 11.00 0.170 0.145 1.05 0.48 3.98 3.96 2.02 1.41

C499 34.10 35.12 0.169 0.098 2.43 2.46 0.61 0.93 0.51 0.07

C880 10.87 7.39 0.015 0.000 0.04 0.00 2.60 2.10 3.60 2.04

C1355 32.88 32.67 0.000 0.000 1.91 0.20 0.71 0.59 0.02 0.01

C1908 18.32 12.88 0.850 0.028 1.52 0.27 1.87 2.10 0.71 0.44

C2670 16.93 17.41 0.088 0.092 0.66 0.19 2.83 2.84 12.71 12.71

C3540 11.56 9.79 0.009 0.060 0.52 0.47 2.80 2.86 0.43 0.38

C5315 9.77 10.36 0.024 0.023 0.25 0.09 2.20 2.23 0.88 0.83

C6288 26.94 27.74 0.034 0.232 0.35 0.69 0.31 0.32 0.01 0.01

C7552 33.73 22.52 1.165 1.657 1.00 1.38 2.99 3.35 1.03 1.01

Table 7.11: Statistics for TG-LEAP (average numbers per fault)

241

C880, and C2670 appear to be specially suited for producing head lines. For circuits C499, C1355

and C6288, on the contrary, the number of head lines is small. As noted before, dynamic identifi-

cation of head lines only contributes with noticeable overhead and leads to an increase on the run

times in most cases.

7.2.1.5 Optimizing Test Pattern Generation

The results of the previous sections suggest that TG-LEAP introduces unnecessary over-

head for easy to detect faults. Furthermore, the use of multiple backtracing also introduces signifi-

cant overhead and should be used only when required. In general, PODEM*, with simple

backtracing, can be used to detect most of the faults with very reduced computational overhead.

On the other hand, using TG-LEAP is preferable to detect or prove redundant the more difficult

faults. Hence, we ran PODEM*, with simple backtracing and a backtrack limit of 5, on all the

benchmark circuits. Afterwards, we ran TG-LEAP, with multiple backtracing and a backtrack limit

of 500, on the set of faults aborted by PODEM*. The results obtained are shown in Table 7.12. The

total number of faults analyzed by each algorithm is denoted by #T. The number of detected,

Circuit
PODEM* (backtrack limit of 5) TG-LEAP (backtrack limit of 500)

Time/Fault
#T #D #R #A #T #D #R #A

C432 524 510 0 14 14 10 4 0 0.022

C499 758 750 0 8 8 0 8 0 0.040

C880 942 940 0 2 2 2 0 0 0.020

C1355 1574 1566 0 8 8 0 8 0 0.105

C1908 1879 1818 6 55 55 52 3 0 0.059

C2670 2747 2624 49 74 74 6 68 0 0.053

C3540 3428 3262 100 66 66 29 37 0 0.071

C5315 5350 5268 46 36 36 23 13 0 0.059

C6288 7744 7534 34 176 176 176 0 0 0.163

C7552 7550 7364 52 134 134 55 79 0 0.146

Total 32496 31636 287 573 573 353 220 0

Table 7.12: Results using PODEM* followed by TG-LEAP

242

redundant and aborted faults is denoted by #D, #R and #A, respectively. PODEM* detects a total

31636 detectable faults from a total of 32496 faults, proves redundant 287 faults, and aborts 573

faults. Afterwards, TG-LEAP detects 353 faults from an initial total of 573, proves redundant 220

faults and aborts no faults. For C499, C880 and C1355 some of the algorithms described earlier

can perform better alone without aborting faults. For the remaining benchmark circuits, using the

combination of PODEM* followed by TG-LEAP achieves a much better performance than any of

the other algorithms alone. Furthermore, as expected no fault is aborted, since TG-LEAP with

multiple backtracing aborts no faults.

Even though the integrated application of the two algorithms yields promising run times,

better results are to be expected by tuning the implementation of TG-LEAP.

Perspective

The results presented in this section are intended only to illustrate the effectiveness of TG-

LEAP for difficult faults, both redundant and detectable. In a complete test pattern generation sys-

tem (as proposed for example in [37, 144, 174]), fault simulation would be employed to reduce the

test set size, and to randomly detect some difficult detectable faults. We further note that our

implementation of SOCRATES* has some relevant differences with respect to the original algo-

rithm [144, 145]. SOCRATES uses an improved multiple backtracing procedure as well as

improved controllability/observability measures to guide the decision procedure. Furthermore,

SOCRATES* only implements one of the unique sensitization procedures of SOCRATES. These

differences justify the differences in results observed between SOCRATES* and SOCRATES.

7.2.2 Results for Timing Analysis

The results obtained for timing analysis assume a unit delay for every circuit gate. The

delay iteration procedure decrements a unit delay at each iteration. The final circuit delay reported

corresponds to the threshold delay of the last iteration.

The results for the timing analysis tool are shown in Table 7.13, and are compared with the

results obtained with TrueD-F [50, 52]2. The ISCAS’85 benchmark circuits, as well the bench-

2. We choose to compare TA-LEAP with TrueD-F since the circuit delay results of TrueD-F are
consistent with ours, and are based on a detailed experimental procedure. TrueD-F is implemented
in the C programming language and the results were obtained on a SUN 4 workstation.

243

mark circuits of [50], are used to evaluate TA-LEAP. Results with simple and multiple backtracing

Circuit LTP Delay ∆
TrueD-F [50, 52]

TA-LEAP
(multiple)

TA-LEAP
(simple)

#B Time #B Time #B Time

C432 17 17 — — 0 0.18 0 0.08

C499 11 11 — — 0 0.52 0 0.40

C880 24 24 — — 0 0.13 0 0.07

C1355 24 24 — — 0 0.86 0 0.90

C1908 40 37 — — 23 2.90 23 2.00

C2670 32 30 — — 17 3.12 12 1.40

C3540 47 46 — — 12 2.65 9 1.40

C5315 49 47 — — 256 31.23 428 43.21

C6288 124 123 — — 5713 1981.00 2663 679.20

C7552 43 42 — — 2383 282.60 27 4.17

C432 (N) 19 19 1 0.06 0 0.18 0 0.09

C499 (N) 25 25 1 0.37 0 0.84 0 0.77

C880 (N) 20 20 31 0.59 0 0.14 0 0.11

C1355 (N) 27 27 0 0.39 0 1.03 0 1.05

C1908 (N) 34 31 89436 3674.52 6 1.41 9 1.40

C2670 (N) 25 24 5306 200.23 0 0.73 1 0.44

C3540 (N) 41 39 3941 181.63 0 0.46 1 0.58

C5315 (N) 46 45 116 5.15 62 7.61 5 0.85

C6288 (N) 123 122 10345 802.60 5970 2352.00 1068 293.80

C7552 (N) 38 37 61 5.89 2 0.93 13 1.35

CBP.12.2 40 23 31134 233.27 1522 46.08 887 21.58

CBP.16.4 44 27 33454 238.24 420 18.96 191 7.11

CLA.16 34 34 0 0.04 0 0.02 0 0.02

TAU92EX1 27 24 33530 217.48 23 2.43 22 2.26

TAU92EX2 93 42 12413 2210.10 2177 885.00 2588 918.80

MULT-CSA 78 78 5972 1352.55 135 60.04 126 41.42

MULT-RPL 107 106 3692 544.15 5052 8651.00 688 1044.00

MULT-WALL 52 51 22474 9334.50 31610 11200.00 12306 3482.00

Total 251907 55383 21067

Table 7.13: Results for TA-LEAP: number of backtracks and CPU time

244

are shown. As can be concluded, simple backtracing performs better than multiple backtracing

over all circuits, even though for some cases it requires more backtracks. When compared with

TrueD-F, TA-LEAP requires fewer backtracks for all benchmark circuits for which backtracking is

required. For these circuits, only for MULT-RPL does TA-LEAP require more CPU time3. For

some benchmark circuits, TA-LEAP requires several orders of magnitude fewer backtracks than

TrueD-F. Moreover, for most benchmark circuits the number of backtracks required by TA-LEAP

is negligible. Further note that over all benchmark circuits, TA-LEAP with simple backtracing

requires an order of magnitude fewer backtracks than TrueD-F, even though TA-LEAP is applied

to a larger number of benchmark circuits.

It is interesting to note that for circuits where simple and multiple backtracing require sim-

ilar number of backtracks, multiple backtracing requires significantly more time. This fact shows

that a reasonable amount of time is spent on backtracing, which in some cases can introduce more

overhead than conflict diagnosis.

7.2.2.1 Statistics for TA-LEAP

Table 7.14 contains the statistics of running TA-LEAP on the benchmark circuits with

simple (S) and multiple (M) backtracing. As can be concluded, a large number of logical implica-

tions is identified due to unique sensitization points and implications (USPs and USIs). These

implications are particularly effective in reducing the amount of search and have not been used by

previous algorithms for circuit delay computation. The number of assertions is also significant,

which illustrates that the structure of implication sequences often contain several unique implica-

tion points (UIPs), and which can be used to reduce the amount of search.

For circuits where a large number of backtracks is required, the number of USIs and asser-

tions can become particularly large. This fact results from USIs and assertions being rediscovered

a large number of times, since the search process visits related stages of the search several times.

For USPs this fact indicates that logical conditions may constrain the set of propagation paths such

that USPs are defined. For assertions the results suggest that conflict-based equivalence might pre-

3. The performance of the two machines differs. For integer processing, a program should on aver-
age take 30 to 40% more time on a SUN 4 than on a DEC 5000/240. Note, however, that C++ code
also runs slower than C code, and so the results for TA-LEAP would improve if it was coded in C.

245

vent some of the conflicts that yield failure-driven assertions, and consequently reduce the number

Circuit

TA-LEAP

Decisions Backtracks Assertions USIs Head
LinesS M S M S M S M

C432 16 35 0 0 0 7 10 4 0

C499 40 41 0 0 4 0 3 0 0

C880 15 28 0 0 2 0 13 6 0

C1355 38 32 0 0 0 1 11 17 0

C1908 48 58 23 23 3 35 167 184 0

C2670 68 68 12 17 19 61 45 41 9

C3540 30 34 9 12 27 25 250 277 0

C5315 959 536 428 256 602 286 24437 18253 0

C6288 4534 12337 2663 5713 6390 20133 27339 52795 0

C7552 126 4858 27 2383 116 3055 2812 193899 0

C432 (N) 10 24 0 0 0 0 11 9 0

C499 (N) 35 40 0 0 0 0 6 7 0

C880 (N) 23 29 0 0 0 0 14 15 0

C1355 (N) 36 32 0 0 0 2 11 17 0

C1908 (N) 35 34 9 6 2 4 70 63 0

C2670 (N) 56 36 1 0 25 27 27 25 0

C3540 (N) 18 8 1 0 32 2 62 63 0

C5315 (N) 32 282 5 62 5 72 230 2612 0

C6288 (N) 1977 12906 1068 5970 4306 26736 8087 69676 0

C7552 (N) 40 33 13 2 3 3 421 142 0

CBP.12.2 1156 2347 887 1522 473 2232 13587 33627 0

CBP.16.4 251 653 191 420 107 408 5949 15039 0

CLA.16 13 13 0 0 0 0 30 30 0

TAU92EX1 68 68 22 23 32 34 772 1149 2

TAU92EX2 4344 4370 2588 2177 1994 2361 72018 48418 0

MULT-CSA 241 228 126 135 301 293 2620 7264 0

MULT-RPL 1383 8792 688 5052 1334 7740 1722 47473 0

MULT-WALL 22408 57272 12306 31610 33590 83732 361935 938278 0

Table 7.14: Statistics for TA-LEAP with simple and multiple backtracing

246

of assertions.

The contribution of head lines is negligible. The results shown just include static head line

identification. From our experiments we have concluded that dynamic head line identification only

increases the run times without significantly reducing the amount of search.

7.2.2.2 Analysis of Carry-Skip Adders

Even though the results of the previous section appear to indicate that TA-LEAP performs

particularly well for most practical circuits, this may not always be the case. For some instances of

carry-skip adders (CSAs), the search space can become too large for TA-LEAP to manage to iden-

tify a solution.

Table 7.15 contains delay information for several carry-skip adders with varying total

number of bits and block sizes. In particular, the longest topological path delay (LTP) as well as

the longest sensitizable path delay (∆C) are shown. (The organization of carry-skip adders as well

as the different delay expressions are described in Appendix C, where CSAs of fixed block sizes

are assumed.)

