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ABSTRACT

SEARCH ALGORITHMS FOR SATISFIABILITY PROBLEMS
IN COMBINATIONAL SWITCHING CIRCUITS

by
Jodo Paulo Marques da Silva

Chair: Karem A. Sakallah

A number of tasks in computer-aided analysis of combinational circuits, including test
pattern generation, timing analysis, delay fault testing and logic verification, can be viewed as
particular formulations of the satisfiability problem (SAT). The first purpose of this dissertation is
to describe a configurable search-based algorithm for SAT that can be used for implementing
different circuit analysis tools. Several methods for reducing the amount of search are detailed and
integrated into a general algorithmic framework for solving SAT. Special emphasisis given to the
description of methods for diagnosing the causes of conflicts that may be identified while
searching for a solution to each instance of SAT. These methods allow the implementation of non-
chronologica backtracking, conflict identification based on equivalence relations and logic value
assertions derived from conflicts.

Path sensitization in combinational circuits is often used to solve test pattern generation,
timing analysis and delay fault testing problems. While path sensitization can be cast as an
instance of SAT, such an approach can conceal desirable structural properties of the problem and
may lead to exponential size representations. Another purpose of this dissertation isto introduce a
new model for path sensitization that permits modeling test pattern generation and timing analysis
with linear size representations. In addition, this formulation for path sensitization permits the
adaptation of all the pruning methods devel oped for the general SAT problem.

The proposed SAT agorithms and path sensitization model form an initial kernel for the
development of tools for the analysis of combinational circuits. Their practical applicability is

supported by experimental results obtained with test pattern generation and timing anaysis tools.
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CHAPTER |

INTRODUCTION

1.1 Statement of the Problem

Satisfiability problems are ubiquitous to the computer-aided analysis of combinational
switching circuits. The identification of circuit input assignments that satisfy some circuit property
can be viewed as a satisfiability problem. The identification of circuit input assignments that sat-
isfy agiven circuit output objective is an example of a satisfiability problem. Logic verification is
a satisfiability problem. Path sensitization for test pattern generation is a satisfiability problem.
Path sensitization for timing anaysis is yet another satisfiability problem. Path sensitization for
delay fault testing is al'so a satisfiability problem.

Given this state of affairs, an efficient! algorithm to solve general satisfiability problems
can solve efficiently any of the problems above. The problem is that the satisfiability problem
(SAT), in severa distinct formulations, is known to be NP-complete [34, 65, 90], and it is com-
monly accepted that any algorithmic solution for solving SAT requires at least worst-case expo-
nential time in the size of each problem instance description. The aforementioned circuit analysis
tasks are also known to be algorithmically hard [63, 65, 84, 118] and no known efficient algorithm
exists for them. Despite these negative facts, circuit designs have to be validated prior to fabrica

tion and have to be tested after fabrication, and thus acceptable algorithmic solutions must be

L By efficient algorithm we mean an algorithm that runs in worst-case polynomial time in the size
of the problem instance [65, pp. 6-9]. Conversely an inefficient algorithm runs in worst-case expo-
nential time on the size of each problem instance.



devised. Common algorithmic solutions attempt to be effective, and thus perform well on a large
number of problem instances, even though the worst-case behavior is still exponentia in the size
of the problem instance representation.

Two main algorithmic approaches exist for solving satisfiability problemsin circuit analy-
sistasks; search and set of solutions construction. Search can be organized in many different ways,
but the most often used is derived from backtracking search algorithms. Construction of sets of
solutions entails encoding all solutions to a given problem instance in some effective manner, most
often in canonical form. For example binary decision diagrams (BDDs) [3, 22] can be used to
encode solutions of different circuit analysis problems. The main drawback of encoding all solu-
tions is that the size of the representation can become exponentia in the size of the problem
instance representation.

Search is most often the best compromise for solving circuit analysis problems, and is the
focus of the present work. Several search algorithms have been devel oped over the years for solv-
ing different circuit analysis tasks. Several search algorithms have also been developed to solve
satisfiability problems in different problem domains; for example conjunctive normal form (CNF)
satisfiability, constraint satisfaction problems, truth maintenance systems, among others. However,
algorithms for circuit analysis tasks have seldom been influenced by algorithmic techniques devel-
oped for other application domains. Furthermore, few attempts have been made to reduce the
amount of search in agorithms for circuit analysis, by using knowledge from other problem

domains and the specific structure of circuit analysis problems.

The Questions

The development of search-based algorithms for SAT should attempt to answer severa
relevant questions. Given that search is based on ordered sequences of decision assignments, can
these assignments reveal facts that reduce the amount of search? How can these facts be inferred?
Given that conflicts are intrinsic to search, can conflicts provide facts that reduce the amount of
search? How can these facts be inferred? Can the structure of instances of satisfiability be used for
reducing the amount of search? Can the structure of the search be used to reduce the amount of
search?

In the more specific domain of path sensitization, several questions should aso be



answered when devel oping algorithmic solutions. How to model path sensitization? Are different
instances of path sensitization somehow related? Can the representation of instances of path sensi-
tization be unified? What insights can such unification provide? Can SAT algorithms be adapted
for solving path sensitization?

Finally, from amore practical perspective, afew questions can also be formulated. How to
organize search algorithms for SAT and for path sensitization? How to configure those algorithms

for different circuit analysistasks? What design tradeoffs must be considered?

TheThesis

In the present dissertation we endeavor to answer the above questions. We show that at
severa stages of the search useful inferences can be identified which reduce the total amount of
search. These inferences can either be the consequence of decision assignments (referred to asfor-
ward reasoning) or the consequence of understanding the causes of conflicts (referred to as back-
ward reasoning). Mechanisms for reducing the amount of search are devised primarily for SAT,
but are shown to be applicable to the path sensitization domain.

We propose a model for path sensitization that is independent of any target application,
and which can represent different circuit analysis tasks that involve path sensitization. In particu-
lar, we describe how fault detection in test pattern generation and circuit delay computation in tim-
ing analysis can be represented with the proposed path sensitization model. One key advantage of
the model is alowing the search algorithms proposed for SAT to be extended to path sensitization.
We describe how these search agorithms can be adapted to different target applications involving
path sensitization.

In al cases our thrust is to understand the structure of the problems being solved, and how
that structure can be used for reducing the amount of search. In addition, the structure of how the
search is conducted is important and can be used to reduce the amount of search. Most important,
search-based algorithms for circuit analysis problems have often considered the existence of con-
flicts as negative and as a potential indication that a solution might not be identified in areasonable
amount of time. Throughout the dissertation we show that conflicts can be helpful. Conflicts can
identify useful facts related to the problem instance or the structure of the search. Conflicts can

reduce the amount of search.
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Figure 1.1: The GRASP+LEAP toolset
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One significant advantage of diagnosing conflictsisthat no computational effort is spent if
no conflicts are identified. For time-critical applications such as test pattern generation or timing
analysis, the ability to invest computational resources as needed is significant, and may represent
an alternative and better solution over algorithms that spend computational resources trying to

avoid conflicts, even in situations where conflicts are not to be found.

The Practical Applications

The practical contribution of this dissertation is a toolset for the analysis of combinational
switching circuits, referred to as GRASP (General seaRch Algorithm for Satisfiability Problems),
and which is depicted in Figure 1.1. For solving path sensitization, GRASP is completed with
LEAP (LEvel-dependent Analysisin Path sensitization) which manipulates the information intrin-
sic to path sensitization. The kernel of GRASP consists of a satisfiability algorithm, which can be
used for solving distinct satisfiability problems, e.g. logic verification or satisfiability of conjunc-

tive normal form (CNF) formulas, and which can also be used as a component of LEAP. The ker-



nel of LEAP implements the proposed path sensitization model and is used for solving the
problem of path sensitization in different applications.

Different circuit analysis tools can be developed within the GRASP+LEAP toolset. In this
dissertation we describe tools for test pattern generation (TG-LEAP) and for timing analysis (TA-

LEAP), but the underlying algorithmic framework can be readily extended to other applications.
1.2 Search Algorithms

The purpose of the present section is to briefly review definitions associated with search
algorithms and strategies for organizing those algorithms. We explicitly assume that the search
algorithm is intended to solve some form of satisfiability problem. Other more general formula-

tions can be devel oped which also include solving optimization problems.
1.2.1 Basic Definitions

The process of searching for a solution of a given satisfiability problem is referred to as a
search process (or decision procedure). The search process implements a systematic enumeration
of agiven search space and, as aresult, a decision tree (or search tree) is maintained. The decision
tree accounts for portions of the search space being searched, and implicitly identifies those por-
tions of the search space already searched and those yet to be searched.

A search algorithm for solving a satisfiability problem is said to be sound whenever a
solution computed for a given problem instance is indeed a solution to that problem instance. A
search algorithm is said to be complete if it identifies a solution to a problem instance if such a

solution exists [169, p. 31].
1.2.2 Search Strategies

Different strategies exist for organizing search agorithms. Different organizations lead to
different methods for constructing and traversing the decision tree, and to different space complex-

ities.

Backtracking

For satisfiability, the most commonly used search strategy is backtracking. The backtrack-



Backt racki ng (k)

{
if (k== n) return SUCCESS; // Sol ution found — return

S = { values of X411 | Pes1(Xgy -oos X0 Xe+1) 1S true };
for (each value yin §) {

set Xc+q tO Y, /I Define next value of X1
status = Backtracking (k+1);
if (status == SUCCESS) return SUCCESS; /I Sol ution found
}
return CONFLI CT; /I Al values of x4, tested

Figure 1.2: The backtracking procedure

ing procedure was originally applied to solving several computational problemsin the 1950's. The
name backtracking is due to R. J. Walker, who first described backtracking in its most genera
form [175]2.

The following description of backtracking follows, with minor modifications, the one in
[97]. Let us assume a problem description with n variables, x4, ..., X,, €ach with several possible
values. For each ordered sequence of variables xy, ..., X aproperty Py(Xy, ..., %), that can assume

valuestrue or false, is defined such that:

Prs1(Xp ooos X X 4 0) O Pp(Xq, -0 %), for 0 k<n (1.1

These predicates are used to define the implementation of the backtracking procedure. The organi-
zation of backtracking is shown in Figure 1.2. The procedure recursively extends a set of value
assignments to the problem variables. Whenever all variables are assigned and P,(X, ..., X;,) holds,
then a solution has been identified. Clearly, property P,(Xy, .., X,) must be defined to hold true if

and only if a solution to the problem has indeed been identified.

Example 1.1. In order to illustrate the application of backtracking, we consider the N-queens
problem [128, 169]. The N-queens problem entails the placing of N queens on an N x N board such

that no queen attacks any other queen. One approach for solving the N-queens problem is to create

2 Some authors [11, 74] have attributed the name backtracking to D. H. Lehmer. However, D. H.
Lehmer in [107, p. 26], attributes the origin of the name to R. J. Walker.



N variables xy, ... , Xy €ach taking avalueintheset{ 1, ..., N}, i.e. variable x; with value j indi-
cates that the queen of thei™ column is placed in the j™ row. Property Py(xy, ..., X,) can be defined

as follows:

P (Xq, ..., %) = “Notwo of thefirst k queens attack each other”

Consequently, given the definition of the variables x4, ... , Xy and their possible values, invoking
Backt r acki ng(0) computes a solution to the N-queens problem if and only if a solution exists.
Predicate Py is defined informally, but could readily be formalized given the definition of the prob-

|lem variables and associated val ues. O

Let us assume a problem instance with n variables, Xy, ... , X, where each variable can take
valuesin domain Dy, ... , Dy, respectively. Then, the worst-case space required for implementing

backtracking (as described in Figure 1.2) is,
O(|D1| + |D2| +..+ |Dn|) (1.2

which is optimal, since al values for each variable must be made available. On the other hand, the

worst case time required for finding a solution with backtracking is,
O(|Dl| E|D2| a.. E]Dn|) (1.3

For example if |D1| = |D2| =.. = |Dn| = 2, then the worst-case time becomes O(2"), i.e. a
worst-case exponential time procedure.

Backtracking has been extensively studied. D. E. Knuth, in [97], shows that the backtrack-
ing procedure is complete and describes a method to estimate the average complexity of comput-

ing al solutions to a given problem instance.

Other Strategies

Depth-first search isastrategy commonly used in artificial intelligence [128]. Its operation
is equivalent to backtracking. (J. Pearl [128] claims aminor organization difference between back-
tracking and depth-first search, related to how at a given stage of the search process the possible

extensions are identified. The organization of backtracking in [11, 97] and in Figure 1.2 is equiva-
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(a) Traversal order in backtracking (b) Traversal order in breadth-first search

Figure 1.3: Difference between backtracking and breadth-first search

lent to the organization of depth-first search in [128] in that all possible extensions are identified
prior to entering anew recursion level.)

While depth-first search and backtracking implement a LIFO (last-in-first-out) organiza-
tion of how nodes in the search tree are visited, breadth-first search [128] implements a FIFO
(first-in-first-out) organization of how to visit nodes in the search tree. The differences between
backtracking and breadth-first search are illustrated in Figure 1.3. While in backtracking the num-
ber of active nodes corresponds to a path in the decision tree, in breadth-first search all nodes at the
same depth in the decision tree are active. For a satisfiability problem instance with n variables,
which requires assignments on all n variables, the space and time complexity of breadth-first
search is necessarily exponential in n, since all nodes at all levels in the decision tree have to be
visited before visiting level n where a solution can be identified.

Other search strategies exist. For satisfiability problems, iterative degpening [98] and iter-
ative broadening [67] are of hypothetical interest. Iterative degpening exhaustively searches, using
depth-first search, increasing depths of the decision tree until a solution is identified, thus guaran-
teeing that the shortest solution is computed. Iterative broadening imposes a cutoff limit on the
number of backtracks to each node in the decision tree and backtracks further when that limit is
reached. In order to ensure completeness, the search is executed for increasing values of the cutoff
limit until a solution isfound. Even though both procedures have been shown to exhibit interesting
theoretical properties, their practical application to satisfiability problemsis questionable. Iterative
deepening enumerates all decision assignments of length less than the length of the computed
solution. Iterative broadening becomes impractical if a large number of cutoff limits needs to be

considered and it isless useful if the number of branches at each decision node is small.



Search-based algorithms for satisfiability problems are often based on the backtracking
search algorithm, since other search strategies can be less effective. Breadth-first requires expo-
nential space, whereas iterative deepening is exponential in the size of the computed solution. Iter-
ative broadening can be useful for problem instances with large variable domains. For the
satisfiability problems addressed in this dissertation, variable domains are of size two (i.e. vari-
ables assume valuesin the set { O, 1 }), and thus the potential advantages of iterative broadening

cannot be exploited.
1.3 Solving Satisfiability Problems

A sdtisfiability problem is defined as the task of identifying assignments for variables x;,
..., X Such that a given set of constraints must be satisfied, and where each variable domain is the
set { 0, 1}. A further restriction is to require each constraint to be specified in clausal form in
which case the satisfiability problem is referred to as SAT [65]. This definition of satisfiability
problem corresponds to arestriction of the formulation of constraint satisfaction problems (CSPs)
[99, 111, 169], but which is sufficient to capture circuit analysis tasks in combinational switching
circuits. By restricting the variable domains, specific algorithmic techniques can be developed, as
will be described in the following chapters.

Severa agorithmic approaches can be applied to the solution of satisfiability problems.

We distinguish search-based, non-search based and algorithms from other problem domains.
1.3.1 Using Search-Based SAT Algorithms

The best-known search-based algorithm for SAT is the Davis-Putnam procedure [39,
110]3 which implements a backtracking search procedure completed with several rules for simpli-
fying the CNF formula. Severa agorithmic variations of the Davis-Putnam procedure have been
proposed in the past [64, 125]. Monien and Speckenmeyer [125] propose a backtracking algo-
rithm, based on the Davis-Putnam procedure, whose main distinct feature is that decision assign-
ments always ensure that a clause is satisfied. Consequently, each node in the decision tree can

contain several branches, each of which denotes a solution to a chosen clause. The decision proce-

3-The Davis-Putnam procedures [38, 110] are studied in Section 2.5.3 and Section 2.5.4.



dure also ensures that redundant sets of assignments are not considered. Gallo and Urbani [64]
propose to generate Horn? relaxations of a CNF formula, and then conduct the search process in
such away that the sub-formula of Horn clauses is always satisfied. The organization of the algo-
rithm is similar to the Davis-Putnam procedure described in [110], in that the backtracking search
strategy is not explicitly enforced.

Test pattern generation algorithms can be used for solving satisfiability problemsin com-
binational circuits. Furthermore, in the context of test pattern generation several SAT agorithms
have been proposed in recent years [104, 105, 162], which can be viewed as variations of the

Davis-Putnam procedure in terms of how the search is conducted.
1.3.2 Using Non-Search Based SAT Algorithms

Several algorithms have been proposed for solving SAT which are not based on systematic
search. Recent work has focused on local (non-systematic) search algorithms, with very promising
results [76, 77, 146, 147]. In these algorithms the search for a solution consistsin iteratively mod-
ifying components of an initial complete but invalid assignment in an attempt to eventually iden-
tify avalid solution to the problem instance. The major drawback of most local search algorithms
is that they are not complete, and thus they cannot be used to prove unsatisfiability. Gu [77] has
suggested complete algorithms based on local search and plain backtracking, but does not describe
the implementation in detail and gives no experimental results. An example of the application of
optimization techniques for solving SAT is the use of Boltzmann machines [4], but these algo-
rithms are also not complete. Ginsberg [68] has recently proposed a new search paradigm where
conflict handling methods are integrated in a search algorithm that implements local search; the
same approach can be applied to SAT.

Satisfiability problems can be solved with algebraic methods, that are briefly reviewed in
Section 2.5.3. Mixed algorithmic solutions also exist. For example, Billionet and Sutter in [10]
propose an algorithm based on search, which uses restricted forms of consensus operations for
constraining the search process.

Another algorithmic approach is to estimate whether a solution exists. Iwamain [86] pro-

4-A Horn clause contains at most one positive literal (see for example [64, 131]).
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poses counting the number of maxterms covered by a given CNF formulg; if the Boolean space is
covered, then the formulais unsatisfiable. This algorithm does not compute a solution assignment
in the case the formula is satisfiable. In addition, counting maxterms involves considering all sub-
sets of clauses not involving the same literals, which in the worst-case can be in exponential num-
ber in the number of such subsets. No experimental results are presented in [86]. In arelated work,
Tanaka [165] provides conditions under which it is possible to test satisfiability. However, the pro-
posed algorithm is not complete, since it may be possible to estimate a formula as satisfiable when
it actually is not. As with lwama’s algorithm, Tanaka s will not provide a solution assignment that

satisfies the formula.
1.3.3 Using Other Problem Domains

Algorithms for solving constraint satisfaction problems (CSPs) can be applied to solving
satisfiability problems, which represent arestriction of CSPs. A large body of work has been dedi-
cated to the development of algorithmic techniques for solving CSPs [41, 42, 61, 111, 126, 127,
133, 143, 169]. These techniques can be categorized as consistency methods [111, 126, 169] and
as search-based methods [41, 42, 127, 143, 169]. Integrations of the two types of methods has also
been reported [127]. However, CSPs are a very general formulation, that is unable to deal effec-
tively with the specific structure of satisfiability problems. Evidence of this fact will become
apparent in subsequent chapters.

Satisfiability problems can also be solved with truth maintenance systems (TM Ss) [43-46,
54, 60, 69, 115, 116]. A truth maintenance system identifies ageneral framework for maintaining a
knowledge database and interface procedures for testing the validity of the knowledge database
given a set of assumptions with respect to objects on the database. The formulation of TMSs and
their variations is not directed towards efficiency; in most cases the objective is to complete the
knowledge database with information deemed of interest to the application domain. Notwithstand-
ing, in the following chapters we will adapt several concepts commonly used in TMSs, in particu-
lar logical TMSs[60, 115], in describing algorithms for satisfiability problems.

Other fields of research have developed algorithms that, with adequate adaptations of the

problem representation, can be used for solving satisfiability problems. Thisis the case, for exam-

11



ple, of logic programming and constraint logic programming (CLP) [88]. An example of applying
constraint logic programming to the satisfiability problem of propositional formulas can be found
in [157]. Another example isthe application of integer programming methods for solving SAT [12,
82].

Even though satisfiability problems can be solved with algorithms from several different
areas, existing experimental results suggest that knowledge intrinsic to each problem domain can
be applied in devel oping application-specific algorithms that perform better than mapping satisfi-
ability problems to more general problem domains. As aresult, we conjecture that for time-critical
applications such as circuit analysis tasks, the development of agorithmic solutions specific to

these applications provides the most effective algorithmic solutions.
1.4 Application of Satisfiability Algorithmsto Circuit Analysis

The most common satisfiability problem in the analysis of a combinational switching cir-
cuit isto answer the query: identify a logic assignment at the circuit inputs that is consistent with a
logic objective (set of logic abjectives) at a given circuit output (set of circuit outputs). The circuit
by itself may aready encode the representation of another fairly different satisfiability problem.
Other more elaborated satisfiability problems can be formulated in circuit analysis tasks.

Logic verification entails the comparison of two (possibly structural) descriptions of a
combinational circuit. Let E and F be two circuit descriptions each with [PI| primary inputs and
|PO| primary outputs. (If the number of primary inputs or of primary outputs of E and F were dif-
ferent, then the two circuit descriptions would certainly be different.) Let n identify the common
primary inputs to both circuits, and let of and o respectively denote the primary outputs of E and

F. In this situation, define the equation:

ROl g F
.Zl[oi (g, s D05 (g, ooyl = 1 (1.4)

If the above equation is satisfiable, then there exists at least one logic assignment to the primary
inputs such that at least one of the outputs of E and F differ. The graphical representation of (1.4)

isshown in Figure 1.4, and is referred to as a miter in [16]. As a result, we can apply any satisfi-

12
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Figure 1.4: Thelogic verification problem

ability algorithm to solve the logic verification problem.

A large body of work has been dedicated to the logic verification of combinational cir-
cuits, which involves knowledge from different areas of Computer Science [16, 22, 27, 100, 112,
142, 172, 173, 176]. Currently, practical solutions to the logic verification problem in combina-
tional circuits are either based on BDD representation and manipulation [22, 112], or on ago-
rithms using test pattern generation techniques [16, 100, 142, 176].

In recent years, SAT agorithms have been used for solving the path sensitization problem
in test pattern generation [24, 104, 105, 162], timing analysis[119, 120, 150, 152] and delay fault
testing [120]. In all cases a set of logical conditions, that captures the conditions of the path sensi-
tization problem, is created and a satisfiability objective is specified. The resulting problem formu-
lation is tested for satisfiability with a dedicated SAT a gorithm.

SAT algorithms can be applied to other tasks of the computer-aided analysis and design of

digital circuits. For example placement and routing [48] and asynchronous circuit synthesis [136].

1.5 Path Sensitization

As mentioned earlier, path sensitization in acombinational circuit entails the identification
of circuit input assignments that permit some form of relevant information to be made observable
a the circuit outputs. For example, path sensitization can be used to solve the problem of fault
detection in test pattern generation and circuit delay computation in timing analysis.

In recent years, extensive research work has been done on developing effective agorith-

13



mic techniques to solve path sensitization in different application domains. In the following sec-
tions we define the goals of path sensitization in two of these applications and briefly review

proposed algorithmic solutions.

1.5.1 Test Pattern Generation

Test pattern generation concerns the identification of circuit input patterns that permit
detecting failuresin digital circuits after fabrication. Failures are assumed to be caused by fabrica-
tion defects, and circuits subject to failures are said to be faulty. Different fabrication defects can
occur, which are the source of different types of incorrect behavior. For example, a fabrication
defect may cause a circuit node x to always assume the same logic value v. Node x is then said to
be stuck-at v (referred to as x s-a-v). If fabrication defects cause two nodes x and y to be connected,
then alogic function between the two nodes is defined, which affects other nodes in the transitive
fanout of the two nodes. These defects are referred to as bridging faults [1, pp. 289-292].

Fault models define which types of improper behavior can be modeled. For circuits
described at the gate abstraction level, the single-stuck fault (SSF) [1, pp. 110-118] model is the
most commonly used and is the model assumed in this dissertation. Experimental evidence sug-
gests that tests computed with the SSF model usually provide good coverage of other types of
faults[1, pp. 110-118]. In the SSF model, each node x in a circuit is characterized by two faults, x
stuck-at 0 and x stuck-at 1. The interconnection between two nodes x and y, (X, y) that denotes the
fanout branch between x and y, can also be subject to the same two stuck-at faults.

Assuming the SSF model, and for a combinational circuit, the fault detection problem is
defined as the identification of circuit input logic values that permit the effect of a given stuck-at
fault to be observed at the circuit outputs. If this problem is satisfiable, the circuit input logic val-
ues define atest T that detects the fault. The partial paths along which the effect of the stuck-at
fault reaches the circuit outputs are said to be sensitizable under T. If the problem is not satisfiable,

then the fault is said to be redundant.

The D-Calculus
Algorithmic solutions for fault detection are most often based on the D-calculus [141] or

on its algebraic derivations [2, 23, 33, 37]. The D-calculus augments the two-value Boolean alge-
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Figure 1.5: Definition of the D-calculus
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Figure 1.6: Example of detectable and redundant faults

bra with two discrepancy values, D and D, that denote a difference between the logic values of the
correct and faulty circuits. If the logic value of anodeisv in the correct circuit and v; in the faulty
circuit, then D represents v/v; = 1/0, and D represents v/v; = 0/1. The D-calculus has been shown to
be valid for the fault detection problem; if the D-calculusis used to model the behavior of a stuck-
at fault, then atest T detects that fault if and only if under the D-calculus at least one circuit output
assumes value D or D [141]. The algebraic definition of the D-calculus is given in Figure 1.5

(where X denotes the unassigned value).

Example 1.2. Examples of stuck-at faults are shown in Figure 1.6. Each fault needs to be activated
and so the node associated with the fault must assume value opposite to the value forced by the
fault. For fault xg s-a-0, thetest x; = 0, X, = 0, X3 = 1 and x4 = 0 enables the effect of the fault to be
observed at circuit output z;. For fault (Xg, 2,) S-a1 to be activated, it is necessary to have xg = 0,
which implies x, = x3 = 1, which then imply z; = 0 and z, = 1. Hence the fault cannot be detected

and is said to be redundant. O
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Other approaches for fault detection exist. For example algebraic formulations based on
the boolean difference can be used to capture fault detection in test pattern generation. However, it
is generally accepted that algebraic formulations for fault detection are not adequate for practical
algorithmic implementations.

In recent years, other models for fault detection in test pattern generation have been pro-
posed which formulate the path sensitization problem in terms of a satisfiability problem [24, 104,
162]. For example, the approach of [104] consistsin creating X ORs between each primary output
of the correct and faulty circuits, where the faulty circuit exhibits the effect of the target fault. A

test T that detects the fault must set the output of at least one XOR to 1.

Algorithmsfor Test Pattern Generation

The D-algorithm [141] represents one of the first complete algorithms for test pattern gen-
eration. It implements a decision procedure that at each state of the search either attempts to prop-
agate an error signal to acircuit output or attempts to justify internal circuit node assignments. For
some practical circuits, the organization of the D-algorithm may lead to large decision trees, since
alarge number of internal nodes may participate in the decision process.

PODEM [72] isthefirst test pattern generation algorithm to propose implicit enumeration
of the circuit inputs as an effective technique to reduce the complexity of the D-algorithm for sev-
eral problem instances. In addition, the practical implementation can be much simpler than that of
the D-algorithm since the search process is restricted to enumeration of the circuit inputs. For
example, PODEM does not implement justification, which significantly facilitates the process of
backtracking. Decision making in PODEM is guided by simple backtracing [160] that traces
objectives through the combinational circuit and decides assignments on the circuit inputs.

FAN [62] proposes several improvements with respect to PODEM. First, the notion of
unique sensitization point (USP) is introduced, that identifies logic assignments that constrain the
search. In FAN, USPs are only viewed statically (without considering the effects of logic assign-
ments) and preprocessing methods are suggested for their identification. FAN introduces the con-
cept of head line, i.e. the output of a fanout-free subcircuit. Head lines permit reducing the total
number of decision variables with respect to PODEM. The authors of FAN observed that the

absence of judtification affected negatively the overall performance of PODEM, and so FAN
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implements justification. Another contribution of FAN is multiple backtracing, that extends simple
backtracing by tracing multiple objectives to the circuit inputs and deciding assignments based on
the objectives traced.

TOPS[92] and SOCRATES [144, 145] represent evolutions of FAN. TOPS formalizesthe
notion of unique sensitization points and proposes preprocessing algorithms for their identifica
tion. In addition, TOPS extends the notion of head line to basis nodes, i.e. nhodes of complete
reconvergence. SOCRATES introduces the concept of static [144] and dynamic learning [145], i.e.
the identification of non-local implications. In [144] severa variations on the identification of
static USPs are proposed. Moreover, in [145] the concept of dynamic USPs is introduced (that
consider the effects of logic assignments) and a procedure for their identification is described.

EST [70, 71] proposes recording state information associated with conflicts or with identi-
fied solutions. This recorded information can then be used to simplify the search for subsequent
faults. Information recording takes place at each stage of the search process and consists of a cut of
logic values (driving unassigned nodes) as well as a copy of the D-frontier. EST has been used to
improve TOPS in [70] and SOCRATES in [71] with promising experimental results.

Other algorithms for test pattern generation have been proposed. QUEST [37] and recur-
sivelearning [101] describe methods targeted at hard-to-detect faults, but which may not be practi-
cal in practice. The same holds true for TRAN [24], which proposes using transitive closure
algorithms for identifying implications. TRAN is directed at hard-to-detect faults, and relies on
random test pattern generation and fault simulation for detecting most faults. In TRAN, NEMESIS
[104] and TAGUS [162], the test pattern generation problem is formulated as a SAT problem and
solved with a SAT agorithm. Experimental results for TAGUS suggest that this approach can be
particularly efficient, even though it must resort to different decision making procedures for

detecting all faults.
1.5.2 Timing Analysis

Timing analysis of digital circuits is concerned with identifying the timing properties of
circuitsthat limit circuit performance. Each circuit component (or interconnect wire) causes signal

transitions to be delayed, and so signal transitions are subject to a non-zero propagation delay
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Figure 1.7: Example of acircuit with afalse path

between the inputs and outputs of the circuit. Propagation delays are defined by the sum of ele-
ment and interconnect wire delays along paths in the circuit, and the largest propagation delay
determines the maximum frequency at which acircuit can operate when it drives memory and syn-
chronization elements.

Early timing analyzers computed circuit delay solely based on topological information,
where the longest topological path in a circuit defined the circuit delay [81, 93, 122]. However,
there can be paths along which signal transitions cannot propagate under any circuit input assign-

ment. These paths are referred to as fal se paths.

Example 1.3. An example of acircuit with a false path (adapted from [9]) is shown in Figure 1.7.
A signal transition in x; can propagate to z. However, there are only two propagation paths over
which a signal transition can propagate, X;, X4, X5, X7, Z0and X1, X3, X5, Xg, zL] Note that Xg
assumes the complemented value of x,. Hence, a signal transition propagates from x, to Xg if
Xo =1, which immediately causes xg = 0, and so a signal transition can no longer propagate from
Xg to z. As aresult the largest propagation delay from x4 to zis 34 time units and not 44 time units

asis defined by the longest topological path delay. O

Most of the early timing analyzers provided mechanisms for either discarding some paths
[81] or forcing logical conditions to determine whether a signal transition could propagate along
the path [122]. This latter procedure was referred to as case analysis. Both solutions for removing
false paths have serious drawbacks. First the designer must have extremely good knowledge of
how a circuit operates in order to avoid inadvertently removing true paths. Second, case analysis

must be applied to all false paths, which may be an extremely large number.
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The notion of false path can be traced to [83], where it was first shown that the circuit
delay can be less than the delay of the longest topological path®. First attempts to identify false
paths and compute better estimates of the circuit delay were described in [8, 15] and involve dif-
ferent models of path sensitization, i.e. definition of valid conditions for asignal transition to prop-
agate along a path. Since then extensive research work has been done on delay computation for
combinational circuits with two main purposes. accurate timing modeling and effective algorith-
mic procedures.

It is commonly accepted that algorithmic complexity for path sensitization is directly
related to the accuracy of the assumed timing model. In the following review of methods for cir-
cuit delay computation, we emphasize methods based on simple timing models, since path sensiti-

zation is a particularly hard satisfiability problem, even for the most simple timing models.

Single Path Sensitization

Early work on path sensitization for circuit delay computation was dedicated to a path-by-
path analysis, where each potential longest path was individually tested for sensitization. Different
approaches for enumerating paths were proposed. In [55] each path is individually tested using a
path extraction agorithm first described in [177]. Other approaches attempt to extend a sensitiz-
able path to a primary output so that the propagation delay is maximized [8, 117]. Strategies for
extending partial paths can be based on depth-first or best-first search [128].

The most important aspect of early solutions for circuit delay computation was the
assumed timing model. Proposed models range from very precise representations of circuit timing
behavior [103, 149] to models targeted to simplify algorithmic implementations [8, 15, 32, 118,
129]. The models describe different criteriafor establishing whether a signal transition propagates
along a path, and reviews of the different criteria can be found in [32, 118, 151, 153]. In recent
years, the most popularized path sensitization criteria assume floating-mode operation, in which
the state of each circuit node is assumed to be unknown, though probably going through several
signal transitions, before its stabilizes to a known logic value. These criteria include static sensiti-

zation [8], viability [117] and the floating-mode criterion [31] and trade off some accuracy on the

S, Hrapcenko [83] formalized the notion of a false path. The fact that the circuit delay could be
less than the longest topological delay was known before that, and justified the design techniques
for high-speed adders.
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Figure 1.8: A characterization of path sensitization criteria

computed circuit delay estimate by being more amenable to algorithmic implementation. While
static sensitization can underestimate and overestimate the circuit delay, viability and floating-
mode sensitization provide the same upper bound to the circuit delay [31, 32, 153].

A characterization of the different criteria for floating-mode operation is shown in Figure
1.8 (adapted from [153]), and identifies logical and temporal constraints on the side inputs to each
node x in a path. 1(X) denotes the propagation delay of a signal transition to node x along a given
path. The side inputs values can either be controlling (c) or non-controlling (nc). Symbol C indi-
cates that a given circuit node value is unknown and can experience changes in time. For floating-
mode operation, the primary input stimuli assumes that the initial value of each primary input is
unknown and changes to a known logic value at the specified arrival time. In the floating-mode
sensitization criterion, anodey in the fanout of a node x stabilizes as a direct consequence of node
x stabilizing if x is either the earliest controlling value to stabilize or all fanin nodes assume non-
controlling values and x is the latest node to stabilize. Dynamic sensitization [117, 118, 151, 153]
is aso included in Figure 1.8, since it computes the exact circuit delay under the assumption of

fixed gate delays and one transition (between two known logic values) primary input stimuli.

Concurrent Path Sensitization

Single path sensitization faces two complex problems. First, even for a single path, the
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validation of the sensitization conditions corresponds to a satisfiability problem. Second, the num-
ber of long false paths can be extremely large, and even approaches based on extending partial
sensitizable paths are unable to handle circuits with alarge number of false paths.

In recent years several procedures have been proposed that are based on concurrent path
sensitization [30, 50, 120, 152, 156]. A delay range is specified, and the satisfiability problem is
then to identify valid conditions for sensitizing any path with delay within the given range. For
most practical approaches the delay range considered is [A, LTP], where LTP denotes the longest
topological path delay in acircuit. Concurrent path sensitization was first proposed by S. Devadas
eta.in[49].

While for single path sensitization the major emphasis has been the accuracy of the path
sensitization criterion, for concurrent path sensitization the emphasis is the algorithmic implemen-
tation, and most approaches uniformly assume floating-mode operation. (Other approaches based
on more precise timing models [51] use floating-mode operation delay as an initial estimate to a
more precise computation of the circuit delay.)

Concurrent path sensitization is characterized by two main algorithmic approaches:

1. Logic-based, that consistsin defining logical conditions for each node to be part of a sensitiz-
able path with delay no less than A [5, 119, 120, 150, 152]. The search procedure then oper-
ates on the established logical conditions, and all approaches are either based on SAT ago-
rithms or test pattern generation algorithms[5].

2. Delay-based, that consists in some form of guided timed simulation, based on implicit enu-
meration of the primary inputs, in which propagation delay estimates to each circuit node are
maintained. Different delay estimates can be used, which distinguishes the different algorith-
mic approaches [29, 30, 50, 52, 156]. (Note that for [156] structural and logical information
is maintained, which is used to prune the search. This approach is described in Chapter 1V
and in Chapter VI.)

Other Approaches
The algorithmic solutions for circuit delay computation described above implement some
form of search process. Other solutions not based on search have been devel oped. For example, [7]

proposes using ADDs (Algebraic Decision Diagrams). The circuit delay computation problem can
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be solved with ADDs by creating an algebraic decision diagram that encodes the logical condi-
tions for each sensitizable path delay. This approach faces two major drawbacks. First, the number
of paths delays can be exponentia in the size of the circuit. Second, the representation of the logi-
cal conditions may also require an exponential size ADD. Results reported in [7] indicate that
ADDs work well for some classes of regular circuits (e.g. carry-skip adders) but are considerably

inefficient for other more general classes of circuits.
1.6 Dissertation Organization

The dissertation is divided into three main parts. In the first part, we lay the foundations
for solving SAT with search-based algorithms. An algorithm for solving satisfiability of conjunc-
tive normal form (CNF) formulas, GRASP, is described and compared with other algorithms for
CNF SAT. Afterwards, we address models and algorithms for path sensitization and describe their
applications. Finally, the third part includes experimental results for circuit analysis tools and
delineates future research work.

We start, in Chapter 11, by defining a formal framework for representing combinational
circuits as CNF formulas. Algebraic methods for solving SAT are reviewed, since they are
exploited in later chapters for improving search-based SAT algorithms. Chapter |11 concludes the
first part of this dissertation; it describes GRASP and the main ideas on how to organize search-
based SAT algorithms.

Chapter 1V begins the second part of the dissertation, and describes a new maodel for path
sensitization, the perturbation propagation model. The major objective of Chapter 1V is to
describe LEAP, a search-based algorithm for path sensitization based on the perturbation propaga-
tion model, and which follows the organization of GRASP. Subsequent chapters describe the
application of the perturbation propagation model to target applications. Chapter V details the
model and algorithm for test pattern generation, and Chapter VI details the model and algorithm
for timing analysis.

Experimental results for test pattern generation and timing analysis tools are analyzed in
Chapter VII. Chapter VIII concludes the dissertation with an overview of the contributions and a

discussion of directions for future research work.
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CHAPTERIII

FUNDAMENTAL CONCEPTS

2.1 Introduction

The purpose of this chapter is to introduce the mathematical framework that will be used
throughout the remaining chapters. Emphasisis given to the definition and algebraic manipulation
of conjunctive normal form (CNF) formulas.

We start, in Section 2.2, by defining CNF formulas which provide a unified representation
for instances of satisfiability problems (SAT). CNF formulas are interchangeably referred to as
clause databases. We then illustrate, in Section 2.3, how other problem representations of SAT,
described either as propositional formulas or as combinational circuits, can be mapped into CNF
formulas. These mappings were originally proposed by G. S. Tseitin [170], in the context of prop-
ositional formulas, and guarantee CNF formulas of size linear in the size of the original represen-
tation.

The next step is to formalize the derivation of logical implications of CNF formulas by
relating this concept to the unit clause rule originally proposed by Davis and Putnam [38]. The
iterated application of the unit clause rule is referred to as Boolean constraint propagation [116]
which is examined in some detail.

Algebraic techniques to manipulate CNF formulas are described in Section 2.5. We review
some well-known concepts, e.g. consensus and resolution, briefly analyze the generation of prime
implicates, and conclude by studying different algebraic and search-based techniques for solving

SAT. These algebraic techniques are shown to be analogous to procedures for generating prime
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implicates and some of their simplifications.
The chapter concludes by formalizing how satisfiability tests are executed on CNF formu-
las. These tests are defined in terms of queries on a clause database and some conditions that char-

acterize valid queries are examined.
2.2 Basic Definitions

In this section we define the basic formal framework that will be used to describe satisfi-
ability algorithms in the following chapters. We propose to uniformly represent different instances
of satisfiability problems as conjunctive norma form (CNF) formulas. The composition of these
formulas can be modified by satisfiability algorithms. Conseguently, CNF formulas will be
referred to as clause databases, over which SAT algorithms can operate.

In the following definitions, and throughout the remainder of this dissertation, the two-ele-

ment Boolean algebra (also known as switching algebra) is assumed [79, pp. 160-171].
2.2.1Variablesand Literals

The definitions introduced in the sequel assume a set of variablesV, each of which isiden-
tified by a symbol in the set of symbols [rstuwxyZz] [0-9" - Thesize of V isinterchangeably iden-
tified by [V] or N.

Each variabley 1V is characterized by alogic value, denoted by v(y), withv(y) O{ 0, 1,
X }. When clear from the context, v(y) is aso referred to by y. Whenever y = X we say that y is

unassigned; otherwisey is assigned.

Example 2.1. An example of a set of variablesis{ Xq, Yo, t1 }, with N = 3. Assuming x; = 1, then

X1 isassigned. y, = X indicates that y is unassigned. O

The assignment of alogic value vy, 1 { 0, 1, X} to avariabley UV is denoted by y vy,
and identifies the action of setting v(y) to value Vy Y e Vy is defined as a predicate that always
evaluates to 1. Predicate y = vy evaluates to 1 or O depending on whether v (y) is equal to or differ-

ent from vy It isaways true that,
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(- v) O (y=v,) (2.1)

An assignment set A isdefined asamapping fromU OV into{ 0, 1} and isalwaystreated
asaset AUV x{0,1} of variable-value pairs (y, vy). We say that an assignment set A is commit-
ted whenever each variable-value pair (y, vy) [ A denotes an assignment of value vy, to variable y;
otherwise the assignment set is uncommitted. Variables not specified by a committed assignment
set A assume X as a default value. A committed assignment set A is said to be a partial variable
assignment whenever |A| < V|; otherwise the committed assignment set is said to be complete.

Unless stated otherwise, assignment sets are always assumed to be committed.

Example 2.2. Lety O V. y « O indicates that O is assigned to y. Subsequent to the assignment,
proposition (y = 0) holds true. Similarly, letV = { Xq, Xo, X3, X4, X5, z1 } and A = { (X1, 0), (x3, 0),

(z1, 1) }. Then, given A the following holds true,
(X, =0)0(x,=X)d (X3=00 (x,=X) (x5=X) (z=1) 0

A literal | isdefined by | = y' yOVandi @ 0,1}, wherei =1 corresponds to the com-
plemented literal, also referred to as| = =y, and i = 0 corresponds to the uncomplemented literal,
also referred to as | = y. y° is said to be a positive literal, and y! is said to be a negative literal.

Given an partia variable assignment A, the value of alitera yI under A is defined by,

Yl = ydi (2.2)
whichisequal to Xif (y, vy) DA
2.2.2 Clauses and CNF Formulas

A clause is defined as adisjunction of literals,

[&

0=y (2.3)

i=1
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where each |; isaliteral, and the clause contains |w|literals. A clause can also be viewed as a set of
literals @ = {1y, ..., |y} and this representation is used when convenient. Given a partial variable

assignment A, the value of a clause w under A is defined as follows:

[&
w|A = z |i|A (2.9
i=1
If u)|A = 1 then wissaid to be satisfied. If w|A = 0then wissad to be unsatisfied. Otherwise w
is said to be unresolved. Under a partial variable assignment, the unassigned literals of an unre-
solved clause w are called the free literals of w. An unresolved clause is said to be a unit clause

whenever it contains only one free literal.

Example 2.3. An example of aclause is w = (y+-w+ z). Let us consider the assignment set

A ={(w,1),(y,0)} . Then w|Aisgiven by,

m|A=XDO+1Dl+ODO=X O

A clause w1 is said to subsume another clause w, if w4 logically implies w, [28]. In par-

ticular, w; O wy, if and only if w, subsumes w,.

Example 2.4. For example, w; = (y+-w) subsumes w, = (y+-w+2z) because whenever
wq is satisfied, then w, is also satisfied, and if w, is unsatisfied, then w; is necessarily unstisfied.
Conversely, the two clauses can be represented by w; ={ y, ~w} and w, ={y, =w, 2}, hence w; O

W, and so Wy subsumes w,. O

In general, two clauses w, and w, defined on'V may not exhibit a containment relation. In
those cases, we can still relate the two clauses. We say that w, is stronger than w, if and only if
|oy| < |y, i.e. stronger clauses have more complete variable assignments that unseatisfy them.

A CNF formula ¢ is defined as a conjunction of clauses,

b = |_| W, (2.5)
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where each wy is a clause, and the formula contains |¢| clauses. The number of literals in ¢ is

referred to asthe size of ¢ and is given by,

(o]
191 =S oy (26)

=1

A formulacan also be viewed as a set of clauses$ = { wy, ..., Wy} and this representation is used
when convenient. Given a partial variable assignment A, the value of a formula ¢ under A is

defined as follows:

9]

j=1
If ¢|A = 1then ¢ is said to be satisfied. If c|)|A = O then ¢ issaid to be unsatisfied. Otherwise ¢

issad to be unresolved.

Example 2.5. An example of a CNF formulais,

O = (-x+-y+2)Ax+-2)Qy+-2)
LetA={(x0),(z 1)} Then¢|, = O, because (x+-2)|, = 0. O
2.2.3 Consistency Functions and Satisfiability

The consistency function ¢ of a CNF formula ¢ is defined by the values of ¢ given each
assignment set A defined inV, i.e. E|A = c|)|A for all A. Asaresult, each clause w O ¢ defines an
implicate® of £. A clause w is said to be aprime implicate of £ if and only if no other implicate of
& subsumes w. Observe that several CNF formulas can correspond to the same consistency func-
tion €.

In general, a CNF formula ¢ does not necessarily include all the implicates of the associ-

ated consistency function &. A formula that includes all implicates of € isreferredtoa ¢ . A for-

L An implicate of a switching function & is defined as a disunction of literals w such that &
implies w (see for example [79, p. 288]).
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Figure 2.1: Interface to SAT algorithms

mula that contains all the prime implicates of & is said to be a complete product of sums (POS)
representation of £, and is referred to as ¢".

In the next few chapters, while studying search algorithms for SAT, we allow implicates of
& to beidentified and used to complete the original CNF formula. As aresult, we shall refer to ¢ as
a clause database. Acceptable transformations on the clause database include adding clauses or
sets of clauses, and removing clauses or sets of clauses. The precise meanings of these transforma-
tions to the clause database depend on how clauses are added or removed, as is described in the
following chapters.

Given a CNF formula ¢, the satisfiability problem, denoted by SAT, consists in the identi-
fication of an assignment set A such that E|A = 1. If such an assignment set exists, then ¢ is said
to be satisfiable, and A is referred to as a satisfying assignment. Otherwise, ¢ is said to be unsatis-
fiable. The CNF formula ¢ is said to be consistent for any assignment set A such that E|A = 1LAn
assignment set A is said to yield a conflict, or to make ¢ inconsistent, if and only if E|A =0i.e
the value of at least one clause w of ¢ under A is 0. SAT has been shown to be NP-complete in
[34], and it is currently conjectured (and generally accepted) that any algorithm for SAT requires
at least worst-case exponential time in the size of the CNF formula[65].

The agorithms for satisfiability described in this dissertation provide the interface speci-
fied in Figure 2.1. Given an initial clause database ¢; and an initial assignment set A;, the SAT

algorithm implements the foll owing computation:

(01, A;) « SAT(d;, A, St at us) (2.8)
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that yields an updated clause database ¢ and aresulting assignment set A¢. The above computation
can be invoked from other procedures in a program. The output argument status can take values
FAILURE and SUCCESS, which indicate respectively whether the clause database is unsatisfiable
or satisfiable given theinitial assignment set A;.

It is important to note that several restrictions of SAT can be solved in polynomial time.
This is the case of 2SAT (i.e. SAT restricted to CNF formulas with at most 2 literals per clause)
and HSAT (i.e. SAT restricted to Horn clauses?). 2SAT can be solved in linear time in the size of
the clause database [6, 58]. HSAT was shown to be solvable in polynomial timein [80, 89]. More-
over, several polynomial time algorithms for solving HSAT have been proposed in the past (see for
example [53, 64, 80, 124]). The agorithms of [53, 64, 124] have linear time complexity. These
restrictions of SAT and associated algorithms have been used to solve the more general SAT prob-
lem [64, 105, 106].

2.3 Conjunctive Normal Form Representations

In some situations the formulations of instances of SAT are not in conjunctive normal
form. Accordingly, a unified treatment of CNF-based satisfiability algorithms must provide meth-
ods to represent such instances of SAT as CNF formulas. In this section we discuss how to repre-
sent the satisfiability problem of propositional formulas and of combinational switching circuits as

CNF formulas.
2.3.1 Representation of Propositional For mulas

Let V denote a set of propositional variables. A well-formed propositional formula is
defined as follows (adapted from [40, p. 231]):
1. Any propositional variable x OV isawell-formed formula.
2. If p isawell-formed formula, then sois-p.
3. If p and o are well-formed formulas, then soare (p U o), (p Uo ) and (p - 0). (With the
sole purpose of simplifying the discussion, we disallow logical implication as a valid propo-

sitional operator.)

2. A Horn clause contains at most one positive literal (see for example [64, 131]).
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There are several ways to represent a propositional formula in CNF. A straightforward
procedure to map a propositional formula g into CNF is defined as follows (adapted from [40, pp.
236-237]):

1. Expand logical equivalence operations. (X « Yy) = (-x O=y) O(x Oy).

2. Repeatedly apply De Morgan's laws to all negation operators involving formulas other than
single variables. Remove duplicate negations. After this step, all negations are associated
only with propositional variables.

3. Repeatedly apply the distributive law (11 O15) O (13 O1,) = (11 Olg) O(11 Oly) O, Olg) O(l5
Ul ,). After this step a CNF formulais obtained.

Example 2.6. The expression Y = [~ (=-x0y) D= (w02 O-(x O-w)] isawell-formed proposi-
tional formula. Step 1 of the above procedure need not be applied to this formula. The application
of step 2 yieldsthe formula[(x O-y O-w O0-2) O-x Ow]. Finally, step 3 computes the CNF for-
mula[(-y O-x0Ow) O(-zO-x Ow)]. O

Example 2.7. Consider the propositional formulay = ((...(X; « Xp)...) < Xy). There are 2N—1
complete variable assignments for which s holds true. Expanding @ results in 2"~ 1 clauses that
cannot be further simplified, since no two adjacent complete variable assignments to variables x,,

..., X yield the same propositional value for (. O

As the last example suggests, the above procedure can produce a CNF formula of expo-
nential size even though the size of the original propositional formula is polynomia in N. The
solution to this problem was originally proposed by G. Tseitinin 1968 [170]. Let Y define a prop-
ositional formula. Associate a new propositional variable n with each subformula contained in y,
such that n and the associated subformula of Y always assume the same propositional value. If
n =p 0o, then define clauses (-n Op) O(-n Oo) O(n O-p O-0).If n =p Oag, then define
theclauses(n O-p) O(n O-0c) O(-n Op J0).1f n =p ~ 0, then define clauses (-n Op
O-0)U0(n O-p Oo)O(N Op Uo)I(n U=p O=0). If n =-p, then define clauses (-n O
=p) O (n O p). (Note that in [170], Tseitin describes the representation of logical implication
instead of not and logical equivalence, but both the not and the equival ence operations can be eas-

ily derived from logical implication, digunction and conjunction.) Finally, define clause , to test
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the satisfiability of @ to true. The set of defined clausesis satisfiable if and only if propositional
formulay is satisfiable.

Tseitin's transformation guarantees that the derived CNF formulais linearly related to the
size of the original propositional formula. Note, however, that it requiresV to include the auxiliary

variables created by the transformation.

Example 2.8. For the propositional formula of Example 2.6, let t; = =X, tp = =w, t3 = (t; O),
t4 = —It3, t5 = (W O Z), t6 = —It5, t7 = (t4 Dta), t8 = (X th), tg = _'t8! and l.|J = (t7 Dtg) The r%ulting

CNF formula becomes;

(=t; O=x) O(t; 0X)0 (~t, O-w)l (t, 0v)

(ty O-t) O(ty O-y)0 (=t Ot,0 yi1 (-t O-t5)  (t, 08)

(tg O-w) O(tg 0-2)0 (=t Owd )] (=t O-tp)  (tg D)

(=t; Ot,) O(=t, Ot (t; D=t =t (ntg 09 (~tg0) (tg D-xT +1,)
(~tgO-tg) O(tg Otg)d (WO-t) (WO-ty) (~wOtd ) v

which can be used to test whether ) can be satisfied to true. Observe that no attempt was made to
simplify the resulting CNF formula. For example, all clauses that result from negations could be
removed if templates of negated formulas were considered (e.g. N = - (p o) mapped into (n LI p)
O(n Oo)O(-n O-p O-0)). O

Example 2.9. For the formula of Example 2.7, we can create aformulan; for each partial 0 « Xx;,
i.e.Nj = 0 ~ X, by adding the following clauses: (-n; Ox; O-0) O(-n; O=-x Oo) O(n; Ox;
Oo) O(nj O-x O-0). Hence, n — 1 additional variables are generated, and the resulting CNF
formulacontains4 x (n — 1) + 1 clauses. Consequently, the size of the CNF formulaislinear in the

size of the original propositional formula. O

Besides Tseitin’s transformation, other polynomial size mappings of propositional formu-

las into CNF formulas have since been devel oped (see for example [12, 75, 132]).

31



2.3.2 Representation of Combinational Circuits
2.3.2.1 Combinational Circuits

A well-formed combinational circuit is defined as follows (adapted from [78]):

1. A single gate, either simple (i.e. AND, OR, NAND, NOR, NOT, BUFFER) or XOR/XNOR
isawell-formed circuit.

2. Let C; and C, be two digoint well-formed circuits. Then their juxtaposition is awell-formed
circuit. By connecting a primary output of C; to a primary input of C, awell-formed circuit
is obtained.

3. If C; isawell-formed circuit, then by joining input lines of C; a well-formed circuit is ob-
tained.

In the sequel, awell-formed combinational circuit isreferred to as a combinational circuit.
Thus, only acyclic combinational circuits are considered. Each circuit is characterized by a set Pl
of primary inputs and a set PO of primary outputs®. The set of circuit nodes is referred to asV, as
defined in Section 2.2.1. Hence, we may interchangeably refer to the elements of V as either circuit
nodes or variables. Whenever V identifies nodes in a circuit, a partial variable assignment is also
referred to as apartial node assignment. The function of agate with output y, y 'V, and inputs wy,
..., W is denoted by y = gy(wy, ..., W)).

Each combinational circuit is represented by a directed acyclic graph C = (V, E), referred
to as the circuit graph, whereV is the set of circuit nodes, and E, the set of edges, corresponds to
the gate input-output connections in the circuit. We further assume that each gate has bounded
fanin, and hence |E| = O(|V]) = O(N). Under this assumption, an algorithm with worst-case run
time of O(|E| + V|) is said to run in time linear in the size of V, because O(|E| + V|) = O(|V]) =
O(N). For each circuit nodey, the following definitions apply:

1. I(y) denotes the set of fanin nodes of y. For aprimary input y, I(y) = 0. I1{y) denotes the set
of nodesin the transitive fanin of y.

2. O(y) denotes the set of fanout nodes of y. For a primary output y, O(y) = 0. OHy) denotes

3-Without loss of generality we assume that each primary output is fanout-free. For the current and
following chapters this assumption suffices. More general circuit representations are described in
Chapter V.
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. X 4> = (x4 %3
Xo jj @ @21 = 0, (X4 X5) = X4 [Xg

« Xg O(X5) = {z}
> OEKxg) = {xg 23}

(@) Circuit (b) Circuit graph

Figure 2.2: Example circuit and associated circuit graph
the set of nodes in the transitive fanout of .

Example 2.10. An example of a well-formed combinational circuit and associated circuit graph

are shown in Figure 2.2. O

Logic assignments to circuit nodes can be further characterized. A node y is said to be
unjustified whenever (y = X) I (g,(I(y) = X). y is said to be justified whenever (y # X) L (I(y) = [T
y = gy(I(¥))). Consequently, a justified node y is assigned, and either its value is implied by the
value of itsfanin nodes or y is a primary input. Predicate Just(y) is defined to hold true if and only
if yisjustified.

2.3.2.2 CNF Representation

As with propositional formulas, algebraic expansions that correspond to combinational
circuits can result in exponential size CNF formulas. Example 2.7 can be adapted to combinational
circuits by considering a fanout-free tree of XNOR gates with n primary inputs. Nevertheless, and
as with propositional formulas, we can apply Tseitin’s transformation to combinational circuits.

Each gate with output y, such that y = gy(wl, ...,Wj) = gy(l(y)) in a combinational cir-

cuit is characterized by a gate consistency function &, defined over y and I(y),

E(1(Y), y) =&y(wy, -, Wi y) = [9,(1(Y)) D] (29)

Ey(l (y), y) evaluates to X if either y = X or g(I(y)) = X; otherwise, it evaluates to 1 whenever the
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x'3 3| 3 + C=(y#X) Hoy*X) gy #Y)
|
assigned

Figure 2.3: Value relation between y and gy,

Wq_|
W24jy

wy | O 0 0 0 1 1 1 1
(a) Example gate
w, | O 0 1 1 0 0 1 1
y 0 1 0 1 0 1 0 1
WiWa &l 1,010} 1 0 01

y 00 01 11 10

(b) Consistency function truth table

100 o 0

(c) POS simplification

Figure 2.4: Example of the consistency function of a gate

gate input values are consistent with the gate output value (i.e. y = gy(I(y))), and evaluates to 0
whenever these values are not consistent (i.e. y # gy(l(y))). For each simple gate consistency func-
tion &y(1(y), ¥), ¢, denotes the CNF formula obtained by product of sums (POS) simplification of
the truth table of &(I(y), y). The different logical relations between each gate output y and gy(I(y))
are shown in Figure 2.3. Whenever the values of y and g, are specified, the gate is either justified
(J) or aconflict (C) is defined; otherwise the gate is unjustified (J).

Example 2.11. For atwo-input AND gate y = w; [, shown in Figure 2.4, the CNF formula can

be obtained from product of sums simplification of &,. The resulting expression is given by,

¢y = (Wy+=y) Hw, +ay) mwy +=w, +y) (2.10)



Gate type Gate function by

AND y = AND(wy, ...,Wj)

NAND y = NAND(wy;, ..., w;)

m j
_ ] O
OR y - OR(Wla lWJ) |_I (—|Wl+y)i| EDZ WI+—|}D
_ L& O
Li=1 i=1
NOR y = NOR(wy, ----Wj) |_| (~w; + —.y)} [[]z w; + 1y
A O£ O
Li=1 i=1
NOT y = NOT(w,) (y+wy) H=y+-wy)
BUFFER y = BUFFER(w,) (my+wy) Ly +-wy)

Table 2.1: CNF formulas of simple gates

The construction of this expression immediately suggests how to extend it to a larger number of
gate inputs, without explicitly building the truth table. The same procedure can be used to con-
struct the CNF formulas for other simple gates. Finally, note that the derived CNF formulais iso-

morphic to Tseitin's transformation in the case of the (I operator. O

Gate consistency functions and associated CNF formulas can be easily derived for the
remaining simple gates, as well as for more complex gates for which it is computationally feasible
to construct and simplify the truth table. For simple gates, the approach used to derive (2.10) can
be extended to a larger number of inputs, as shown in Table 2.1. As aresult, for smple gates, the
size of ¢ islinearly related to the number of gate inputs. For AND, NAND, OR and NOR gates
with j inputs, the CNF formula requires j+1 clauses. For NOT and BUFFER, two clauses define
the consistency function. XOR and XNOR gates are represented in terms of the simple gates. For

an XOR gate we have the following:
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X1
Y1 , b = (Xg+2y) AXy+2yy) H=X + X, +y,) O
1
XZ{ (X +7Y,) Xz +Y,) =X, + 2 X5+ Y,) [
Yo (my +2Z) Ly, +z)) Ly +Y, +=2)

X3

V ={Xq, X0, X3, Y1, Y2, 21 }

Figure 2.5: Consistency function for an example circuit

y = XOR(wy, W,) = wy 0w, = ~w, (W, +w,; [hw,

(2.12)
y = XOR(wj, ...,WJ-) = (.(wyOwy) O ..0) DWJ-

and for an XNOR gateit is only necessary to consider the negation of (2.11). The CNF formula of
these gates and all other complex gates can be constructed as the CNF formula of a subcircuit. As
with propositional formulas, set V must contain any auxiliary variables that are used for represent-
ing the internal nodes of a subcircuit.

Given a combinational circuit, described by a circuit graph C = (V, E), the CNF formula

for the circuit is defined to be the conjunction of the CNF formulas of each of its gates:

¢ = ¢ (212
e

where ¢ is the CNF formula associated with each gate output node y in the circuit. (Note that ¢
can also be viewed as the set union of the CNF formulas of each circuit gate.) Consequently, ¢

defines a consistency function ¢ for the circuit such that for any assignment A, &| AT o] A

Example 2.12. An example circuit and corresponding CNF formula are shown in Figure 2.5,

where for each gate, the CNF formulais adapted from Table 2.1. O

The number of clauses in ¢ is linearly related to the number of circuit nodes. For each
simple gate with j inputs, j+1 clauses are created. For a 2-input XOR (or XNOR) gate and from
(2.11), the CNF formula of a subcircuit representing the gate requires 4 auxiliary nodes (one for
each gate in the expansion of the XOR/XNOR gate) for atotal of 11 clauses. The CNF formula of

aj-input XOR/XNOR gate requires 4 x (j —1) auxiliary variablesand 11 x (j — 1) clauses. Since
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bounded fanin is assumed, each gate contributes a constant number of clauses, and thus |¢p| =O(N).
Moreover, under the bounded fanin assumption, in the worst-case there are O(N) literals contained
in the clauses of ¢.

In some cases the CNF formula for a circuit can contain at most three literals per clause
and the associated satisfiability problem isthen referred to as 3-SAT. In such a situation, each sim-
ple gate with k inputs is replaced by a subcircuit of k — 1 two-input gates of the same type. The
resulting CNF formulafor each gate contains at most three literals per clause, and so does the CNF
formula of the circuit. This same solution holds for circuits containing complex gates, where each
gate expansion must then be in terms of two-input simple gates.

It isinteresting to note that the above construction of the CNF formula of acircuit is based
on Tseitin’s transformation for propositional formulas, but where the creation of auxiliary vari-
ables is unnecessary since we have access to each gate output. This transformation was rediscov-
ered in recent years by T. Larrabee in [106], in an application of SAT algorithms to test pattern
generation in combinational circuits. In [24] Chakradhar et a. proposed the representation of the
false function of a circuit, which corresponds to the complement of the consistency function, also
in the context of test pattern generation. Independently, in [35, pp. 940-945], the transformation of
a combinational circuit into a product of clauses is also described, with the objective of proving

polynomial-time reducibility of the circuit satisfiability problem into SAT.

2.4 Implications

Besides identifying conflicts and consistent assignments, CNF formulas (henceforth
referred to as clause databases) provide one possible formal framework for the definition of logical
implications. For example, in the clause database of the AND gate of Figure 2.4, suppose that
y = 1, then, for any consistent assignment, w; must assume value 1 due to (w; + —y) and w, must
assume value 1 due to (w, + —y), since otherwise the consistency function of the AND gate would
evaluate to 0 and a conflict would be identified. Hence, we say that y = 1 implies the assignments
w; « 1andw, — 1. Ingeneral, given aunit clause (I + ... +1j) of ¢ with unique free literal |;,
consistency requires|; — 1, since this represents the only possibility for the clause to be satisfied.

If X isthe variable associated with literal |;, and |; isapositive literal of avariablex (i.e. I; = x), then
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the value of x must be set to 1; otherwiseiif |; is a negative literal of avariable x (i.e. l; = = x), then
the value of x must be set to 0. The assignment of x, caused by the requirement to satisfy a clause
of the clause database, is referred to as alogical implication of x, and we say that the assignment
of xisimplied.

By formulating implications as the required assignments to satisfy unit clauses, we relate
the concept of logical implication (commonly used in computer-aided analysis of combinational
circuits [1, p. 187]) to the unit clause rule (or one-literal clause rule) of the procedure for solving
propositional satisfiability proposed by M. Davis and H. Puthnam in 1960 [38]. The unit clauserule
states that if there exists only one literal assignment that can satisfy a clause, then that assignment
must be made®. The iterated application of the unit clause rule to a CNF formulais often referred
to as propositional (or Boolean) constraint propagation [46, 115, 116, 178]. In view of the previ-
ous discussion, the derivation of implications in a combinational switching circuit will be referred
to as Boolean constraint propagation (BCP) throughout this dissertation.

The pseudo-code description of BCPis shown in Figure 2.6. An original assignment set A;
is assumed, which may imply other assignments due to the unit clause rule. A variable, status,
identifies the existence of a conflict. The procedure returns As as the resulting assignment set,

being invoked asA; — BCP(A;, status).

Theorem 2.1. With A; and A defined above, the following holds true: (1) A; O Ay; and (2) each

pair (x, v) O Ay identifies a necessary assignment for the clause database to be satisfiable given A;.

Proof: The first claim must hold, since BCP() only identifies assignments for unassigned
nodes. For proving the second claim, we assume that there exists a consistent assignment set A,
such that A; A, and show that then we must have A; U A O A. We use induction on the number of
assigned nodes.

Basis step (k = 1). The first implied assignment results from a unit clause where al literals
but one are assigned due to A;. Hence, the assignment is necessary for A; to be included in a con-

sistent assignment A.