The results obtained with TA-LEAP using simple backtracing and a backtrack limit of

50000 are shown in Table 7.16. Whenever TA-LEAP is unable to identify a solution, the largest

Number of bits

Block Size 8 12 16 20 24 32 64

2 (25; 14) (37; 18) (49; 22) (61; 26) (73; 30) (97; 38) (193; 70)

4 (21; 18) (31; 20) (41; 22) (51; 24) (61; 26) (81; 34) (161; 46)

8 (19; 19) — (37; 34) — (55; 36) (73; 38) (145; 46)

16 — — (35; 35) — — (69; 66) (137; 70)

32 — — — — — (67; 67) (133; 130)

64 — — — — — — (131; 131)

128 — — — — — — —

Table 7.15: Delay values (LTP; ∆C) for carry-skip adders

247

path delay proved false is included; otherwise the circuit delay ∆ computed by TA-LEAP is shown,

which is always the same as predicted by the analysis of CSAs in Appendix C. As can be con-

cluded, TA-LEAP aborts circuit delay computation for CSAs with a large number of bits and with

small block sizes. For each number of bits of a CSA we can define an optimal design as the one

that minimizes area while guaranteeing minimum circuit delay. The optimal design for each num-

ber of bits is marked in Table 7.16. As the number of bits in the carry-skip adder increases, TA-

LEAP becomes unable to compute the circuit delay for these optimal designs. We can thus con-

clude that for a large number of combinational circuits (e.g. the benchmark circuits), TA-LEAP

performs well in almost all cases. On the other hand, we have constructed examples of regular cir-

cuits where TA-LEAP is unable (under the backtrack limit specified) to compute the circuit delay.

For carry-skip adders, structural information is useful for delays close to the largest topo-

logical path delay because a large number of USPs and USIs is identified. For smaller delays,

structural properties can no longer be exploited since the carry bypass logic begins to be involved

in potential sensitizable paths, thus reducing the number of USPs and associated USIs. Given that

there are more options on how to sensitize a path, TA-LEAP needs to consider more primary

inputs assignments to prove all paths false. For this reason the search space grows significantly as

the threshold delay approaches the sensitizable path delay, and too large a number of backtracks

Number of bits

Block Size 8 12 16 20 24 32 64

2 14 18 22 ≤ 29 ≤ 41 ≤ 65 ≤ 161

4 18 20 22 24 ≤ 28 ≤ 48 ≤ 128

8 19 — 34 — 36 38 ≤ 97

16 — — 35 — — 66 70

32 — — — — — 67 130

64 — — — — — — 131

128 — — — — — — —

Table 7.16: Computed delay ∆ for carry-skip adders

248

may be required to prove intermediate delays as false. CSAs denote a type of circuits where prun-

ing methods based on delay information can be particularly useful. A large number of USPs in

CSAs can be shown not to be sensitizable with delays corresponding to the longest topological

path. This information can be used to prune the considered threshold delays without having to use

search to prove that such threshold delays cannot be sensitized. Further research work is needed on

how to incorporate delay-based pruning methods within the search framework proposed in this

dissertation.

7.3 Conclusions

For both circuit analysis tools described in the present chapter, the obtained experimental

results are promising. As noted above, the tools have yet to be subject to implementation fine-tun-

ing, and the processing overhead is likely to be reduced. Furthermore, not all algorithmic function-

ality has been implemented and tested. Additional search pruning is to be expected with a more

complete implementation of the path sensitization algorithms for both tools. In particular, the

application of diagnosis engines with bounded growth of the clause database, permit restricted

forms of conflict-based equivalence, and may prove useful in identifying strong search pruning

conditions.

The timing analysis tool performs well for unstructured logic circuits. In contrast, an anal-

ysis of several carry-skip adder configurations showed that TA-LEAP is unable to compute circuit

delay for CSAs with large number of bits and with small block sizes. The implementation of the

basic diagnosis engine, or diagnosis engines with bounded growth of the clause database, can be

of use for these circuits. Furthermore, we briefly mentioned how delay-based pruning methods can

be applied to some circuits, CSAs included.

The results presented in this chapter for both tools are comparable to, when not better

than, most results obtained in recent years with other test pattern generation and timing analysis

tools. This fact justifies and motivates the integrated development of circuit analysis tools, where

common pruning methods can be implemented and shared among the different tools.

249

CHAPTER VIII

CONCLUSIONS

8.1 Contributions

The contributions of our work can be divided among the following main areas:

• Satisfiability algorithms.

• Path sensitization model.

• Path sensitization algorithms.

The following sections review the contributions in each of these areas.

8.1.1 Search-Based Satisfiability Algorithms

We developed a search algorithm for satisfiability, GRASP, that can be configured with

different engines: selection, deduction, diagnosis, preprocessing and postprocessing engines.

The description of diagnosis engines was emphasized since conflict diagnosis has seldom

been applied to SAT. Conflict diagnosis is based on several methods to prune the amount of search.

We described conflict-directed backtracking, conflict-based equivalence and failure-driven asser-

tions. Moreover, unique implications points, multiple conflicts and iterated conflicts were pro-

posed as additional techniques for conflict diagnosis. Engines for conflict diagnosis can also be

simplified, whenever the computational overhead at each decision level is important, or improved

whenever precise diagnosis is the goal. We proposed a hierarchy of simplified diagnosis engines

that permit a wide spectrum of diagnosis ability versus clause database growth complexity.

Deduction engines are characterized by their deduction ability. We described a hierarchy

250

of deduction engines, and associated deduction abilities, based on testing combinations of assign-

ments and applying consensus operations. These deduction engines supersede deduction proce-

dures proposed by other authors. The same techniques were applied to preprocessing and a

hierarchy of preprocessing engines was also described.

The objectives of postprocessing engines can be divided into redundancy removal and

solution caching and were described solely for combinational circuits. Redundancy removal

allows deleting from a computed solution decision assignments that are irrelevant for the goal to

be satisfied. Solution caching permits identifying signatures of computed solutions that can be

used to reduce the amount of search for other queries on the clause database.

Finally, we reviewed decision making procedures and described a relationship between

head line identification and consensus on a clause database.

8.1.2 Path Sensitization Model

The perturbation propagation (p-propagation) model allows capturing path sensitization in

different applications. The main characteristic of the model is that the logic value assumed by each

node is uncoupled from the path sensitization information associated with the node. We illustrated

how path sensitization for test pattern generation and for timing analysis could be represented with

adequate formulations of the model.

By formulating path sensitization in terms of the p-propagation model, the following

advantages can be identified:

• The logical clause database is common to different path sensitization applications and the

notion of pervasive implicate is introduced to justify sharing identified implicates across dif-

ferent circuit analysis tools.

• Most propagation reasoning is similar for different path sensitization applications. This also

leads to the derivation of implicates that are valid across different path sensitization applica-

tions.

• Path sensitization specific pruning methods can be generalized and applied to other applica-

tions. This is the case, for example, of unique sensitization points, which were shown to be

applicable to timing analysis, even though the concept on unique sensitization point was

251

originally developed for path sensitization in test pattern generation.

The precision of the model can be scaled and we describe several improvements for test

pattern generation that extend the accuracy of models based on the D-calculus.

8.1.3 Search-Based Path Sensitization Algorithms

Using the ideas proposed for SAT algorithms, we developed LEAP, a generic path sensiti-

zation algorithm, and described how it can be applied to test pattern generation and timing analy-

sis. The path sensitization algorithm can be configured in much the same way the SAT algorithm

can. Once more, we emphasized conflict diagnosis, since previous path sensitization algorithms

have seldom implemented conflict diagnosis techniques. Diagnosis of propagation conflicts is

defined in terms of identifying propagation implicates, that describe conditions for blocking prop-

agation.

The notion of propagation cut was introduced to formalize the evolution of the search pro-

cess, the notion of unique sensitization points (USPs) and how to define propagation implicates.

Several problem-specific pruning methods were developed, that included direct and reverse value

probing, and subleveling.

8.2 Future Research Work

The problems addressed in this dissertation are known to be algorithmically hard and,

consequently, we can always construct test cases for which the proposed algorithms perform

poorly. The purpose of research work in these areas is to develop algorithmic techniques that

reduce the number of cases where the algorithms perform poorly. We have described several ways

on how this can be achieved for circuit analysis tasks, but additional work is necessary.

The following sections describe several pending research problems, as well as empirical

validations, that are of interest in the continuation of the work described in this dissertation.

8.2.1 Satisfiability

We described a general search framework for SAT (GRASP), but emphasized its use in

solving path sensitization problems. The individual analysis of the proposed techniques in the con-

252

text of SAT (without specifying target applications) is of interest. For example, it would be inter-

esting to identify the best configuration of GRASP for the instances of SAT obtained by mapping

circuit analysis problems into CNF (some examples of which were mentioned in Chapter I). More-

over, it would be interesting to empirically study how well GRASP performs on other instances of

SAT, not necessarily related to circuit analysis.

Logic Verification

Among the applications of GRASP to circuit analysis tasks, logic verification is especially

suitable given the formulation of the problem. We propose applying the conflict diagnosis tech-

niques described in this dissertation to the logic verification problem. In particular, it would be of

interest to evaluate whether implicate identification and controlled forms of advanced deduction

engines could help inducing structure on the logic verification problem so that the application of

conflict diagnosis methods could be facilitated. One possible approach is to replace nodes proved

equivalent by a single copy and rearranging the clause database accordingly (by adapting ideas

first proposed in [16, 100]). This solution constraints the number of implication paths, thus induc-

ing structure that GRASP can exploit.

8.2.2 Path Sensitization Algorithm

The algorithmic model for path sensitization needs extending failure-driven assertions to

the propagation dimension. As mentioned in earlier chapters, this type of failure-driven assertions

poses algorithmic difficulties because the number of p-cuts can become significantly large. In

addition, different types of p-cut interactions can exist, which makes it difficult to define an inte-

grated procedure for maintaining p-cuts. The same problem arises in advanced deduction engines,

where we restrict the sets of tested variable assignments to the logical dimension.

8.2.3 Test Pattern Generation

The experimental results obtained with TG-LEAP are promising, and motivate incorporat-

ing additional pruning ability into the tool. TG-LEAP was developed as a prototype and the imple-

mentation can be further optimized. An exhaustive analysis of the different pruning methods, on a

benchmark set larger that the one currently available, may permit defining which pruning methods

253

are the most useful. The results we obtained suggest that unique sensitization points and failure-

driven assertions are particularly useful, followed by conflict-directed backtracking. It may be

interest to empirically study how useful constrained creation of implicates (logical and propaga-

tion) may help reducing the search on average problems.

In addition, we propose to study the usefulness of postprocessing engines for test pattern

generation. In EST [70, 71] promising results were obtained with different formulations of solu-

tion caching. Since our procedure caches less information than that of EST, we expect that

restricted solution caching can be of use in reducing the test sizes obtained with EST. Redundancy

removal from solutions was originally proposed in this dissertation, and can be of use whenever

conflicts are identified, since in this situation, some of the existing decision assignments can

become redundant. Experimental evaluation of both solution processing techniques is proposed.

Finally, the p-propagation model can be automatically scaled to provide for different prop-

agation reasoning precisions. We believe it would be of interest to study for a representative set of

benchmark circuits, which formulation of the p-propagation model is best suited for test pattern

generation in both test pattern generation time and test size.

8.2.4 Timing Analysis

The experimental results obtained with TA-LEAP fare well against those of other timing

analysis tools [50, 52], even though several pruning methods have not been incorporated into TA-

LEAP.

As with TG-LEAP, additional benchmarking of TA-LEAP is suggested. In addition, the

implementation of a configurable tool, able to implement the whole range of proposed pruning

methods might be particularly useful in ascertaining the best configuration from a practical stand-

point.

TA-LEAP can perform poorly for some forms of regular circuits (e.g. some instances of

carry-skip adders) as other search-based timing analysis tools do. Further insights into the problem

formulation and the full implementation of the path sensitization algorithm may help curbing the

difficulties faced by TA-LEAP with these types of circuits. For example, as mentioned in Chapter

VII, it may be of interest to study the development of delay-based pruning techniques (by adapting

254

ideas first proposed in [119]), which augment structural and functional pruning methods with con-

ditions on the maximum propagation delay to specific nodes in the circuit.

8.2.5 Other Applications

Several other circuit analysis tasks can benefit from the ideas described in this disserta-

tion. Delay fault testing is another application that involves path sensitization [108, 159], and con-

sequently, we propose studying the application of the p-propagation model and the proposed

search algorithms to delay fault testing.

The analysis of sequential circuits is the next step where to try to apply the search algo-

rithms proposed in this dissertation. In particular, we believe that path sensitization tasks may ben-

efit from the proposed algorithmic techniques. At this level, several differences exist between path

sensitization applications. Nevertheless, a few similarities also exist, since all path sensitization

problems for sequential circuits must solve different formulations of the state reachability prob-

lem. For test pattern generation the existence of faults affects how fault activation is performed

(and consequently how state reachability is solved). For timing analysis and for circuits with flip-

flops, the path sensitization problem must only take into account that not all states of a finite state

machine are reachable. For circuits with level-sensitive latches, it is not yet clear how the existence

of uncertainty intervals at a combinational block inputs can affect the path sensitization problem.