4 In the ori ginal formulation [38], the application of the unit clause rule is defined in terms of alge-
braic operations on the clause database, but the final result is equivalent to assigning a literal to 1
(seefor example [12, 64, 178] for asimilar conclusion).
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/Il I nput argunents: The initial assignment set A
/[ Qut put argunents: status [ SUCCESS, CONFLICT}

/I Return val ues: The final assignnment set A;
I

BCP (A, &status)

{

st at us = SUCCESS;
As < Aj; /l'I'nitialize final assignment set
comm t assignment A // Set initial partial variable assignment
whil e (clauses unsatisfied or unit clauses in ¢) {
if (exists unsatisfied clause w) {
status = CONFLI CT;

return Ag
} .
if (exists unit clause w with free literal I=x) {
X 1l0Oi=-i; /I Assignnent: | is set to 1
A « Asd ( x-i) I/l Update final assignnent set
}
}
return Ay
} . . .
Figure 2.6: Boolean constraint propagation
Induction Hypothesis (k = m). Assume that the first m implied assignments are necessary for
A OA.

Induction step (k = m + 1). The (m + 1) assignment isimplied due to a unit clause where all
literals but one are assigned due to either A; or one or more of the first m implied assignments.
Since by hypothesis all these m assignments are necessary for A; O A, then the (m + 1)th assign-
ment is al so necessary.

We can thus conclude that all implied assignments are necessary for A; U A, and so we must

have A¢ O A. [

Let the assignment of a variable x be implied dueto aclause w = (1 + ... +1y). Insuch a
situation, the antecedent assignment of X, referred to as A(X), is defined as the set of assignments of

variables other than x with literalsin w:
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AKX = {(y, vy Do Oy % (213)

Given the definition of antecedent assignment, the antecedent set of the assignment of x, referred

to asa(x), is defined as the set of variables, other than x, that are associated with the literals of w:

a(¥) = {yl(y, vy) O AR} (2.14)

where each variable in o (X) is referred to as an antecedent of x. Intuitively, the antecedent set of x
denotes a set of nodes whose logic values are directly responsible for implying the assignment of

X.

Example 2.13. Consider a clause w =(w + -y + —X) associated with a clause database, and let
w=0and y = 1. With these assignments w is a unit clause. Thisimplies x — 0, the antecedent
assignment of xisgiven by A(X) = { (w, 0), (y, 1) } and the antecedent set of x is defined by a (x) =
{wy}. O

Given the definitions of implication of variable assignment, antecedent assignment and

antecedent set we have the following result:

Theorem 2.2. Let the logic value of x be v, (1{0, 1} . Let a(x) be the antecedent set of x and let
A(X) be the antecedent assignment of x. In such a situation, for any assignment set A such that

A(x) O A, either the partial variable assignment A implies x — v, or aconflict isidentified.

Proof: Immediate from the definitions of implication of variable assignment, antecedent
assignment and antecedent set. Consider a partial variable assignment A, with A O A(X). By
hypothesis, the antecedent assignment of x isA(X), and thus there exists aclause w in ¢ for which
the assignments denoted by in A(x) imply x « v,. If, on the other hand, some other clause in ¢
implies X « \TX then w becomes unsatisfied because of the value assigned to x and of the assign-

ments identified by A(X). Hence, a conflict isidentified. ]

As mentioned earlier, clause databases do not necessarily contain all implicates of the

associated consistency function. In general, it is not practical for a clause database to contain all

40



implicates, since that can be exponential in the number of variables. Consequently, the structure of
most clause databases does not reveal all logical relations among their variables. In some situa-
tions, however, it may be of interest to augment the initial clause database with other implicates of

the consistency function, to help identify some of these logical relations.

Example 2.14. Consider the example circuit of Figure 2.5 on page 36. If z; assumes value 1, then
Xo cannot assume value O, and hence it must assume value 1. Assuming that z; isthe only assigned
node, the requirement that x, be assigned value 1 is not identified by Boolean constraint propaga-
tion over the clauses of the given clause database. The assignment z; 1 satisfies clauses (-y; +
7;) and (ny, +z;), but implies no additional assignments. We note, however, that for any complete
node assignment, if z; assumes value 1, then x, must also assume value 1 for the consistency func-
tion to evaluate to 1. As aresult, the set of clauses describing the consistency function can be aug-

mented with clause (—z; + x,). O

As the example illustrates, augmenting the set of implicates of the consistency function
facilitates the identification of implications and of conflicts given certain partial variable assign-
ments. Because BCP does not identify all logical consequences of an assignment, it is said to be
logically incomplete [116]. Conversely, a procedure for identifying implicationsis said to be logi-
cally complete if it identifies all logical consequences of an assignment. In general, it is not feasi-
ble to expect an implication procedure to be logicaly complete, since any known agorithm for
derivation of all logical consegquences would require an exponential amount of work in the worst-
case [116]. Other procedures, more complex than BCP, can be devised, examples of which are
described in the following chapter and which identify no fewer implications than BCP. Even
though BCP is logically incomplete in most clause databases, we show below that it is logically
complete if the clause database is defined by al prime implicates of € (i.e. ¢P). In general, we say
that a node assignment is derivable if the considered implication procedure can imply that assign-
ment through some sequence of implied assignments over afixed clause database.

In the development of SAT algorithms, we will consider identifying implicates of the con-
sistency function and adding them to the clause database. As mentioned above, these implicates

help BCP in identifying more implications. In addition, these implicates are of key importance in
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implementing several features of search-based SAT algorithms.
2.5 Algebraic Background

In this section we review a few concepts commonly used in Boolean algebra [18] and,
with different names, in mechanical theorem proving [28, 110], and highlight some of their appli-
cations. These concepts are used throughout the description of search-based satisfiability algo-

rithms.
2.5.1 Consensus and Ground Resolvent

Consider clauses wq, W'y, Wy, W',, such that there exists aliteral |, associated with a vari-

ablex (i.e. either |, = x or I, = =x) and,
[ = (0 +1)] Ofw, = (wy+=1))] (2.15)

In this situation, the consensus [138]° of the two clauses w4 and w,, with respect to variable x is

given by:
C(Wy, Wy, X) = Wy + W, (2.16)

In the mechanical theorem proving literature [28, 110, 140], the consensus of two clauses is com-
monly referred to as the ground resolvent (or ground resolution operator) of the two clauses. The
ground resolution operator can be generalized over formulas of First Order Logic, being then
referred to as the resolution operator. Consensus is commonly used to derive prime implicates (or

implicants) of Boolean functions, whereas resolution and its variations constitute a fundamental

5 Although the name consensus is apparently due to Quine [138], the operation finds its roots in
Mathematical Logic, where it is sometimes called hypothetical syllogism (see for example [94, p.
60]): [(A-B)O(B-C)]OI[(A- C)] , that indicates that if a propositiona symbol A
implies B and B implies C then we can conclude that A implies C. An equivalent form for this
expression is [(-AOB)O(-BOC)] O [(-AOC)] , which illustrates the relationship with
consensus. According to Brown [18], the consensus operation had previously been used by Blake
in [13], for Boolean function simplification, under the name syllogistic result. Kneale and Kneale
[95, pp. 105-110Q] indicate that hypothetical syllogisms were most likely discovered by a Greek
Philosopher, Theophrastus, a pupil of Aristotle, around 300 B.C., as a direct consegquence of Aris-
totle’swork on Logic.
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component of theorem proving algorithms,

From (2.16) we can aso conclude that w; and w, logically imply c(w;, wo, X), i.€. if w,
and w, are true, then c(wq, W, X) isalso true, and if c(w,, wo, X) isfalse, then either w; isfalseor
w, isfase.

We should note that the unit clause rule introduced by Davis and Putham [38] (see
Section 2.4) isa specia case of consensus/resolution, being also referred to as unit resolution [10,
64]. Without loss of generality, let [w; = (w'; +1,)] O[w, = (=1,)] , with I, defined above. In
such asituation, (2.16) isgiven by c(w,, w,, X) = 'y, whichisto say that if w; and w, are satis-
fied, then w'; must be satisfied. Applying consensus between every clause containing literal |, and

w,, is therefore equivalent to setting literal I, to O in every clause containing |, thus satisfying

{- Ix}-
2.5.2 Generation of Prime Implicates

Let us assume a Boolean function ¢ described by a CNF formula . As mentioned earlier,
each clause of ¢ identifies an implicate of &. Following the work of Quine [137, 138, 139], the
iterated application of consensus operations to ¢ yields the set of prime implicates of ¢ [138].
Subsumption operations (see Section 2.2.2) ensure that non-prime implicates are removed from
the clause database. Given a consistency function & defined over N variables and represented with
|| implicates, then from [25] an upper bound on the number of prime implicates is
o(min(3N, 2/¢l)), and hence an upper bound on the size of fina clause database is
O(N Cmin(3N, 2/9l)). We further assume the improvement proposed by Tison [168] in which the
variables are ordered, and consensus operations are successively applied with respect to each vari-
able. The agorithm for the generation of prime implicates given ¢ is shown in Figure 2.7. An
order of the variables is assumed. The algorithm consists of a sequence of subsumption and con-
sensus operations. The consensus operation is described in Figure 2.8. For each clause w contain-
ing literal X, the consensus of w with respect to every clause containing literal - x is computed. The
definition of sets Cy(x) and C4(x) implicitly capture the operation of consensus. The processisiter-
ated for al clauses w containing literal x. The temporary formula ¢ (x) contains all the resulting

consensus clauses.
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/[ 1 nput argunents: Cl ause dat abase ¢
/[ Qut put argunents: None

/l Return val ues: Cl ause dat abase ¢°
I

Generate_Prine_lInplicates(¢)

{
Order variables to be resol ved;
¢ < Subsune(9); /I renove subsuned cl auses
while (x is next variable in order to be resolved) {
¢ — Consensus( 9, X); /[consensus over X
¢ — Subsune(¢);
}
return ¢; lreturn¢as ¢P
} Figure 2.7: Algorithm for the generation of prime implicates
/Il I nput argunents: Cl ause dat abase ¢, consensus variable x
/[ Qut put arguments: None
/[ Return val ues: Consensus cl ause dat abase ¢ [( X)
I
Consensus( ¢, X)
{
Co® = {w—{x%} w0 ¢OxO O} ; /Il Rerove x fromecl auses
Ci¥ ={w—{x} w0 ¢Ox'Ou}; /l Renove ~xfromcl auses
o) = {wy O wlclo o0 Co(¥w 1 OC4(X)}; //Pai rwi se consensus
return ¢ 0o¢(X);
}

Figure 2.8: Consensus operation with respect to variable x

A simple implementation of the subsumption procedure (in Figure 2.7) isto compare each
clause w, with each other clause w, of ¢, and test whether w, subsumes or is subsumed by clause
oo26. The generation of the prime implicates of a given function & (associated with a clause data-
base ¢) computes a new clause database ¢

In order to derive time and space complexity bounds we note that at any stage of proce-

dure Gener ate_Pri me_| npl i cat es() there can never be more than 3N clauses, because of

6. A more efficient subsumption procedure can be found in [47], which is based on representing
clausesin atrie data structure [96, pp. 481-499], to reduce the average time to decide subsumption
relations and to remove subsumed clauses.



subsumption being applied. Consequently, at every stage the number of clausesis O(3N), each of
which is size O(N). Subsumption operations require comparing each clause with each other clause,
and hence requires in the worst-case O(N [{3N)?) time, given that each comparison takes in the
worst-case O(N) time. O(N [{3N)?) is also an upper bound on time required by the consensus
operation, because, in the worst case, consensus may be required between O(3N) clauses and
another O(3N) clauses, and consensus between two clauses requires in the worst-case O(N) time.
Since we have to iterate over N variables, then an upper bound on run time of the algorithm of Fig-

ure2.7is
O(N2 B2N) (2.17)

It is important to note that procedure Gener at e_Pri ne_| npl i cat es() converts a
clause database ¢ into a canonical form of the associated function &, because the set of al prime
implicates of a Boolean function is unique. Similarly, the disjunction of al prime implicants is
also acanonical form and isreferred to as the Blake Canonical Form [18, pp. 71-86]. Furthermore,
we note that there are more recent and efficient algorithms for computing the prime implicants/
implicates of a Boolean function (see for example [36, 121, 164]). However, for the purposes of

the present dissertation, the basic algorithms described above suffice.

Example 2.15. An example of the application of the algorithm for prime implicate generation is
shown in Figure 2.9, where the graphical notation proposed by Tison [168] is used. The objective

isto compute the set of prime implicates of the switching function:
f(X,y,Z,W) = (X+y+2) QX+y+wW+=2)[{-X+y+2) Q-X+=y+-w)

At each iteration only the non-tautologous resulting clauses are represented. For example, the con-
sensus of (X +y+z) with (-x+-y+-w), with respect to variable x, is a tautology (i.e. the
resulting clauseis 1) and so it is not represented. For this example, we note that, after resolving on

X, y and z, resolving on w introduces no new prime implicates. O
2.5.3 Algebraic Solutions for SAT

The same principle that is used to generate the prime implicates of Boolean functions is
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(X+y+2) (X+y+w+-2) (-x+y+2 (=x+-y+-w)

S
resolve on x S
subsumed

(y+2)
(X+y+w+=2) (AX+y+-w) (y+2)
resolveony
(x+-w+2)
(Xx+y+w+-2) (Ax+-y+-w) (y+2 (x+-w+2)
resolve on z
(x+y+w)

F(X, ¥, 2,W) = (y+2) ax+ =y +-w) x4y + W) Dax+-w+2)

Figure 2.9: Example of identification of prime implicates

used in theorem proving while establishing the validity of formulas of first-order logic [28, 110,
140]. For propositional CNF formulas, this process is referred to as ground resolution.

Different forms of resolution have been proposed [28, 110]. Saturation resolution [110, p.
66] for the propositional calculus is equivalent to Tison's algorithm for deriving prime implicates
[168], but without subsumption operations. Consequently, the algorithm of Figure 2.7 can be used
to test the satisfiability of a CNF formula. Let ¢ be the clause database in which each clauseis a
prime implicate of &. Suppose that clause w = [is derived, i.e. w isidentically false. Then w is
the only clausein ¢, since it vacuously subsumes all other clauses, and £ isidentically 0. Other-
wise, & is shown to be satisfiable, and we only need to provide a mechanism to recreate an assign-
ment after the resolution steps are completed. As we show next, such a mechanism runs in linear
timein the size of ¢, which may nevertheless be exponential in the number of variables.

Suppose that the first assignment y = vy, is chosen. Since ¢ P contains all the prime impli-
catesof &, then eithery = Vy sets€ to 0, or thereis at least one combination of values of the remain-
ing variables that can satisfy &; otherwise (y“v) would be a clause of ¢P. The process of electing
assignments is iterated for all variables, and at each step either the value v, of a variable w is

accepted or it must be complemented. In any case, it is never necessary to reconsider both el ected
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assignments for any variable w. To prove thisfact, let us suppose that both elected assignmentsto a
variable w had to be reconsidered. Then there would be an inconsistent assignment set A, which
would be discovered only after specifying two assignment sets A, and A, with A; O Ay, A O A3
andA,=[Az-{W }]{ w"'}.But then the assignmentsincluded in A; would identify an impli-
cate of the consistency function not subsumed by all prime implicates of &; acontradiction.

After processing all variables, a satisfying assignment is identified. We further note that
Boolean constraint propagation (BCP) can complement the above procedure by identifying addi-
tional assignments, thus reducing the number of conflicts. Since BCP only identifies assignments
that are necessary for the identification of a solution (from Theorem 2.1), then we are again guar-
anteed that the proposed procedure never needs to reconsider both assignments to any variable.

Furthermore, we have the following result:

Theorem 2.3. Given a clause database ¢ that identifies the set of all prime implicates of a
switching function &, then BCP (as defined in Figure 2.6) is logically complete, i.e. given an elec-

tive decision assignment, BCP identifies all possible logical consequences of such assignment.

Proof: The proof revisits and formalizes the ideas described in the above paragraph, but
applied to BCP. Let x — v, bean elective assignment and |t the assignment set A denote all logi-
cal consequences identified by BCP as a result of the elective assignment. Suppose the existence
of alogica consequence w « v, which BCP does not identify (i.e. (w, v,,) 0 A). Insuch asitu-

ation, (w, v,,) would be an invalid assignment, and so we could construct the implicate,

w = ww+ zm s¥s
(svg OA

which would then be a non-subsumed new implicate of &. Hence, a contradiction. [

A different formulation and proof of the above theorem can be found in [46] in the context
of Truth Maintenance Systems. We further note that even though BCP is logically complete for a
clause database composed of primeimplicates, it will not necessarily identify the assignment of all
variables. As aresult, it is necessary to elect some node assignments when applying the procedure

described above.
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/Il 1 nput argunents: O ause dat abase ¢, consensus variable x
/[ Qut put argunents: None

/I Return val ues: Consensus cl ause dat abase ¢ p( X)

I

Consensus( ¢, x)

{
Co¥ = {w—{x%} [wD ¢Ox°0u} ; /l Renove x fromcl auses
Ci(¥ = {w—{x} [wO¢Ox!Ou}; // Rerove ~xf romcl auses
d(x) = {wy O ool(P o0 Co¥w 1 0C (X} /[Pai rwi seconsensus

/I Del ete all clauses containing X
¢« 0-[{oO{x%bd OCyx} Ofw O{xFd TC(x}] ;
return ¢ 0O¢(X);

Figure 2.10: The Davis-Putnam resolution procedure

Example 2.16. Let us consider the example function f(x, y, z, w) shown in Figure 2.9. The decision
assignment z = 0 implies the assignment y = 1, but no other node assignments are implied. This
fact just indicates that, to satisfy f, we still have non-unigque options with respect to the values of

the other variables. 0

It isinteresting to note that one of the first algorithms for CNF satisfiability, proposed by
Davis and Putnam in [38], is based on a dightly modified form of saturation resolution. With
respect to procedure Gener ate_Pri ne_| npl i cat es() given in Figure 2.7, the consensus
procedure to be invoked is now defined in Figure 2.10. (Observe that in [38] the consensus opera-
tion isimplemented by two different phases of the algorithm: the rule for eliminating one variable
and the procedure for reconstructing a new CNF. The operation of these two steps is equivalent to
the resolution procedure of Figure 2.10.) The Davis-Putnam resolution procedure ensures that
after resolving with respect to a variable x, all clauses containing literals on x are deleted from the
clause database, since these clauses are irrelevant for the goal of proving satisfiability. Let ¢, be
the current clause database and let ¢ be the clause database that results from applying the Davis-

Putnam resolution procedure with respect to avariable x, ¢, — Consensus(¢y - 1, X).

Theorem 2.4. Given the definitionsof ¢, 1 and ¢, ¢ — 1 issatisfiable if and only if ¢ is satisfi-
able.
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Proof: Suppose an assignment set A such that the value ¢, — 1 is 1. Now suppose, without
loss of generality, that x = 0. Then every clause in Cy(X) must be satisfied by hypothesis. The
Davis-Putnam procedure replaces the set of clauses containing a literal in x by ¢ (x) (see Figure
2.10). Now all clausesin ¢ (x) are satisfied, since each resulting clause contains a clause in Cy(X),
which is satisfied. Hence, ¢ is satisfied. The same reasoning applies for x = 1.

Conversely, suppose an assignment set A (not containing x) such that the value of ¢ is 1. We
show that the value of x can be set so that ¢ _ ; also evaluatesto 1. Suppose wy, [ Cy(x) such that
wyp is unsatisfied under A. By definition, ¢(X) contains the set { w, 0 °°1‘P 1 0 C4(¥)} . Hence,
because wy is unsatisfied, all clauses in C;(x) must be satisfied, since ¢ (x) valuatesto 1. In such a
situation, just set x=1and ¢, _ 1 isalso satisfied. A similar reasoning appliesfor w,; 0 C,(x) such
that w, is unsatisfied under A. Note that it is not possible to have clauses wg and w;, wy 0 Cy(X)
and w; O C4(x), such that both are unsatisfied under A, because, by definition of ¢ (x), ¢, would
not be satisfied; a contradiction.

By applying this analysis to al resolution steps we are ensured that the clause database that
results from iterated application of the Davis-Putnam resolution procedure is satisfiable if and only

if the original clause database is satisfiable. [ |

The above proof is based on the proof given in [40, theorem 6.2, p. 248], thus proving the
resolution-based Davis and Putnam procedure to be sound and complete. Interestingly, another
proof of correctness and completeness of an inference rule equivalent to this form of resolution
was established by T. Skolem in 1928 [158]. Furthermore, the application of this form of consen-
susisaso implicit in Boole'swork [14, see Chapter VII on eimination].

We note that the size of the clause database that results from applying the Davis-Putnam
resolution procedure is strictly smaller than for the previous procedure (i.e. saturation resolution).
It can also be concluded that the Davis-Putnam resol ution procedure cannot be used to identify all
the prime implicates of a Boolean function, since some sets of non-subsumed clauses are dis-
carded at each step of the procedure. The original satisfiability algorithm proposed by Davis and
Putnam also uses a few additional rules to simplify the CNF formula, particularly the unit clause
rule (discussed in Section 2.4) and the pure literal rule. These rules are analyzed in more detail in

the next section. We further note that the search-based SAT algorithm commonly referred to asthe
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Davis-Putnam procedure is actually described in [39, 110], and is based on the plain backtracking
search procedure (there the backtracking operation being referred to as the splitting rule).

The description of the resolution-based Davis-Putnam procedure does not provide mecha
nisms to construct a satisfying assignment given that a CNF formulais proved to be satisfiable. In
order to identify the satisfying assignment for the original CNF formula, we study formula ¢ that
results from resolving formula ¢ _ 1 with respect to a variable x, ¢, — Consensus(¢y - 1, X).
Suppose ¢ is known to be satisfiable. Then, from our analysis above, either all clauses of Cy(x)
evaluate to 1, or all clauses in C4(x) assume value 1. Hence, we choose x so that al clauses in

{wD{x%p OCy(X} O{w O{xYd OC,(X)} aresatisfied. The process is repeated for all
k in decreasing order, and hence if the problem is satisfiable, then a satisfying assignment is iden-
tified.

Saturation resolution and the resolution-based Davis-Putnam procedure incur significant
computational overhead in both time and space. There are several variations and improvements to
saturation resolution that can potentialy be applied to SAT, even though such improvements are
typically proposed for First-Order Logic (see for example [28, 110], and [131, 163] for more
recent results). Currently, practical and complete algorithmic approachesto solving SAT arein the
vast mgjority of cases variations of the plain backtracking search procedure.

As a fina note, we study one possible extension of consensus for solving instances of
SAT, which builds on a specialization of the generalized definition of consensus proposed by Tison
[168]. Let usassume a set of M clauses p;j, 1 <i <M, defined over mvariables{ Xy, ... , Xy} such

that:
1. |i_||1i = 0.

2. For some y, ﬂ“i £0.
2|

Assume a set of J clauses y; and a set of K clauses v defined over other variables not

including the variables{ X4, ... , Xy, }. Further, let the clause database be given by:
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¢ = Dukmm (v + 1) Duui (2.18)

where py;, 1<1< M, isone of the clauses defined over the variables{ x4, ... , Xy }. Insuch asitu-

ation, & associated with ¢ is satisfiable if and only if the following clause database is satisfiable:

In order to justify the proposed transformation, we note conditions 1 and 2 above. An assignment
to the variablesin { xq, ... , X}, that satisfies all clauses other than p;, must set p,; to 0. On the
other hand, any assignment that satisfies p; must set some other clause y; to 0, and so the clause
database becomes inconsistent. We can thus conclude that only assignments to the variables in
{ X4, ... , X} that set p, to 0 can be part of a consistent assignment for ¢. Hence, (2.19) follows.
The transformation of (2.18) into (2.19) is a generalization of the unit clause rule (see page 38),
and thusiit is also logically incomplete. (Note that the case m = 1 corresponds to the unit clause
rule.) The above generalization can potentialy lead to more simplifications than the unit clause

rule.

Example 2.17. Let us consider the following clause database:
(y+-w+-as)Qy+tw+s+x+-2)[{~y+s+x+-2)Ax+2) {~x+-2) {~x+2)

Even though the unit clause rule cannot be applied, its generalization can. Let the set of variables
be {x,2 then, using the transformation of (2.18) into (2.19), the resulting clause database

becomes (y+-w+-s)Qy+w+s)[{~y+5). O

The generalization of the unit clause rule is useful in situations where the set of variables
{Xq, ..., X, and associated clauses can be easily identified. Even though this rule is theoretically
appealing, given its apparent simplification ability, its practical use is questionable. For example,
the identification of resolution sets of variables { x,, ..., X} requires considering al subsets of

variables of size lessthan or equal to athreshold value m, that must satisfy the conditions required
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for transforming (2.18) into (2.19). Testing such conditions is in the worst-case exponential in m.
In addition, and for clause databases derived from combinational circuits, the sparse nature of the

generated clause databases suggests that the extension to the unit clause rule might be seldom

applied.
2.5.4 Search-Based Davis-Putnam Procedure

In this section we review the search-based formulation of the Davis-Putnam procedure for
solving SAT that is described in [39, 110]. In particular, we follow the description of [39]. This
procedure (referred to as DP-SAT) forms the basis of alarge number of other search algorithms for
SAT and is composed of the following main steps:

1. Unit clauserule: If thereisaunit clause{ x1} , then remove literal { x™1} from any clause con-
taining it. This can be viewed as assigning value —i to variable x, and consequently, setting to
0 any occurrence of literal { x™1} .

2. Pureliteral rule’: If avariable x is monoform, i.e. if the clause database just contains literals
on variable x of the form { x} , then remove from the clause database all clauses containing
{ x} . This can be viewed as the ability to disregard a set of clauses containing the same literal
which does not appear complemented. In this situation, the literal will never need to be com-
plemented, and so it can assume value .

3. Solitting rule: If steps 1 and 2 cannot be applied, choose a variable and split the clause data-
baseinto two. Thefirst onewith all clauses containing { x% removed, and { x} removed from
all clauses. The second one with all clauses containing { x1} removed, and {x% removed
from all clauses. Each resulting clause database is processed separately. (Note that the split-
ting ruleisjust a different organization of the plain backtracking algorithm. Furthermore, in
[39] generated clause databases are maintained in a FILO queue, that corresponds to back-
tracking.)

4. Repeat steps 1 through 3 while queue of clause databases is not empty. Discard clause data-

" The pure literal rule was so named by Davis and Putnam [38] in 1960, even though the same idea
was first described in [56] in 1959, in asearch-based algorithm for proving the satisfiability of bool-
ean formulas, and whose only inference rule was the pure literal rule. This algorithm did not con-
vert a boolean formula into normal form; the rule was described for formulas with connectives [
and [, and = only associated with literals.
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bases where the empty clause is derived (i.e. unsatisfiable clause).
5. If the queue becomes empty, then the formulais unsatisfiable. Otherwise, if the empty formula
isderived (i.e. ¢ = ), then a solution exists.

From the above description the following facts are clear. DP-SAT derives no fewer impli-
cations than BCP, and it may derive more implications. This fact results from the pure-literal rule,
that can be used to remove some variables that BCP does not. Due to its simplicity, the worst-case
and average-case complexity of DP-SAT, and of some of its simplifications and improvements,
have been extensively studied (see for example [59, 73, 125]). As a side remark, note that after
applying BCP, the pure literal rule may identify a few more implications. However, no more unit
clauses will be created until another decision assignment is made, and so BCP needs not be
invoked again. A straightforward corollary is that the pure literal rule will not identify a conflict
that BCP fails to identify (provided that BCP has been invoked prior to applying the pure literal

rule).
2.6 Querieson Clause Databases

Let us assume a clause database ¢ ,. The most general form of instance of the satisfiability
problem is to specify a (possibly empty) set of variable assignment objectives, and evaluate
whether a satisfying assignment can be identified. For this purpose, the set of objectives is repre-
sented by a CNF formula ¢ 5, which we refer to as a query. The objective of SAT agorithmsisto
identify a satisfying assignment to each query.

The operation of a SAT algorithm on an original clause database ¢, given aquery ¢, is

defined by the following computation:
(0, A) « SAT(¢p, O ¢qD , status) —(¢q, 0) (2.20)

which assumes the interface to SAT algorithms defined in Figure 2.1. The SAT algorithm identifies
whether the original clause database ¢ ,, appended with a query ¢, is satisfiable. The outcome is
made available through status. The resulting clause database ¢, is given by the (modified) clause
database returned by the SAT algorithm, but with the origina query removed. The computation is

said to bevalid if and only if ¢r|A = ¢0|Afor every assignment set A.
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Example 2.18. For the example circuit of Figure 2.5 on page 36, an example of a set of objectives
isxz =1and z; = 1. Consequently, ¢ = (x3) L(z;). Another query would be to specify no objec-
tives, thus testing whether the clause database isitself satisfiable. Hence, ¢q =[. O

In the description of SAT algorithms in the following chapters we restrict queries to
denote cubes in the N-dimensional Boolean space. Consequently, a query is represented by a
clause database where each clause has exactly one literal. Such a query can be viewed as arestric-
tion of the consistency function & (associated with ¢ ) to the cube specified by ¢, and is denoted
by &g

The proposed search algorithms for SAT can identify and add clauses to the initial clause
database ¢, L o, which areimplicates of & . Since & isarestriction of € to the cube specified by
¢ o, these clauses are also implicates of §. Hence, these clauses can be added to the original clause
database ¢, independently of the query. We can thus conclude that implicates of &, identified by
execution of a SAT algorithm can be used for solving other queries, as long as each query defines
acube in the N-dimensional Boolean space.

In the following analysis of SAT agorithms, a query is aways implicitly assumed. The
usefulness of allowing the SAT agorithm to modify the clause database, even in the presence of a

query, will become apparent as we study search-based SAT agorithms.
2.7 Summary

In this chapter we introduced the mathematical framework that serves, in the remaining
chapters, to formalize the description and analysis of search-based SAT agorithms. The defini-
tionsintroduced can be categorized as follows:

» Definition of variables, literals, clauses and CNF formulas, with the objective of defining a
unified representation for instances of SAT.

» Definition of the consistency function associated with a CNF formula, and motivation for
CNF formulas to be referred to as clause databases.

* Representation of instances of SAT as CNF formulas. In particular, we described how to cre-
ate the CNF formula for a propositional formulaand for a combinational circuit.

e Formalization of implications in CNF formulas. Definition of Boolean constraint propaga-



tion. The concepts of antecedent assignments and antecedent set were al so introduced, which
play akey rolein the description of SAT agorithmsin the remainder of the dissertation.
Review of the concepts of consensus and resolution. Description of simple procedures for
generating prime implicates. Study of how these concepts can be applied to solving SAT
algebraicaly. Study of the search-based Davis-Putnam SAT algorithm.

Definition of queries on clause databases, which define how distinct sets of objectives can be

examined on the same clause database.
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CHAPTER I11

SEARCH ALGORITHMSFOR SATISFIABILITY

3.1 Introduction

In this chapter we undertake the study of search algorithms for the satisfiability problem
(SAT). As mentioned in Chapter |, a search agorithm entails a decision procedure that implicitly
enumerates a given search space. For SAT, and under the definitions of the previous chapter, the
search space is given by {0, 1} N. Our approach for solving SAT is to augment the plain back-
tracking search algorithm (see Chapter | on page 6) with several engines for inferring facts, in
order to reduce the amount of search. These engines can be categorized as follows:

1. Sdection engine, which decides the sequence of assignments to guide the search process.
The degree by which the selection engine reduces the amount of search is referred to as the
selection ability.

2. Deduction engine, which infers necessary assignments as a result of other assignments, that
result from decisions or from implications. Deduction engines are characterized by their de-
duction ability, that quantifies the capability of the deduction engine to identify logical con-
sequences.

3. Diagnosis engine, which infers the causes of conflicts, and can generate adequate informa-
tion to prevent the same conflicts from occurring later during the search. Diagnosis engines
are characterized by their diagnosis ahility, that measures the capability of the diagnosis en-
gine to identify the causes of conflicts.

Deduction engines implement a form of forward reasoning as a result of decision assign-
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ments. In contrast, diagnosis engines implement aform of backward reasoning as aresult of iden-
tified conflicts.

The above engines are applied during the search for a solution to a query. In addition,
other engines can be applied before the search or after a solution isidentified:

1. Preprocessing engines identify stronger implicates of the clause database, that can be used to
increase the deduction ability of the deduction engines. Preprocessing ability quantifies how
effectively the preprocessing engine computes implicates of the clause database.

2. Postprocessing engines remove redundancies from computed solutions to queries, and can
cache signatures of computed solutions. These cached signatures can be used during the
search for subsequent queries to reduce the amount of search.

Selection engines are largely heuristic, in the sense that the sequence of assignments cho-
sen is not guaranteed to reduce the amount of search. In contrast, deduction, diagnosis and prepro-
cessing engines infer facts that are guaranteed not to increase the amount of search. The
information cached by postprocessing engines is also guaranteed to reduce the amount of search,

but only for subsequent queries.
3.1.1 Chapter Objectives

The first objective of this chapter is to describe GRASP, a search algorithm for SAT, that
can be customized with different engines. As aresult, we are able to provide, with the same algo-
rithmic framework, awide range of search pruning ability as afunction of the computational effort
to conduct the search. The second objective is to detail each engine, as well as related simplifica-
tions and improvements. In particular, we propose to describe families of enginesfor identification
of implications, diagnosis of conflicts and preprocessing of clause databases. Moreover, we
describe engines for postprocessing and for making decisions.

With respect to other algorithms for SAT, the most significant contribution of GRASP is
its ability to diagnose the causes of conflicts. Three different methods, referred to as pruning meth-
ods, are proposed for diagnosing conflicts:

1. Conflict-Directed Backtracking (CDB) isaform of non-chronological backtracking based on

conflict diagnosis that, under some conditions, allows the search process to backtrack over
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severa decision assignments that can be shown not to be relevant for the identification of a
solution.

2. Conflict-Based Equivalence (CBE) identifies sufficient conditions for two different stagesin
the search process to lead to the same conflicts. Conflict-based equival ence conditions permit
early backtracking instead of requiring conflicts to be explicitly identified.

3. Failure-Driven Assertions (FDAS) denote required assignments to variables that are identi-
fied as aresult of a conflict. Different forms of FDASs can be defined, some of which exploit

the structure of the conflicts in order to derive stronger assertions.
3.1.2 Chapter Outline

Section 3.2 introduces al the structures required for the description of GRASP. The top-
level organization of GRASP is introduced in Section 3.3, followed by a definition of the main
conflict analysis methodsin Section 3.4. The next step is to describe the different engines that cus-
tomize GRASP. We start with the deduction engines, followed by the diagnosis engines. A particu-
lar emphasis is given to diagnosis engines, since they have seldom been applied to SAT
algorithms.

Preprocessing engines are described in Section 3.7. These engines resemble advanced
deduction engines and are used to complete the structure of the clause database by computing
additional implicates of the consistency function.

We then analyze the postprocessing engine, which is specific to combinational circuits.
This entails removing redundancies from solutions, i.e. decision assignments that are provably
irrelevant for satisfying the query, and caching signatures of each solution, in order to simplify the
search for solutions to subsequent queries.

An orthogonal issue is how to guide the search process by appropriately making decision
assignments. Decision making procedures are studied in Section 3.9. We also describe methods to
reduce the number of decision variables whenever clause databases represent combinational cir-
cuits.

Section 3.10 concludes the chapter by highlighting the major contributions of GRASP and

motivating the application of the ideas in GRASP to other domains.
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Although most examples in this chapter are based on combinational circuits and clause
databases are usually assumed to be derived from circuits, the techniques described, unless other-
wise noted, are applicable to any clause database. Furthermore, all formal results in this chapter

are stated without proof; proofs are provided in Appendix A.

3.2 Structuresfor Search

As described in Chapter |, a backtracking search algorithm implements a search process
that creates adecision tree and implicitly traverses the search space. Each node in the decision tree
specifies an elective assignment to a chosen variable, referred to as the decision assignment. In the
case of acombinational circuit, decision assignments can be restricted to the primary inputs’, since
assigning all primary inputs guarantees that all circuit nodes become assigned.

A decision level is associated with each decision assignment to denote its depth in the
decision tree; the first decision assignment at the root of the tree is at decision level 1, and the
objectives are specified at decision level 0. A decision level d(X) is associated with every assigned
variable x, and denotes the decision level at which the assignment of x is decided or implied. At
any stage of the search process, the entries in the decision tree define the active decision assign-
ments.

Every time a decision assignment is made it triggers other assignments that define an
implication sequence. The node that triggers each implication sequence isreferred to asthe trigger
node?. During the search process the implication sequences resulting from active decision assign-
ments are represented by an implication graph, | ¢, that is defined as follows:

1. The current assignment (x = vy) defines a vertex in the implication graph.

2. The incoming edges to each vertex (X = v,) in the implication graph correspond to the vari-
able assignmentsidentified by A(X) (given by (2.13) on page 40).

3. In the presence of a conflict, aconflict node, K, is added to the implication graph such that its

incoming edges are the node assignments that force a clause w of ¢ to be unsatisfied. Conse-

L Actually, in some cases decisions may be made with respect to other nodes, as will be discussed
in Section 3.9.

2. Besides decision assignments, other assignments that trigger implication sequences do exist and
are described later in this chapter. Moreover, implication sequences may be triggered by sets of
assignments.
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guently, the antecedent assignment of K, A(k), is defined as the set of variable assignments

associated with the unsatisfied clause w that is identified as causing the conflict:

AlK) = {(y,vy)ly D wO-yUw} (31)

Accordingly, the antecedent set, o (k), is defined for each conflict due to clause w:

a(k) = {y[(y, v(y)) O A()} 32

Each assigned node x is aso characterized by an implication level, 1 (X), that denotes the
length of the longest path in the implication graph from the trigger node to x. Implication levels
provide apartia order on the implications, and are central for implementing conflict diagnosis.

With the exception of the trigger node, the decision and implication levels of each

assigned node x are defined according to:

3(x) = max{a(y)|y U a(x)}

(3.3)
() = 1+max{1(y)|y O a(x) 0a(y) = d(x)}

For the trigger node, the decision level is defined as the current decision level of the search pro-
cess, and theimplication level isO.

When referring to an assigned node x, the notation x =v @ d /i is used to denote that the
value of xisv, x is assigned at decision level d and implication level i. Whenever the implication
level isnot significant, the notation x = v @ d is used instead. Finally, if only the value of x isrele-
vant then the notation x = v is used.

For a combinational circuit, JF(c) denotes the set of unjustified assigned nodes in the cir-

cuit at adecision leve c:
JF(c) = {yO Wy (y)# XO-Just(y)} (3.9

JF(c) iscommonly referred to asthe j-frontier in test pattern generation [1, pp. 192-193].

Example 3.1. Examples of a decision tree and implication graph are shown in Figure 3.1. It is

assumed that a conflict is detected after the decision assignment X3 = 1 is made. Asillustrated in
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Figure 3.1: Examples of decision tree and implication graph

Figure 3.1-c, and according to the definition of implication graph, the incoming edges to each ver-
tex x = v in the implication graph are associated with the assignments in the antecedent assign-

ment of X. O
3.3 Backtracking Search Algorithm

The top-level description of GRASP is shown in Figure 3.2. It assumes a clause database
¢ and an assignment set A as global variables. Initially, the clause database ¢ contains the original
clause database ¢, augmented with a query ¢4. Note, however, that when referring to the consis-
tency function &, the original clause database ¢, is assumed. The main purpose of GRASP is to
invoke procedure Sear ch(), which implements the search process. Two other procedures can be
invoked; Pr epr ocess() and Post process():

* Preprocess() implements the preprocessing engine. It can complete the clause database

with additional implicates of the consistency function and may imply necessary assignments.
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/I d obal vari abl es: Cl ause dat abase ¢

I Partial variable assignnment A
/I Return val ue: FAI LURE or SUCCESS

/I Auxiliary variabl es: Backt racki ng deci sion |evel B_
1l

GRASP()

{

if (Preprocess() == SUCCESS and Search (0, ) == SUCCESS) {
Post process() ;
return SUCCESS;

}
return FAlI LURE;
}
/I 1 nput argunent: Current decision level c
/I Qut put ar gunent : Backt racki ng decision |evel B_
/I Return val ue: CONFLI CT or SUCCESS
1l
Search (c, &B))
{
if (Select (VAR+VAL) == SUCCESS) /I Make deci sion
return SUCCESS;
while (TRUE) ({
i f (Deduce() !'= CONFLICT) { /' npl y assi gnment s
if (Search (c+1,pB) == SUCCESS) return SUCCESS;
else if (B !=c) { Erase(); return CONFLICT; }
} /l Di agnose confli ct
if (D agnose (c, B) == CONFLICT) { Erase(); return CONFLICT; }
Erase();
Sel ect (VAL); /I Modi fy deci sion assi gnnment
}
}

Figure 3.2: Description of GRASP

The operation of Pr epr ocess() is characterized by the operations ¢' — ¢ and A" — A,
A OANIn general, the preprocessing engine can be applied to either ¢ or ¢,
» Post pr ocess() implements the postprocessing engine. This engineis solely developed for

combinational circuits. It can remove redundancies from computed solutions and can cache

62



solutions for subsequent use. The operation of redundancy removal is characterized by
A" . AT Al 0 A", The clause database is not changed by the postprocessing engine.

Depending on the configuration of GRASP, the actual implementation of the two proce-
dures above can realize no functionality.

The interface to the SAT algorithm is defined by outcome — GRASP() . The pseudo code
for procedure Sear ch() is shown in Figure 3.2. At each decision level ¢ in the decision tree a
decision variable and associated |ogic value are chosen with procedure Sel ect (VAR+VAL), pro-
vided that a decision assignment can still be made; otherwise a consistent complete node assign-
ment has been identified and the search process can terminate. If a decision assignment is chosen,
logical implications are derived with Deduce(). If no conflict isidentified, the search algorithm is
recursively invoked at decision level ¢ + 1. Afterwards, if a solution has been identified, a termina-
tion indication is passed on to the previous decision levels. Otherwise, the backtracking decision
level is tested, and if different from the current decision level, further processing at the current
decision level is skipped. In the presence of a conflict, the last implication sequence is analyzed
with Di agnose(), and used to decide whether backtracking is needed and where to backtrack to.
Finally, procedure Sel ect (VAL) alows defining the next decision assignment with respect to the
current decision variable, provided another decision assignment can be made on that variable. As
we will see below, Sel ect (VAL) may be defined to implement no functionality, since conflict
diagnosis may create conditions for implying the assignment that would correspond to the second
branch at each decision level.

The search process creates a sequence of partial variable assignments Ag, Aq, ..., A,
where ¢ denotes the current decision level, and guaranteesthat Ay 0 A1 .L1 A, since other-
wise completeness of the search algorithm would not be guaranteed. At each decision level ¢, the
operation of each engine can cause modifications to either the clause database ¢ or the current
partial variable assignment A.. The operation of each engineis defined as follows:

» Sel ect (VAR+VAL) implements the selection engine. It selects avariable and alogic value
to assign to that variable. The decision variable is kept until the search process backtracks
below the current decision level. Sel ect (VAR+VAL) causes no modifications to the clause

database and only adds the decision assignment to the current partial variable assignment
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(AL=A._) - [Al=A_;O{(X V)] .

» Deduce() implements the deduction engine, which creates implication sequences caused by
trigger assignments. The operation of the deduction engine is characterized by ¢ (': - cbg and
by AL -~ AL ALOAL

» Di agnose() implements the diagnosis engine, which identifies the causes of conflicts. The
operation of the deduction engine is characterized by ¢ — ¢/ and AL = Al.

» Erase() clears the implication sequence defined at the current decision level. It causes no
modifications to the clause database, and the resulting partial variable assignment becomes
AL - (Al = A,

» Sel ect (VAL) selects another value for the variable chosen at the current decision level as
the decision variable. It causes no modifications to the clause database and the resulting par-
tial variable assignment becomes (AL =A_ ;) - [Af =A__ O{(xV)}] , assuming
the original decision assignment to be x = v.

The actual operations on the clause database and on the partial variable assignments
depend on how each engineisimplemented. GRASP, as described in Figure 3.2, can be configured
to realize different SAT algorithms, each of which is characterized by how the clause database and
the partial variable assignments evolve with the search process.

The purpose of the following sectionsisto detail each engine invoked by GRASP() and by
Sear ch() and study different tradeoffs between pruning ability and computational overhead
requirements. For the deduction and diagnosis engines several implementations are possible, and
special emphasisis given to the basic engines, which can beimplemented in linear timein the size
of the clause database. Given the definition of the basic implementations of Deduce() and Di ag-

nose() in the following sections, the following holds:

Theorem 3.1. The search algorithm for solving SAT, described in Figure 3.2, customized with the
basic implementations of Sel ect (VAR+VAL), Deduce() and Di agnose() is sound and com-

plete.

The proof of the above theorem, as well some complexity bounds for the search algorithm,

can be found in Appendix A. The proof of the theorem hinges on the fact that each clause that can



be added to the clause database is indeed an implicate of the consistency function, and that partial
assignment sets associated with a sequence of decision levels satisfy a containment relation, i.e.

AOAD O A
3.4 Conflict Analysis

The analysis of the causes of conflicts is central to the implementation of the different
engines. In this section we describe the basic mechanism for identifying sufficient conditions for a
conflict to occur. These conditions are used with different purposes, the most relevant being the

definition of implicates of the consistency function.

Example 3.2. The derivation of an implication sequence, based on Boolean constraint propagation
(BCP), that yields a conflict is shown in Figure 3.3. The decision assignment x; = 0 at decision
level 5 implies the assignments of X,, X3, Xg, X7, Xg, Xg @nd X1, which result in a conflict involving
the assignments of Xg, X109 @and z;. The portion of the implication graph that is relevant for this
implication sequenceis shown in Figure 3.3-b. Only the implication levels of the nodes assigned at
decision level 5 are shown. In terms of the clause database, the gate with output z; (an OR gate) is

characterized by the following consistency function (adapted from Table 2.1 on page 35):
¢, = (5%Xg+27) HmXp+27) HXg+ Xpp+ Z)

The implication sequence causes clause (Xq + X0 + =2;) to become unsatisfied since Xg = X9 =0
and z; = 1. By definition, the antecedent assignment of K is given by A(K) = { (Xg, 0), (X190, 0),
(1, 1) }, which explains the edges connected to K in Figure 3.3-b. (In the following, the derivation
of implications in terms of the clause database is omitted and implications are described in terms
of propagation of logic values in a circuit. However, in any situation we could readily create the
clause database for the consistency function of the circuit, and justify the assignment of any circuit

node as the requirement to satisfy a unit clause of the clause database.) O

In the remainder of this section we describe methods for identifying the causes of con-
flicts. In all situations, the purpose of conflict analysisis to identify implicates of the clause data-

base that describe the causes of identified conflicts. Two methods are described; the first is the
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Figure 3.3: Example circuit and partial implication graph

standard formulation of conflict analysis, whereas the second exploits the structure of implication

seguences.
3.4.1 Conflicting Clauses

Conflict analysis is based on traversing the portion of the implication graph associated
with the current decision level and establishing a set of conditions that are responsible for the con-
flict. Suppose that the current decision level is ¢ and that the current decision assignment leads to a
conflict. In terms of the implication graph this is represented by an implication sequence of nodes

assigned at decision level ¢ that terminates at a conflict node K. For each node x assigned at deci-
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sion level ¢, and for the conflict node K, the antecedent assignment is divided into two digoint sets,

of assignments /A(x) at lower decision levels, and assignments 2 (x) at the current decision level c:

AX) = {(y, v(y) D AXD (y) < 3(x)}

(35)
Z(x) = {(y, v(y)) U AMX (y) = d3(x)}

Example 3.3. For the implication graph of Figure 3.3-b, the antecedent assignment of Xg is parti-
tioned into A(Xg) = { (wq, 0) } and Z(Xg) = { (Xp, 0) }, since d(wq) = 2 and &(x,) = 5. O

The partition of A(X), for each variable x assigned at decision level ¢, isused to identify the
causes of a conflict and to represent those causes by a conflicting assignment set (Acg), which is

defined as follows:

Acg = causesof (k) (3.6)

where causesof : V O0{k} — 2V>*{0.1 ang,

gwmx if AX) =0
causesof(x) = O (3.7)

E{\(X) 0 [ ] causesof (y)}, otherwise

0

(v, v(y)) D Z(x)
O

causesof(x) identifies the node assignments that create an implication sequence leading to the
assignment of x. In particular, causesof(k) identifies a set of node assignments which represent a
sufficient condition for a conflict to occur. Note that A-g0 A._; O { (X, v(X))} , where x is the
trigger node, and so the causes of the conflict are contained in the partial node assignment before
the last implication sequence. Thisis clear from the definition of conflicting assignment set in (3.6)
and (3.7), which can only contain assigned nodes, all of which must be included in A _ 1 O
{(x,v(x) }.

A conflicting assignment set can also be viewed as a conjunction of node assignments that
are identified as a sufficient condition for a conflict to be identified. The negation of this conjunc-

tion of node assignments provides a conflicting clause that represents an implicate of the consis-
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tency function of the circuit®. The clause to be created from the conflicting assignment set is

defined by:
w = {x'M[(x,v(x)) O Acg (3.8)

which guarantees that the value of w is 0 if and only if al node assignments specified the conflict-
ing assignment set occur simultaneously. w is added to the clause database, which isto say that if
each assignment in a conflicting assignment set is satisfied, then the same conflict is identified
without the same implication sequence being recreated.

The definition of conflicting clause also implies that at most one literal of w is assigned at
the current decision level. In such a situation, if the last implication sequence is erased, then w
becomes a unit clause and thus it implies the assignment that will trigger another implication
sequence at decision level c. In contrast with most search-based SAT algorithms, which exhaust
the possible node assignments for each decision without establishing relations among the decision
branches, the procedure we propose generates a second branch at decision level ¢ that results from
an implication and not from a decision. Such an implication is referred to as an assertion, and
denotes a node that is assigned at decision level ¢ even though all nodes in its antecedent set are
assigned at decision levels less than c¢. Any implication that results from a conflicting clause is
referred to as a failure-driven assertion (FDA). Note that since FDAs are derived and create the
second branch at decision level ¢, procedure Sel ect (VAL) in GRASP realizes no functionality.

Suppose that w is created due to a conflict, associated with assigning a decision node x.
Then w adds additional information to the clause database. Without w in the clause database the
assignment of X creates an implication sequence that leads to the same conflict; with w in the
clause database the assignment of x to the complemented value would be implied without the deci-
sion being made, because it would be the only free literal in w. In this situation, the same conflict

would either not be identified or be identified without a decision assignment being made.

Example 3.4. To illustrate the derivation of conflicting assignments and associated clauses, con-

3 Conditions similar to implicates of & are referred to as nogoods in truth maintenance systems
[60, 116, 161] and in some algorithms for constraint satisfaction problems [143]. Nevertheless, the
basic mechanism for creation of conflicting clauses differs, since conflicting clauses are not neces-
sarily expressed in terms of decision variables, whereas nogoods are.
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sider the example of Figure 3.3-a. Given the conflict of Figure 3.3-b, the following conflicting

assignment set is derived using (3.6):

Acs = { (X4, 0), (wy, 0), (w,, 0), (z;, 1)}

because A(K) = { (z, 1) }, Alxg) = { (Wy, 0) }, A(%7) = { (Ws, 0) } and A(x;) = 0. From (3.8), the

following conflicting clause is created:
W = (X;+wWy +W, +-2) (3.9)

which states that the assignment x; = w; =w, = 0 and z; = 1 cause aconflict, asthe partial implica-
tion graph of Figure 3.3-b shows. This clause is now added to the clause database, thus providing
stronger conflicting conditions in the presence of partial node assignments. After erasing the con-
flicting implication sequence, w becomes a unit clause with x; asitsfreeliteral. Thisimpliesx;
1 and x; is said to be asserted. As a result, the second branch at decision level 5 is no longer
elected, but forced by w, which produces a failure-driven assertion and implies the assignment of
X1 to 1. (The second branch can only be specified as an assertion because each node can only
assume two logic values. In more general search problems (e.g. constraint satisfaction problems
[169]), this form of assertion is not derivable because the domain of each variable can have more

than two possible values.) O
3.4.2 Unique Implication Points

An implication sequence at a given decision level ¢ defines a subgraph contained in the
implication graph | . Assuming a conflict is detected, let U = { (uy, v(uy)) , ..., Uy V(uy) } denote
the set of dominators [166] of K, with respect to the decision assignment or set of asserted assign-
mentsin the implication graph at decision level ¢, that trigger the conflicting implication sequence.
Each (u;, v(u;)) is referred to as a unique implication point (UIP), and can be viewed as triggering

an implication sequence at decision level ¢ that |eads to the same conflict.

Theorem 3.2. Let a conflict be identified at decision level ¢, and let U = { (u;, v(uy)) , ...,

(U, v(uy)) } denote the set of UIPs. Then the isolated assignment of each UIP is a sufficient condi-
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tion for causing the same conflict.

Example 3.5. To illustrate the application of UIPs, let us consider again the implication sequence
of Figure 3.3-b (see page 66). The set of dominators of K with respect to X is{ (xy, 0), (xg, 0) }.
The assignment xg = 0 is a sufficient condition to trigger an implication sequence leading to the
same conflict. Hence, clause w; = (xg+-2z,) identifies an implicate of the consistency function.
On the other hand the node assignments on x4, w; and w, imply the assignment of xg. Hence, we
can create another clause, w, = (X; + W, + W, + = Xg) , which states that the assignments x; = w;
=w, =0imply Xxg — 0. This fact is clear from the circuit structure and derivable from the clause
database with BCP. However, the same clause al so states that the assignments xg = 1 and wy = w, =
Oimply x; — 0, whichisno longer derivable from the clause database with BCP. We can thus con-
clude that w, and w, represent two implicates of the consistency function that can potentially pro-

vide additional implicationsin the presence of partial node assignments. O

In the following we assume an implication sequence leading to a conflict and a set of UIPs
U={(u,Vv(u)), ..., U V(u)) }. Let (u, v(u)) O U and let (x, v(x)) be an assignment that is part
of the implication sequence triggered by (u, v(u)). Then, the causes of the assignment (x, v(X))

given (u, v(u)) are defined as follows:

gu, v(u)), if (x = u)
causesof (x,u) = U (3.10)

E(\(x) O [ L] causesof (Y, u)}, otherwise

0 (y, v(y)) 0 (%)

0

Hence, causesof(x, u) identifies a set of assignments that imply the assignment (X, v(x)), restricted
to assignment (u, v(u)) as the trigger of the implication sequence. Given the definition of cause-

sof(x, u), the following conflicting clauses are created and added to the clause database:
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w; = {xVO|(x, v(x)) O causesof (K, u, )}

w, = {XVM|(x, v(x)) O causesof (u,, u, )} O EULH)E
o (3.12)

W, = { x| (x, v(x)) O causesof (U,, u;)} [ %J;TUZ)E
O u

w states that the assignments in causesof(k, uy) are a sufficient condition for the same conflict to
be identified. w, states that the assignments in causesof(uy, uy - 1) cannot imply the assignment of
uy to alogic value other than v(uy). The structure of the implication sequence is used to associate
the causes of the conflict with each UIP. Hence, the conflicting clauses provided by (3.11) are nec-
essarily stronger than the ones provided by (3.8). Note that clauses w, through wy establish suffi-
cient conditions for the identification of conflicts that were not actually identified. The motivation
for these conditions is that they provide implications that otherwise would not be derivable by the

deduction engine.

Example 3.6. For the previous example, conflicting clause w, = (X, + Wy + W, + = Xg) isassoci-
ated with aconflict that was not identified. However, if wy =w, =0and xg = 1, then it is clear from
Figure 3.3-a that x; cannot assume value 0 and thus it must assume value 1. Furthermore, this
implication is not derivable from the original clause database with BCP, but adding w, to the

clause database makes such implication explicit. O

In some cases we may have two UIPs, u; and u;.q, such that there is only one implication
path between (uj, v(y;)) and (Uj+q, V(Ui+1)). In this situation, either assignment (u;, v(u;)) or
(Ui+1, V(ui+1)) implies the other assignment, and so all implications identified by the conflicting
clause created with (3.11) for (u;, v(u;)) and (Ujs+1, V(Uj+1)) are aready derivable with the current
clause database. Consequently, each pair of UIPs connected by only one implication path does not
contribute with a conflicting clause to the clause database. Creating this conflicting clause is
avoided by removing (u;, v(u;)) from set U.

There can be situations where several asserted assignments, W = { (wq, v(wy)) , ...,

(W, V(W) }, create an implication sequence that leads to a conflict. In such situations, (uy, v(u,))
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does not correspond to the trigger node, because al assignmentsin W are actually responsible for
triggering the implication sequence. As a result, (3.11) can be completed with an additional con-

flicting clause wy . 1. The derivation of w , ; requires extending (3.10) to the following form:

E(X, v(x)), if ((x v(x) OW)
causesof (x, W) = 0 (3.12)
E{\(x) O [ []  causesof(y, W)}, otherwise
J (3. vy)) 0 59
0
and consequently wy 4+ 1 is given by:
- g v
W1 = {XVO(x, v(x)) O causesof (uy, W)} O fuyUn (3.13)
0 0

that is analogous to w, through wy in (3.11) but where the assignment of u, istriggered by a set of

node assertions.

Example 3.7. Even though conflict analysis has been exemplified exclusively with circuit exam-
ples, it also finds application in more general clause databases. Moreover, the structure revealed by
UIPs can aso be found in those general clause databases. An example of such a clause database is
shown in Figure 3.4. The decision assignment x; — 1 triggers an implication sequence that yields
aconflict. Two UIPs are identified that are associated x; and x,4. Hence, two conflicting clauses are

created and added to the original clause database. O

3.4.3 Maintenance of the Clause Database

As shown above, conflict analysis involves creating conflicting clauses which are then

added to the clause database. These clauses are used with two distinct purposes:
1. They imply additional assignments, which we refer to as failure-driven assertions. For each
conflicting clause that is also a unit clause at a given stage of the search process, an implica
tion is derived, which attempts to prevent a known conflict from occurring and which could

not be prevented by the sole application of the deduction engine.
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¢ = (—|x1+x2) [(ﬂx1+x3+yl) [(—.x2+—|x3+x4) O
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* Decision assignment: X; « 1

(@) Initial conditions
Yo = 0 @ 3

X]_:l@S/O

y1:0@1 y3:0@3
(b) Implication graph

« Conflicting clauses: wq = (Yo + Y3 + =%X4) and wo = (Y1 + =X + Xg)
(c) Computed conflicting clauses

Figure 3.4: CNF-based example

2. Whenever one of these clauses becomes unsatisfied, a conflict is identified, which corre-
sponds to conflicting conditions previously inferred during the search process. As a result,
the current partial node assignment, created by the search process, is said to lead to a conflict,
because it shares with some other partial node assignment the same assignments that were
identified as responsible for yielding a conflict (or set of conflicts). Thisform of early identi-
fication of conflicting conditionsis referred to as conflict-based equivalence.

As the search process evolves, the number of added conflicting clauses may become sig-
nificantly large. In addition, some of these clauses can either be removed from the clause database,
asis the case with subsumed clauses, or be simplified by combining pairs of clauses. In general,
subsumption operations are computationally expensive. From Section 2.5.2 (see page 44), the cost

of asubsumption operationis O(N 0¢|2) , where |¢| is the number of clausesin ¢. However, if we
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allow subsumption operations only with respect to each added conflicting clause, then computa-
tional cost isreduced to O(N L¢).

Furthermore, in some situations pairs of clauses can be combined and simplified. If two
clauses, w; = {IL 1 ...,I1’ j} and w, = {IZ, 1 ...,I2’ j} of the clause database contain the same
number of literals and differ only in two literals, 11 and |, such that 1, ; = =l ;, then a new
clause w; = ‘*’1—“1, b} o= wz—{lz, i} canreplace w; and w, in the clause database. In this sit-

uation we say that ws results from merging w; and w,.

Theorem 3.3. With the definitions of w4, w, and w3 given above, w; [, - w,. Clause wzisan
implicate of the consistency function &. Moreover, w; and w, can be removed from the clause

database if w3 is added to the clause database.

Example 3.8. Let w; = (Xx+y+-2) and w, = (X+-y+=2). Then the two clauses can be

merged and replaced by anew clause w; = (X+-2). O

Merging operations can be applied whenever a new conflicting clause is added to the
clause database. The computational cost is the same as that of the restricted subsumption opera-
tion, i.e. O(N ).

Despite the above restrictions, subsumption and merging operations still incur in signifi-
cant computational overhead. Consequently, and by default, these operations are not part of the

diagnosis engine described below in Section 3.6. Nevertheless, they can be optionally applied.
3.5 Deduction Engines

The purpose of this section is to describe deduction engines. The ssimplest deduction
engine, referred to as the basic deduction engine, implements Boolean constraint propagation but
it also updates the structures associated with the search process. Other deduction engines are
described. For example, in conflict diagnosis it is often useful to analyze multiple conflicts, and
thus we describe a simple extension of BCP that identifies multiple conflicts. Other, more complex
deduction engines, can be devised, which are based on the identification of conflicts and creation

of implicates of the clause database.
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/I A obal vari abl es: I nplication graph Ic

/I No input or output argunents

/I Return val ue: CONFLI CT or SUCCESS

1l

Deduce()

{

while (clauses unsatisfied or unit clauses in ¢) {
if (exists unsatisfied clause w) {

define new conflict node K;
define a(k) as the elenents of w;
return CONFLI CT;

}

if (exists unit clause w with free literal | =x) {
define a(x) as the set of the elenents of w other than x;
conpute o(x) = cand 1(X); /I Using (3.3)
X—1l0i=Ai; /l'i.e. lisset tol

}

}
ret urn SUCCESS;

Figure 3.5: Description of the basic deduction engine
3.5.1 Basic Deduction Engine

The basic deduction engine is shown in Figure 3.5. It implements Boolean constraint
propagation, asis described in Figure 2.6 (see page 39), but modified to maintain additional infor-
mation required by the search process. For each assigned node an antecedent set is identified,
which then implicitly defines the antecedent assignment. Furthermore, in the presence of a con-
flict, aconflict node k is defined. The basic deduction engine causes no modifications to the clause
database.

Let Deduce() compute the assignment set Ag = A_. Then, from Theorem 2.1 (see page
38), and with AiC =A._ 1 O{(x vy}, wehave A _; OA,. Furthermore, noting the definition
of procedure Er ase() (see page 64) that is applied to every identified conflict, and iterated appli-
cation of Theorem 2.1 yields:

Theorem 3.4. Assume a sequence of active decisions and let ¢ be the current decision level. Then
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Implementation

A direct implementation of the proposed deduction engine can be used. The most relevant
implementation detail isthat every time avariable x is assigned, only the clauses with literals on x
need be examined for implying additional assignments. Consequently, we can immediately guar-
antee a run time that is linear in the size of the clause database. Furthermore, by maintaining a
counter of unassigned literals, a clause just needs to be examined when it is known to be unit; this
reduces the overhead of clause manipulation.

For combinational circuits, and given the assumption of gates with bounded fanin, the
identification of unit clauses or unsatisfied clauses requires constant time for each assigned node.
Since the number of assigned nodes is in the worst case O(N), the worst-case run time of the
deduction engine at each decision level is O(N), which is also the amortized* worst-case run time
over all decision levels (assuming that no conflicts are identified). If the number of clauses in the
clause database is allowed to grow (due to information derived by the search process), then this
bound on the run time of the deduction engine no longer holds. Furthermore, the bound on the
amortized worst-case time does not hold if conflicts are detected.

The order in which clauses are ordered for implying assignmentsis relevant, and two sim-
ple ordering mechanisms can be envisioned. In the first one, unit clauses are kept in a FIFO (first-
in-first-out) queue, which defines the processing order and causes implications to evolve in a
breadth-first manner. The second mechanism keeps the unit clauses in a FILO (first-in-last-out)
gueue that causes implications to evolve in a depth-first manner. The practical implementation of
Deduce() uses breadth-first implications, mainly because they ensure the shortest implication
paths from the trigger node to a conflict. Although choosing breadth-first implications is heuristic,
its justification is that shorter implication sequences are likely to facilitate the operation of the

diagnosis engine.
3.5.2 Deduction Engine with Multiple Conflicts

An implication sequence that yields one conflict can in some cases yield other conflicts.

4-A definition of amortized complexity can be found in [35, pp. 356-377].
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/I A obal vari abl es: I nplication graph Ic

/I Return val ue: CONFLI CT or SUCCESS
I
Deduce_MC()
{
status = SUCCESS; j = 1;

while (exists unit clause) {
if (exists jth unsatisfied clause w) {
define new conflict node KJ[j]; /I Define K;
define a(k[j]) as the el enents of w;
status = CONFLI CT; j++;

}

if (exists unit clause w with free literal | =x) {
define a(x) as the set of the elenents of w other than x;
conpute o(X) = ¢ and 1(X); /I Using (3.3)
X « -i; /l'i.e. lisset tol

}

}

return status;

Figure 3.6: Description of the deduction engine for detecting multiple conflicts

For conflict diagnosisit is often useful to be able to choose, among different conflicts, the one that
leads to more pruning of the search. The deduction engine of Figure 3.5 can be readily modified to
identify multiple conflicts. Basically, we allow for any number of conflict nodes k to be added to
the implication graph. These conflict nodes can then be used by the diagnosis engine for conflict
analysis.