Future generations of circuit analysis tools will necessarily have to manipulate some form

of hierarchical circuit descriptions. We believe that algorithmic solutions for circuit analysis prob-

lems of hierarchically described circuits will have to involve some form of search procedure. In

such a situation, we believe that the algorithmic framework proposed in this dissertation may be

extended to the analysis of hierarchically described circuits, for verification as well as path sensiti-

zation problems.

255

APPENDICES

256

APPENDIX A

FORMAL RESULTS ON SATISFIABILITY

This appendix includes the proofs for all formal results of Chapter III. We also include an

analysis of the computational complexity of processing each decision level with GRASP.

A.1 Soundness and Completeness

The purpose of this section is to prove the soundness and completeness of two configura-

tions of GRASP. Theorem 3.1 (see page 64) establishes the soundness and completeness of

GRASP configured with the basic deduction and diagnosis engines. Theorem 3.8 (see page 100)

establishes the soundness and completeness of GRASP configured with the basic deduction engine

and with a diagnosis engine that ensures a constant size clause database (i.e. Diagnose_C()).

In subsequent proofs involving Diagnose() the following configuration is assumed:

1. No clauses are subsumed or merged (i.e. REDUCE_DATABASE is false in Figure 3.12 on

page 90).

2. No unique implication points are identified.

3. No implementation of iterated or multiple conflicts.

In addition, several proofs examine the effects of added clauses to the clause database. For

a consistency function ξ, associated with an initial clause database ϕi, a modified clause database

ϕ is said to be valid if and only if .

The plain backtracking search algorithm is both sound and complete [97]. Thus, to prove

that GRASP is also sound and complete, it is only necessary to prove that:

1. The basic deduction engine only implies assignments that are necessary for finding a solution

to the query. This is guaranteed by Theorem 2.1 (see page 38).

2. Both conflict diagnosis engines do not affect either the soundness or completeness of the al-

ξ
A

ϕ
A

=

257

gorithm. The proof of this statement is the main result of this section.

A.1.1 Soundness

The following result establishes that the search algorithm is sound, i.e. any computed

solution to a given query is indeed a solution to that query.

Theorem A.1. GRASP is sound.

Proof: By definition of clause database the original clause database can only be satisfied if

the variable assignments are consistent, hence denoting a solution to a query. In addition, clauses

can only be added to the clause database (with Diagnose_C() no clauses are added). Conse-

quently, given an initial clause database ϕi and the current clause database ϕ, then ϕi ⊆ ϕ . Conse-

quently, a satisfying assignment for ϕ must also be a satisfying assignment for ϕi.

Furthermore, from Theorem 2.1 on page 38, any variable assignment implied by Boolean

constraint propagation is necessary for identifying a solution to a query, and any violated clause of

ϕ is identified by the procedure of Figure 2.6. Hence, any computed solution variable assignment

for the current clause database, must indeed be a solution to the query.

Observe that the above proof holds independently of whether conflicting clauses are or not

added to the clause database, and so it holds for GRASP configured with either Diagnose() or

Diagnose_C().

A.1.2 Completeness with Diagnose()

The proof that the search algorithm is complete hinges on the fact that any clause that is

added to the clause database during the search process is an implicate of the consistency function

ξ . In order to prove this fact, we will use induction on the number of conflicts found during the

search and consequently on the number of conflicting clauses added to the clause database. As a

result, we have to prove that the first conflicting clause is an implicate of ξ . This requires showing

that if a partial variable assignment includes the conflicting assignment set associated with a given

conflict, then a conflict must be identified. Using these results, we can then show that the non-

chronological backtracking procedure does not skip potential solutions. Finally, the previous

258

results can be used to prove GRASP to be complete. Consequently, the proof is organized as fol-

lows:

1. Let A be the assignment set associated with a partial variable assignment and let ACS be giv-

en by (3.6) on page 67 for some identified conflict. Then implies that A causes a

conflict.

2. The first conflicting clause is an implicate of ξ .

3. Every conflicting clause is an implicate of ξ .

4. Let βL be the backtracking decision level given by (3.17) (see page 86). Then a solution can-

not be found by backtracking to a decision level b such that .

5. GRASP is complete.

We first show that the node assignments identified by ACS (from (3.6)) imply a conflict. In

order to prove this result, some additional definitions are required. Let ASG denote the assigned

variables of the subgraph of the implication graph assigned at decision level c. ASG can be com-

puted with :

(A.1)

where,

(A.2)

The implication levels are used to partition ASG as follows:

(A.3)

where the highest implication level can be no greater than the number of variables N. For each

, let denote the set of clauses that imply the assignments included in . Given

ACS A⊆

βL b c≤<

trace : V 2V 0 1,{ }×→

ASG trace y()
y ν y(),() Σ κ()∈

∪=

trace x()

x ν x(),() if ι x() 0=,

x ν x(),() trace y()
y ν y(),() Σ x()∈

∪∪ otherwise,









=

ASG i[] x ν x(),() x ν x(),() ASG∈ ι x() i=∧{ } 0 i N≤ ≤,=

ASG i[] Ω i[] ASG i[]

259

the above definitions, the following properties can be established.

Lemma A.1. Let be any assignment in ASG. In such a situation,

(A.4)

Proof: Assume that a given assignment (y, vy) is in ASG, then from (A.1) and (A.2) the

assignment of all its antecedents, assigned at decision level c, are also in ASG. If (y, vy) is contained

in , then by definition of implication level, in (3.3), these assignments must be contained

in sets , with . The assignments of the remaining antecedents, assigned at deci-

sion levels less than c, are contained in ACS from (3.6) and (3.7). Hence (A.4) follows.

Lemma A.2. Assume a conflict such that ACS is given by (3.6) and ASG[k] is given by (A.3). Fur-

thermore, assume a partial variable assignment A, and let . Then, for

each clause ω in , either ω is satisfied, unsatisfied or it is a unit clause.

Proof: Given the definition of , assuming (A.4), and since by hypothesis the condition

 holds, then the following conclusions can be drawn from Lemma A.1.

All literals of are assigned with the possible exception of one literal yi, whose assign-

ment is implied by ω. If y is assigned, and y = i, then ω is unsatisfied and yields a conflict; if

, then ω is satisfied. If y is unassigned, then ω is a unit clause.

We can now use the previous results to show that given ACS, any partial variable assign-

ment A causes a conflict if .

Lemma A.3. Assume a given conflict node κ at decision level c. Let ACS be given by (3.6) and

ASG be given by (A.1). In this situation, for any partial variable assignment A, such that ,

then a conflict is detected.

Proof: Suppose that , since by hypothesis , then , and

since , then a clause of the clause database is unsatisfied under A, and a con-

flict is detected.

The next step is to show that if , then either or a conflict is detected, and

y vy,() ASG k[]∈ 0 k N≤ ≤,

w vw,() A y()∈()∀ w vw,() ACS∈ 0 j k<≤()∃ w vw,() ASG j[]∈(),∨[],

ASG k[]

ASG j[] 0 j k<≤

1 j k<≤()∀ ASG j[] A⊆,

Ω k[]

Ω k[]

1 j k<≤()∀ ASG j[] A⊆,

ω Ω k[]∈

y i¬=

ACS A⊆

ACS A⊆

ASG A⊆ ACS A⊆ ACS ASG∪ A⊆

A κ() ACS ASG∪⊆

ACS A⊆ ASG A⊆

260

hence a conflict is necessarily detected. We use induction of the implication level to show that for

each implication level i, either or a conflict is identified. Consider .

Basis step (k = 0). Any node x assigned to vx at implication level 0 is either asserted due to

some clause or is a decision assignment. If (x, vx) is a decision assignment, then by definition

(x, vx) ∈ ACS. Otherwise (x, vx) is implied due to some clause ω, such that the assignments (y, vy)

of all its other literals yi are in ACS, again by definition of conflicting assignment set. Hence (x, vx)

must be included in or otherwise a conflict is identified. In any case holds

or a conflict is identified.

Induction hypothesis (). Assume that for .

Induction step (k = m+1). By Lemma A.2 and by the induction hypothesis, each clause ω in

Ω[k] must either be satisfied, unsatisfied or be a unit clause. Note that ω cannot be a unit clause,

since Deduce() would imply an assignment and satisfy ω. If ω is unsatisfied a conflict is identi-

fied and the claim holds. If ω is satisfied, then the assignment (y, vy) implied by ω at implication

level k has been made. As a result, either a conflict is identified, or all assignments in ASG[k] hold.

Hence, .

Consequently, we can conclude that if , then a conflict is detected.

The next step is to show that the first identified conflicting clause is an implicate of the

consistency function ξ.

Lemma A.4. Assume a search process, a valid clause database and let c be the current decision

level. Further, let x be the node assigned due to the most recent decision (i.e. x = vx), and let the

resulting implication sequence result in the first conflict. Then, the conflicting clause ω created

with (3.8) is an implicate of ξ .

Proof: Let ACS be the conflicting assignment set associated with the conflict (from (3.6)) and

let ω be the conflicting clause created from ACS with (3.8). Consequently, for some A if ,

then ACS ⊆ A, by definition. In addition, ACS ⊆ A implies a conflict (i.e.) from Lemma

A.3. Hence, . Conversely, suppose A such that . Hence, ACS ⊄ A,

and so . As a result we can conclude is true for all A, for which or

, and thus ω is an implicate of ξ.

ASG i[] A⊆ ACS A⊆

ASG 0[] ASG 0[] A⊆

k m≤ ASG k[] A⊆ 0 k m≤ ≤

ASG k[] A⊆

ACS A⊆

ω
A

0=

ξ
A

0=

ω
A

0=() ξ
A

0=()⇒ ξ
A

1=

ω
A

1= ω
A

ξ
A

⇒ ω
A

0=

ξ
A

1=

261

The above result establishes that, under the assumption that the clause database is valid,

the first conflicting clause is an implicate of ξ . We now prove that any clause added to the clause

database is an implicate of ξ .

Lemma A.5. All clauses derived from conflicting assignment sets identified during the search pro-

cess are implicates of the consistency function ξ .

Proof: We use induction on the number of conflicts k, identified during the search process, to

show that every conflicting clause created after diagnosing a conflict is an implicate of ξ .

Basis step (k = 1). From Lemma A.4.

Induction hypothesis (k = m). The conflicting clause created after the mth conflict is an impli-

cate of ξ .

Induction step (k = m + 1). If the (m + 1)th conflict results from a decision assignment, then

Lemma A.4 guarantees that the identified conflicting clause is an implicate of ξ. Otherwise, the

conflict results from an implication sequence triggered by an asserted variable x. Let ω1 be the

conflicting clause associated with asserting x, and let ω2 be the conflicting clause identified from

analyzing the (m + 1)th conflict. Further let xi be the literal of ω1 associated with x. Now define the

clause,

(A.5)

ω3 can be viewed as the conflicting clause that is created as a result of diagnosing the conflict

caused by the decision assignment x = ¬i. Hence, from Lemma A.4 ω3 is an implicate of ξ since

the clause database is valid until the mth conflict. In addition, ω2 = c(ω1, ω3, x), and hence it is also

an implicate of ξ. (Observe that even though several nodes can be asserted at a given decision

level, only one is associated with the decision variable of that level. The other assertions result

from implicates of the clause database by the induction hypothesis.)

As a result, any conflicting clause given by (3.8) is an implicate of ξ .

The next step consists in showing that non-chronological backtracking does not skip any

potential solutions to the query.

ω3 ω2 ω1 xi{ }–()–[] xi¬{ }∪=

262

Lemma A.6. Let βL be computed with (3.17) and let c be the current decision level, with .

In this situation, no solution to the query can be found by backtracking to a decision level b, such

that .

Proof: Let ACS be the conflicting assignment set from (3.6). Hence, the associated conflict-

ing clause ω is an implicate of the consistency function from Lemma A.5. Furthermore, from The-

orem 3.4 on page 75, while the search process does not backtrack to decision level βL.

From (3.17) we can conclude that , and from Lemma A.3 for all Ab such that

. Hence, a solution to the problem cannot be found until the search process back-

tracks to decision level βL.

Theorem A.2. GRASP configured with Diagnose() is complete.

Proof: From [97] the plain backtracking search algorithm is known to be complete. Hence, it

is necessary to show that (1) all implications derived by boolean constraint propagation are neces-

sary conditions for a solution to the satisfiability problem to be found; and that (2) Diagnose()

will not cause the search process to skip any possible solutions to the query. (1) follows from

Lemma 2.1; (2) follows from Lemma A.6, which ensures that any decision level that is skipped by

the search process cannot contribute to finding a solution to the query. Consequently, the search

algorithm is complete.

Finally, Theorem 3.1 (see page 64) follows from Theorem A.1 and Theorem A.2.

A.1.3 Completeness with Diagnose_C()

To prove that GRASP configured with based on Diagnose_C() is complete, we invoke

the results of Section A.1.2. In addition, we prove that, whenever a conflict is diagnosed, the con-

flicting clause derived from the union of the level conflicting assignment sets is an implicate of the

consistency function. This fact guarantees that the computed backtracking decision level is correct

in the sense that no potential solutions are skipped. The completeness result then follows from

Lemma A.6. As in the proof of Lemma A.5, we use induction on the number of conflicts to show

that each created conflicting clause is an implicate of the consistency function.