A deduction engine that handles multiple conflictsis shown in Figure 3.6 and isreferred to
as Deduce_MC(). It basically implements BCP, but relaxation on unit clauses can continue
despite unsatisfied clauses being detected. Each unsatisfied clause is recorded and associated with

adifferent conflict node.
3.5.3 Advanced Deduction Engines

The basic deduction engine does not identify all logical consequences of a decision

assignment. This results from Boolean constraint propagation (BCP) being logically incomplete.
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(a) The assignment x = 1 isinconsistent (b) The assignment x = 1 is also inconsistent

Figure 3.7: Boolean constraint propagation is logically incomplete

For some instances of SAT, deduction engines that can identify more logical implications than
BCP can be particularly useful. The purpose of this section is to describe a hierarchy of such

deduction engines.

Example 3.9. Two examples illustrating the drawbacks of BCP are shown in Figure 3.7. For the
example circuit of Figure 3.7-a, z; = 0 does not directly imply other assignments. However, the
only consistent value for x is 0, which is not identified by BCP. For example, if we test the assign-
ment x = 1 and derive implications, then a conflict with z, is identified. The derived conflicting
assignment set yields the conflicting clause (- x + w + z) , which implies x —~ 0 and identifies the
causes of such assignment (i.e. antecedents of x are w and 2).

A more complex example is shown in Figure 3.7-b. The assignment x = 0 is hot consistent.
However, thisfact only becomes apparent after considering both logic value assignmentsto nodey.
The assignments x = 0 and y = 0 trigger an implication sequence that yields a conflict identified by
conflicting clause Wy o = (X+y+w,+-2,),whereasx = 0andy = 1 cause aconflict identified
by clause Wy = (Xx+-y+w, +2z,). Both clauses denote implicates of the consistency func-
tion. If the clause database is satisfiable for some complete variable assignment, then both clauses
will be satisfied, and the consensus c(wg, o, Wg 1, y) Will aso be satisfied. Conversely, whenever
c(wg, o W, 1, Y) evaluates to O, then either wq  or wg 1 evauates to 0. The resulting clause wg =

c(wg, o W, 1, Y) =(X+ Wy +Wy +2; + =2)) isalso an implicate of the consistency function & and
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can be added to the clause database. Furthermore, wq implies the assignment x = 1 because all
other literals in the clause are assigned value 0. The derived implicate wg is minimal with respect
to the set of variablesthat is used inits derivation, i.e. wq cannot be further simplified just by inde-
pendent analysis of x and y. We observe that this implicate is not necessarily a prime implicate of
&, because it can be combined with implicates derived from other sets of variables. The two exam-
ples of Figure 3.7 also suggest a generic procedure for implementing arbitrary complex deduction

engines, which we now detail. O

We propose to use Boolean constraint propagation as the basic building block of a hierar-
chy of deduction engines, each with increasing deduction ability at the cost of added complexity in
processing each decision assignment. For a given number k, Deduce_k() ensures that at each
decision level all combinations of assignments of all subsets of k unassigned variables are tested
for consistency using Deduce(). The agorithm for prime implicate generation (from Figure 2.7
on page 44) is then used to simplify the conditions associated with any identified conflicts. This
may result in nodes being asserted, which in turnis used to imply further assignments. The need to
use the algorithm for prime implicate generation was previously motivated with the example cir-
cuit of Figure 3.7-b. If Deduce_k() does not terminate in aconflict, then thereis at least one com-
bination of assignments, for each subset of k nodes, which does not cause a conflict. For this
reason, we refer to operation of Deduce_k() as k-consistency®.

The generic implementation of Deduce_ k() isdescribed in Figure 3.8, and it invokes pro-
cedure Deduce() given in Figure 3.5. As suggested above, for every set y of k unassigned nodes,
each possible logic value assignment is applied to the variables. For each assignment, Boolean
constraint propagation is used to imply assignments and identify any conflicts. Whenever a conflict
is identified, a new conflicting clause is added to a dedicated clause database ¢ . After all logic
value assignments to the nodes in y are processed, the prime implicates of ¢, are computed, and a
temporary clause database ¢ for all setsy isupdated. (Note that while computing the prime impli-
cates of ¢, consensus operations can only be done with respect to the k variablesin'y, since the

other variables in the conflicting assignment set assume fixed values, which will not be modified

5 We note that this definition is markedly different from k-consistency in constraint satisfaction
problems (see for example [169, pp. 55-57]). In the present and remaining chapters, and unless oth-
erwise stated, k-consistency refers to the application of Deduce_k() as described in this section.
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/I d obal vari abl es: I nplication graph Ic

1 O ause dat abase ¢
/[ Return val ue: CONFLI CT or SUCCESS
1
Deduce_k()
{
if (Deduce() == CONFLICT) return CONFLI CT;
status = SUCCESS; ¢y — [J
Let T be the set of all sets of k unassigned nodes;
for (each set y[I and while status != CONFLICT) {
status = CONFLI CT; ¢y<_ H]
for (each distinct |ogic val ue assignnment to the nodes iny) {
i f (Deduce() == CONFLICT) {
w = Create_Conflicting_C ause(); I/ Wth (3.6), (3.8)
¢y e ¢y E{ w };
} el se status = SUCCESS;
Erase_Last _Assi gnnments();
}
Generate_Prime_|l nplicates (¢,); /l See Fi gure 2. 7 on page 44
Ok — D v
}
if (SIMPLIFY_¢y)
Generate_Prime_lnplicates (¢,); // 1t is optionally invoked
o -0
return Deduce(); /I Create k or derive nore assignments
}

Figure 3.8: Advanced deduction engine — without relaxation

between assignments to the variables in y.) After all setsy are processed, the clause database ¢ is

updated with ¢ . Observe that updating the clause database is deliberately done after all setsy are

processed. This solution ensures that the final composition of the clause database is independent of

the order in which the setsy are processed.

Before adding ¢ to ¢, the prime implicates of the Boolean function associated with ¢,

are derived. This entails consensus operations among all variablesin y. As a result, we can claim

that the implicates that are derived are minimal in the variables of y. This result follows immedi-

ately from the implementation of Gener at e_Pri me_|I npl i cat es(). We note, however, that

the implicates due to a given y may be further simplified when combined with the implicates of
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/I d obal vari abl es: I nplication graph Ic
I Cl ause dat abase ¢

/I Return val ue: CONFLI CT or SUCCESS
1

Deduce_kR()

{
do {
let ¢; denote current ¢;
status = Deduce_k(); /I FromFigure 3.8
} while (¢ !'= ¢; and status != CONFLICT);
return status;

Figure 3.9: Advanced deduction engine — with relaxation

other subsets. In addition, even though Gener at e_Pri me_I npl i cat es() isappliedto ¢, the
resulting clause database does not necessarily contain prime implicates of &. In general, this
should not be the case, since only a subset of the variables associated with & is considered. Proce-
dure Generate_Prinme_|l nplicates() can be optionaly invoked on ¢, if the flag
SIMPLIFY_ ¢y is set.

Deduction engines can be further improved. A simple enhancement is to continue invok-
ing Deduce_k() while more conflicting clauses are added to the clause database. This procedure
is referred to as k-consistency with relaxation, referred to as Deduce_k,R(). Clearly, relaxation
introduces some computational overhead, but may also contribute to reducing the search. The pro-
cedure for k-consistency with relaxation is shown in Figure 3.9. The main loop isiterated while the
clause database is modified by Deduce k(). The motivation isthat if more implications are iden-
tified, then they may contribute to identify additional implications or yield a conflict. It is worth
noting that Deduce_k,R() identifies no fewer implications than Deduce_k() if both procedures

start from the same partial node assignment.

Example 3.10. The application of Deduce_k() is illustrated with the example circuit of Figure
3.7-b, assuming k = 2. Asillustrated before, the assignments x = 0 and y = 0 cause the derivation of
conflicting clause Wy o = (X+y+w,+-2,), whereas x = 0 and y = 1 cause the derivation of
conflicting clause wy y = (x+-y+w, +2z). The remaining assignments to X and y yield no

conflicting clauses. Invoking procedure Generate_ Prime_ | nplicates() then produces
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Wy = (X+wy; +W,+2 +-2,). Other subsets of nodes of size two are processed and can also
contribute with additional implicates. Eventually w is added to the clause database. Given the
assignments of the other literals, wq isaunit clause, and hence it implies the assignment x = 1, as
intended. We note that other subsets of variables involving x would lead to the same conflicting
clause. In this situation, subsumption operations (on ¢,) ensure that no repeated clauses are added
to the clause database.

The example circuit of Figure 3.3 (see page 66) can also be used to illustrate the applica-
tion of Deduce_k(), assuming k = 1. For this example, after the set of objectives is specified,
Deduce_1() identifies aconflict for both logic value assignments to xg. Hence the query is proved
to be unsatisfiable without any search. Deduce_1() aso derives theimplicate (-z; + ~z3), which

states that z; and zz cannot be simultaneously 1. n

Let us consider Deduce_k() as described in Figure 3.8 and Deduce_k,R() as described

in Figure 3.9. Then the a gorithmic complexity of these procedures is given by the following:

Theorem 3.5. Let ¢ be aclause database. Let |l | be the current number of vertices of the implica-
tion graph, and let N — || o| identify the total number of unassigned nodes. Then, the worst-case run

time of Deduce_k(), assuming that SIMPLIFY _¢ does not hold, is bounded by:

o 'k“ rtlal 2+ Ntk (3492 (314)

The worst-case run time of Deduce_k,R() is bounded by,

o%\' _|IC|E E[[Ilcbll +N [g\‘ _k“ CE EB"} 2"+ N [k E(3k)2} E[g\l _k" C'E EBKE (3.15)

k

For both procedures the worst-case space is bounded by,

oHol +N [g\‘ _k“ CE B4 (3.16)

and the overall space growth if bounded by O(N BN).
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Deduce_ k() with k=0 correspondsto Deduce(). For k=1 an upper bound on the worst-
case run time complexity is O(||¢|| CUN —|IC|)). Fork = N —|IC| the worst-case run time com-
plexity is O(N (N - o|) (3" ~I'e)) . Hence, k = N - |I | ensures that all possible combi-
nations of node assignments are examined, and consequently that a query is solved without search.
However, the complexity of this consistency procedure is prohibitive in most practical examples.
1-consistency leads to a worst-case quadratic time deduction engine (assuming ¢ = O(N)),
which in some applications can be useful in reducing the amount of search, even if applied only at
decision level O (seefor example [37, 145, 162]).

With relaxation, k = 1 yields a worst-case running time of O(||¢|| LN —|I C|)2) . Assum-
ing |$]l = O(N), then relaxation transforms a quadratic time procedure, i.e. Deduce_1(), into a
cubic time one, Deduce_1,R().

It isworth noting that k-consistency effectively reduces the worst-case size of the decision
tree to be traversed. Consider a circuit with [Pl primary inputs, and a k-consistency deduction
engine. As aresult, the largest depth of the search tree, before backtracking, is |Pl| —k, because
the last k unassigned primary inputs either are consistent, and a solution can be identified, or are
inconsistent, and the search process is forced to backtrack. Consequently, the worst-case size of

the decision tree becomes 2‘ PI -k

. This reduction on the size of the decision tree is compensated
by the added overhead to process each decision. Furthermore, for combinational circuits, the larg-
est k of interest is given by k = |PI|, since for any primary output objective all combinations of pri-
mary input assignments suffice to determine whether a solution can be identified.

Deduce_ k() ensures that the clause database does not change until all conflicting clauses
are derived and simplified. Nevertheless, the actual implementation can allow the clause database
to be updated as different subsets are processed. This option provides additional implications with-
out the overhead of full relaxation. The problem is that now the final composition of the clause
database depends on the order in which the variables are processed. In addition, the added over-
head may increase the run time to some degree.

Although we described a procedure that ensures a given level k of consistency for each k,

we may inquire whether for a fixed k one can identify al possible logical consequences of a deci-

sion assignment on every clause database. Clearly, this should not be the case, since SAT isan NP-
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complete problem, and any algorithmic procedure is expected in the worst case to require expo-

nential timein the size of the problem. Accordingly, the following holds:

Theorem 3.6. For each deduction engine Deduce k() with fixed k, it is always possible to con-
struct a clause database for which the identification of all implications requires a deduction engine

Deduce_m(), withm>k.

The advanced deduction engine described in Figure 3.8 does not attempt to identify UIPs.
As shown before, UIPs contribute to identifying stronger implicates. If the advanced deduction
engine identifies UIPs, then the average run time of Generate_Prine_I nplicates() is
reduced, since implicates of smaller size will be created prior to generating prime implicates. For

reasonably large k, Deduce_ k() based on UIP identification can thus prove useful.

Other Approaches

The description of Deduce_k() and Deduce_k,R() assumes a procedure for generation
of prime implicates, which is used to simplify implicates of &. One can envision other algorithmic
solutions not based on Gener at e_Pri ne_| npl i cat es(). For example, one possible solution
(for k-consistency) is to process all subsets of variables with size j ranging from k down to 1, in
this order. For each j, all possible subsets and associated assignments are tested. Any conflicts
result in conflicting clauses being added to the clause database. If any of these conflicting clauses
can be smplified, then for some size i, less than j, this fact will become apparent and a new con-
flicting clause will be created. Eventually, derivable assertions are identified for j = 1. Our imple-
mentation of Deduce k() is preferable for small k, because the overhead of procedure

Generate_Prine_Inplicates()isnegligibleand only one size k of subsetsis processed.

Per spective

Some special cases of the family of deduction engines defined by Deduce k() and
Deduce_k,R() can be related to deduction procedures proposed by other authors, both in the con-
text of satisfiability algorithms and in other areas. With respect to satisfiability algorithms, the
deduction engines entailed by Deduce_ k() and Deduce_k,R() comprise several distinct algo-
rithms proposed by other authors, most notably in test pattern generation [24, 101, 145, 162],



which we review in Chapter V. In backtracking search algorithms there are techniques to predict
the best variable to branch upon, which consider sets of assignments to unassigned variables in
order to decide the most promising decision variable [11, 134, 178]. Such technigues are com-
monly referred to as (multi-level) search rearrangement. k-consistency algorithms are used in con-
straint satisfaction problems (CSPs) to preprocess a given problem prior to searching for a solution
[61, 169]. These agorithms also examine combinations of assignments with the objective of
reducing the number of acceptable domain values for each variable. Our proposed procedure is
distinct in afew significant ways. First, Boolean constraint propagation is applied for every combi-
nation of assignments. Thisis not the case with k-consistency in CSPs. For SAT, BCP increasesthe
likelihood of finding conflicts. Second, our procedure generates and manipulates conflicts, using
procedures for generating prime implicates, so as to imply further assignments. This technique is
apparently new, and for SAT algorithms it is particularly useful for levels of consistency greater
than 1. Finaly, the procedure can be readily used within the search framework of GRASP. This
implies that a search algorithm can be based on k-consistency and implement all pruning methods
associated with conflict diagnosis. At the time of thiswriting, the integration of k-consistency with

procedures for diagnosing conflictsis still an open problem in CSPs[169, p. 152].
3.6 Diagnosis Engines

In this section we describe diagnosis engines. The prime objective of conflict diagnosisis
to derive implicates of the consistency function, using the conflict analysis methods described in
Section 3.4. These implicates allow implementing the different pruning methods, including con-
flict-directed backtracking, that requires computing the backtracking decision level whenever
backtracking is required. Consequently, conflict diagnosis consists of identification of implicates
and computation of backtracking decision levels.

Several diagnosis engines can be devised. We start by describing abasic formulation based
on the conflict analysis methods described in Section 3.4. Next, we describe simple extensions that
alow computing lower backtracking decision levels, by examining more than one conflict.
Another concern is the computational overhead of adding a large number of implicates to the

clause database. Accordingly, we propose variations of conflict diagnosis which guarantee bounds
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on the growth of the clause database. Finally, we briefly describe extensions to conflict analysis,
which are based on specifying conflicting assignments sets in terms of decision assignment sets

and simplifying those sets.
3.6.1 Basic Diagnosis Engine

After each conflict is detected, the basic conflict diagnosis engine creates a conflicting
clause with the conflict analysis methods of Section 3.4. If the derived clause involves assignments
at the current decision level, then failure-driven assertions are defined and the search process pro-
ceeds. A different situation occurs whenever al elements of a conflicting assignment set are
assigned at decision levels less than the current decision level ¢. This situation can only take place
when the current conflict results from diagnosing a previous conflict, after which a decision node
had been asserted with an antecedent assignment composed of assignments implied at decision
levelslessthan c. If al elements of a conflicting assignment set are assigned at decision levels less
than ¢, then it is established that the conflicts found are only caused by those lower decision levels,
and hence the search process can only find a solution if it backtracks directly to the source of the
conflicts. The backtracking decision level is identified by the highest decision level of the assign-

ments in the conflicting assignment set:
B = max{o(x)|(x, V(X)) U Acg (3.17)

3 corresponds to the decision level that is returned as a reference argument by the diagnosis
engine, which is invoked in the procedure of Figure 3.2. 3| = ¢ means that no backtracking is
required, whereas the condition 3| <c - 1 corresponds to non-chronological backtracking. We
note that by creating a clause w specified by a conflicting assignment set using (3.8), and by back-
tracking to the decision level 3| specified by (3.17), at this decision level a conflict is now defined
by w. This forced conflict is used to analyze the implication sequence at decision level 3, which

can then be used to either assert the decision node or to decide a new backtracking decision level.

Example 3.11. For the example circuit of Figure 3.3-a (see page 66), and after diagnosing the con-
flict dueto x; = 0 (shown in Figure 3.3-b), the assertion x; = 1 is obtained, with antecedent assign-

ment {(wy, 0), (w,, 0), (z4, 1)} . The resulting implication sequence is shown in Figure 3.10-a
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Figure 3.10: Implication sequence and backtracking due to assertion x; = 1

and results in a conflict with the assignment z, = 1. From (3.6) the following conflicting assign-
ment set isobtained:  Ag = {(Ws, 1), (2,, 1), (wy, 0), (W,, 0),(z;, 1)} . Inthissituation, all
elements of the conflicting assignment set are assigned at decision levels less than 5, which means
that there exists a set of node assignments that is in conflict at decision levels less than the current
decision level. Thus, the search process needs to backtrack, and from (3.17) the backtracking deci-
sion level is evaluated to be 3, due to the assignment of wj at decision level 3. Consequently, the
implication sequences at decision levels 5 and 4 can be erased and the implication sequence at
decision level 3 will now force a conflict that must be diagnosed. The result of non-chronological
backtracking isillustrated in Figure 3.10-b.

In addition, the conflicting assignment set is used to derive another implicate of the consis-
tency function: @ = (wy +w, + =Wy + -2, +=2,), which is added to the clause database, and
which states that w; = w, = 0 and wg = z; = z, = 1 are not consistent assignments for the circuit of
Figure 3.3-a. Although thisfact is not derivable with the Boolean constraint propagation procedure
(described in Figure 3.5), it is deduced by the search process. Whenever the same node assign-
ments are specified, w will cause a conflict, thus avoiding the need to repeat the work of the search
process to derive the same conclusion again. Moreover, w can be used to derive FDAS; if for exam-
plew; =w, = 0and z; = z, = 1, then w implies w; = 0, which would not be derivable, assuming
BCP, without the added conflicting clause.

After backtracking to decision level 3, w is unsatisfied and so it causes a conflict node to
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Figure 3.11: Implication sequence and backtracking due to assertion xg = 1

be added to the implication graph. From this conflict node the conditions for asserting the decision
node are identified. The assertion on the decision node will represent the second branch at decision

level 3. O

The non-chronological backtracking procedure described above relies on (1) traversing
implication sequences in order to identify the causes of conflicts; and (2) representing the causes
of conflicts as conflicting clauses. We refer to this form of non-chronological backtracking as con-
flict-directed backtracking.

I dentification of unique implication points (UIPs) can be applied during conflict diagnosis,

with the goal of deriving stronger implicates and potentially lower backtracking decision levels.

Example 3.12. For the implication sequence of Figure 3.3-b (see page 66), and using (3.11), the
clauses derived are wq = (Xg + —z7) and w, = (Xg + Wy + W, + —Xg). After erasing the last implica-
tion sequence, w4 implies the assignment xg = 1. (We should note that the second branch at deci-
sion level 5 results from an assertion on a node other than the decision node, i.e. Xg instead of x;.)
The resulting implication sequence leads to a conflict that is shown in Figure 3.11-a. In this situa-
tion the conflicting assignment set is { (z;, 1), (z3, 1) } and the backtracking decision level is 0
from (3.17). Hence, the problem is proved unsatisfiable by backtracking directly to decision level
0. In addition, (3.11) is used to derive the clause w, = (~Xg + ~z3) which states that if z; = 1, then
Xg must be implied to 0. The evolution of the search process when unique implication points are

taken into consideration is shown in Figure 3.11-b. For this example, UIPs alow deriving stronger
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without UIPs with UIPs

W) = (Xt Wyt W, +2y) w; = (Xgt-z)

W, = (W1+W2+—-W3+—|zl+—|22) W, = (x1+W1+W2+—.x8)

W3 = (7Xg+273)

Wy = (2 +-2)

Table 3.1: Comparison of conflicting clauses

backtracking conditions that prove unsatisfiability with two conflicts, whereas without UIPs the
two conflicts found only allow backtracking to decision level 3 (see Figure 3.10-b). In Table 3.1,
the conflicting clauses derived for the example of Figure 3.3-a, with and without the identification
of UIPs, are shown. Note that w4 = (-2, + ~z3) is created with (3.8) from Acg For this example,
the use of UIPs permits the derivation of more conflicting clauses that are also stronger than the

clauses derived without Ul Ps. O

As the above example suggests, the identification of unique implication points helps in
identifying more implicates of the consistency function, which are stronger than the implicates
derived without the identification of UIPs. A set of k UIPs partitions a conflicting assignment set
into k assignment sets, each of which defines a conflicting clause. As a result, each derived con-
flicting clause necessarily contains no more literals than the clause associated with the original
conflicting assignment set, and thus represents a stronger implicate of the consistency function.
UIPs may aso prove useful in identifying tighter conditions when deciding the backtracking deci-
sion level.

Even though the implicates of & derived with UIPs are necessarily stronger, we note that
the computed backtracking decision level 3; may be greater than it would be without UIPs, 35,
because a different conflict may identified. However, we note that in this situation a sequence of
conflictswill eventually force backtracking to the lower decision level (i.e. 3,), due to the fact that
the clause database has been updated with conflicting clauses, that will imply assignments (from
failure-driven assertions) and cause conflicts until the conflict forcing backtracking to 3, is identi-
fied.

The pseudo-code for the diagnosis engine (invoked from the top-level search algorithm) is
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/I d obal vari abl es: I nplication graph Ic

I Ol ause dat abase ¢
/I I nput vari abl e: Current decision level c
/I Qut put vari abl e: Backt racki ng decision |evel B_
/I Return val ue: CONFLI CT or SUCCESS
i
Di agnose (c, &B))
{
w = Create_Conflicting_d ause(); /I Using (3.6) and (3.8)
Updat e_Cl ause_Dat abase (w); /[ Add cl ause to dat abase
i f ( REDUCE_DATABASE) /I Subsune/ ner ge cl auses
Subsunme_Merge_C auses (w);
B = Conput e_Max_Level (); /I Using(3.6) and (3.17)
if (BL!=0 {
define new conflict node K; /[ Set up new conflict node

define a(k) as the elenents of w;
return CONFLI CT;

}
return SUCCESS;

Figure 3.12: Description of the basic diagnosis engine

shown in Figure 3.12, and it illustrates the main features of basic conflict diagnosisin GRASP. The
procedure basically implements the steps described in the previous sections to compute conflicting
clauses, update the clause database, identify the need to backtrack and compute the backtracking
decision level. Subsumption and merging operations can be optionally applied, provided
REDUCE_DATABASE is set to true. Even though not shown, the above procedure can be easily
modified for computing implicates with unique implication points. Because conflict diagnosis
updates the clause database with conflicting clauses, the search algorithm is able to implement

conflict-directed backtracking, failure-driven assertions and conflict-based equivalence.

Implementation

The fundamental aspect of conflict diagnosis is the definition of conflicting assignment
sets. We note that the deduction engine generates all the antecedent assignment information
required to create conflicting assignment sets. Consequently, a breadth-first traversal of the impli-

cation graph, from the conflict node, through nodes assigned at decision level ¢, and terminating at
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the trigger node, is sufficient for constructing the conflicting assignment set. We further note that
the overhead of this traversal is asymptotically no worse than the derivation of the implication
sequence. Furthermore, overhead is analogous, since conflicting assignment set identification is
solely based on tracing implication sequences.

UIPs are identified in the same traversal of the implication sequence that is used to build
the conflicting assignment set, thus reducing overhead considerably. A levelized breadth-first tra-
versal®, on the implication level of each assigned node, is used to define the global conflicting
assignment set, and to identify UIPs; dominators of the implication subgraph correspond to stages
of the levelized traversal when the traversal width is set to 1. Thus, UIPs and associated conflicting

clauses are identified in time linear in the size of the clause database.
3.6.2 Reducing the Backtracking Decision L evel

The purpose of this section isto describe two methods that can be used to reduce the back-
tracking decision level computed with the basic diagnosis engine. Given that the backtracking
decision level depends on which conflicts are diagnosed, the proposed methods diagnose sets of

conflicts in anumber of different ways.
3.6.2.1 Iterated Conflicts

We can envision a simple extension to the identification of unique implication points.
Whenever it is necessary to backtrack, a conflicting clause is created which accounts for al the
elements in the conflicting assignment set. Nevertheless, assuming UIPs have been identified, we

may be able to generate other conflicts that yield lower backtracking decision levels.

Example 3.13. The example circuit shown in Figure 3.13 illustrates how identification of conflicts
can be iterated to reveal more aggressive backtracking decision levels. Let the current decision
level be 5, and assume decision assignment x; = 0. The resulting conflict yields conflicting clause
w4 = (X + =z4). Consequently, the second branch at decision level 5 corresponds to the asserted

assignment x, = 1, which causes a conflict with z,, yielding conflicting clause w, = (X3 + wy +

6. A levelized breadth first traversal visits nodes in breadth-first manner but using a chosen level
order [155]. A width is defined which measures the number of nodes to be visited.
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Figure 3.13: Example of iterated conflict identification

—2,). The basic diagnosis engine would then create conflicting clause w3z = (-z; + =z, + wy +
~W,) and decide the backtracking decision level to be 3. However, for this particular example,
other conflicts can be generated, which improve the backtracking decision level.

Let us assume that instead of creating w3 and backtracking, the search process iterates
assertions at decision level 5. Therefore, w, implies the assignment x3 = 1, which causes a conflict
with z, and yields conflicting clause w, = (=X4 + —Z4). (Observe that this conflict is detected
before the conflict with x,, assigned due to w,, isidentified. Further note that clause (w; + —~wsy +

-2z, + ~z3) would be created if backtracking was decided.) Moreover, w, implies the assignment
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X4 = 0, which causes a conflict with zz and yields conflicting clause wg = (X4 + =23).

Note that the last conflict can be used to create the conflicting clause wg = (nz3 + —1zy),
which sets the backtracking decision level at 1. Further note that if the search process backtracksto
decision level 3, the conflicting clause implying the assignment of x3 to 1 is no longer a unit
clause. Hence, the pair of conflicts between zz and z, is not revealed and the search process does

not necessarily backtrack further. O

As the above example suggests, after backtracking conditions are identified, conflicts are
iterated while a different conflict is found and the computed backtracking decision level does not
increase. Eventually, either a known conflict is revisited or the backtracking decision level
increases, in which case no more conflicts are iterated. The backtracking decision level isthen the
minimum of the computed backtracking decision levels. Besides computing a lower backtracking
decision level, iterated conflicts reveal additional implicates of the clause database that can con-
tribute to pruning the search.

For combinational circuits, the iterated identification of conflicts can prove useful when-
ever the size of the j-frontier is large, since this facilitates finding distinct conflicts, and whenever
conflicts result from long implication sequences, since this facilitates finding other conflicts before
identifying known conflicts. However, the worst-case time complexity is quadratic in the size of
the clause database, and the existence of large j-frontiers is application-dependent. As aresult, the
iterated identification of conflicts should only be optionally applied and reserved for those specific
circuit structures that create large j-frontiers. In case iterated conflicts are applied, we can limit the
number of iterated conflictsto afixed value m, thus ensuring that conflict diagnosisis performed in

time linear in the size of the clause database.
3.6.2.2 Multiple Conflicts

As mentioned earlier in Section 3.5.2, implication sequence can yield multiple conflicts.
In this section we show that manipulation of multiple conflicts can be used to compute lower back-
tracking decision levels. Let {K4, Ko, ..., K} bethe set of conflictsidentified by a given implica-
tion sequence using Deduce_MC(), described in Figure 3.6 on page 77. Equation (3.6) is used to

associate a conflicting assignment set AiCS with each conflict node k;. Implicates of the consis-

93



tency function are created with (3.8) or with (3.11), in which case a different set of UIPsis defined
for each K;. By considering multiple conflicts, a larger number of conflicting clauses can be cre-

ated and added to the clause database. The backtracking decision level is computed according to:

B = min [max{3d(x)|(x, v(x)) O Aics}] (3.18)
1<i<m

Hence, the existence of multiple conflicts is used to find a minimum backtracking decision level
among the possible backtracking decision levels. From the results of Appendix A we can conclude
that the conflicting clause w; for each K; isavalid implicate of the consistency function & . Further-
more, each conflicting clause identifies an independent and sufficient set of assignments for a con-
flict to be detected; thus the backtracking decision level given by (3.18) is correct and

completeness is guaranteed.

Example 3.14. Figure 3.14 illustrates the application of multiple conflicts for identifying more
conflicting clauses and for finding lower backtracking decision levels. x; is assumed to be asserted
due to a previous conflict with z;, denoted by the conflicting clause w; = (z; + ~w; + =Xy). As
shown in Figure 3.14-b, the resulting implication sequence |leads to two conflicts, with z; and with
z,, that are represented by the conflict nodes k ; and K, respectively. A conflicting assignment set
is associated with each conflict node: Acl:s = {(z;,0), (wq, 1), (wg, 0), (Wy, 0),(z5, 1)}

with k; and A%S = {(z;,0), (wq, 1), (wy, 1), (25, 1)}  with K, respectively. As aresult, the
two conflicting assignment sets are used to compute the backtracking decision level using (3.18),
i.e. B = min(4,2) = 2 duetoK,. We note that without multiple conflicts the backtracking deci-
sion level would be 4, provided k; was identified first (as would be the case with breadth-first
implications). Moreover, x4 is the only UIP of any of the conflicts, and thus the following conflict-

ing clauses are created:

w, = (—|22+—|W2+X1)
W3 = (2Zg+ Wy + W, +X;)
Wy = (Zg Wy + W+ Wy +2Z5)

Wy = (zl+—|wl+ﬂw2+—|zz)
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Figure 3.14: Application of multiple conflicts

where w, and w3 are derived using (3.11), w, is associated with A(l:S and wsg with Aés. The

effect of considering multiple conflicts is shown in Figure 3.14-c. O

The actua implementation of the procedure for diagnosing multiple conflicts defines its
complexity. We start by analyzing a conflict diagnosis procedure that analyzes each conflict sepa-
rately, by computing its UIPs and associated conflicting assignment set. After processing all con-

flicts, (3.18) is used to compute the backtracking decision level.
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Theorem 3.7. Diagnosis of multiple conflicts, where each conflict is separately diagnosed and

[¢] = O(N), has alower bound on the worst-case run time of Q(N2).

For most practical examples, the number of expected conflicts is usually small and so the
overhead of diagnosing all conflicts should in general be smaller than the bound given above.
Moreover, diagnosing multiple conflicts may contribute to significantly prune the search. A possi-
ble simplification for diagnosing multiple conflicts consistsin relaxing the requirement to compute
UlPsfor each conflict, thus accepting the derivation of conflicting clauses only for the conflict that
defines the backtracking decision level. In this situation, the worst-case time complexity for diag-
nosing multiple conflicts is till linear in ||¢]|. The procedure for diagnosing multiple conflicts is
shown in Figure 3.15. The implication sequence is traversed, and the highest decision level Dy that
contributes to the assignment of each nodey is recorded. Afterwards, the conflict node k with the
lowest recorded decision level is chosen. K isthen used for diagnosing the conflict. The procedure
givenin Figure 3.15 computes Ul Ps for the chosen conflict node, and generates conflicting clauses
accordingly. Note that a conflicting clause involving the conflicting assignment set must be created
if backtracking is required, since it identifies the causes of conflicts at the backtracking decision
level.

Although the procedure shown in Figure 3.15 is more efficient in the worst case, it sacri-
fices the derivation of some information that would otherwise be computed by separately diagnos-
ing each conflict. Thus the number of identified conflicting clauses can be significantly smaller,
and conflicts for which a conflict clause is not created may be found later at other stages of the
search process. As with other tradeoffs of GRASP, the procedure that is best suited for diagnosing
multiple conflicts depends on the structure of the application problems.