βL c<

βL b c≤<

AβL
Ac⊆

ACS AβL
⊆ ξ

A
0=

ACS AβL
Ab⊆ ⊆

263

Lemma A.7. Assume a search process, a valid clause database, let c be the current decision level

and let a conflict be identified. Further, define the following conflicting clause:

(A.6)

where is given by (3.20) on page 98 and by applying Diagnose_C(). Then, ω is an

implicate of the consistency function ξ .

Proof: As with the proof of Lemma A.5, we use induction on the number of conflicts and

start by showing that the first clause created with (A.6) is an implicate of ξ . Note, however, that

this follows from Lemma A.4. The next step is to prove the induction step. Assume that after the ith

conflict, (A.6) is an implicate of ξ . Then we have to show that after the (i+1)th conflict, (A.6)

yields an implicate of ξ . If the (i+1)th results from a decision assignment, then Lemma A.4 applies

and (A.6) is an implicate of the consistency function. Otherwise, we can reason as in the proof of

Lemma A.5, and construct a clause ω3 with (A.5) which then guarantees (A.6) to be an implicate

of the consistency function. Thus, after each conflict, (A.6) always denotes an implicate of ξ.

Theorem A.3. GRASP configured with Diagnose_C() is complete.

Proof: The backtracking decision level computed with (3.21) is always derived from an

implicate of ξ due to Lemma A.7, which guarantees that Lemma A.6 holds. From Theorem A.2 the

results follows.

Perspective

Even though there has been extensive work on non-chronological backtracking search

algorithms in artificial intelligence, completeness proofs have seldom been established. In [19], M.

Bruynooghe proposed a convincing argument for the completeness of a search algorithm for con-

straint satisfaction problems which implemented non-chronological backtracking but did not prop-

agate constraints (in GRASP this would correspond to having no deduction engine). This same

argument was used by M. Shanahan and R. Southwick in 1989 [148, pp. 65-66] to prove that the

same algorithm and some of its variations were indeed complete. A different proof for the same

ω xν x() x ν x(),() ACS i[]
0 i c≤ ≤∪∈

 
 
 =

ACS i[]

264

algorithm is given in [143], but under the assumption that nogoods are identified and recorded.

Although backjumping1 was proposed by J. Gaschnig in 1979 [66], only recently an

abstract definition of backjumping was shown to be complete by M. Ginsberg [68].

The proofs given in this dissertation are distinct from the aforementioned proofs. Specifi-

cally, our proofs consider the derivation of implication sequences, while the others do not. In addi-

tion, the proof for Diagnose() entails the construction and application of conflicting clauses

which, in contrast with nogoods [54, 161], are not necessarily specified in terms of decision

assignments.

A.2 Time and Space Complexity

In this section we establish results regarding the computational complexity of processing

each decision level during the search process. The clause database is assumed to be derived from a

combinational circuit.

The time complexity to find a solution to an instance of SAT using GRASP is in the worst-

case clearly proportional to the product of the worst-case time required to process a given decision

level (TL) and the exponential of the number of primary inputs (i.e.). This result can be con-

cluded from the fact that the search algorithm implicitly enumerates all possible primary input

assignments and each decision involves some processing (i.e. TL). (This result is also expected,

because SAT is an NP-complete decision problem [34, 35, 65].) If the clause database is permitted

to grow without bound, then the space complexity if clearly exponential in the number of vari-

ables, because in the worst-case an exponential number of implicates can be identified and added

to the clause database. As a result, the time complexity to process a given decision is in the worst-

case exponential in number of variables. For a first query this leads to . For a

sequence of queries, an upper bound on the growth of the clause database is . (Both

bounds are somewhat loose, but suggest the computational effort that may be involved in process-

ing a given decision level. A more accurate bound is given below.)

In practice, however, only a limited amount of computational resources can be allocated to

finding the solution of a given query. Most often the bounds on these resources are specified by a

1. Backjumping is a non-chronological backtracking procedure specifically developed for CSPs
[66, 133].

2 PI

TL O 2N()=

TL O 3N()=

265

bound on the amount of search (i.e. a maximum number of backtracks) and by bounds on how to

update the clause database (i.e. maximum number and size of implicates that can be added to the

database and what operations can be performed on those implicates). As a result, we can analyze

the complexity of GRASP under the following constraints:

Assumption A.1. In the analysis of GRASP the following resource constraints are assumed:

1. The maximum number of backtracks to solve a given query is B.

2. After solving a query, the clause database is reset to its original structure (e.g. for a combina-

tional circuit the clause database is given by the conjunction of clauses associated with the

consistency function of each gate). (In general, we may relax this constraint by allowing a

constant number of conflicting clauses to be kept in the clause database.)

3. The addition of a new clause to the clause database is not subject to subsumption or merging

operations.

Given these constraints, we can improve the complexity bounds on the space required to

solve SAT and on the time required to process each decision. We note that these new bounds are

obtained under the assumption that if solving a query requires more than B backtracks, then the

algorithm declares itself incapable of finding a solution to that particular query, because the query

requires more computational resources than the algorithm is allowed to spend on any given query.

Furthermore, we assume an initial clause database for which . This is the case with

clause databases derived from combinational circuits.

At any stage of the search process, the worst-case number of backtracks already executed

is O(B), given the bound on the number of backtracks. As a result, the size of the clause database

can have increased with clauses that contribute with at most literals, due to the creation

of two conflicting clauses associated with each backtrack. Hence, the number of literals in the

clause database is at most , which also denotes the bound on the space

required by the algorithm. At any decision level, the time complexity for the derivation of implica-

tion sequences is linearly related to the size of the clause database, and thus it is given

the above assumptions. Diagnosing each conflict requires computing the associated conflicting

assignment set (using (3.6)), and consequently it is necessary to recursively identify antecedent

ϕ O N()=

O N B⋅()

O ϕ N B⋅+() O N B⋅()=

O N B⋅()

266

assignments. Each clause in the clause database can be associated with at most one antecedent

assignment. Hence, the recursive identification of antecedent assignments is bounded by ,

i.e. the worst-case size of the clause database. This immediately implies that a conflicting assign-

ment set, at any decision level, is computed in time. Furthermore, since there can be at

most B backtracks, the total run time is in the worst-case . The previous analysis sup-

ports the following:

Theorem A.4. Under Assumption A.1, and for clause databases where initially , the

space complexity of GRASP is and the time complexity at each decision level is

, where B is the maximum number of allowed backtracks, and N is the number of

variables. Moreover, the worst-case running time of GRASP is .

Consequently, the size of the clause database and the time required to process each deci-

sion level are bounded by the size of the problem and by the number of allowed backtracks.

A.3 Diagnosis Engines

In this section we prove results of Chapter III regarding conflict analysis and diagnosis

engines. The results are associated with unique implication points (UIPs), maintenance of the

clause database and identification of multiple conflicts.

Theorem A.5. (Theorem 3.2 on page 69) Let a conflict be identified at decision level c, and let

 denote the set of UIPs. Then the isolated assignment of

each UIP is a sufficient condition for causing the same conflict.

Proof: To prove that a UIP indeed represents a sufficient condition for the same conflict to be

detected, we just have to take into consideration the definition of dominator [166]. All elements in

U are dominators of the subgraph defined by ASG (given in (A.1)). Let (u, ν(u)) be a UIP, and let

ι (u) = i. Further, let . Then for any , (A.4) can be re-written as

follows:

(A.7)

O N B⋅()

O N B⋅()

O N B2⋅()

ϕ O N()=

O N B⋅()

TL O N B⋅()=

O N B2⋅()

U u1 ν u1(),() … un ν un(),(), ,{ }=

y vy,() ASG k[]∈ i k< N≤, k i>

w vw,() A y()∈()∀ w vw,() ACS∈ i j k<≤()∃ w vw,() ASG j[]∈(),∨[],

267

Suppose that (A.7) does not hold because for some assignment (y, vy) with

there exists . But then (u, v) would no longer be

a dominator since the subgraph at decision level c would contain an edge between (w, vw) and

(y, vy) (by definition of implication graph); a contradiction. Since (A.7) must hold, then each UIP

must trigger an implication sequence leading to the same conflict.

Theorem A.6. (Theorem 3.3 on page 74) With the definitions of ω1, ω2 and ω3 given above (see

page 74), . Clause ω3 is an implicate of the consistency function ξ . Moreover, ω1

and ω2 can be removed from the clause database if ω3 is added to the clause database.

Proof: Suppose a partial variable assignment A such that . Then,

Consequently, and . Hence, . On the other hand, if ,

then,

and because l1,i is the complement of l2,i, either or . Hence, and

. As a result, ω1 and ω2 can be removed from the clause database if ω3 is added to

the clause database.

Theorem A.7. (Theorem 3.7 on page 96) Diagnosis of multiple conflicts, where each conflict is

separately diagnosed, and where , has a lower bound on the worst-case run time of

.

Proof: The proof is based on constructing a specific circuit structure for which a given deci-

sion assignment triggers an implication sequence leading to O(N) conflicts, such that the separate

diagnosis of each conflict requires O(N) time. Hence the worst-case lower bound of fol-

lows. Consider the circuit shown in Figure A.1. Let m be a constant and let . Let x1

ι y() m=() m i>()∧

w vw,() A y()∈ w vw,() ASG j[]∈ j i<()∧[]∧

ω1 ω2⋅ ω3↔

ω3 A
1=

ω1 l1 i,{ }–()
A

1=[] ω2 l2 i,{ }–()
A

1=[]∧

ω1 A
1= ω2 A

1= ω1 ω2⋅ 1= ω3 A
0=

ω1 l1 i,{ }–()
A

ω2 l2 i,{ }–()
A

0= =

ω1 A
0= ω2 A

0= ω1 ω2⋅ 0=

ω1 ω2⋅ ω3↔

ϕ O N()=

Ω N2()

Ω N2()

M N m⁄=

268

be assigned value 0. As a result, nodes x2 through xM+1 become assigned value 1 (through an

implication sequence of size M). Afterwards, each gate output in the tree of OR gates is assigned

value 1, and consequently xR1 through xRM are assigned value 1. The implication of any xRi to 1

causes a conflict with zi assigned value 0, for every . Since , we have O(N)

conflicts. Diagnosing each conflict separately requires traversing O(N) nodes (i.e. J nodes in the

OR tree and nodes from xM+1 back to x1). Hence, diagnosing O(N) conflicts requires

 time. To conclude the proof, we need to show that the number of circuit nodes is Θ(N), and

thus the circuit can be designed with N nodes given adequate constants.

The generation of xi from xi-1 requires 5 nodes. Hence to generate xM+1 from x1 a total of

 nodes are required. For the OR tree, to generate outputs it is necessary to

have which contributes L nodes such that,

Figure A.1: Lower-bound on multiple conflict diagnosis

z1 0=

x1

w11 1=

K

K

K

J
M N m⁄=

zM 0=

w12 1=

wM1 1=

wM2 1=

M

M+1
xM+1

xR1

xRM

x2

xT11

xT21

xT2K

xM

1 i M≤ ≤ M N m⁄=

N m⁄

O N2()

5 N m⁄⋅ 1+ N m⁄

logK N m⁄() J logK N m⁄()≤ ≤

L 2 K j

j 0=

J

∑× 1+ 2
K J 1–
K 1–

----------------× 1+= =

269

and given the bounds on J,

Finally, each module linking xRi to zi requires 5 nodes for a total of nodes. As a result,

with , the total number of nodes T is such that,

which means that . Hence, if K is fixed, then we just have to choose m and N such that

the above condition is satisfied. Since there are Θ(N) nodes and each gate has two inputs, the fanin

constraints are clearly satisfied. Thus, it follows that a lower bound on the worst-case time for pro-

cessing a decision level is if multiple conflicts are identified and each conflict is separately

diagnosed.

A.4 Deduction Engines

Theorem A.8. (Theorem 3.5 on page 82) Let ϕ be a clause database. Let |IC| be the current num-

ber of vertices of the implication graph, and let N − |IC| identify the total number of unassigned

nodes. Then, the worst-case run time of Deduce_k(), assuming that SIMPLIFY_ϕk does not

hold, is bounded by:

(A.8)

The worst-case run time of Deduce_k,R() is bounded by,

(A.9)

For both procedures the worst-case space is bounded by,

2
K

logK N m⁄()
1–

K 1–
---× 1+ L 2

K
logK N m⁄()

1–
K 1–

---× 1+≤ ≤

5 N m⁄⋅

M N m⁄ O N()= =

10 M× 2
K

logK M()
1–

K 1–
------------------------------------× 2+ + T 10 M× 2

K
logK M()

1–
K 1–

------------------------------------× 2+ +≤ ≤

T Θ N()=

Ω N2()

O
N IC–

k 
  ϕ 2k⋅ N k 3k()2⋅ ⋅+()⋅ 

 

O
N IC–

k 
  ϕ N

N IC–

k 
  3k⋅ ⋅+ 2

k⋅ N k 3k()2⋅ ⋅+
N IC–

k 
  3k⋅⋅ ⋅ 

 

270

(A.10)

and the space growth if bounded by .

Proof: Let us consider Deduce_k() as described in Figure 3.8 on page 80. A decision

assignment is assumed to have been made, and the first invocation to Deduce() decides whether

the implication sequence thus created leads to a conflict. Assuming that denotes the size of the

implication graph (i.e. the number of assigned variables), then set Γ is the set of all combinations

of k nodes out of unassigned variables, i.e. . Let denote the current

size of the clause database (i.e. the total number of literals in ϕ). In such a situation, deriving an

implication sequence with Deduce() requires time . (Note that the size of the clause data-

base remains unchanged until all sets in Γ are analyzed.) Since there are node assignments

associated with each set of nodes γ of size k, an upper bound on the time for processing a set γ in Γ

is . The effect of last phase, for prime implicate generation, can be obtained by adapt-

ing (2.17) on page 45; each clause has O(N) literals but consensus operations are restricted to k

variables. As a result, an upper bound on the run time of the k-consistency procedure is:

(A.11)

and the size of the resulting clause database is , because prime

implicates can be generated for each subset γ, and each implicate has size , out of a total of

 subsets. Clearly, the size growth if bounded by , which denotes an upper

bound on the size of the clause database.

With respect to k-consistency with relaxation, two additional factors constraint the run time.

First, the procedure iterates over Deduce_k() while more implicates are derived. Second, the size

O ϕ N
N IC–

k 
  3k⋅ ⋅+ 

 

O N 3N⋅()

IC

N IC– Γ
N IC–

k 
 = ϕ

O ϕ()

2k

O ϕ 2k⋅()

O
N IC–

k 
  ϕ 2k⋅ N k 3k()2⋅ ⋅+()⋅ 

 

O ϕ N
N IC–

k 
  3k⋅ ⋅+ 

  O 3k()

O N()

N IC–

k 
  O N 3N⋅()

271

of the clause database changes each time Deduce_k() is invoked. A valid upper bound to the run

is then to consider both effects for derivation of implications. Moreover the phase for the genera-

tion of prime implicates has to be considered2:

(A.12)

where term denotes the worst-case number of iterations, and the remaining

terms account for the run time of Deduce_k() for each iteration. Deduce_k,R() exhibits the same

bound on space growth that Deduce_k() does. Moreover, the size growth is bounded by

, which denotes an upper bound on the size of the clause database.

Theorem A.9. (Theorem 3.6 on page 84) For each deduction engine Deduce_k(), with fixed k,

it is always possible to construct a clause database for which the identification of all implications

requires a deduction engine Deduce_m(), with m > k.

Proof: The proof consists in developing an example circuit (or generic clause database) that

for any k can be scaled in such a way that k-consistency does not derive all possible logical conse-

quences. One such example circuit is shown in Figure A.2. We assume the deduction engine to be

Deduce_k(). It is clear that the objective z = 1 is not satisfiable. since ym, 1 and ym, 2 always

assume the same logic value. Next, we show that Deduce_k() does not derive all logical conse-

quences given the initial clause database.

The key idea is to show that for any assignment of size k to variables y1, 1 through y1, k will

not create any unique assignments on the variables y1, k+1 through y1, 2k, and consequently, no set

of conflicts will be detected such that the objective is shown to be unsatisfiable.

We start by claiming that for any assignment set A1, with respect to the variables in

, there exists more than one assignment set A2, with respect to the variables

in , that has the same parity as A1. Indeed, there are such

2. (A.12) is a loose upper bound because we assume the worst-case scenario for both the number of
iterations and the size of the clause database; as future research work, a tighter bound ought to be
derived.

O
N IC–

k 
  ϕ N

N IC–

k 
  3k⋅ ⋅+ 2

k⋅ N k 3k()2⋅ ⋅+
N IC–

k 
  3k⋅⋅ ⋅ 

 

N IC–

k 
  3k⋅

O N 3N⋅()

y1 1, y1 2, … y1 k,, , ,{ }

y1 k 1+, y1 k 2+, … y1 2k,, , ,{ } 2k 1–

272

assignments, since half of the assignment sets A2 have the same parity as A1, and the other half

have opposite parity. Our second claim is that for each of these possible assignments A2, there

exists at least one consistent assignment to the variables in . Define the following

variables:

(A.13)

Then, by simple algebraic manipulation, one possible solution for is given by:

(A.14)

Figure A.2: k-consistency not able to prove the assignment unsatisfiable

u1

u2
u3

u2k-2

u2k

y1,1

y1,k+2

y1,2k

ym,2

z = 1

u1
u2

u3
u4

u2k-1
u2k

y1,2

y1,k

ym,1

u2k-1

y1,k+1 With m log2 k() 1+=

2k

u1 u2 … u2k, , ,{ }

v1 y1 1, y1 k 1+,⊕=

…
vk y1 k, y1 2k,⊕=

u1 u2 … u2k, , ,{ }

u2k 1=

u2 1 v2 … vk⊕ ⊕[]⊕=

u1 y1 1, u2⊕=

…
u2 j 1 v1 … v j 1– v j 1+ … vk⊕ ⊕ ⊕ ⊕ ⊕[]⊕=

u2 j 1– y1 2 j 1–, u2 j⊕=

273

where the last two rows correspond to the general solution, j ≥ 1. The above result proves that,

given an assignment of the k variables in , there are an exponential number

of possible assignments to the variables in , that yield consistent

assignments to the variables in . Consequently, for any assignments to

, a conflict is not detected.

It is also necessary to guarantee that backward implications and other derived implicates will

not imply assignments to the variables in , given a set of assignments

to the variables in . To show that this requirement holds we consider the case

of ym, 1 and ym, 2. Application of Deduce_2() yields the implicates and

, which require ym,1 and ym, 2 to always assume opposite logic values. Now con-

sider the previous set of variables in the circuit, i.e. .

Deduce_4() is required to identify implicates that disallow assignments of even parity (since a

conflict with z would then be identified). Hence, the implicates on ym,1 and ym, 2 do not contribute

for constraining the variables at level m − 1. A similar analysis guarantees that implicates at level 2

will not constrain the variables at level 1. It follows that Deduce_k() will not identify a conflict

from the original objective. We further node that the example is scalable. For any inference engine

Deduce_k(), the circuit is created given k, and hence Deduce_k() will not prove the query to be

unsatisfiable without search.

A.5 Postprocessing Engines

Lemma A.8. (Lemma 3.1 on page 119) Assume a solution to a query identified by an assignment

set A, and let the associated node justification graph JG be defined. For each decision level j, define

Tj by (3.28) on page 118. In such a situation, any node y, such that J(y, x) holds for x assigned at a

decision level greater than j, either y is also assigned at a decision level greater than j or is such that

η (y) ∈ Tj.

Proof: Assume otherwise. Then there would exist s assigned at a decision level less than or

equal to j such that η (s) would not be in Tj. Let x be assigned at a decision level greater than j, such

that J(s, x) holds. Then by definition of predicate J, there must be an edge between η (s) and η (y).

But by definition of Tj, then η (s) must be in Tj; a contradiction.

y1 1, y1 2, … y1 k,, , ,{ }

y1 k 1+, y1 k 2+, … y1 2k,, , ,{ }

u1 u2 … u2k, , ,{ }

y1 1, y1 2, … y1 k,, , ,{ }

y1 k 1+, y1 k 2+, … y1 2k,, , ,{ }

y1 1, y1 2, … y1 k,, , ,{ }

ym 1, ym 2,+()

ym 1,¬ ym 2,¬+()

ym 1– 1, ym 1– 2, ym 1– 3, ym 1– 4,, , ,{ }

274

Theorem A.10. (Theorem 3.9 on page 120) If one of the conditions identified by (3.31) on page

120 holds, then given by (3.30) is a solution to the query.

Proof: This result basically follows from Lemma A.8. Assume that condition C(j) (see (3.31)

on page 120) is satisfied. Let Tj denote the level cut associated with C(j). For the assignment set of

the previous query, AS, consider the decision assignments after decision level j. Then, by Lemma

A.8 and for any assigned node x, with δ(x) > j, any node y, such that J(y, x) holds, either is assigned

at decision levels greater than j or η (y) is contained in Tj. After additional decisions, a solu-

tion to the query is identified. Let those decision assignments be represented by A.

Now consider the current query. At some decision level i condition C(j) is matched. Hence,

the assignments associated with components in Tj are matched. Furthermore, assignments at deci-

sion levels greater than j for the previous query are not contradicted. Consequently, in addi-

tional decisions we can identify a solution to the query. This solution consists of the union of the

current assignment set Ac with A.

AS'

K j–

K j–

275

APPENDIX B

FORMAL RESULTS ON PATH SENSITIZATION

This appendix includes the proofs for all formal results on path sensitization that are

related with the validity of the p-propagation model when applied to test pattern generation and

timing analysis. In addition, we use the results for GRASP to argue the soundness and complete-

ness of LEAP.

B.1 Test Pattern Generation

Theorem B.1. (Theorem 5.1 on page 181) Given a SSF fault in a combinational circuit, a test T

detects the fault if and only if under the p-propagation model T sets at least one primary output to

p-T.

Proof: The proof relates p-status values with D-calculus values. Since a test T detects a fault

under the D-calculus if and only if the fault is detectable with T [141], then under the p-propaga-

tion model a primary output becomes p-T for a test T if and only if the fault is detectable with T.

Simple gates are assumed.

(If part) Let T detect a fault under the D-calculus and let z be a primary output that assumes

value D or D. Further let s be the site of the fault. The goal is to show that under the p-propagation

model primary output z would be set to p-T. Identify the set Π of all nodes y, in the transitive fanin

of z and in the transitive fanout of s including s, such that y is connected to z by a partial path

where every node assumes value D or D and sort in reverse topological the nodes in Π. Now we

can traverse in reverse level order the elements of Π, starting at z and terminating at s. For each vis-

ited node w, let us assume that all its fanin nodes with value D or D can be set to p-T. Under this

assumption, B(w) does not hold, and P(w) holds. Consequently. we can tentatively set w to p-T,

276

under the assumption that all fanin nodes assuming value D or D can also be set to p-T. Eventually

s is reached, which would be p-T by initialization of the p-propagation model. Hence under T all

nodes in Π would be set to p-T and the fault would be detected.

(Only if part) The above reasoning immediately applies, but now we establish conditions for

a node to be conditionally set to D or D. Consequently, if under T a primary output becomes p-T,

then that output would assume value D or D under T.

Corollary B.1. (Corollary 5.1 on page 181) A sound and complete search algorithm, based on the

p-propagation model, computes a test T for a given fault if and only if such test exists.

Proof: Since from Theorem B.1 a test T detects a fault if and only if under the p-propagation

model T sets at least one primary output to p-T, a sound and complete search algorithm eventually

enumerates T and so a solution is found if and only if a solution exists.

B.2 Timing Analysis

Theorem B.2. (Theorem 6.1 on page 214) A combinational circuit contains a floating-mode sen-

sitizable path of delay no less than ∆, for a test T, if and only if under the p-propagation model

such test T sets a primary output to p-T.

Proof: For circuit delay computation in timing analysis, the effect of delay information must

be considered. Hence the proof hinges on the conditions required for a primary output node stabi-

lizing with delay no less than ∆.

(If part) Let us assume that under T a primary output z stabilizes with propagation delay

∆C ≥ ∆. Let y be the fanin node of z such that z stabilizes as a direct consequence of y stabilizing.

By definition of the p-propagation model, then if y is p-T then z must also be p-T, since B(z) does

not hold and P(z) holds. Otherwise, the propagation delay to z would be less than ∆. We can create

a path P by traversing from z to a primary input s such that each node wi in the path defines the

propagation delay to fanout node wi+1 also in the path. For each such node B(wi+1) cannot hold,

since again the propagation delay to wi+1 would not be extensible to a propagation delay no less

than ∆. Primary input s is eventually visited. It must be assigned and thus be set to p-T be defini-

tion of the p-propagation model. Consequently all nodes in P are set to p-T, which also includes z.

277

(Only if part) Just observe that by definition a primary output z can only become p-T if its

delay estimate is no less than ∆. Since delay estimation DTo captures floating mode operation (see

page 210), then a floating-mode sensitizable path is defined whenever a primary output z is set to

p-T under a test T.

Corollary B.2. (Corollary 6.1 on page 214) A sound and complete search algorithm, based on the

p-propagation model, computes a test T that sensitizes a path with delay no less than ∆ if and only

if such test exists.