I dentification of multiple conflicts can be further improved. We start by identifying a set of
conflicting assignment sets that yield the same backtracking decision level 3, . Any of these con-
flicting assignment sets can be chosen to generate a conflict at decision level 3, . However, we can
create multiple conflicts at decision level 3 by using the identified conflicting assignment sets. As
aresult, if backtracking is required at decision level 3 , then multiple conflicts can be diagnosed in

order to choose alower backtracking decision level at decision level 3.
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/I d obal vari abl es: [ nplication graph Ic

1 G ause dat abase ¢

/Il I nput vari abl e: Current decision level c

/[ Qut put vari abl e: Backt racki ng decision |evel (B
/l Return val ue: CONFLI CT or SUCCESS

1

Di agnose_MC (c, &B|)

{

traverse inplication subgraph at decision |level ¢
{ compute highest decision |evel Dy inplying each y v, }
find conflict node k with | owest decision |evel Dg;
set kK as chosen conflict node;
/l Di agnose conflict on K

U =Ildentify U Ps(); /[ Frominplication graph
Qy = CGreate_Conflicting_Clauses (U); // Using (3.11) and (3.13)
Updat e_Cl ause_Dat abase (Qy); /l Updat e dat abase with set Q
B = Conput e_Max_Level (); /l Using (3.6) and (3.18)
if (BL!'= 0 {

w = Create_Conflicting O ause(); /I Using (3.6) and (3.8)

Updat e_C ause_Dat abase (w);

define new conflict node K; /[ Set up new conflict node

define a(k) as the elenents of w;
return CONFLI CT;

}
return SUCCESS;

Figure 3.15:; Linear-time diagnosis engine with identification of multiple conflicts

3.6.3 Implementation Tradeoffs

The proposed basic diagnosis engine and its variations add one or more conflicting clauses

to the clause database after diagnosing each conflict. For alarge number of backtracks, the size of
the clause database grows accordingly, and this can introduce significant computational overhead
for processing subsequent queries. The purpose of this section is to describe other diagnosis
engines which guarantee that the size of the clause database does not grow exponentially in the
number of variables. We start by describing a diagnosis engine that guarantees a constant size

clause database, by trading off some diagnosis ability and by not implementing conflict-based
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equivalence. Afterwards, we describe a family of diagnosis engines that guarantee a polynomial

size growth of the clause database in the number of variables.
3.6.3.1 Constant Size Clause Database

In this section we discuss one alternative diagnosis engine that targets reducing the over-
head associated with maintaining the clause database during the search process. The main purpose
of this engine is to implement some of the pruning methods described in previous sections, while
guaranteeing that the size of the clause database remains constant throughout the search process.
The main differences of the new procedure are as follows:

1. A conflicting assignment set A~g[i] (referred to aslevel conflicting assignment set) is asso-
ciated with each decision level i.

2. A failure-driven assertion (FDA) is now defined as a 3-tuple [X, v,, d,[1that indicates a node

X’
X whose value cannot be other than v, at decision levels greater than d, (i.e. that include the
global assignment set A ).

3. The antecedent assignment of an assertion [k, v de is defined as follows’:

A(X) = i@1Acs[i] (3.19)

Every time a conflict is detected, a temporary conflicting assignment set Acgis computed
(with (3.6) on page 67). This conflicting assignment set is then used to update the level conflicting

assignment sets asfollows:
Acdlil « Acdlil O{(xv,) O ACS<P x) =i} (3.20)

An assertion is created for every UIP (u, v(u)) of the implication sequence leading to a conflict. Its
valueis v(u) and the assertion decision level is defined as the highest decision level that isidenti-
fied as contributing to the conflict, where (u, v(u)) is assumed to trigger the conflicting implication

sequence. The assertion decision level can be computed through causesof(x, u) defined in

7 In the actual implementation, a predicate asserted(x) indicates whether X is asserted. The sole
purpose of introducing (3.19) is to alow the conflict analysis equations of Section 3.4 and of
Section 3.6 to be used.
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/[ 1 nput vari abl e: Current decision level ¢

/[ Qut put vari abl e: Backt racki ng decision |evel (3

/[ Return val ue: CONFLI CT or SUCCESS

1

Di agnose_C (c, &B))

{
Updat e_Level _Acq); /IUsi ng (3.6) and (3. 20)
U= Ildentify U Ps(); /I From i nplication graph
Create_FDAs (U); /l Failure-driven assertions
B = Conput e_Max_Level (); I Usi ng (3. 21)
clear Acdlcl;
it (BL!= 0 {

create newk with incom ng edges fromall nodes in 0<QB Cqil;
return CONFLI CT; I

}
ret urn SUCCESS,;

Figure 3.16: Pseudo-code for simplified diagnosis engine

Section 3.4 (see page 70). As with the basic diagnosis engine, backtracking is required whenever
the node triggering the conflicting implication sequence is already asserted. In this situation, the

backtracking decision level 3 is defined as follows:
B = max{i|0<i<[PI|OA:di] #0} (3.22)

Note that 3, isaways well-defined since the causes of any conflict must be assigned at some deci-
sion levels. At decision level 3, (if B, # 0) aconflict node is defined, which involves all the nodes
in CH], for al i less than or equal to 3, . Thisforced conflict is diagnosed, and either the decision
node at decision level 3| isasserted or a new backtracking decision level is computed (if the node
triggering the implication sequence at decision level 3| was already asserted).

The pseudo-code for the diagnosis engine described above is shown in Figure 3.16 (which
is referred to as Di agnos e_C()8). With respect to Di aghose(), the most relevant differences

are:

8. C indicates that the di agnosis engine guarantees a constant size clause database.

99



1. The size of the clause database ¢ remains constant, since no conflicting clauses are explicitly
identified and added to ¢.

2. Antecedent assignments of assertions are implicitly maintained with the conflicting assign-
ment sets A-g[i] . Hence, the overhead of manipulating large antecedent sets is eliminated.

3. Conflict-based equivalence is no longer implemented. This would require updating ¢ with
clauses derived from conflicts, which is exactly what Di agnose_C() avoids.

4. Each level conflicting assignment set A~d[i] isupdated after atemporary conflicting assign-
ment set is computed.

5. Whenever backtracking isrequired, a conflict node Kk is defined. The incoming edgesto k are
defined as all the elements of A-g[i] , wherei rangesfromOtof3, .

6. Acglc] must be cleared after diagnosing each conflict at decision level c.

7. Procedure Cr eat e_FDAs () defines each assertion as a 3-tuple ¥, vy, d,[JAs aresult, proce-
dure Er ase() (see Figure 3.2 on page 62) must ensure that assertions at each decision level d
are cleared as a consequence of the search process backtracking to d.

The proposed diagnosis engine also identifies FDASs due to unique implication points. In
addition, the diagnosis engine could handle iterated conflicts and multiple conflicts. Note, how-
ever, that implementation of iterated conflicts would be irrelevant, since al identified conflicts
update the level conflicting assignments sets, which would prevent finding lower backtracking

decision levels.

Theorem 3.8. The search agorithm for solving SAT, described in Figure 3.2 (see page 62), cus-
tomized with Sel ect (VAR+VAL), Deduce() and Di agnose_C(), is sound and complete.

The proof of the above theorem hinges on the fact that, after each conflict, the union of the
level conflicting assignment setsis an implicate of the consistency function.

Although the diagnosis engine proposed in this section is simpler to implement and
ensures a constant size clause database, it has afew drawbacks. First, conflict-based equivalenceis
no longer implemented. Second, the computation of the backtracking decision level is not pruned

as much as the one computed by Di agnose().

Example 3.15. The difference in computed backtracking decision levels is illustrated with the
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Figure 3.17: Difference in computed backtracking decision level

example of Figure 3.17. Assume that the decision assignments on x; and x, imply the assignments
on w, and wyq, respectively. Further, let us consider first the application of Di agnose_C(). At
decision level 3, assume decision x3 — 0, which causes a conflict with z,. Hence, Axg[2] is
updated with (wy, 0) and A-g[0] is updated with (2, 1). Conflict diagnosis causes x3 to be
asserted to 1 at decision level 2. The next decision, X, — 1, satisfies the objective on z; (note that it
actually satisfiesy; = 1@ 3 due to x3). The search process then tries to satisfy the objective on z,.
Let the next decision assignment be X5 — 1. This assignment leads to a conflict with z3, such that
Acdl1] isupdated with (w,, 1), A-g[0] is updated with z3, and X5 is asserted to 0. (Note that
Acdl5] isupdated with (x5, 1), but is cleared after diagnosing the conflict.) The resulting implica-
tion sequence causes a conflict with z,. Thus, A-g[0] isupdated with (z4, 1). Since x5 is asserted,
it is necessary to backtrack. The highest i such that A-d[i] is non-empty is 2. Hence the search
process backtracks to decision level 2, as shown in Figure 3.17-b. On the other hand, Di agnose()
would compute 1 as the backtracking decision level, because the two conflicts associated with x5

do not depend on assignments at decision level 2. O

101



In order to reduce the overhead of manipulating conflicting clauses and antecedent assign-
ments of assertions, the search process maintains a level conflicting assignment set A-g[i] for
each decision level i, each of which represents dependencies with respect to that decision level.
Whenever backtracking is required, this globa dependency information is considered, and thus
unrelated conflicts are now related by considering the union of every Ag[i] . Consequently, for a
given conflicting condition of a search process, we can conclude that the backtracking decision

level computed with Di agnose_ C() is always no less than the one computed with Di aghose().

Implementation

Identification of conflicts sets in Di agnose_C() is implemented as in Di agnose().
However, the level conflicting assignment sets are updated directly with references to the traced
variables, thus guaranteeing a total size of the level conflicting assignment sets of O(N). Conse-
guently, all decision level processing isimplemented in time linear in the size of the initial clause
database. For combinational circuits with bounded fanin, this implies that processing each deci-
sion level (either implications or conflict diagnosis) is accomplished in O(N) time. Further note
that all asserted nodes have antecedent sets implicitly defined by the level conflicting assignment
sets. Hence, the definition of failure-driven assertions does not significantly increase the computa-

tional overhead of processing each decision level.
3.6.3.2 Palynomially Bounded Clause Database

We now describe diagnosis engines that represent possible compromises between Di ag-
nose() and Di agnose_C(), by allowing restricted forms of conflict-based equivalence. Instead
of not adding conflicting clausesto the clause database, asin Di agnose_ C(), we alow clauses of
size no larger than mto be added, while conflicts due to larger clauses are used to update the level
conflicting assignment sets A-g[i]. Each of these diagnosis engines is referred to as
Di agnose_Pm()°. A direct consequence of this approach is that the size of the clause database
can only grow polynomial in N, even if an exponential number of backtracks is assumed. When-

ever it is necessary to backtrack, if the causes of the conflict can be solely attributed to conflicting

9 Pmindicates that the diagnosis engine can cause a worst-case growth of the clause database that
is polynomial in N due to the conflicting clause size constraint m.
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clauses, then these clauses define the backtracking decision level. Otherwise, the level conflicting
assignment sets are consulted, by (3.21), for computing the backtracking decision level.
Di agnose_Pm() defines a hierarchy of diagnosis engines that guarantee a polynomia size
increase of the clause database, and that implement restricted forms of conflict-based equivalence.

It is worth noting that the identification of UIPs extends the usefulness of
Di agnose_Pm(), since UIPs reduce the size of conflicting clauses. The identification of UIPs
does not change the worst-case time complexity of Di agnose_Pm(), and it increases the likeli-
hood of creating clauses over updating the level conflicting assignment sets.

A related diagnosis engine consists of limiting the total number of added conflicting
clauses, without regard to the size of each clause. Aswith Di agnose_Pm(), the level conflicting
assignment sets are required to ensure that all dependencies are properly accounted for. This
approach guarantees a constant size increase of the clause database. Another variation is to con-
sider Di agnose_Pm() but where the total number of added conflicting clauses is bounded. This
diagnosis engine ensures a constant increase in the size of the clause database, and such that each
added clause has at most m literals.

Note that the most significant advantage of Di agnose_Pm() over Di aghose() is that
the space requirements are bounded by a polynomial in N. Hence, the time required to process a
given decision level never becomes exponential in N.

These different diagnosis engines provide different tradeoffs between computational over-
head at each decision level and the amount of search. Depending of the end application, each pro-
cedure may represent the best solution. For example, in the course of our work and in the context
of test pattern generation, a conflict diagnosis procedure similar to Di agnose_ C() was described
in [155]. Experimental data suggests that the diagnosis ability of Di agnose_C() may be a bal-

anced solution for most practical test pattern generation problems.
3.6.4 Advanced Diagnosis Engines

The basic diagnosis engine, described in Section 3.6.1, is not guaranteed to identify con-
flicting assignment sets of minimum size. The purpose of this section is to study techniques to

remove redundancies from conflicting assignment sets.
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Figure 3.18: Over-specified conflicting assignment set

Example 3.16. An example where a conflicting assignment set contains redundant information is
shown in Figure 3.18. The decision assignment x5 = O creates an implication sequence that leads to
aconflict. The conflicting assignment set that is identified (with (3.6) on page 67) isAcs = { (X3,
0), (y1, 0), (Y2, 1), (z1, 0) }. We now express the conflicting assignment set in terms of the decision
assignments and assignments at decision level 0 (i.e. objective assignments), thus obtaining

A, = {(ry0), (x5 0), (X3,0),(z,,0)} . Now suppose the independent application of the
assignment set A = {(X,, 0), (X3,0),(z;,0)}} . In such a situation, the same conflict is
detected. Conseguently, we can conclude that the assignment (r4, O) is redundant since it does not
represent a necessary condition for identifying the same conflict. The derivation of this fact
required considering one subset of the original conflicting assignment set containing one element
less. The reduced conflicting assignment set can be used to reduce the number of backtracks. For
the above example, backtracking to the first decision level will no longer be required (assuming

that no other dependencies on ry are identified). O

In order to relate the size of conflicting assignment sets with the number of backtracks, we
minimize the size of conflicting assignment set defined in terms of decision variables and objective
assignments. As a result, if a (decision) variable assignment can be removed from a conflicting
assignment set, then the dependency of a conflict with respect to a decision level is eliminated.
When backtracking is required, removed decision variables will not be considered as target back-
tracking points. Consequently, by minimizing the size of the conflicting assignment set as pro-
posed, we are guaranteed to require no more backtracks, and we increase the likelihood of
reducing, in some situations, the total number of backtracks. As the above example suggests, it is

necessary to represent conflicting assignment sets in terms of decision variables and objective
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assignments. Otherwise, we might reduce the size of a conflicting assignment set, but create condi-
tions for increasing the number of backtracks by introducing dependencies on other decision levels
not contained in the original conflicting assignment set.

Procedure Sinplify Conflict_Set j(), for minimizing conflicting assignment
sets, isdivided into three distinct phases:

1. Specify the conflicting assignment set in terms of its decision variables and objective assign-
ments, i.e. create A,. Erase all assignments.

2. Forali, 1<i<j,and for each subset A of A, of size |A,| —i and composed only of deci-
sion assignments, use BCP() (described in Figure 2.6 on page 39) to test whether implica
tions derived from A yield aconflict. If A yields a conflict, then record the associated conflict-
ing assignment set (referred to the primary inputs and objective assignments).

3. Pick one of the recorded conflicting assignment sets with the smallest size. (For example, one
acceptable heurigtic is to pick the one involving the smallest decision levels)

This procedure ensures that we identify the smallest set of node assignments of size rang-
ing from |A|| —j to |A||, included in A, that also causes a conflict. The complexity of the proce-

durefor any givenjis:

j
0 U |A||
odeloy £ °1

= (3.22)
i=1 A|| -

where theterm | ¢| denotes the overhead of executing BCP(). The contribution of phase 1is ||¢]|,
it is negligible and it is not considered. Diagnosis engines based on the above procedure, referred
to as Di agnose_j(), can be readily implemented by appropriate modifications to procedure
Di aghose().

The idea of simplifying dependency sets has been extensively studied in constraint satis-
faction problems[19, 41, 42, 143, 169], truth maintenance systems[43, 44, 54] and logic program-
ming/automated deduction [20, 21, 130]. In satisfiability algorithms for combinational circuits,
redundancies on conflicting assignment sets require different forms of reconvergent fanout that in
practice are difficult to find. For example, that is the case for the example we used in Figure 3.18.

Therefore, we conjecture that minimizing conflicting assignment sets in clause databases associ-
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ated with combinational switching circuits may not provide significant search pruning.
3.7 Preprocessing the Clause Database

Preprocessing a clause database entails the identification of implicates of the consistency
function, prior to searching for a solution to a query. In the SAT algorithm of Figure 3.2 (see page
62), preprocessing the clause database is performed by the preprocessing engine Pr epr ocess|().
The effort one is willing to spend in preprocessing a clause database defines the preprocessing
ability, and so afamily of preprocessing engines Pr epr ocess_m() can be defined.

Note that each deduction engine Deduce_k() can be used for preprocessing purposes.
Nevertheless, each of these deduction engines can be modified to identify more implicates. While
each Deduce_k() is based on diagnosing conflicts for creating implicates, Pr epr ocess_m()
also examines the structure of implication sequences with the goal of deriving additional impli-
cates. As we show in the sequel, deriving implicates from the structure of implication sequences
can introduce a large number of redundant implicates. While the overhead of detecting and remov-
ing these redundancies can be acceptable from a preprocessing perspective, it can be prohibitive
for a deduction engine. The objective of this section is to illustrate how deduction engines can be
modified for preprocessing purposes.

For example, let us suppose the assignment x — Vv, that implies the assignment y — vy
with a(y)| >1 and causesof(y) = { (X, V) }. This also implies that, in terms of the implication
graph, more than one path is involved in implying the assignment of y. On the other hand, the
assignment y \Ty does not necessarily imply x « v_x even though this latter assignment is nec-
essary for a consistent assignment. Consequently, { x¥, y‘7y} is an implicate of the consistency

function and may identify implications that otherwise might not be derivable.

Example 3.17. Let us consider the example circuit of Figure 3.19-a. X — limpliesz — 1. Hence,
we can derive the implicate w =(z + =x). Without thisimplicate z — 0 would not imply X « 0. w

ensures that this assignment isimplied. O

In a more genera situation, consider the assignment set { (Xq, V4), ..., &m Vi) }, that

impliesthe assignment y vy - Let us further assume that causesof(y) = { (X1, V1), -+, &m Vir) }-
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Figure 3.19: Example of preprocessing

In such a situation, Ep(‘l’l x}l’;“, y‘&% denotes an implicate of the consistency function. Note that
this implicate is onl?/ relevant if it idDentifi% otherwise non-derivable implications. Suppose now
that there are other independent assignments, i.e. y is assigned due to the assignment set and due to
other assignments already specified for the circuit. Then, causesof(y), from (3.7) on page 67, can
be used to identify which nodes are actually responsible for implying the assignment of y. In such

asituation, the implicate to be created is given by:

=] (woy | Oy (3.23)
w [ causesof (y)
which denotes the general form for the generation of implicates by preprocessing. The objective of
Pr eprocess_m() isto derive and simplify all implicates of the above form, for al assignments
of all subsets of size m of unassigned variables. The procedure for preprocessing a clause database
isgiven in Figure 3.20 and it follows the implementation of Deduce_k(). However, besides ana-
lyzing conflicts, any node assignment that is implied due to multiple implication paths causes a
new implicate to be added to the clause database. For each subset of nodes of size m, all possible
logic value assignments are tested. For each assignment, implications are derived. If a conflict is
detected, then the procedure generates a conflicting clause as Deduce_k() does. Otherwise, the
structure of the implication sequence is examined, and conflicting clauses are generated with

respect to each assigned node with an antecedent set of size larger than 1. (As mentioned earlier,
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/I d obal vari abl es: I nplication graph Ic
I Cl ause dat abase ¢
/I Return val ue: CONFLI CT or SUCCESS
1l
Preprocess_m()
{
i f (!PREPROCESS_QUERY) return SUCCESS; /I No preprocessing
if (Deduce() == CONFLICT) return CONFLI CT;
status = SUCCESS; ¢, « [
Let I be the set of all sets of m unassi gned nodes;
for (each set y[OI and while status != CONFLICT) {
status = CONFLICT; ¢, « [J
for (each distinct |logic value assignnent to the nodes iny) {
i f (Deduce() == CONFLICT) {
w = Create_Conflicting Cause(); /I Using (3.6), (3.8)

¢y - ¢y|:{ w}
} else { /I No conflict detected
for (each assigned node y with |a(y)>1) {
comput e causesof(y) ; /I Using (3.7) on page 67
create conflicting clause w; /' Usi ng (3.23)
¢y - ¢y E{ @ };
}
stat us = SUCCESS,;
}
Erase_Last _Assi gnnents();
}
Generate_Prime_lnplicates (¢,); /l See Fi gure 2.7 on page 44
Om <~ dm v
}
if (SIMPLIFY_¢,,) Generate_Prine_Inplicates (¢,);
o -0

return Deduce();

Figure 3.20: Description of the preprocessing engine

an antecedent set of size larger than 1 covers all cases of node assignments implied due to multiple
implication paths.) From the above discussion, we can conclude that preprocessing can introduce

some superfluous conflicting clauses, that are removed by Gener at e_Pri ne_| npl i cat es().
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Pr eprocess_m() terminatesin aconflict if it can establish that the clause database is not satisfi-
able.

Although not included in the procedure shown in Figure 3.20, UIPs can be identified
either if diagnosing a conflict, or for each assigned node due to multiple paths. UIPs reduce the
size of implicates, and as described below, can be applied in removing some forms of preprocess-
ing redundancy.

Further note that even though Pr epr ocess_m() apparently derives more conflicting
clauses than Deduce_k(), the size of the clause databases computed by Deduce_ k() and
Pr epr ocess_m() are bounded by the final size of ¢, i.e. the size of the prime implicate repre-
sentation 7. Hence, for k = m, Pr epr ocess_m() tends to accelerate the derivation of prime
implicates. (This situation will not hold whenever Pr epr ocess_m() just derives redundant
implicates.)

Pr eprocess_m() is defined without any form of relaxation. Aswith deduction engines,
we can define preprocessing with relaxation, Pr epr ocess_m,R(). The procedure of Figure 3.9

(see page 81) can be straightforwardly adapted to implement Pr epr ocess_m,R().

Example 3.18. A few more details of the operation of Pr epr ocess_1() are described with the
example circuit of Figure 3.19-b. Suppose that the assignment z = 1 is given, and assume
Preprocess_1() isinvoked. For y = { w}, and for the assignment w = 0, then x — 0. Hence,
from (3.7) the causes for assigning x are defined by { (w, 0), (z, 1) }. Consequently, the implicate
w =(w + -z + =x) is created. Note that the implicate holds independently of the assignment to z,
i.e. it identifies alogical relation of the original clause database. Suppose now that for a different
guery, X « land z « 1. Then wimpliesw « 1, which would not be derived with Deduce()

aone. I

The actual of implementation of Pr epr ocess_m() may allow implicates to be added to
the clause database as they areidentified. This solution increases the number of derived implicates,
but makes the fina result dependent upon the order in which the subsets y are processed. For
example, in the course of our work [155], and as a preprocessing step, we implemented

Pr epr ocess_1() but allowing the clause database to be updated as new implicates were derived.
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For combinational circuits, the best order of the variables consisted in starting from the primary
inputs and then proceed in level order to the primary outputs. This fact can be justified by noting
that by adding additional implicates, implication sequences are more likely to reach farther back-
wards than without dynamically adding implicates. Hence more implicates can then be created.
Despite the large body of research work on preprocessing techniques, particularly in test
pattern generation algorithms, the fact that preprocessing may introduce some redundant informa-

tion has been overlooked in the past.

Example 3.19. Consider the example circuit of Figure 3.19-c, and assume that the circuit is pre-
processed with Pr epr ocess_1() without identifying UIPs (a related procedure is commonly
referred to as static learning in several algorithms for test pattern generation [70, 71, 102, 144,
145, 155, 162, 167, 174]). Preprocessing the circuit with Pr epr ocess_ 1() yields the following

implicates (e.g. X —« limpliesz — 1, hence add clause (z+ —X) to the clause database):

(z+x1) Qz+Xy) Lz + X3) {z+=X) (3.29)

However, it isimmediate that the first three implicates provide no additional implications than the
implications provided by the fourth implicate and by the original clause database. In fact, assume
z=0; then the fourth implicate impliesx — 0, which thenimpliestheassignmentsx; « 1, X, < 1,
and x3 — 1, dueto the NAND gate. Note that these assignments would otherwise be implied by the
first three implicates of (3.24). Even though these implicates are not subsumed by other implicates

in the clause database, they can be considered redundant. O

The sole effect of these redundant implicates is to add computational overhead. Hence,
preprocessing ought to avoid introducing redundant implicates. In the case of Pr epr ocess_1(),
the derivation of implicates based on UIPs can be used to prevent some of these redundant impli-

cates.

Example 3.20. For the example circuit of Figure 3.19-c, assumethat Pr epr ocess_1() identifies
UIPs. Let x; =0 be thefirst assignment. It then impliesx — 1, whichin turnimpliesz — 1. Node
x denotes a UIP, and so the clause added is (= x + 2). No other implicates are added because thereis

only one implication path from x; to x. Next, consider the assignment x, = 0 (or X3 = 0). Again,
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X « lisimplied and (from (=X + 2) due to breadth-first implications) z — 1 isalso implied. How-
ever, given the last implication sequence, no more implicates are derived. Finaly, the assignment
X « limpliesz — 1 (also due to (-=x + 2)), but no more implicates are derived, since only one
implication path connects x to z. Consequently, identification of UIPs prevents Pr epr ocess_1()

from creating redundant implicates. O

As mentioned earlier in Chapter |, preprocessing methods are ubiquitous in algorithms for
constraint satisfaction problems [61, 99, 111, 126, 127, 169]. In test pattern generation restricted
forms of preprocessing techniques have been proposed in recent years as a possible solution to
reduce the complexity of search during the test generation phase [37, 71, 102, 105, 144, 145, 155,
162, 167, 174], as will be reviewed in Chapter V.

The hierarchy of preprocessing algorithms, described in this section, illustrates how any
degree of consistency can be attained prior to computing solutions to queries. The algorithms are
admittedly quite inefficient for large m, and more efficient procedures ought to be devised for those
cases. The advantages of preprocessing are dependent on the application. For example, in test pat-
tern generation, it is now commonly accepted that simplified forms of Pr epr ocess_1() have
advantages over no preprocessing [37, 71, 102, 106, 144, 155, 162, 167, 174]. In Chapter V11, we

provide experimental results that show that this may not always be the case.
3.8 Postprocessing Engine

Solutions computed by the SAT algorithm can have redundancies. This means that some
decision assignments are irrelevant for satisfying the specified objectives and can be discarded. For
some applications, solutions of asmaller size may be particularly useful. In addition, the search for
different queries to the clause database may have portions of the decision tree that are isomorphic.
In this situation, cached information of the solution to each query can be used to simplify the
search for subsequent queries.

This section studies techniques for removing redundant decision assignments from solu-
tions and for caching information regarding identified solutions to queries. The techniques pro-
posed apply exclusively to clause databases derived from combinational circuits, and specifically

assume a circuit structure.
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(a) Example circuit

» Computed solution:
A = {(xg,1), (X 1), (X5, 0), (%4, 0), (X, 1), (¥ 1}
* Another valid solution:

A = {(x3 0), (x4 0), (x5 1), (Xg 1)}

J solution
(b) Decision tree (c) valid solutions to the satisfiability problem

Figure 3.21: Over-specification of satisfying assignment
3.8.1 Removing Redundancies from Solutions

The solution computed for a given query can contain some redundancies because some

decisions may beirrelevant to satisfying the original objectives.

Example 3.21. Consider the example circuit of Figure 3.21-a. where the order of decisions of Fig-
ure 3.21-b is assumed. GRASP, configured with Deduce() and Di agnose() would compute the

following assignment set:
A= {(le 1)! (XZ! 1)1 (X3! 0)’ (X41 0)1 (X5! l) ' (X6’ 1)}

However, it is clear from the circuit that the assignments x; = 1 and x, = 1 are not relevant for sat-
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isfying the original objective, and hence these assignments are said to be redundant. Accordingly,
A = {(X3,0), (%4 0), (X5 1), (xg 1)} aso constitutes avalid satisfying assignment. This |at-
ter assignment set is preferred in some applications of satisfiability algorithms. Moreover, we

observe that the assignment set A can be further simplified, asis shown below. O

Even though the search a gorithm does not provide direct mechanisms for ssmplifying sat-
isfying assignments, in this section we describe simple techniques for removing redundancies
from solutions.

The following analysis assumes that a solution to a query has been found, and that our
goal is to identify which decisions effectively contribute for satisfying the query. Let us consider

an assignment set Ag with respect to the primary inputs,
Ag = { (X v(X)[xOPI IV (x) X} (3.25)

that satisfies a set of goals at the primary outputs. The resulting complete node assignment is used
to create the node justification graph (Jg), which describes how the primary output node objec-
tives are justified, by recursively identifying how each assigned circuit node is justified by the
assignments to its fanin nodes.

The construction of Jg requires a few preliminary definitions. For each assigned node y,
withy = v, let M(y) denote the set of fanin nodes that justify y under the following conditions:

1. M(y) isaminimal subset of fanin nodes of y such that the assignments to the nodes in M(y)
justify the value of y.

2. M(y) has the least highest decision level over all possible sets M(y). If more than one candi-
date M(y) has the least highest decision level, choose the M(y) with the lowest highest impli-
cation level for the nodes assigned at the highest decision level in each M(y).

Note that for simple gates either M(y) contains all gate inputs or contains only one gate
input, depending on whether the gate respectively assumes a non-controlled or a controlled value.

(A definition of controlling/non-controlling values can be found in [1, p. 59].)

Example 3.22. For example, let y = 0 @ 0 be the output of an AND gate, y = AND(X, w, U) , such
thaax=0@1/3,w=0@1/5andu=0@ 2/ 1. Thevaue of y isjustified by any of itsinputs,

113



and so any of these nodes can potentially define M(y). Node u is not considered because it is
assigned at a decision level higher than that of either x or w. Consequently, M(y) = { x }, because

both x and w are assigned at the same decision level and x has the lowest implication level. O

Using the above definitions, the node justification graph Jg = (V;, E;) is created as fol-
lows:
1. Every primary output objective z = v, corresponds to a vertex (2) in V;.
2. For each vertex n(y) in V;, denoting the assignment y = vy, and such that n (y) has no incom-
ing edges and y is not a primary input, identify M(y). For each node w in M(y), add n (w) to V;
and let (n(w), n(y)) U E;.

From the definition of Jg, it is clear that there may be assigned nodes not in Jg. In some
situations, as illustrated by the example of Figure 3.21, every assigned node at a given decision
level isnot in Jg. Thisthen signifies that such decision assignments are irrelevant for satisfying the
original objectives. We further note that in some situations the node justification graph corresponds
to a subgraph of the implication graph, but in general this is not the case. Justifications are gate
input-output relations, whereas the implication graph denctes how implication sequences evolve,
which are not necessarily based on gate input-output relations.

The set of primary input assignments to be considered is defined as follows:

AS' = {(xv(X)|xOPIH (x) OV} (3.26)

where, AS‘ O AS'

Example 3.23. The node justification graph for the example circuit of Figure 3.21 isshown in Fig-
ure 3.22. The construction of Jg reveals that the decisions on x; and x, are redundant. Further-
more, from (3.26) the reduced assignment set becomesAg' = { (X3, 0), (X4, 0), (X5, 1), (X6, 1) }.

It isimportant to note that the assignment set defined by (3.26) is not minimal in the num-
ber of decision assignments. This fact results from the order in which decision assignments are
made, which may require considering a decision that otherwise could be made redundant. Con-
sider again the example circuit of Figure 3.21-aand let AS" = {(X3,0), (X4, 0), (X5, 1)} bean

assignment set. By inspection, we can conclude that AS is also a solution to the original query,
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Figure 3.22: Node justification graph (Jg) for the example circuit of Figure 3.21

because xg — 1 impliesthe assignments that were otherwise implied by the assignment of xs. [

As the above exampl e suggests, a solution assignment set can be further simplified by sep-
arately considering some of its subsets. For each such combination, logical implications are
derived, and one tests whether all the objectives are satisfied. If so, then the subset of the origina
assignment set isindeed a solution to original set of objectives. The size of the subsets depends on
the amount of effort one is willing to spend reducing the size of the solution assignment set. In
general, we define redundancy removal of order k to signify that for an original solution assign-
ment set of size |As| , al subsets of size |ASJ —k or larger are analyzed. A straightforward imple-
mentation of these ideas is given in Figure 3.23. Basically, for each subset of variables of Ag of
size greater than or equal to |As| —k, atentative solution for the objectives is checked. If one of
these subsets is indeed a solution, then it represents one possible reduced assignment set for the
original query. The procedure starts from the smallest subset of variables and proceeds to the larg-
est subsets (i.e. of size |As| —1). The outer loop can be removed if oneis only interested in solu-

tions of size |As| —k. For each j, the number of subsetsto be analyzed is:

0 [As 0 - dAsg
jag-i8 00

Since testing whether a given assignment set is a solution requires O(||¢[) time, then an upper
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Renove_Sol uti on_Redundanci es_k ( Ag)

{
create_Jg();
for (j = kdown to 1) {
let T; be the set of all subsets of Agwith size |AS|—j;
for each (subset y of ) {
clear all assignnents except objectives;
if (y satisfies the objectives) return vy;
}
}
return Ag
}

Figure 3.23: Pseudo-code for removing redundancies from solutions

bound on the run time of the procedure of Figure 3.23 is given by:

oélcbll Dﬁ SA?"% (3.27)
=17

that basically limits the applicability of the procedure to small k. As afinal remark, we emphasize

that for any kit is not possible to guarantee a solution of minimum size. Such minimum size solu-

tion may only be defined with decision assignments not even involved in the computed solution.