Proof: Since from Theorem B.2 a test T sensitizes a path of delay no less than ∆ if and only

if under the p-propagation model T sets at least one primary output to p-T, a sound and complete

search algorithm eventually enumerates T and so a solution is found if and only if a solution exists.

B.3 Soundness and Completeness

The soundness of the search algorithm for path sensitization follows from the results of

the previous sections for each application. If a solution is found, then it is indeed a solution to the

path sensitization problem.

We argue that the search algorithm is complete using the results of Appendix A, where it

is proved that every clause derived from conflict diagnosis is an implicate of the logical consis-

tency function. In Appendix A this fact is key to prove that the search algorithm for SAT is com-

plete.

For path sensitization the same reasoning applies. Every clause (p-clause) derived with

conflict diagnosis is an implicate of the logical (propagation) consistency function ξ (ξπ) and so it

is an implicate of the path sensitization consistency function ξPS. We note that every p-clause is

derived from a known conflict and identifies sufficient conditions for that conflict to be identified.

Whenever a p-clause is unsatisfied, then propagation of a perturbation to a primary output

becomes blocked and a propagation conflict is detected. Consequently, every p-clause derived with

Propagation_Diagnose() is necessarily and implicate of ξπ, which guarantees correct com-

278

puted backtracking decision levels. It can thus be concluded that the search algorithm for path sen-

sitization is complete.

279

APPENDIX C

CARRY-SKIP ADDERS

The purpose of this appendix is to describe the organization and delay properties of carry-

skip adders (CSAs) that were used in Chapter VII to evaluate TA-LEAP. The basic structure of a

carry-skip adder is shown in Figure C.1, and it follows the organization of CSAs described in [91].

The number of bits is B, the (constant) number of bits per block is K and the number of blocks is M

(i.e. B = K ⋅ M). For all gates a unit delay is assumed. If M > 1, the longest topological path is

defined by,

(C.1)

Otherwise it is defined by,

(C.2)

In both cases, the first block contributes with delay 3 + 2 ⋅ (K − 1), due to propagation from inputs

a1 or b1. In addition, the delay contribution of each block is defined by the delay from the input

carry line to the output carry line of the block added to the delay of the multiplexer.

The longest sensitizable path cannot involve propagation along a sequence of carry bits

larger than K−1. Hence each carry bit cj propagates to cj+K only along the bypass logic, which cor-

responds to a delay of 2 time units. In such a situation, the longest sensitizable path delay is

defined by propagation from a0 to cK (for example), then across the bypass logic of M−2 modules

and finally from c(M−1)⋅K to the last sum bit of the last module, i.e. sM⋅K. If M > 1, the circuit delay

∆ for the carry-skip adder is given by:

LTP 3 K 1–() 2×+[] K 2× 2+() M 1–()×+=

K M× 2× M 2× 1+ +=

2 B× 2 M× 1+ +=

LTP 3 2 K⋅+=

280

(C.3)

otherwise it is given by,

(C.4)

Figure C.1: Description of a carry-skip adder (all gates with unit delay)

ai

bi

ci − 1
FA

gi

pi

si

c'i

ui

(a) Basic block — full adder

i0

i1

s

o

(b) Basic block — 2×1 multiplexer

2×1

cj

aj + 1

bj + 1

sj + 1

pj + 1

c'j + 1

FA

cj + K − 1

aj + K

bj + K

sj + K

pj + K

c'j + K

FA

cj + 1

aj + 2

bj + 2

sj + 2

pj + 2

c'j + 2

FA

2×1 s

cj + K

CB

(c) K-bit bypass logic

CB
c0

cK

a1..K

b1..K

s1..K

CB
cK

c2⋅K

aK+1..2⋅K

bK+1..2⋅K

sK+1..2⋅K

CB
c(M-1)⋅K

cM⋅K

a(M-1)⋅K+1..M⋅K

b(M-1)⋅K+1..M⋅K

s(M-1)⋅K+1..M⋅K

(d) Carry-skip adder

CSA

• K bits per block and M blocks
• B = K ⋅ M denotes number of bits

i1i0

S j K⁄

r0

r1

∆C 3 K 2⋅+[] M 2–() 2⋅ K 2× 2– 1+[]+ +=

2 2 K× M 1–+[]×=

∆C 3 2 K⋅+=

281

BIBLIOGRAPHY

[1] M. Abramovici, M. A. Breuer and A. D. Friedman, Digital Systems Testing and
Testable Design, Computer Science Press, 1990.

[2] S. B. Akers, “A Logic System for Fault Test Generation,” IEEE Transactions on
Computers, vol. 25, no. 6, pp. 620-630, June 1976.

[3] S. B. Akers, “Binary Decision Diagrams,” IEEE Transactions on Computers, vol.
27, no. 6, pp. 509-516, June 1978.

[4] A. d’Anjou, M. Graña, F. J. Torrealdea and M. C. Hernandez, “Solving Satisfiabil-
ity via Boltzmann Machines,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 15, no. 5, pp. 514-521, May 1993.

[5] P. Ashar, S. Malik and S. Rothweiler, “Functional Timing Analysis Using ATPG,”
in Proceedings of EDAC, pp. 506-510, 1993.

[6] B. Aspvall, M. F. Plass and R. E. Tarjan, “A Linear-Time Algorithm for Testing the
Truth of Certain Quantified Boolean Formulas,” Information Processing Letters,
vol. 8, no. 3, pp. 121-123, March 1979.

[7] R. I. Bahar, H. Cho, G. D. Hachtel, E. Macii and F. Somenzi, “Timing Analysis of
Combinational Circuits Using ADD’s,” in Proceedings of European Design and
Test Conference, pp. 625-629, 1994.

[8] J. Benkoski, E. Vanden Meersch, L. Claesen and H. De Man, “Efficient Algorithms
for Solving the False Path Problem in Timing Verification,” in Proceedings of In-
ternational Conference on Computer-Aided Design, pp. 44-47, 1987.

[9] J. Benkoski, E. Vanden Meersch, L. Claesen and H. De Man, “Timing Verification
Using Statically Sensitizable Paths,” IEEE Transactions on Computer-Aided De-
sign, vol. 9, no. 10, pp. 1073-1083, October 1990.

[10] A. Billionnet and A. Sutter, “An Efficient Algorithm for the 3-Satisfiability Prob-
lem,” Operations Research Letters, vol. 12, pp. 29-36, July 1992.

[11] J. R. Bitner and E. M. Reingold, “Backtrack Programming Techniques,” Commu-
nications of the ACM, vol. 18, no. 11, pp. 651-656, November 1975.

[12] C. E. Blair, R. G. Jeroslow and J. K. Lowe, “Some Results and Experiments in Pro-
gramming Techniques for Propositional Logic,” Computers and Operations Re-
search, vol. 13, no. 5, pp. 633-645, 1986.

[13] A. Blake, Canonical Expressions in Boolean Algebra, Ph.D. Dissertation, Depart-
ment of Mathematics, University of Chicago, 1937.

282

[14] G. Boole, An Investigation of the Laws of Thought, Macmillan and Co., 1854 (Re-
printed by Dover Publications, 1958).

[15] D. Brand and V. S. Iyengar, “Timing Analysis Using Functional Analysis,” IEEE
Transactions on Computers, vol. 37, no. 10, pp. 1309-1314, October 1988.

[16] D. Brand, “Verification of Large Synthesized Designs,” in Proceedings of Interna-
tional Conference on Computer-Aided Design, pp. 534-537, 1993.

[17] F. Brglez and H. Fujiwara, “A Neutral List of 10 Combinational Benchmark Cir-
cuits and a Target Translator in FORTRAN,” in Proceedings of the International
Symposium on Circuits and Systems, 1985.

[18] F. M. Brown, Boolean Reasoning: The Logic of Boolean Equations, Kluwer Aca-
demic Publishers, 1990.

[19] M. Bruynooghe, “Solving Combinatorial Search Problems by Intelligent Back-
tracking,” Information Processing Letters, vol. 12, no. 1, pp. 36-39, February 1981.

[20] M. Bruynooghe, “Analysis of Dependencies to Improve the Behaviour of Logic
Programs,” in Proceedings of the 5th Conference on Automated Deduction, pp.
293-305, 1980.

[21] M. Bruynooghe, “Intelligent Backtracking Revisited,” in Computational Logic: Es-
says in Honor of Alan Robinson, pp. 166-177, J.-L. Lassez and G. Plotkin (Eds.),
MIT Press, 1991.

[22] R. E. Bryant, “Graph-Based Algorithms for Boolean Function Manipulation,”
IEEE Transactions on Computers, vol. 35, no. 8, pp. 677-691, June 1986.

[23] C. W. Cha, W. E. Donath and F. Özgüner, “9-V Algorithm for Test Pattern Gener-
ation of Combinational Digital Circuits,” IEEE Transactions on Computers, vol.
27, no. 3, pp. 193-200, March 1978.

[24] S. T. Chakradhar, V. D. Agrawal and S. G. Rothweiler, “A Transitive Closure Al-
gorithm for Test Generation,” IEEE Transactions on Computer-Aided Design, vol.
12, no. 7, pp. 1015-1028, July 1993.

[25] A. K. Chandra and G. Markowsky, “On the Number of Prime Implicants,” Discrete
Mathematics, vol. 24, no. 1, pp. 7-11, 1978.

[26] S. J. Chandra and J. H. Patel, “Experimental Evaluation of Testability Measures for
Test Generation,” IEEE Transactions on Computer-Aided Design, vol. 8, no. 1, pp.
93-97, January 1989.

[27] M. S. Chandrasekhar, J. P. Privitera and K. W. Conradt, “Application of Term Re-
writing Techniques to Hardware Design Verification,” in Proceedings of the 24th
Design Automation Conference, pp. 277-282, 1987.

[28] C.-L. Chang and R. C.-T. Lee, Symbolic Logic and Mechanical Theorem Proving,
Academic Press, 1973.

[29] H. Chang and J. A. Abraham, “CHAN: An Efficient Critical Path Analysis Algo-
rithm,” in Proceedings of EDAC, pp. 444-448, 1993.

283

[30] H. Chang and J. A. Abraham, “VIPER: An Efficient Vigorously Sensitizable Path
Extractor,” in Proceedings of the 30th Design Automation Conference, pp. 112-
117, 1993.

[31] H. C. Chen and D. H.-C. Du, “Path Sensitization in Critical Path Problem,” in Pro-
ceedings of the ACM Workshop on Timing Issues in the Specification and Synthesis
of Digital Systems (TAU), 1990.

[32] H. C. Chen and D. H.-C. Du, “Path Sensitization in Critical Path Problem,” IEEE
Transactions on Computer-Aided Design, vol. 12, no. 2, pp. 196-207, February
1993.

[33] W. T. Cheng, “SPLIT Circuit Model for Test Generation,” in Proceedings of the
25th Design Automation Conference, pp. 96-101, 1988.

[34] S. A. Cook, “The Complexity of Theorem-Proving Procedures,” in Proceedings of
the Third Annual Symposium on Theory of Computing, pp. 151-158, 1971.

[35] T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms, MIT
Press, 1990.

[36] O. Coudert, J. C. Madre and H. Fraisse, “A New ViewPoint on Two-Level Logic
Minimization,” in Proceedings of the 30th Design Automation Conference, pp.
625-630, 1993.

[37] H. Cox and J. Rajski, “On Necessary and Nonconflicting Assignments in Algorith-
mic Test Pattern Generation,” IEEE Transactions on Computer-Aided Design, vol.
13, no. 4, pp. 515-530, April 1994.

[38] M. Davis and H. Putnam, “A Computing Procedure for Quantification Theory,”
Journal of the Association for Computing Machinery, vol. 7, pp. 201-215, 1960.

[39] M. Davis, G. Logemann and D. Loveland, “A Machine Program for Theorem-Prov-
ing,” Communications of the ACM, vol. 5, pp. 394-397, July 1962.

[40] M. D. Davis and E. J. Weyuker, Computability, Complexity, and Languages, Aca-
demic Press, 1983.

[41] R. Dechter, “Learning While Searching in Constraint-Satisfaction Problems,”
Technical Report CSD-860049, University of California at Los Angeles, June
1986.

[42] R. Dechter, “Enhancement Schemes for Constraint Processing: Backjumping,
Learning, and Cutset Decomposition,” Artificial Intelligence, vol. 41, pp. 273-312,
1989/90.

[43] J. de Kleer, “An Assumption-Based TMS,” Artificial Intelligence, vol. 28, pp. 127-
162, 1986.

[44] J. de Kleer, “Problem Solving with the ATMS,” Artificial Intelligence, vol. 28, pp.
197-224, 1986.

[45] J. de Kleer, “A Comparison of ATMS and CSP Techniques,” in Proceedings of the
International Joint Conference on Artificial Intelligence, pp. 290-296, 1989.

284

[46] J. de Kleer, “Exploiting Locality in a TMS,” in Proceedings of the National Con-
ference on Artificial Intelligence, pp. 264-271, 1990.

[47] J. de Kleer, “An Improved Incremental Algorithm for Generating Prime Impli-
cates,” in Proceedings of the National Conference on Artificial Intelligence, pp.
780-785, 1992.

[48] S. Devadas, “Optimal Layout Via Boolean Satisfiability,” in Proceedings of the In-
ternational Conference on Computer-Aided Design, pp. 294-297, 1989.

[49] S. Devadas, K. Keutzer and S. Malik, “Delay Computation in Combinational Logic
Circuits: Theory and Algorithms,” in Proceedings of the International Conference
on Computer-Aided Design, pp. 176-179, 1991.

[50] S. Devadas, K. Keutzer, S. Malik and A. Wang, “Computation of Floating Mode
Delay in Combinational Circuits: Practice and Implementation,” in Proceedings of
the ACM Workshop on Timing Issues in the Specification and Synthesis of Digital
Systems (TAU), 1992.

[51] S. Devadas, K. Keutzer, S. Malik and A. Wang, “Certified Timing Verification and
the Transition Delay of a Logic Circuit,” in Proceedings of the 29th Design Auto-
mation Conference, pp. 549-555, 1992.

[52] S. Devadas, K. Keutzer, S. Malik and A. Wang, “Computation of Floating Mode
Delay in Combinational Circuits: Practice and Implementation,” IEEE Transac-
tions on Computer-Aided Design, vol. 12, no. 12, pp. 1924-1936, December 1993.

[53] W. F. Dowling and J. H. Gallier, “Linear-Time Algorithms for Testing the Satisfi-
ability of Propositional Horn Formulae,” Journal of Logic Programming, vol. 3, pp.
267-284, 1984.

[54] J. Doyle, “A Truth Maintenance System,” Artificial Intelligence, vol. 12, pp. 231-
272, 1979.

[55] D. H.-C. Du, S. H. C. Yen and S. Ghanta, “On the General False Path Problem in
Timing Analysis,” in Proceedings of the 26th Design Automation Conference, pp.
555-560, 1989.

[56] B. Dunham, R. Fridshal and G. L. Sward, “A Non-Heuristic Program for Proving
Elementary Logical Theorems,” in Proceedings of the International Conference on
Information Processing, pp. 282-285, 1959.

[57] C. Elkan, “Conspiracy Numbers and Caching for Searching And/Or Trees and The-
orem-Proving,” in Proceedings of the International Joint Conference on Artificial
Intelligence, pp. 341-346, 1989.

[58] S. Even, A. Itai and A. Shamir, “On the Complexity of Timetable and Multicom-
modity Flow Problems,” SIAM Journal on Computing, vol. 5, no. 4, pp. 691-703,
December 1976.

[59] J. Franco, “On the Probabilistic Performance of Algorithms for the Satisfiability
Problem,” Information Processing Letters, vol. 23, pp. 103-106, August 1986.

[60] K. D. Forbus and J. de Kleer, Building Problem Solvers, MIT Press, 1993.

285

[61] E. C. Freuder, “Synthesizing Constraint Expressions,” Communications of the
ACM, vol. 21, no. 11, pp. 958-966, November 1978.

[62] H. Fujiwara and T. Shimono, “On the Acceleration of Test Generation Algorithms,”
IEEE Transactions on Computers, vol. 32, no. 12, pp. 1137-1144, December 1983.

[63] H. Fujiwara and S. Toida, “The Complexity of Fault Detection Problems for Com-
binational Logic Circuits,” IEEE Transactions on Computers, vol. 31, no. 6, pp.
555-560, June 1982.

[64] G. Gallo and G. Urbani, “Algorithms for Testing the Satisfiability of Propositional
Formulae,” Journal of Logic Programming, vol. 7, pp. 45-61, 1989.

[65] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the The-
ory of NP-Completeness, W. H. Freeman and Company, 1979.

[66] J. Gaschnig, Performance Measurement and Analysis of Certain Search Algo-
rithms, Ph.D. Dissertation, Department of Computer Science, Carnegie-Mellon
University, CMU-CS-79-124, May 1979.

[67] M. L. Ginsberg and W. D. Harvey, “Iterative Broadening,” in Proceedings of the
National Conference on Artificial Intelligence, pp. 216-220, 1990.

[68] M. L. Ginsberg, “Dynamic Backtracking,” Journal of Artificial Intelligence Re-
search, vol. 1, pp. 25-46, August 1993.

[69] M. L. Ginsberg, Essentials of Artificial Intelligence, Morgan Kaufman Publishers,
1993.

[70] J. Giraldi and M. L. Bushnell, “EST: The New Frontier in Automatic Test-Pattern
Generation,” in Proceedings of the 27th Design Automation Conference, pp. 667-
672, 1990.

[71] J. Giraldi and M. L. Bushnell, “Search State Equivalence for Redundancy Identifi-
cation and Test Generation,” in Proceedings of the International Test Conference,
pp. 184-193, 1991.

[72] P. Goel, “An Implicit Enumeration Algorithm to Generate Tests for Combinational
Logic Circuits,” IEEE Transactions on Computers, vol. 30, no. 3, pp. 215-222,
March 1981.

[73] A. Goldberg, P. Purdom and C. Brown, “Average Time Analyses of Simplified
Davis-Putnam Procedures,” Information Processing Letters, vol. 15, no. 2, pp. 72-
75, September 1982.

[74] S. W. Golomb and L. D. Baumert, “Backtrack Programming,” Journal of the Asso-
ciation for Computing Machinery, vol. 12, no. 4, pp. 516-524, October 1965.

[75] S. Greenbaum, A. Nagasaka, P. O’Rorke and D. Plaisted, “Comparison of Natural
Deduction and Locking Resolution Implementations,” in Proceedings of the 6th
Conference on Automated Deduction, pp. 159-171, 1982.

[76] J. Gu, “Efficient Local Search for Very Large-Scale Satisfiability Problem,” ACM
SIGART Bulletin, vol. 3, no. 1, pp. 8-12, January 1992.

286

[77] J. Gu, “Local Search for Satisfiability (SAT) Problem,” IEEE Transactions on Sys-
tems, Man, and Cybernetics, vol. 23, no. 4, pp. 1108-1129, July/August 1993.

[78] J. P. Hayes, “On the Properties of Irredundant Logic Networks,” IEEE Transactions
on Computers, vol. 25, no. 9, pp. 884-892, September 1976.

[79] J. P. Hayes, Introduction to Digital Logic Design, Addison-Wesley, 1993.

[80] L. Henschen and L. Wos, “Unit Refutations and Horn Sets,” Journal of the Associ-
ation for Computing Machinery, vol. 21, no. 4, pp. 590-605, October 1974.

[81] R. B. Hitchcock, Sr., “Timing Verification and the Timing Analysis Program,” in
Proceedings of the 19th Design Automation Conference, pp. 594-603, 1982.

[82] J. N. Hooker, “Generalized Resolution and Cutting Planes,” Annals of Operations
Research, vol. 12, no. 1-4, pp. 217-239, 1988.

[83] V. M. Hrapcenko, “Depth and Delay in a Network,” Soviet Math. Dokl., vol. 19, no.
4, pp. 1006-1009, 1978.

[84] O. H. Ibarra and S. K. Sahni, “Polynomially Complete Fault Detection Problems,”
IEEE Transactions on Computers, vol. 24, no. 3, pp. 242-249, March 1975.

[85] A. Ivanov and V. K. Agarwal, “Dynamic Testability Measures for ATPG,” IEEE
Transactions on Computer-Aided Design, vol. 7, no. 5, pp. 598-608, May 1988.

[86] K. Iwama, “CNF Satisfiability Test by Counting and Polynomial Average Time,”
SIAM Journal on Computing, vol. 18, no. 2, pp. 385-391, April 1989.

[87] R. Jacoby, P. Moceyunas, H. Cho and G. Hachtel, “New ATPG Techniques for
Logic Optimization,” in Proceedings of the International Conference on Computer-
Aided Design, pp. 548-551, 1989.

[88] J. Jaffar and M. J. Maher, “Constraint Logic Programming: A Survey,” Journal of
Logic Programming, vol. 19/20, pp. 503-581, 1994.

[89] N. D. Jones and W. T. Laaser, “Complete Problems for Deterministic Polynomial
Time,” Theoretical Computer Science, vol. 3, pp. 105-117, 1977.

[90] R. M. Karp, “Reducibility Among Combinatorial Problems,” in Complexity of
Computer Computations, pp. 85-103, R. E. Miller and J. W. Thatcher (Eds.), Ple-
num Press, New York, 1972.

[91] K. Keutzer, S. Malik and A. Saldanha, “Is Redundancy Necessary to Reduce De-
lay?,” IEEE Transactions on Computer-Aided Design, vol. 10, no. 4, pp. 427-435,
April 1991.

[92] T. Kirkland and M. Ray Mercer, “A Topological Search Algorithm for ATPG,” in
Proceedings of the 24th Design Automation Conference, pp. 502-508, 1987.

[93] T. I. Kirkpatrick and N. R. Clark, “PERT as an Aid to Logic Design,” IBM Journal
of Research and Development, vol. 10, no. 2, March 1966, pp. 135-141.

[94] S. C. Kleene, Mathematical Logic, John Wiley & Sons, 1967.

287

[95] W. Kneale and M. Kneale, The Development of Logic, Clarendon Press, 1962.

[96] D. E. Knuth, Sorting and Searching, volume 3 of The Art of Computer Program-
ming, Addison-Wesley, 1973.

[97] D. E. Knuth, “Estimating the Efficiency of Backtrack Programs,” Mathematics of
Computation, vol. 29, no. 129, pp. 121-136, January 1975.

[98] R. E. Korf, “Depth-First Iterative Deepening: An Optimal Admissible Tree
Search,” Artificial Intelligence, vol. 27, pp. 97-109, 1985.

[99] V. Kumar, “Algorithms for Constraint-Satisfaction Problems: A Survey,” AI Mag-
azine, vol. 13, pp. 32-43, Spring 1992.

[100] W. Kunz, “HANNIBAL: An Efficient Tool for Logic Verification Based on Recur-
sive Learning,” in Proceedings of the International Conference on Computer-Aided
Design, pp. 538-543, 1993.

[101] W. Kunz and D. K. Pradhan, “Recursive Learning: An Attractive Alternative to the
Decision Tree for Test Generation in Digital Circuits,” in Proceedings of the Inter-
national Test Conference, pp. 816-825, 1992.

[102] W. Kunz and D. K. Pradhan, “Accelerated Dynamic Learning for Test Pattern Gen-
eration in Combinational Circuits,” IEEE Transactions on Computer-Aided Design,
vol. 12, no. 5, pp. 684-694, May 1993.

[103] W. K. C. Lam, R. K. Brayton and A. L. Sangiovanni-Vincentelli, “Circuit Delay
Models and Their Exact Computation Using Timed Boolean Functions,” in Pro-
ceedings of the 30th Design Automation Conference, pp.128-134, 1993.

[104] T. Larrabee, “Efficient Generation of Test Patterns Using Boolean Difference,” in
Proceedings of the International Test Conference, pp. 795-801, 1989.

[105] T. Larrabee, Efficient Generation of Test Patterns Using Boolean Satisfiability,
Ph.D. Dissertation, Department of Computer Science, Stanford University, STAN-
CS-90-1302, February 1990.

[106] T. Larrabee, “Test Pattern Generation Using Boolean Satisfiability,” IEEE Trans-
actions on Computer-Aided Design, vol. 11, no. 1, pp. 4-15, January 1992.

[107] D. H. Lehmer, “The Machine Tools of Combinatorics,” in Applied Combinatorial
Mathematics, pp. 5-31, E. F. Beckenbach (Ed.), John Wiley and Sons, 1964.

[108] C. J. Lin and S. M. Reddy, “On Delay Fault Testing in Logic Circuits,” IEEE Trans-
actions on Computer-Aided Design, vol. 6, no. 5, pp. 694-703, January 1987.

[109] A. Lioy, “Adaptive Backtrace and Dynamic Partitioning Enhance APTG,” in Pro-
ceedings of the International Conference on Computer Design, pp. 62-65, 1988.

[110] D. W. Loveland, Automated Theorem Proving: A Logical Basis, North-Holland,
1978.

[111] A. K. Mackworth, “Consistency in Network of Relations,” Artificial Intelligence,
vol. 8, pp. 99-118, 1977.

288

[112] S. Malik, A. R. Wang, R. K. Brayton, A. Sangiovanni-Vincentelli, “Logic Verifi-
cation Using Binary Decision Diagrams in a Logic Synthesis Environment,” in Pro-
ceedings of the International Conference on Computer-Aided Design, pp. 6-9,
1988.

[113] S. Mallela and S. Wu, “A Sequential Circuit Test Generation System,” in Proceed-
ings of the International Test Conference, pp. 57-61, 1985.

[114] R. Marlett, “An Effective Test Generation System for Sequential Circuits,” in Pro-
ceedings of the 23th Design Automation Conference, pp. 250-256, 1986.