For k = |[Ag, we can guarantee that the solution of minimum size is computed, given the original

solution.

The significance of removing redundancies from solutions to queries depends on the end
application. In Chapter V, we describe the extension of these ideas to test pattern generation. For
circuits where a large number of decisions are not relevant for the identification of a solution,
removing redundancies from a satisfying assignment has several advantages, most noteworthy,

testing time and test size.
3.8.2 Caching Solutions

In applications where alarge number of queriesisto be posed to the clause database, it is
often useful to record previously identified solutions so that similarities between distinct queries

can be used to reduce the search effort. For example, this is the case in test pattern generation,
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Figure 3.24: Example of caching solutions

where a large number of faults must be detected and detecting each fault can be viewed as an
instance of SAT. In situations where the search effort to identify the solution to a query is signifi-
cant, it can be useful to identify ways to encode that solution in order not to repeat the same search
effort again for subsequent queries. Such encoding can be viewed as caching the solution to the
guery in order to use it again afterwards. In this section we analyze one possible procedure for

caching solutions to queries on clause databases.

Example 3.24. An example illustrating how cached solutions can be defined and used is shown in
Figure 3.24. The first set of objectives is assumed to be z; = 1 and z, = 0. Let us assume that the
ordered sequence of decision assignmentsisx; =0, X, =0, w; =0, w, =0, w3 = 0, wy = 0. We
observe that after the second decision assignment (i.e. X, = 0), S; « 1. Dueto this assignment, and
because z,= 0, u — 0 isimplied. As a direct consequence, the j-frontier'® after decision level 2
consists only of node u. Moreover, the above set of decision assignments denotes a solution to the
original set of objectives.

The second set of objectivesis given by z; = 1 and z, = 0. Let us assume that the ordered
sequence of decisionsisnow y; = 1,y, =1, w; =0, w, = 0, w3 = 0, w, = 0. However, for this sec-
ond query, after the second decision (i.e. y, = 0) we have s, — 0, which then implies (with z3 = 1)

u — 0. Hence the j-frontier becomes the same as in the previous case. Furthermore, with respect

10. Since combinational circuits are explicitly assumed, j-frontiers are well-defined. A definition of
j-frontier is given by (3.4) on page 60.
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to the first query, all decision nodes involved in decisions at decision levels greater than 2 are still
unassigned. The same holds true for al other nodes that were assigned at decision levels greater
than 2. Consequently, we can use the information of the previous solution to immediately identify
a solution to the current set of objectives. The solution to the current query uses the decision
assignments already made (i.e. y; = 1 and y, = 1) and extracts from the previous solution the set of
decision assignments required to satisfy u= 0 (i.e. wy =0, w, = 0, w3 = 0, w, = 0). For this second
guery, the search process identifies a solution after two decisions. Further note that the two com-
puted solutions are actually distinct. Caching solutions allows extracting parts of a cached solution

to complete the solution currently being computed. O

The procedure we propose identifies a set of node assignments (or lack of such assign-
ments) which guarantee that a solution to a new query can be constructed if the assignments of the
new query are adequately related with the assignments of some previously cached solution.

Let us assume that the solution to a query has been computed, and that the node justifica-
tion graph has been created. Given the definition of Jg, the decision level at which each nodey is
assigned, with n(y) O V3, provides apartition of V;. Let K be the depth of the decision tree, and let
Py P4, .-, P denote each set in the partition of V;, such that n(y) U Pj ifandonly ifd (y) = j.
Note that from the discussion in the previous section, some sets P; may be empty.

Define a predicate J(w, y) to hold true if and only if in Jg either w contributes to justifying
y (i.e. w O M(y)) or, conversely, y contributes to justifying w (i.e. y 00 M(w)). Hence, J(w, y) holds
trueif and only if either (n(w), n(y)) O Ejor (n(y), n(w)) O E;. Furthermore, we define alevel cut

Tj, for decision level j, asfollows:

Ty ={p0OV,|pOP;O[(p,a) DE;0(a p) DEJO qORY 1>]30
{pOV,y|pOP;Oi<j0 [(p,g) DE;0(q, p) OEH qOB 1>} (3.28)

T contains the vertices p of V; such that either:
1. p=n(w), wisassigned at decision level j, and there exists y such that J(w, y) holds, with q =
n(y) and 3(y) >].
2. p=n(w), wisassigned at decision level i, withi <j, and there existsy such that J(w, y) holds,

withg=n(y) and 3(y) > .
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Consequently, level cut T; contains all vertices associated with nodes assigned at decision
levels less than or equal to j such that these nodes contribute to justify or are justified by nodes

assigned at decision levels higher thanj.

Example 3.25. Consider the example circuit of Figure 3.24. For the first query, at decision level 4

and after deriving implications (due to w, = 0), T, is defined by,
T, = {n(ty} O{n W} (3.29)

n(u) belongs to the second subset because u is assigned at decision level 2, and there are nodes

assigned at decision levels higher than 4 that contribute to justify u. O

Each level cut T uncouples assignments at decision levels greater than j from assignments
at decision levels less than or equal to j. In particular, after defining T;, any node y assigned at a
decision level greater than j, can only contribute to justify or be justified by nodes w assigned at

decision levels greater than j or such that n(w) isin T;.

Lemma 3.1. Assume a solution to a query identified by an assignment set A, and let the associated
node justification graph Jg be defined. For each decision level j, define T; with (3.28). In such asit-
uation, for any nodey, such that J(y, x) holds for x assigned at adecision level greater than j, either

yisalso assigned at adecision level greater than j or issuch that n(y) U T;.

Let the assignment set A be a solution of size K to aquery, and let T; be alevel cut associ-
ated with A. Suppose now anew query, such that at decision level ¢ with current assignment set A,
the assignments implied by T; are matched, and any assignment (under A) at a decision level
greater than j is not contradicted. Then a solution to the present query is to append to A, the result
of the decision assignmentsin A after decision level j. These ideas form the basis for defining and
using cached solutions.

Define the assignment set associated with each P; and each T; as follows:

AP) = {(y.v)In®) O P}

(3.30)
AT) = (V) ING) 0T
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Assume a solution Ag (from (3.26)) to a query, and define each P; and T; accordingly. Next,
assume anew query, such that the associated search processis currently at decision level c. Then, a
solution can be identified if the following condition holdsfor one of the decision levelsj of the pre-

vious solution, with 1< j < K, Pj # [ and Tj £z0:

K
C() = (v(y) = vy) U (V) # vy) (331)
(v, vy)EIA(Tj) o :U+1[(y, vy)l_DlA(P.) ' }

that basically requires that, under the current partial node assignment, the node assignments of the
elements of the level cut T; to be matched, and assignments of the previous solution, defined at
decision levels greater than j, not be contradicted. The computed solution to the current query is

thus defined by:

A = {(xv¥))xOPIv )X O{(xVv )|XDPI W (x=X0(xv)0Ad (332

where Ag is the solution to the previous query, given by (3.26), that is associated with each C(j).
The following result guarantees that a solution can indeed be found if one of the conditions C(j) is

matched:

Theorem 3.9. If one of the conditions identified by (3.31) holds, then Ag' given by (3.32) isa

solution to the query.

The implementation of the above ideas requires maintaining a database of solutions, %,
where each entry of X, is a 2-tuple (C, A), such that C encodes one of the conditions given by
(3.31) and A identifies the solution assignment set associated with the primary inputs that defines
C. Whenever anew query is being processed, and after deriving logical implications, the database
of solutionsis consulted. If (3.31) holds for acondition C of someentry (C, A) of Z, then (3.32) is
used, along with A, to construct the primary input assignment representing the solution for the cur-
rent query.

The definition of T; can be simplified by not considering nodes in the j-frontier, i.e. by
only considering, in (3.28), nodes with outgoing edges to nodes assighed at decision levels greater

than j. In such a situation, each condition C(j) must require the j-frontier of the current query to be
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Decision level IFG) A(T) Ass gnmentsa Qigher
j=0 {722} O
1 {22} {(x1, 0}
2 {u} O W1, Wy, W3, Wy, 1y, Ty, t3, tg, tg
3 {u} {(Wl, 0) Wo, W3, Wy, tq, to, t3, Iy, t5
4 {u} { (11, O)} W3, Wy, b, t3, tg, tg
5 {u} { (w3, 0} Wy, th, ta, t, ts
6 g U none

Table 3.2: Conditions for matching cached solution

included in the j-frontier of the cached solution. Let JF; denote the j-frontier at decision level j for

the previous query. Then (3.31) can be rewritten as follows:

K
Cl) = GFQDIFYD [ () =%) 0 [] ]

(v(y)qz\'/y)} (3.33)
(%) O A(T)) RIS

A(P)
This condition has some advantages over (3.31), particularly because we can just request the cur-
rent j-frontier to be included (and not to exactly match) the j-frontier, at decision level j, of the pre-
vious query. (Note, however, that the above condition can still be somewhat restrictive with respect

to the requirements on A(P;) and A(T;)).)

Example 3.26. In order to illustrate how solutions are cached and used to reduce the amount of
search for subsequent queries, we consider again the example of Figure 3.24. The analysis
assumes (3.33), i.e. T; does not include nodes in the j-frontier. After the solution to the first query
(i.e. zy = 1 and z, = 0) is computed, the constructed decision tree and resulting node justification
graph yield the data shown in Table 3.2. In particular, we record the j-frontier and the assignment
set A(T;) associated with each element P; of the partition of V;. Consider now the second query
(i.e. zz=1and z, = 0). Thefirst two decision assignments arey; = 1 and y, = 1. At this point, the j-
frontier becomes { u} . Furthermore, none of the nodes with assignments in A(P;), with j >2, is

assigned. Hence, (3.33) is satisfied for decision level j = 2 of the previous query. Using (3.32), the
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solution to the current query becomes:
As = {(yy 1), (¥ 1), (wy, 0), (w,, 0), (ws, 0), (W, O)}
and hence the search effort of processing the last four decision assignmentsis saved. O

Note that caching solutions poses a tradeoff between the number of saved decision assign-
ments and the overhead to manipulate the solutions database. Hence, caching solutionsis only use-
ful when the effort to compute a related solution is significant. For example, we can just cache
solutions for which a significant number of backtracks is required or a large decision tree is con-
structed.

Note that redundancy removal for k> 2 is not guaranteed to increase the ability to match
solutions in the solution database. Reducing the size of a solution implies that some later decision
assignments now guarantee the implications previously derived by earlier decision assignments.
Hence, the sequence of implications that allow finding a solution is changed. This may affect neg-
atively the ability to match partial node assignments with minimized (and cached) solutions. Con-
sequently, caching solutions must be handled independently of redundancy remova from

solutions.

Per spective

The proposed procedure for caching solutions is inspired by Giraldi and Bushnell’s work
in test pattern generation [70, 71], even though the idea of caching solutions to search problems
had been proposed before in other areas (see for example [57]). Nevertheless, our procedure intro-
duces two improvements. Firgt, it isindependent of the test pattern generation problem representa-
tion. Second, and more important, the node justification graph eliminates some of the redundant
decision assignments, whereas in Giraldi and Bushnell’swork all decision assignments are consid-

ered!!. Results reported in [71] indicate that partial solutions are often matched, thus allowing the

11 The description of Giraldi and Bushnell’s algorithm (EST) [70, 71] does not specify how the j-
frontier is handled. Clearly, the information associated with a given stage of the search process (in
EST referred to as a state) must contain the j-frontier, since otherwise the procedure would be
incorrect. Assuming that the j-frontier is properly encoded, then each state representation in EST
includes some C(j) (in our approach) as well as some superfluous conditions on other node assign-
ments.
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search process to terminate earlier. The extension of the method we propose to test pattern genera-

tion (see Chapter V) is guaranteed to identify no fewer matches than that of [71].
3.9 Decision Making Procedures

In this section we study technigques for guiding the search process. As with the analysis of
other techniques, we emphasize the non-heuristic aspects of decision making. Consequently, we
start by studying techniques for reducing the number of decision variables. We then study proce-
dures for selecting decision assignments. In the last subsection, we describe heuristic techniques to
choose decision variables in SAT algorithms which can be related to well-known heuristic princi-
ples of search. Asin the previous section, we explicitly assume a clause database associated with a

combinational circuit. Hence, for each clause database a set of primary inputs is well-defined.
3.9.1 Reducing the Number of Decision Variables

Procedures for reducing the number of decision variables in circuit satisfiability proce-
dures date back to FAN [62], where the concept of (static) head line was first proposed. A head
lineisthe output of afanout-free sub-circuit [1, pp. 208-209], and can thus be satisfied to any logic
valuein linear timein the size of itstransitive fanin'2. Duri ng the course of our work, we proposed
the concept of dynamic head line [155]. A dynamic head line is a circuit node that becomes the
output of a fanout-free sub-circuit due to assignments to some of the remaining circuit nodes.
While static head lines are computed before starting the search process, dynamic head lines are
updated dynamically, as the search process evolves.

Another related concept is the notion of a (topological) don't care node, first proposed in
[109]. Don't cares denote circuit nodes whose logic value isirrelevant for the satisfiability (or path
sensitization) problem being solved. Theidentification of don’t care nodesis useful because it may
prevent long implication sub-sequences bearing no relevancy to the query being solved. An inte-
grated algorithm for the dynamic identification of don’t care nodes and head lines is described in

[155], and it is basically based on counting, either statically or dynamically, the number of effec-

12 Although not specified in [1], the function of each gate is assumed to be reasonable. For exam-
ple, if the circuit is composed of gates whose computed output function is always identically O (or
1), then the output of a fanout free sub-circuit is not be satisfiablein linear time.
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tive fanout nodes of each node, and on relating fanout-free head lines.

In this section we propose to relate the identification of head lines and don’t caresin com-
binational circuits with the application of the consensus operation and the pure literal rule [38] on
clause databases. This relationship then provides aformal justification to the identification of head
lines and don't cares; it also provides new insights on how to simplify the search space by further
reducing the number of decision variables in the clause database. The analysis is restricted to cir-
cuits composed of simple gates, where simple gates are represented with the template CNF formu-

las of Table 2.1 (see page 35).

Example 3.27. Let us assume a combinational circuit and let z= AND(Xq, X, X3), such that xq, X,

and x3 are fanout-free head lines. The corresponding CNF formulais given by:
(Xg +72) UXy +=2) UXg + 22) =Xy + =X, + X3+ 2) Y (3.34)

Thus, each of the variables x4, X, and x3 participates in exactly two clauses, in one as a positive lit-
eral, and in the other as a negative literal. Let ¢' — Consensus(¢, x,) denote the operation of
Davis-Putnam resolution (see Figure 2.10 on page 48); then ¢' is independent of x;. (Note that
since x, is afanout-free head line, then x; is only input to z)) Furthermore, in ¢', literals on x, and
X3 only appear as positive. Recall, from Section 2.5.4 on page 52, that the pure litera rule states
that if avariable appearsin only one literal form (either positive or negative), then all clauses con-
taining such aliteral can be removed, because assigning that literal satisfies those clauses without
affecting any of the other clauses. Hence, the clauses containing a literal in x, or in X3 can be
removed. After this sequence of operations, the resulting clause database does not contain literals
on X1, X, and X3. Furthermore, by proper bookkeeping, z can now be identified as a new head line.
The application of restricted forms of consensus and the pure litera rule also permit the
identification of dynamic headlines. Let us assume that for the above AND gate X, is not a head-
line. Further assume that x; is assigned value 1. Consequently, (x; + —2) is satisfied and literal - x;
is set to 0. The application of consensus with respect to x, and the subsequent application of the

pure literal rule alow defining z as anew head line. O

The above examples illustrate how the application of a restricted form of Davis-Putnam
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Figure 3.25: Simplification of clause databases

resolution and the pure literal rule can be used to describe the static or dynamic identification of
head lines. The same techniques can be applied to a node that does not contribute to satisfying the
set of objectives, i.e. adon’t care node. For example, consider afanout-free primary output z. Con-
sensus with respect to z just yields tautologous clauses. Thisfact isjustified by the CNF formula of
each gate. Thisformula has clauses with negative and positive literals on z. However, a clause with
a positive literal in z necessarily contains aliteral | whose complement also appears in the clause
with the negative literal in z Hence consensus yields a tautologous clause. We can thus conclude
that by iterated application of restricted consensus, don't care variables are removed from the

clause database.

Example 3.28. Consider again the example gate, z = AND(Xq, X, X3), but now z is a don’t care
variable (without fanout nodes) and x4, x, and X3 are internal circuit nodes. Let us consider consen-
sus with respect to z. The application of (3.34) only generates tautologous clauses, and thus all ref-

erencesto z are erased from the clause database. O

The application of consensus and the pure literal rule can be used to describe further sim-

plifications to the clause database that find an equivalent in its circuit counterpart.

Example 3.29. Consider the examples of Figure 3.25. For the example circuit of Figure 3.25-a, the

derived clause databaseis:
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(yp+-z)) Qt+-2z)) Q-t+-y, +2) 0
(y2 + "22) t+ —.22) (-t + Sy, + 22) O (3.35)
(Y3 +-2Z3) Ht+-2z5) -t + -y, +25) [y

where y is a CNF sub-formula on z;, z,, zz and other variables, and where input variablest, yy, y»
and y3 are known to be head lines. Furthermore, y,, y, and y5 are fanout-free, and t fans out only to
73, zp, and zz. Consider the application of consensus with respect to y;, Yo, and ys. Thus,
(t+-2z)) [t +-2z,)) Ot +-25) Oy becomes the new clause database, where clausesin y,, y, and
y3 areremoved. Now we observe that t only appears as a positive literal and thus, by the pure literal
rule, the clause database is further simplified to y. Consequently, even with t not being fanout-free,
we are able to simplify the clause database and base further decision assignments on the new head
lines z;, z, and z3.

With respect to the example of Figure 3.25-b, let t be a fanout-free head line. The origina
CNF formulafor the NAND gateisgivenby (t+2z) Qu+2z) ({-t+-u+-2).Sincez=1, then
the binary clauses are satisfied, and the CNF formula reduces to (=t + = u). In this situation, the
value of z can be justified by t, since clause (=t + = u) can be satisfied by the pure literal rule (note
that t does not participate in any other clause becauseit is afanout-free head ling). In terms of node
assignments, we say that sincet is a fanout-free head line, then we are free to assign to it the nec-
essary value to justify z. Finaly, we conclude that the set of objectives (which includes 2) is satisfi-
able if and only if it is satisfiable without objective z = 1. This operation is not a decision, and

henceit is no longer necessary to decide the assignment on t. O

Simplification of the clause database, with the goal of identifying don’t care nodes and
head lines, is organized as follows:

1. For each variable with either only one positive or negative literal, apply Davis-Putnam con-
Sensus.

2. Apply the pure literal rule to each variable whose literals are either all positive or al nega-
tive.

3. Repeat while the restricted consensus operation can be applied. Record changes to the set of
head lines.
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This procedure can be readily applied to a clause database, and taking into consideration
the CNF formula of each gate, it can also be directly applied to structural circuit representations
composed of simple gates. For more general combinational circuits, the algorithm of [155] can be

used, and completed with the above procedure whenever it applies.

3.9.2 Deciding Assignments

The simplest decision making procedure is to assume a fixed order of the decision vari-
ables, and default assignments, and use that fixed order to guide the search process. It is commonly
accepted that such procedures may lead to decision trees larger than necessary (on average prob-
lems), and are seldom used. Some exceptions do exist however. In test pattern generation, exam-
ples of static ordering decision making procedures can be found in the work of Cox and Rajski
[37] and Larrabee [106]. Cox and Rajski’s decision making procedure just uses the original order-
ing of the variables and always starts by assigning O to the decision variable. In [37], the large
number of aborted faults for some of the benchmark circuits may be justified by this decision mak-
ing procedure. Larrabee’s algorithm orders variable assignments statically, by the expected num-
ber of implications they can (statically) cause. Different orders are proposed in [105]; for example,
start by assigning variables to true with the largest expected number of implications. This variable
order is then used to search for a solution.

Decision making procedures based on dynamic ordering basically choose the next deci-
sion assignment based on feedback from the search process. We distinguish two broad categories:

1. Trace based. These procedures use information, regarding the structure of the problem repre-
sentation and the objective to be satisfied, to decide the next decision. Examples are simple
backtracing [72, 160] and multiple backtracing [62, 144]. In all cases, atentative goal (set of
goals) is specified, which we refer to as the decision objective(s). Backtracing then chooses a
decision assignment likely to satisfy the decision objective(s). Trace based procedures usually
use topological measures to decide which paths to trace and which nodes to assign.

2. Greed based. These procedures try to make decision assignments that satisfy an immediate
goal, while expecting that such decision simplifiesidentifying a solution to the query. Several

mechanisms exist to choose the (greedy) decision assignment. [162] proposes choosing a de-
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cision assignment that satisfies at least one clause. A simple extension would consist of esti-
mating the number of satisfied clauses or assignhed nodes and pick the decision assignment that
maximizes the estimate. Some other greedy procedures attempt to satisfy the smallest clause
in the clause database [64, 125].

Admittedly, one can devise a wealth of ways for deciding the next decision assignment.
Experimental evidence in test pattern generation tends to support the impression that amost all
reasonabl e decision making procedures are useful and that noneis sufficient [ 26, 85, 123]. Usually,
most decision making procedures are able to handle alarge number of faults. However, most deci-
sion making procedures also have tremendous difficulty with a small number of faults, which vary
with each procedure. As a result, in recent years some authors have proposed to dynamically
switch between decision making procedures whenever a threshold on the number of backtracksis
reached. Examples of the application of thisidea can be found in[105, 123, 162, 174]. Experimen-
tal results proposed in [105, 123, 162, 174] suggest that dynamic switching can be particularly
helpful.

Note that GRASP can readily allow for dynamic switching between decision making pro-
cedures, assuming that conflicts are diagnosed with Di agnose(). With Di agnose(), al conflict
information is recorded as implicates of the clause database. Whenever the search process switches
to anew decision making procedure, all relevant information regarding conflict diagnosis has been
incorporated into the clause database, and can be used to prune the search for the new decision
making procedure. Note that Diagnose Pm() can also be used with dynamic switching between
decision making procedures, but in this case the information of level conflicting assignment sets
must be erased every time a new decision making procedure is chosen. Assuming
Di agnose_C(), then we may define different search contexts for each decision making proce-
dure, and switch between contexts after a pre-defined number of backtracks. This solution alows

for dynamic switching while ensuring some form of conflict diagnosis.
3.9.3 Increasing the Number of Expected | mplications

The fail-first principle [169, pp. 178-179] basically states that one should try to find con-

flicts as soon as possible in order to prevent the decision tree from becoming too hard to implicitly
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enumerate. This principle can be used to justify decision making procedures proposed by some
authorsin test pattern generation, as for example the one in [167].

Assume an instance of SAT and an associated set of decision variables; either the set of
primary inputs or the set of head lines. Given certain conditions, choosing other nodes to elect a

decision assignment may imply the assignment of several head lines.

Example 3.30. Let us consider once more the example of Figure 3.25-a, and let the inputs y4, Yo
and y3 be head lines but not fanout-free. Suppose we are interested in satisfying an objective for
which z; = 1 istraced, using either simple or multiple backtracing. Note that the assignment z; = 1
would immediately imply the assignment of two head lines, y; and t. Consequently, assigning z;
can be preferable than making two decision assignments (y; and t) in order to attain the same

traced objective. O

We refer to nodes that imply the assignment of several head lines as covering lines. (The
concept was first proposed in [167] under the name implying node, but restricted to static head
lines. The generalization to dynamic head lines is straightforward and only requires the necessary
bookkeeping to relate each covering line to each updated set of head lines.) Covering lines are used
to increase the average number of implications that result from a decision assignment. Results
reported in [167] for test pattern generation indicate that a significant reduction on the number of
decisions is obtained when covering lines are used as decision nodes. The major drawback of
electing decision assignments on covering linesisthat it may increase the size of the decision tree
if backtracking is required. For the example above, if the search process backtracks to the decision
level associated with the decision assignment on z;, then z; — O, that does not imply the assign-
ment of any head line. As aresult, more decision assignments may now be required.

An extension of the previous technique is to predict, where possible, which covering lines
set anode x to either 1 or O, referred to as the ON-SET and the OFF-SET of X, respectively. The
derivation of ON and OFF sets can be used by decision making procedures that decide assign-
ments on covering lines. In trace-based decision making procedures, the identification of ON and
OFF sets can help in making decisions that imply assignments close to the decision objective. The

(heuristic) motivation is that since more assignments are implied close to the traced objective, then
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we are more likely to identify conflicts; this technique can be viewed as another example of apply-
ing the fail-first principle.

In the more general domain of SAT (in particular CNF-SAT), some decision making pro-
cedures have focused on the problem of satisfying a clause, and organizing the decision making
procedure accordingly [125, 135]. For example, Monien and Speckenmeyer’s [125] clause-based
decision making procedure chooses decision assignments at a given decision level such that a cho-
sen clause w is to be satisfied. w is associated with the decision level, and further assignments at

the same decision level specifically discard previous assignments that satisfy .

Example 3.31. Consider the formula (x + -y +w) 0y, where y is a CNF sub-formula. Let us
assume that decisions are to be made such that (x + -y + w) issatisfied. Then either x = 1 satisfies
the clause, or y = 1 satisfies the clause, and x can be set to 0, or w = 1 satisfies the clause, and x can
be set to 0 and y can be set to 1. Consequently, several decision assignments are collapsed into one

decision having m branches for a clause with mliterals. O

Experimental results on random instances of SAT suggest that this approach is more effi-
cient than variable-based decision making [64]. It is interesting to note that in TPG algorithms, a
related form of clause-based decision making for combinational circuits was proposed by Cha,
Donath and Ozgiiner in [23] in 1978 (this technique is also analyzed in [1, p. 195]). According to
[64], the notion of clause-based decision making can be traced back to the early 1970's in algo-

rithms for solving the traveling salesman problem.
3.10 Summary and Per spective

In this chapter we described GRASP, a search algorithm for solving SAT, that can be con-
figured by defining several types of engines that implement different tasks of the search process.
The most significant contributions of GRA SP with respect to other SAT algorithms can be summa-
rized asfollows:

1. The development of a formal framework supporting the application of non-chronological
backtracking in search algorithms for SAT, based on the definition of implicates of the con-

sistency function associated with each clause database. The definition of implicates al so per-
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mits the identification of equivalent conflicting conditions and the derivation of failure-driv-
en assertions. Even though the application of non-chronological backtracking with Boolean
constraint propagation was first suggested in 1980 by D. McAllester [115], and also de-
scribed in [60, pp. 265-308], in the context of truth maintenance systems, our algorithmisthe
first to describe the integrated application of non-chronological backtracking, conflict-based
equivalence and failure-driven assertions (and other pruning methods described in the previ-
ous sections) to solving SAT. In contrast with [60, 115], the framework we propose is direct-
ed towards exploiting the structure of implication sequences, by imposing partial orders on
assigned nodes and thus defining stronger conflicting clauses in terms of these partial orders.

2. Development of several methods that exploit the structure of conflicts to further prune the
search. First, we described how the structure of implication sequences leading to conflicts
can be used for identifying unique implication points (UIPs). This fact increases the number
of identified failure-driven assertions and associated conflicting conditions. Second, we de-
scribed how UIPs permit implementing iterated conflicts, which can be used to identify more
aggressive backtracking decision levels. Third, we showed that the identification of multiple
conflicts can also increase the number of derived conflicting conditions and help identify
lower backtracking decision levels.

3. Analysis of several tradeoffs in implementing conflict diagnosis that guarantee constant or
polynomial increases in the size of the clause database.

4. The definition of a hierarchy of SAT algorithms based on scalable deduction and diagnosis
abilities, respectively Deduce_k() and Di agnose_j(). Advanced deduction engines have
been proposed before [24, 101, 145], but were not defined within a search framework that
implements non-chronological backtracking and the remaining pruning methods. Further-
more, the proposed advanced deduction engines are based on prime implicate generation
methods for identifying reduced implicates of the consistency function. The search frame-
work supporting GRASP allows for different tradeoffs between deduction and diagnosis abil-
ity. For example, any degree of deduction ability can be defined, within a search context that
implements several pruning methods for diagnosing conflicts.

5. The description of a scalable preprocessing procedure that completes the clause database
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with implicates prior to answering gqueries. The proposed procedure expands preprocessing
procedures developed by other authors [102, 144, 162], in that any degree of consistency can
be attained. Its implementation follows that of advanced deduction engines, but the structure
of implication sequencesis analyzed with the goal of deriving more implicates of the consis-
tency function.

6. A general procedure for postprocessing, in particular the removal of redundant decisions
from solutions and the caching of signatures of solutions. The notion of caching solutionsin
search problems has been proposed before in other applications [57, 71]. [71] proposes cach-
ing solutionsfor test pattern generation, but asillustrated in Section 3.8.2, theinformation as-
sociated with each solution that is used in [71] can be somewhat redundant.

GRASP defines the basic algorithmic framework that is used in subsequent chapters for
solving more specific forms of satisfiability problems, particularly those associated with path sen-

sitization.
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CHAPTER IV

A MODEL AND ALGORITHM FOR PATH
SENSITIZATION

4.1 Introduction

Path sensitization is the problem of identifying assignments to the primary inputs of a
combinational circuit in order to make some form of information observable at the primary out-
puts. The information to observe is application-dependent, and we abstractly refer to it as a pertur-
bation. In test pattern generation a perturbation denotes an error signal (D or D), whereasin timing

analysis a perturbation denotes asignal transition.
4.1.1 Motivation

As mentioned earlier in Chapter I, path sensitization can be cast as a SAT problem and
solved with SAT algorithms, and examples of this approach can be found in [24, 105, 120, 152].
Consequently, the algorithmic techniques described in the previous chapter could readily be
applied to instances of SAT encoding instances of path sensitization. However, by representing
instances of path sensitization as instances of SAT, the intrinsic topological structure of path sensi-
tization is lost, and more search effort may then be required to derive inferences otherwise clear
from the analysis of this structure. The ability to exploit this structure is then the main motivation
for developing dedicated models and algorithms for path sensitization. Throughout this chapter,

we show how search algorithms for path sensitization can use the structure of the problem in pro-
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cesses of inference, either for deduction or for diagnosis purposes. Furthermore, structure also
plays a crucial role in the definition of general conflicting conditions that are used to prune the

amount of search.
4.1.2 Chapter Objectives

Thefirst objective of this chapter isto introduce a new model for path sensitization, which
isreferred to as the perturbation propagation (or p-propagation) model. The main characteristic of
the model is that it uncouples the logic value assumed by each node from the path sensitization
properties associated with that node. We note that this uncoupling is natural, since path sensitiza-
tionisacircuit analysistask that only seeksto identify valid conditions for propagating a perturba-
tion to a primary output; this task can be tackled orthogonally to the task of assigning consistent
logic values to the circuit nodes.

Besides providing a more natural representation for the path sensitization problem, the p-
propagation model offers the following additional advantages:

* It provides acommon framework for representing path sensitization in distinct applications.

« It allows most pruning methods described in Chapter 111 to be extended to path sensitization.

* It provides new insights that lead to the development of pruning methods specific to path sen-
Sitization.

* It permits pruning methods to be interchangeably used in different target applications.

The second objective of this chapter is to describe LEAP, a generic search-based algo-
rithm for path sensitization based on the p-propagation model, that follows the organization of
GRASP. Several concepts associated with the p-propagation model in the context of search are
defined and their application motivated. Furthermore, the major ideas regarding the engines asso-
ciated with the search algorithm for path sensitization are described. The description of conflict
diagnosis procedures is emphasized, since path sensitization a gorithms have seldom implemented
conflict analysis techniques. Moreover, as mentioned above and as illustrated in the sequel, the p-
propagation model permits most pruning methods described in Chapter 111 to be naturally

extended to the path sensitization problem.
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4.1.3 Chapter Outline

We start in Section 4.2 by introducing some additional definitions that are used in describ-
ing the model and algorithm for path sensitization. Section 4.3 describes the p-propagation model
and emphasi zes the properties of the model that are common to all target applications. Section 4.4
describes the organization of implications with the p-propagation model, with the purpose of moti-
vating the implementation of search algorithms for path sensitization.