[115] D. A. McAllester, “An Outlook on Truth Maintenance,” AI Memo 551, MIT AI
Laboratory, August 1980.

[116] D. A. McAllester, “Truth Maintenance,” in Proceedings of the National Conference
on Artificial Intelligence, pp. 1109-1116, 1990.

[117] P. C. McGeer and R. K. Brayton, “Efficient Algorithms for Computing the Longest
Viable Path in a Combinational Network,” in Proceedings of the 26th Design Au-
tomation Conference, pp. 561-567, 1989.

[118] P. C. McGeer and R. K. Brayton, Integrating Functional and Temporal Domains in
Logic Design: The False Path Problem and its Implications, Kluwer Academic
Publishers, 1991.

[119] P. C. McGeer, A. Saldanha, R. K. Brayton and A. L. Sangiovanni-Vincentelli, “De-
lay Models and Exact Timing Analysis,” in Logic Synthesis and Optimization, pp.
167-189, T. Sasao (Ed.), Kluwer Academic Publishers, 1993.

[120] P. C. McGeer, A. Saldanha, P. R. Stephan, R. K. Brayton and A. L. Sangiovanni-
Vincentelli, “Timing Analysis and Delay-Fault Test Generation Using Path Recur-
sive Functions,” in Proceedings of the International Conference on Computer-Aid-
ed Design, pp. 180-183, 1991.

[121] P. C. McGeer, J. Sanghavi, R. K. Brayton and A. Sangiovanni-Vincentelli,
“ESPRESSO-SIGNATURE: A New Exact Minimizer for Logic Functions,” in
Proceedings of the 30th Design Automation Conference, pp. 618-624, 1993.

[122] T. M. McWilliams, “Verification of Timing Constraints on Large Digital Systems,”
in Proceedings of the 17th Design Automation Conference, pp. 139-147, 1980.

[123] H. B. Min and W. A. Rogers, “Search Strategy Switching: An Alternative to In-
creased Backtracking,” in Proceedings of the International Test Conference, pp.
803-811, 1989.

[124] M. Minoux, “LTUR: A Simplified Linear-Time Unit Resolution Algorithm for
Horn Formulae and Computer Implementation,” Information Processing Letters,
vol. 29, no. 1, pp. 1-12, September 1988.

[125] B. Monien and E. Speckenmeyer, “Solving Satisfiability in less than Steps,”
Discrete Applied Mathematics, vol. 10, pp. 287-295, 1985.

[126] U. Montanari, “Networks of Constraints: Fundamental Properties and Applications
to Picture Processing,” Information Sciences, vol. 7, pp. 95-132, 1974.

2n

289

[127] B. Nadel, “Constraint Satisfaction Algorithms,” Computational Intelligence, vol. 5,
pp. 188-224, 1989.

[128] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving,
Addison-Wesley, 1984.

[129] S. Perremans, L. Claesen and H. De Man, “Static Timing Analysis of Dynamically
Sensitizable Paths,” in Proceedings of the 26th Design Automation Conference, pp.
568-573, 1989.

[130] T. Pietrzykowski and S. Matwin, “Exponential Improvement of Efficient Back-
tracking,” in Proceedings of the 6th Conference on Automated Deduction, pp. 223-
239, 1982.

[131] D. A. Plaisted, “Mechanical Theorem Proving,” in Formal Techniques in Artificial
Intelligence, A Sourcebook, pp. 269-320, R. B. Banerji (Ed.), North-Holland, 1990.

[132] D. A. Plaisted and S. Greenbaum, “A Structure-Preserving Clause Form Transla-
tion,” Journal of Symbolic Computation, vol. 2, no. 3, pp. 293-304, September
1986.

[133] P. Prosser, “Hybrid Algorithms for the Constraint Satisfaction Problem,” Compu-
tational Intelligence, vol. 9, no. 3, pp. 268-299, August 1993.

[134] P. W. Purdom Jr., C. A. Brown and E. L. Robertson, “Backtracking with Multi-Lev-
el Dynamic Search Rearrangement,” Acta Informatica, vol. 15, no. 2, pp. 99-113,
1981.

[135] P. W. Purdom Jr., “Solving Satisfiability with less Searching,” IEEE Transaction
on Pattern Analysis and Machine Intelligence, vol. 6, no. 4, pp. 510-513, July 1984.

[136] R. Puri and J. Gu, “A Modular Partitioning Approach for Asynchronous Circuit
Synthesis,” in Proceedings of the 31st Design Automation Conference, pp. 63-69,
1994.

[137] W. V. Quine, “The Problem of Simplifying Truth Functions,” The American Math-
ematical Monthly, vol. 59, no. 8, pp. 521-531, October 1952.

[138] W. V. Quine, “A Way to Simplify Truth Functions,” The American Mathematical
Monthly, vol. 62, no.9, pp. 627-631, November 1955.

[139] W. V. Quine, “On Cores and Prime Implicants of Truth Functions,” The American
Mathematical Monthly, vol. 66, no. 9, pp. 755-760, November 1959.

[140] J. A. Robinson, “A Machine Oriented Logic Based on the Resolution Principle,”
Journal of the Association for Computing Machinery, vol. 12, no. 1, pp. 23-41, Jan-
uary 1965.

[141] J. P. Roth, “Diagnosis of Automata Failures: a Calculus and a Method,” IBM Jour-
nal of Research and Development, vol. 10, no. 4, pp. 278-291, July 1966.

[142] J. P. Roth, “Hardware Verification,” IEEE Transactions on Computers, vol. 26, no.
12, pp. 1292-1294, December 1977.

290

[143] T. Schiex and G. Verfaillie, “Nogood Recording for Static and Dynamic Constraint
Satisfaction Problems,” in Proceedings of the International Conference on Tools
with Artificial Intelligence, pp. 48-55, 1993.

[144] M. H. Schulz, E. Trischler and T. M. Sarfert, “SOCRATES: A Highly Efficient Au-
tomatic Test Pattern Generation System,” IEEE Transactions on Computer-Aided
Design, vol. 7, no. 1, pp. 126-137, January 1988.

[145] M. H. Schulz and E. Auth, “Improved Deterministic Test Pattern Generation with
Applications to Redundancy Identification,” IEEE Transactions on Computer-Aid-
ed Design, vol. 8, no. 7, pp. 811-816, July 1989.

[146] B. Selman, H. Levesque and D. Mitchell, “A New Method for Solving Hard Satis-
fiability Problems,” in Proceedings of the National Conference on Artificial Intel-
ligence, pp. 440-446, 1992.

[147] B. Selman and H. Kautz, “Domain-Independent Extensions to GSAT: Solving
Large Structured Satisfiability Problems,” in Proceedings of the International Joint
Conference on Artificial Intelligence, pp. 290-295, 1993.

[148] M. Shahahan and R. Southwick, Search, Inference and Dependencies in Artificial
Intelligence, Ellis Horwood, 1989.

[149] J. P. M. Silva, K. A. Sakallah and L. M. Vidigal, “FPD — An Environment for Ex-
act Timing Analysis,” in Proceedings of the International Conference on Comput-
er-Aided Design, pp. 212-215, 1991.

[150] J. P. M. Silva and K. A. Sakallah, “Sensitization Networks for Accurate Timing
Analysis,” in Proceedings of the ACM Workshop on Timing Issues in the Specifica-
tion and Synthesis of Digital Systems (TAU), 1993.

[151] J. P. M. Silva and K. A. Sakallah, “A Comparison of Path Sensitization Criteria for
Timing Analysis,” in Proceedings of the ACM Workshop on Timing Issues in the
Specification and Synthesis of Digital Systems (TAU), 1993.

[152] J. P. M. Silva and K. A. Sakallah, “Concurrent Path Sensitization in Timing Anal-
ysis,” in Proceedings of EURO-DAC, pp. 196-199, 1993.

[153] J. P. M. Silva and K. A. Sakallah, “An Analysis of Path Sensitization Criteria,” in
Proceedings of the International Conference on Computer Design, pp. 68-72, 1993.

[154] J. P. M. Silva and K. A. Sakallah, “Search-Space Pruning Heuristics in Path Sensi-
tization for Test Pattern Generation,” Technical Report CSE-TR-178-93, Universi-
ty of Michigan, October 1993.

[155] J. P. M. Silva and K. A. Sakallah, “Dynamic Search-Space Pruning Techniques in
Path Sensitization,” in Proceedings of the 31st Design Automation Conference, pp.
705-711, 1994.

[156] J. P. M. Silva and K. A. Sakallah, “Efficient and Robust Test-Generation Based
Timing Analysis,” in Proceedings of the International Symposium on Circuits and
Systems, pp. 303-306, 1994.

291

[157] H. Simonis and M. Dincbas, “Propositional Calculus Problems in CHIP,” in Con-
straint Logic Programming: Selected Research, pp. 269-285, F. Benhamou and A.
Colmerauer (Eds.), MIT Press, 1993.

[158] T. Skolem, “Über die Mathematische Logik,” Norsk Matematisk Tidsskrift, vol. 10,
125-142, 1928 (English Translation in [171]).

[159] G. L. Smith, “Model for Delay Faults Based Upon Paths,” in Proceedings of the In-
ternational Test Conference, pp. 342-349, 1985.

[160] T. J. Snethen, “Simulator-Oriented Fault Test Generator,” in Proceedings of the
14th Design Automation Conference, pp. 88-93, 1977.

[161] R. M. Stallman and G. J. Sussman, “Forward Reasoning and Dependency-Directed
Backtracking in a System for Computer-Aided Circuit Analysis,” Artificial Intelli-
gence, vol. 9, pp. 135-196, October 1977.

[162] P. R. Stephan, R. K. Brayton and A. L. Sangiovanni-Vincentelli, “Combinational
Test Generation Using Satisfiability,” Memorandum no. UCB/ERL M92/112, De-
partment of Electrical Engineering and Computer Sciences, University of Califor-
nia at Berkeley, October 1992.

[163] M. E. Stickel, “Resolution Theorem Proving,” Annual Review of Computer Sci-
ence, vol. 3, pp. 285-316, 1988.

[164] T. Strzemecki, “Polynomial-Time Algorithms for Generation of Prime Implicants,”
Journal of Complexity, vol. 8, no. 1, pp. 37-63, March 1992.

[165] Y. Tanaka, “A Dual Algorithm for the Satisfiability Problem,” Information Pro-
cessing Letters, vol. 37, pp. 85-89, January 1991.

[166] R. E. Tarjan, “Finding Dominators in Directed Graphs,” SIAM Journal on Comput-
ing, vol. 3, no. 1, pp. 62-89, March 1974.

[167] M. Teramoto, “A Method for Reducing the Search Space in Test Pattern Genera-
tion,” in Proceedings of the International Test Conference, pp. 429-435, 1993.

[168] P. Tison, “Generalization of Consensus Theory and Application to the Minimiza-
tion of Boolean Functions,” IEEE Transactions on Electronic Computers, vol. 16,
no. 4, pp. 446-456, August 1967.

[169] E. Tsang, Foundations of Constraint Satisfaction, Academic Press, 1993.

[170] G. S. Tseitin, “On the Complexity of Derivation in Propositional Calculus,” in Stud-
ies in Constructive Mathematics and Mathematical Logic, Part II, pp. 115-125, A.
O. Silenko (Ed.), 1968.

[171] J. van Heijenoort (Ed.), From Frege to Gödel: A Source Book of Mathematical Log-
ic, 1879-1931, Harvard University Press, 1967.

[172] F. Vlach, “A Tautology Checker for VLSI Applications that uses Rule-Based Sim-
plification and Directed Backtracking,” Technical Report N-90-010, Department of
Computer Science, University of North Texas, May 1990.

292

[173] F. Vlach, “Simplification in a Satisfiability Checker for VLSI Applications,” Jour-
nal of Automated Reasoning, vol. 10, pp. 115-136, 1993.

[174] J. A. Waicukauski, P. A. Shupe, D. J. Giramma and A. Matin, “ATPG for Ultra-
Large Structured Designs,” in Proceedings of the International Test Conference,
pp. 44-51, 1990.

[175] R. J. Walker, “An Enumerative Technique for a Class of Combinatorial Problems,”
in Proceedings of the Symposium in Applied Mathematics, vol 10, pp. 91-94, 1960.

[176] R. Wei and A. L. Sangiovanni-Vincentelli, “PROTEUS: A Logic Verification Sys-
tem for Combinational Circuits,” in Proceedings of the International Test Confer-
ence, pp. 350-359, 1986.

[177] H. C. Yen, S. Ghanta and H. C. Du, “A Path Selection Algorithm for Timing Anal-
ysis,” in Proceedings of the 25th Design Automation Conference, pp. 720-723,
1988.

[178] R. Zabih and D. A. McAllester, “A Rearrangement Search Strategy for Determining
Propositional Satisfiability,” in Proceedings of the National Conference on Artifi-
cial Intelligence, pp. 155-160, 1988.