LEAP is described in Section 4.5. Its organization follows that of GRASP. In particular,
conflict diagnosis can be adapted from GRASP, with some required modifications for handling

conflicts due to propagation conditions.

4.2 Definitions

To facilitate the discussion of path sensitization we augment the definitions associated
with combinational circuits given in Chapter Il with afew additional concepts:

e Controlling value of anode x, ¢(x) whichisO for (N)AND, 1 for (N)OR, and inapplicable for
the remaining node types. A node that has a controlling value is said to be controllable; oth-
erwise, it is uncontrollable.

 Inversion polarity of anadex, i(x), whichis0 for AND, OR, and BUFFER, and 1 for NAND,
NOR, and NOT. It isinapplicable for XOR and XNOR.

» Edge predicates c(y, X) and nc(y, X) indicating, respectively, the presence or absence of a con-
trolling value on node y with respect to node x.When x is controllable, c(y, X) = [v(y) = ¢(X)]
and nc(y, X) = [v(y) = = c(X)]. When x is uncontrollable, c(y, x) = 0, and nc(y, X) = [v(y) # X].

» Controllinginputs C(x) = {y O I(x)|c(y, X)} .

* Unassignedinputs U(x) = {ydI(x)y (y) =X} .

* Node predicate Cont(x) indicating if node x is “controlled.” Cont(x) = [v(X) = ¢(X) O i(X)]
when x is a controllable node; Cont(x) = 0 when x is uncontrollable.

» Predicate Just(x) was introduced in Section 2.3.2.1 and is defined to hold true if and only if x
is judtified, i.e. (x # X) O (I(x) = 0O x = g,(I(X))). Node predicate Unjust(x) is defined by
Unjust(x) = =Just(x).

» Relevant outputs:
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RO) = {y D OM)[c(x, y) O[v(x) = X]T = Cont(y)} (4.1)

For timing analysis purposes an edge (X, y) between nodes x and y is characterized by a
fixed nonnegative propagation delay D(x, y). A path P =[5, s,, ... , sLds a sequence of connected
nodes; P is a partial path if it does not start at a primary input or end at a primary output. The

delay of apath P, D(P), isthe sum of its edge delays:

k-1
D(P) = z D(s;» S+ 1) 4.2
i=1

Primary outputs are distinguished as separate circuit nodes of type OUT. The set of pri-
mary outputs PO isthen defined as the set of all circuit nodes of type OUT. For example, for agate
whose output is a primary output z, the circuit graph will now contain a node z of type OUT,
whose only fanin node is z. Primary inputs are defined to be of type IN. The introduction of node
types IN and OUT allows us to add additional specia purpose nodes to the circuit graph and still
be able to identify primary inputs and outputs.

A test T denotes a set of logic assignments to the primary inputs of a combinational cir-
cuit. The path sensitization problem involves computing tests for several distinct purposes, e.g. test

pattern generation, timing analysis and delay fault testing.
4.3 The Perturbation Propagation M odel
4.3.1 Objectives of Perturbation Propagation

The p-propagation model seeks to identify primary input assignments that permit a pertur-
bation to be observed at a primary output. Thisis achieved by uncoupling the information associ-
ated with the propagation of a perturbation from the logic value assumed by each node. As aresult,
in the p-propagation model, each circuit node is characterized by alogic value and a propagation
status (or p-status). Logic values have their usual semantic meaning and the definitions of Chapter
Il apply, i.e. for anode x, v(x) [ 0, 1, X }. On the other hand, the p-status of a node X is repre-
sented by the symbol 11(x), assuming values v(1i(x)) [ 0, 1, X }, and denotes whether x propa-
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gates a perturbation. (When clear from the context, 11(X) is used instead of v(11(x)).) We say that a
node propagates a perturbation if the primary input logic assignments permit the intended pertur-
bation to propagate to the node. The p-status of a node x is defined as follows:

1. (x) =0, also referred to as ap-false (or p-F) node, indicates that node x cannot propagate the
perturbation. This should be interpreted to mean that x is not part of a sensitizable path given
the current set of assignmentsto the circuit nodes.

2. T(X) =1, also referred to as a p-true (or p-T) node, indicates that a perturbation propagates to
node x. In general, T(X) = 1 if and only if under the current assignment to the primary inputs,
x is included in a sensitizable path. However, in the context of search this definition is re-
laxed, and T(X) = 1 isto be understood as signifying that, under the current assignments, one
cannot conclude that x is not part of a sensitizable path, and that conditions for propagating a
perturbation to the node have been established.

3. T(X) = X, also referred to as a p-X node, indicates that the p-status of x is unassigned. An un-
assigned p-status is to be understood as a potential ability to propagate a perturbation. Hence,
in the context of a search process, 11(X) = X indicates that the current partial node assignment

does not allow us to conclude that a perturbation cannot propagate to X.

Example 4.1. Figure 4.1 illustrates how the p-status of each node can be defined. For test pattern
generation (Figure 4.1-a), the primary input assignments represent a test for fault x5 s-a-1. The
nodes that propagate the error signal are Xs, Xg and z4, which are then said to be p-T.

For timing analysis (Figure 4.1-b), the same primary input assignments cause node z; to
stabilize after 5 time units. Hence, there exists at least one floating-mode sensitizable path in the
circuit with delay no less than 5. The nodes that propagate such signal transition are X3, X4, X5, Xg
and z,. For the specific case of timing analysis, note that not all signal transitions correspond to p-
T nodes; only nodes with transitions that cause primary output transitions at delay times no less

than 5 are defined p-T. O

The p-propagation model can be viewed as considering two dimensions for characterizing
the state of each node. A logical dimension that represents the logic value assumed by the node,

and a propagation dimension that represents its propagation status. However, in contrast to the log-

137



X5 =0
Xp = 1
Fault: x5 s-a-1 Path Delay: A >5
p-F nodes. Xy, Xo, X3, X4, Zp p-F nodes. Xy, X0, Z»
p-T nodes.  Xs, Xg, Z1 p-T nodes. Xz, X4, X5, Xg, Z1
(a) Test pattern generation (b) Timing analysis

Figure 4.1: Representing path sensitization with the p-propagation model

ical dimension, the propagation dimension also assigns a p-status to the graph edges. For each
edge (X, y), v(Tix, ¥)) O{ 0O, 1, X }. (When clear from the context, Tu(X, y) is used instead of
v(1t(X, y)).) The semantics of p-status for an edge (x, y) is defined as follows:
1. ik, y) = 0, also referred to as a p-false (or p-F) edge, indicates that a perturbation cannot
propagate from node x to node y. This may be due to the fact that T(x) = 0, or due to side in-
put conditions that block propagation from xto y.
2. T, y) =1, aso referred to as a p-true (or p-T) edge, indicates that a perturbation on node x
propagates to node y. We note that this definition is relaxed similarly to the definition of a p-
T node in the context of search.
3. 11, y) = X, aso referred to as a p-X edge, indicates that the p-status of the edge is unas-
signed. As with node p-status, and in the context of a search process, 1, y) = X means that
the current partial node assignment does not allow us to conclude that a perturbation cannot

propagate from x to y.

Example 4.2. For the example of Figure 4.1-a, Ti(Xg, Z,) = 0 because the error signal on xg does not
propagate through this edge. T(Xg, 1) = 1, because the error signal reaches z; through (xg, z;). For
the example of Figure 4.1-b, Ti(xg, ;) = 1, since the signal transition propagates from xg to z; with

delay greater than or equal to 5. Conversely, Ti(Xg, Zo) =0, since z, does not propagate asignal tran-
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sition on a path whose delay is greater than or equal to 5. 0

For each primary output z, let the I (2) denote the set of partial pathsP =[S, sp, ... , [0
with z= s, that can potentially propagate a perturbation from the source of the perturbation s=s;.

Then, the p-status of primary output zis given by:

k-1

n2) = { (s}, S; 4 )=1)} (4.3)
Esl,...,gDDI'I(Z) jl:ll e

Hence, a perturbation propagates to a primary output z if it propagates along the edges of a partial
path connecting the source of the perturbation sto primary output z. The objective of the path sen-

sitization problem is, then, to satisfy the condition,

; n2) =1 (4.4)
z O

subject to the logic assignments being consistent. This condition identifies the satisfiability prob-
lem associated with path sensitization. Any primary input assignment for which (4.4) holdsis said
to be a solution to that satisfiability problem.

ApahP =13, s, ... ,5[issaid to propagate a perturbation if and only if the following
holds:

k-1
{ﬂ [(T(s) = 1) AT(s;, S 4 9) = 1)]} Hn(sy) = 1) (4.5)
i=1

If condition (4.5) holdsthen P is said to be a sensitizable path.

Whilein thelogical dimension the consistent assignments are defined by a clause database
¢ that identifies a consistency function &, in the propagation dimension the consistent assignments
are captured implicitly by the structure of the combinational circuit and by condition (4.4). The
assignments for which (4.4) is satisfied define a propagation consistency function &,. Any primary

input assignment for which (4.4) does not hold is said to identify a propagation implicate of &;.
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We note the global character of propagation implicates; only if all propagation options are blocked
does a conflict exist. Propagation implicates can be derived and used while searching for a solution
to a given instance of the path sensitization problem. Other, more general forms of propagation
implicates, denoting localized structural and functional blocking conditions, are described in the
sequel while studying search algorithms for path sensitization. In general, identified propagation
implicates are referred to as p-clauses, and are maintained in a p-clause database ¢ ;.

Path sensitization can thus be viewed as the process of identifying a consistent assignment
to the global consistency function &pg = & LK, where & denotes the consistency function associ-
ated with the logical dimension. As with SAT, the search process can create implicates of &pg,
which can either be logical implicates (of &) or propagation implicates (of &;;). Such implicates
can be used to reduce the amount of search during the search process. Furthermore, the applicabil-
ity of each propagation implicate across path sensitization applications defines the degree of per-
vasiveness of the implicate. Different degrees of pervasiveness can be defined, aswill be described
in this and subsequent chapters. Note, however, that logical implicates can be used in any circuit

analysis task, and thus are defined as pervasive.
4.3.2 Definition of Propagation Status

With each node x we associate two predicates, B(x) and P(x), which respectively identify
blocking and propagation conditions to node x. B(X) identifies conditions under which it can be
established that the perturbation cannot propagate to node x. P(X) identifies conditions that permit
the perturbation to propagate to node x, given that we cannot conclude that propagation of a pertur-

bation to that node is blocked. Consequently, the p-status of node x is defined as follows:

0, if (B(x))
X = B, if (-B(x) 0P(X)) (4.6)

=X, if (= B() 0-P(X)

1i(X) = 0 if B(X) holds, i.e. if the blocking conditions to node x have been established. Similarly,
T(x) = 1 if B(x) does not hold and P(x) holds. This definition is intended to ssimplify the definition

of P(x), given that P(x) is only considered whenever B(x) does not hold true. The p-status of anode
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is X while both B(x) and P(x) do not hold.

A similar definition applies for the p-status of an edge (X, y):

[0, if (B(x. y))
(X, Y) = H,if (~B(x,y) OP(x, )) 47

B, if (~B(x, y) O~P(x y))

Each target application involving path sensitization is required to specify the conditions
under which a node or an edge becomes p-false or p-true. These conditions involve logic values of
other nodes as well asthe p-status of other nodes and edges, and thus define the predicates B and P.

In general, the blocking predicates B(x) and B(x, y) are defined as follows,

Bo) = | [ (0 =0)|+| [] (xy)=0)]+

YOI ytom 48)
[ ((qy, X) = 0) [y, x))} +B(X)
y OT(x)

and,
B(x,y) = [1(X) = 0] +[1(y) = 0] + Bo(x, Y) (4.9)

where B(X) and B(X, y) are defined to be application-dependent. Given that some components of
B(x) and B(x, y) are defined to be application dependent, the propagation predicates P(x) and P(x,
y) must also be defined to be application-dependent.

4.3.3 General Blocking Conditions

Given the above definition of the blocking predicates several application-independent

blocking conditions become apparent.

(T(x, y) 0)} (4.10)

[n(x)=om[ﬂ()s(x,y)q1 |
y X

y O O(x)

indicates that if the p-status of anode x is 0, then a perturbation cannot propagate from x to any of
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its fanout nodes. Hence, the p-status of each fanout edge of x can be assigned p-F.

(M =010[ [T Bo.X [ [] (%)~ 0)] (4.12)
y O y O 1(x)
indicates that if a node x cannot propagate a perturbation, then a perturbation that propagates to
any of its fanin nodes does not propagate further through x. Consequently, the p-status of each of
the fanin edges of x can be assigned p-F.

Conversely, edge p-status can be used to derive node p-status:

[ (Tqy, X) =0)}D BOY  [(X) ~ 0] (4.12)

VARRICY

| ] (%) =0)|0B6y (1) - 0 (413)
y 0 O(x)
which signify, respectively, that propagation of a perturbation to a node is blocked if all of itsfanin
edges or al of itsfanout edges are blocked. For simple gates, another blocking condition is defined

when the fanin edge from node y to x is p-F and y assumes the controlling value of x:

| > (0 = 0) ey, ) [0 B [1() - O] (4.14)
y U T(x)
The above blocking conditions are illustrated in Figure 4.2, where the equation numbers identify
the direction in which blocking is specified.

As mentioned above, propagation predicates are defined to be application-dependent since
they depend on how B(X) and Bc(X, y) are defined. The definition of these predicates for test pat-
tern generation and timing analysisis given in subsequent chapters. Nevertheless, in the remainder
of this chapter we need, in some cases, to illustrate how a node or edge can be set to p-T. Conse-

quently, the following definitions of propagation predicates are assumed:
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(4.10 (4.11) (4.14)

P < Y-
/// \\\ \\(i(y’x)
PP oG p-F PF o yy PF p-X ~vq) PF
node ~_ edges edges - node edges ~Z/ node
(4.13) (4.12)
(8) Fanout conditions (b) Fanin conditions (c) p-F blocking

Figure 4.2: Application-independent blocking conditions

P(x) = [(Ty, x) = 1) L(v(y) # X) + (T(y, X) = 0) Chc(y, X)] (4.15)
yI
which states that the propagation condition to anode holdsif all input nodes are assigned, and are

either associated with p-T edges or assume non-controlling values. For an edge,

P(x,y) = [1(x) =1] (4.16)

which only requires the fanin node to be set to p-T. These conditions identify avalid subset of the
propagation conditions for both path sensitization applications (test pattern generation and timing

analysis) given the different definitions of B(x) and B(X, y) in the following chapters.
4.3.4 Search Framewor k

Path sensitization can be cast as a search problem. Besides requiring the definition of
blocking and propagation conditions associated with each target application, the p-propagation
model assumes an initialization phase that determines which nodes and edges are initialy set to p-
true, to p-false and to p-X, where theinitial set of p-T nodes and edges defines the source(s) of the
perturbation. This initiaization phase characterizes the perturbation to be propagated and how
propagation can be attained, and thus defines how the search is to be conducted.

Changesto the p-status of each node and edge are characterized by how the search process
evolves. In genera, as the search process evolves, p-X nodes or edges are alowed to be down-

graded to p-F or upgraded to p-T. The evolution of the p-status (for nodes and edges) with the
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implications/
decisions

— ~ backtracking

Figure 4.3: Evolution of the p-status with the search process

search process is shown in Figure 4.3. As the search process evolves, decision assignments and
implications cause p-X nodes to either be downgraded to p-F or upgraded to p-T. Whenever the
search process backtracks, p-T and p-F nodes are reset to p-X. (Note that the definition of p-status
of anode/edge would allow a p-T node/edge to be downgraded to p-F. Although valid, this p-status
maodification is not necessary from a search perspective, and it isonly performed after a solution to
the path sensitization problem is found. If considered, these implications would increase the pro-
cessing overhead without pruning the search and would unnecessarily complicate the search algo-
rithms.)

We say that a propagation conflict is identified whenever no primary output can be set to
p-T (conversely, when all primary outputs are set to p-F). As aresult, in the p-propagation model
there can be two types of conflicts: logical conflicts involving inconsistent gate input output
assignments, and propagation conflicts denoting the impossibility to propagate a perturbation to a
primary output. It isimportant to note that while logical conflicts have alocal characterization due
to inconsistent node assignments, propagation conflicts are characterized globally, denoting the

impossibility to propagate a perturbation (over all potential propagation paths) to a primary output.
4.3.4.1 Propagation Cuts

We define a propagation cut (or p-cut) as a set of p-T nodes of which at least one must be
included in a sensitizable path. Propagation cuts identify the possible propagation options for a
perturbation, and in general we allow for several propagation cuts to exist at any given stage of the

search process. The set of p-X nodes driven by a propagation cut defines a propagation frontier (or
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Figure 4.4: Examples of propagation cuts

p-frontier). Given a propagation cut , its associated p-frontier is specified by ¢@({). Aswith propa-

gation cuts, we alow for severa p-frontiersto exist at any given stage of the search process.

Example 4.3. Examples of p-cuts are shown in Figure 4.4, where y, is assumed to be the source of
the perturbation. {4 = { y, } identifies a propagation cut, and sodo {, = { yo, Y3} and (3 ={ Y4 }.
In general the number of propagation cuts can be exponential in the number of circuit nodes. How-

ever, only afew p-cuts are of interest, asis described below. O

With each set of nodes { we associate a function pcut() that istrue whenever  is a p-cut,
false whenever { cannot be a p-cut, and X whenever { may become a p-cut. In this situation, we
allow for the pair (¢, 1) to be included in assignment sets to denote the fact that the set of nodes ¢
has been identified as a p-cut and so pcut(¢) holds. Whenever appropriate, v({) assumes the value
of pecut(Q).

Propagation cuts can require justification of two different types. Fanin justification of a
cut { denotes the process of propagating a perturbation to a node in { and which has propagated
from the initial source of a perturbation. Fanout justification denotes the process of propagating a
perturbation in a cut {4 to another cut ¢, in the transitive fanout of {,, or to propagate a perturba-
tion to a primary output. The original set of p-T nodes identifies a propagation cut ¢, that only
requires fanout justification. (In case there are no initia p-T nodes, the set of primary inputsis con-
nected to a source node gj, that defines a propagation cut ¢;, i.e. {; = { o; }, and which only
requires fanout justification.) The primary outputs of the circuit fan out to a sink node o, that
defines a propagation cut {, i.e. {, = { 0, } and which only requires fanin justification. Conse-
guently, the search entailed by path sensitization can be associated with the process of fanin and

fanout justification of propagation cuts. Propagation frontiers, defined above, are only associated
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with propagation cuts that require fanout justification. The set of propagation cuts requiring fanin
justification defines a propagation justification frontier (or pj-frontier). The set of propagation cuts
that require any form of justification is represented by ®, and denotes the set of p-cuts considered
at any stage of the search process.

Given the above formulation of path sensitization in terms of justification of propagation
cuts, the process of fanin justifying a propagation cut {; correspondsin any situation to the process
of fanout justifying another propagation cut ¢, in the transitive fanout of ;. It isimportant to note
that the process of fanin and fanout justification of p-cuts can be used in the definition of different
types of propagation conflicts, aswill beillustrated in the following sections.

Let us assume a propagation cut {s with another propagation cut ; in its transitive fanout
and another cut ¢, in its transitive fanin. Fanin and fanout justification can be respectively formal-

ized asfollows:

fi_just(¢g = [, 0®, [0, Oy D2 (xO1(y) O-BE)D POY (Mx,y) =1)]  (417)

and

fo_just({y = [ O @, XD ¢, Dy U e, (YT 1(x)) O=BXH POY ((y, x) = 1)]  (4.18)

Fanin justification of a p-cut {4 requires afanin p-cut ¢, to be adjacent to (g, and propagation from
¢, to {4 to be possible. Fanout justification requires the same property to hold but with respect to a

fanout cut ¢;.

Example 4.4. For the example circuit in Figure 4.4, p-cuts {; and {, are fanout justified, since
(4.18) holds for both. (Observe that p-cut {; identifies the source of the perturbation and conse-
quently only requires fanout justification.) p-cuts {, and {3 are fanin justified since (4.17) holds for

both. Finally, p-cut {3 requires fanout justification. O
4.3.4.2 Unique Sengitization Points

A node that must propagate a perturbation for such perturbation to reach a primary output

is referred to as a unique sensitization point (USP) [62, 92, 145, 155]. This concept has been
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extensively used in algorithms for test pattern generation, and only recently was it applied to tim-
ing analysis [156]. By definition, a USP x must propagate a perturbation, and hence it defines a
propagation cut { = { x }, that requires both fanin and fanout justification. Whenever a USP x is
identified by the search process, anew set of p-T nodes (of size 1) exists that must be in a path that
propagates a perturbation to a primary output. This new propagation cut is then added to the set of
propagation cuts @. Besides creating the propagation cut ¢, node X is assigned p-T, since it must
propagate a perturbation and is included in a propagation cut.

For the search algorithms described in the sequel, fanin justification is always restricted to
p-cuts of size 1, that are derived from identification of USPs. Consequently, the process of fanin
justifying p-cuts becomes simplified, since only one p-T node is involved.

Associated with USPs we have unique sensitization implications (USIs). A US| is defined
as the assignment of a node, in the logical dimension, that is required for the fanin justification of

the propagation cut (of size 1) associated with the USP.

Example 4.5. Examples of USPs and associated USIs are shown in Figure 4.5. Given that
(1 ={y1} isap-cut, theny,, ys and z; are USPs, and consequently define p-cuts of size 1, which
require fanin and fanout justification. The resulting USIs are, respectively, nonefor {, = { y4 }, Wy
=w,=1for{3={ys5} andwz=0for {4, = { z; }. Given the definition of P(x) and P(x, y) in (4.15)

and (4.16), then {, becomes fanout justified and {3 becomes fanin justified. O

It is important to note that USPs and USIs can be viewed as unique implication points
(UIPs), that were defined in Section 3.4.2 (see page 69), but which can be identified as implica-
tions by the deduction engine and need not be identified by the diagnosis engine after conflicts are
found. Hence, identification of USPs can contribute to preventing conflicts from being identified.

Given the definition of p-cuts and USPs, and in terms of a given stage of the search pro-
cess, there may exist alternating sequences of sets of p-T nodes and sets of p-X nodes. Each set of

p-T nodes is associated with a p-cut that can require fanin or fanout justification.
4.4 Derivation of I mplications

The goa of path sensitization is to identify a consistent primary input assignment for
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Figure 4.5: Example USPs and USIs

which (4.4) is satisfied, thus requiring the value of the propagation consistency function &pg to be
1. Hence, elective assignments in either the logical or propagation dimensions can imply other
assignments that are involved in satisfying (4.4).

The set of symbolsV, defined in Chapter 11, is now extended to include two copies of each
circuit node x (one for each dimension, x and 1i(x)) and one copy for each edge (X, y), T(X, Y).
Accordingly, assignment sets are defined over the extended set of symbolsV.

The derivation of implications in the p-propagation model is illustrated in Figure 4.6.
Either alogic assignment or a propagation assignment is assumed, which triggers a sequence of
implications, in either dimension. The pseudo-code for deriving implications is given in Figure
4.7. It consists of aloop that repeatedly invokes boolean constraint propagation (BCP), for logical
implications, and perturbation constraint propagation (PCP), for perturbation propagation implica-
tions. While deriving implications, updating application-specific state information is optionally
allowed with Tar get _Appl i cati on_Updat e(). Procedure BCP() is defined in Figure 2.6 on
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trigger trigger
logical propagation
assignment assignment

more logical implications

logical propagation

dimension dimension
implications implications

more propagation implications

logical propagation
conflict conflict

Figure 4.6: Derivation of implicationsin the p-propagation model

/I I nput argunents: The initial assignment set
/[ Qut put argumnents: status [ SUCCESS, CONFLICT}
/l Return val ue: The final assignnent set

I

PS_Constrai nt _Propagati on(A, &st at us)

{

st at us = SUCCESS;
do {

}

A « BCP(A, status);

if (status == CONFLICT) return A;

Tar get _Application_Update(); // Application-specific update
A « PCP(A, status);

if (status == CONFLICT) return A;

whil e (changes to assignnents in either dinmension);
return A;

Figure 4.7: Pseudo-code for derivation of implications

page 39, whereas propagation implications are described below.

The basic implication procedure for the derivation of propagation implicationsis shownin
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/[ 1 nput argunents: The initial assignment set As
/[ Qut put argunents: status [ SUCCESS, CONFLICT}
/I Return val ue: The final assignnent set As
1

PCP (A;, &st at us)

{
status = SUCCESS;

As < Aj; Il'Initialize final assignment set
comm t assignment Ag // Set initial partial variable assignment
Let 6 be a node or an edge;
while (B is p-X and (B(6) or P(6)) or all PGs are p-F) {
if (all PGCs are p-F) {
status = CONFLI CT;
return Ag

}

else if (B(0)) m6) ~ 0;

else if (P(B)) m6)  1;
}

return Ay

Figure 4.8: Perturbation constraint propagation (PCP)

Figure 4.8. The implication procedure is adapted from BCP() for the logical dimension, but where
changes to p-X nodes either block or propagate a perturbation to a node/edge or identify a propa-
gation conflict. (Note that only p-X nodes can be assigned to either p-T or p-F, that guarantees that
ap-T node will not be re-assigned to p-F.) Assigning anode or an edgeto p-T can be viewed asthe
process of updating an existing propagation cut for the purpose of fanout justifying that cut. A con-
flict is identified whenever all primary outputs become p-F, denoting that a perturbation cannot
reach any primary output.

When describing the deduction engine in the context of search, the implication procedure
shown in Figure 4.8 requires manipulating additional information as Deduce() (Section 3.5 on

page 74) does with respect to BCP().

Example 4.6. An example of an implication sequence is shown in Figure 4.9. The assignment
w, =0 impliesy; — 1 with BCP() and Ti(y3) — 0 with PCP(), since T(ws, y3) = 0 and c(w,, Y3)
holds, and consequently T1i(ys, y4) < 0. Because c(y3, Y4) holds and 1i(y3, y4) = O, then 1(y,) ~ O,
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Figure 4.9: Propagation implication sequence

which blocks propagation to a primary output. Further note that the example isindependent of any

target application, since only genera blocking conditions were considered. O

The description of the procedure for derivation of implications does not manipulate p-cuts
and does not identify USPs. Hence, conflicts are defined in terms of having all primary outputs set
to p-F. The application of p-cuts and USPs, and the definition of other types of conflicts will be

considered while describing the search algorithm.
4.5 Search Algorithmsfor Path Sensitization

Search algorithms for path sensitization based on the p-propagation model follow the gen-
eral structure proposed in Figure 3.2 on page 62. The description of LEAPis shownin Figure 4.10.
The main difference with respect to the organization of GRASP (shown in Figure 3.2) is that we
may heed to downgrade some p-T nodes to p-F after a solution is computed. Furthermore, an
application-dependent problem specification is abstractly defined by (, that encodes the initializa-
tion associated with the given instance of path sensitization, and that includes the p-clause data-
base of propagation implicates.

The organization of the search algorithm for path sensitization, PS_Sear ch(), is equiva-
lent to the Sear ch() procedure described in Figure 3.2 (see page 62) for SAT. By properly defin-
ing the different engines, the search algorithm solves path sensitization. Moreover, most
algorithmic techniques described in Chapter |11 to prune the search find direct application in path
sensitization. In particular, the search algorithm for path sensitization (in both testing and timing)
can implement conflict-directed backtracking, failure-driven assertions and conflict-based equiva-
lence.

The selection engine is restricted to making decision assignments on the logical dimen-
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// A obal vari abl es: Cl ause dat abase ¢

1 Formul ati on of path sensitization
I Partial variable assignnent A

/[ Return val ue: FAI LURE or SUCCESS

/[ Auxiliary variabl es: Backt racki ng decision |evel (B

I

LEAP ()

{

if (Preprocess() == SUCCESS and PS_Search (0, B) == SUCCESS) {
Post process();
Toggl e_Propagati on_Val ues(); /[ p-T to p-F downgr ade
return SUCCESS;

}
return CONFLI CT;
}
/I 1 nput argunent: Current decision level c
/[ Qut put argunent: Backtracki ng decision |evel
/[ Return val ue: CONFLI CT or SUCCESS
I
PS_Search (c, &B)
{
if (Select (VAR+VAL) == SUCCESS) /[ Make deci sion

return SUCCESS;
while (TRUE) ({
i f (PS_Deduce() !'= CONFLICT) { /' mply assi gnhnent s
if (PS_Search (c+1,B) == SUCCESS) return SUCCESS;
else if (B !=c { Erase(); return CONFLICT; }

} /I Di agnose confli ct
i f (PS_Di agnose (c, 3 ) == CONFLI CT) { Erase(); return CONFLI CT; }
Erase();

Sel ect (VAL); /I Modi fy deci sion assi gnment

Figure 4.10: Description of LEAP

sion and with respect to the primary inputs (or head lines when possible). The formulation of the
p-propagation model guarantees that by assigning all primary inputs, the p-status of all nodes and

edges either becomes p-T or p-F, and hence the set of logic assignments over al primary inputsis
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sufficient to implicitly enumerate the search space for path sensitization.

The selection, implication and diagnosis engines for path sensitization are necessarily dif-
ferent from those of SAT. In the remainder of this chapter we describe the general structure and
operation of the implication and diagnosis engines, but abstractly, without describing application-
dependent details. The implementation of these engines must necessarily reflect the two-dimen-
sional properties of the p-propagation model. In the following chapters, each of these engines, as
well as the selection, preprocessing and solution engines are detailed for each target application.

The soundness and completeness of the search algorithm for each target application are
argued in Appendix B, assuming the results of Appendix A for SAT and the algorithmic frame-

work described in this and the following chapters.

45.1 Search Structures

LEAP assumes the same definitions used for GRASP, but extends them to cover a few
additional search structures. The search information associated with logic assignments in GRASP
is now associated with nodes in both dimensions, edges in the propagation dimension and propa-
gation cuts. Any of these entitiesis referred to by 6, and thus 6 can represent anode in the logical
dimension, x, anode in the propagation dimension, 11(X), the p-status of an edge, T(X, y), or a p-cut
. Consequently, for each 8 we define v(8), A(6), a(B), 8(8) and 1(8). The decision and implication
levels are given by (3.3) on page 60. The notation 8 =v @ d/ i denotes that symbol 6 is assigned
valuev at decision level d and implication level i. The antecedent assignment and antecedent set of
p-status assignments are defined by how a node or edge is downgraded to p-F or upgraded to p-T.
For common blocking conditions, the antecedent assignment is defined by the set of assignments
involved in blocking, which is also used for defining the antecedent set. The antecedent assign-
ment and antecedent set of a p-cut are formally defined below. In general the antecedent assign-

ment of a p-cut is characterized by the assignments that lead to its definition.

Example 4.7. For the example circuit of Figure 4.5 (see page 148), the antecedent assignment of
(yisgivenby A({,) = { ({4, 1) }, since no node or edge assignments are involved in defining {, as
ap-cut given that {4 is aso a p-cut. On the other hand, A({3) = { ({5, 1), (Ttl4, V), 0) }, since (3

can be defined as a propagation cut (and as a USP) because {5 is a propagation cut and because
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propagation from y, to yg is blocked. 0

Definition of Conflicts

Throughout the description of search algorithms for path sensitization, instead of defining
propagation conflicts by the condition of all primary outputs being p-F, we say that a propagation
conflict isidentified whenever a propagation cut cannot be either fanout justified or fanin justified.
If a propagation cut cannot be fanout justified, then a perturbation cannot reach the next propaga-
tion cut, and consequently propagation of a perturbation to a primary output is blocked. A propa
gation cut that cannot be fanout justified is identified whenever its associated p-frontier becomes
empty. On the other hand, a propagation cut that cannot be fanin justified identifies a situation
where propagation of a perturbation becomes blocked at the input nodes to a p-cut. Both types of
propagation conflicts capture the same global path blocking condition.

Propagation conflicts are represented in the implication graph by propagation conflict
nodes 1t(K), such that the antecedent assignment of 11(k) correspondsto the causes that directly cre-

ate the conflict. These causes may involve propagation cuts and node/edge assignments.

Example 4.8. An example of an implication sequence and resulting propagation conflict is shown
inFigure 4.11. Let us assume the propagation cut = { y; }, with d(¢) = 3, that requires fanout jus-
tification. Further assume that the current decision level is 4. The decision assignment w; = 0
blocks propagation to y, and to y,. Since al nodes in the p-frontier become p-F, then a propagation
conflict is identified. Conversely, note that eventualy the only primary output z; becomes p-F,
which would also identify a propagation conflict. The antecedent assignment of 11(K) is given by
the nodes in the propagation frontier that become p-F and by the propagation cut that defines the
propagation options that were blocked. Before the decision assignment, { = { y; } identifies all
propagation options for a perturbation to reach a primary output. Since the assignment w; = 0
blocks all propagation options, then propagation of a perturbation is blocked due to the fact that
some nodes and edges become p-F, and to the fact that  is a propagation cut. Note that if p-cut ¢

contained more elements, the propagation conflict would not be detected. O

By allowing the existence of multiple propagation cuts and associated p-frontiers, we can

identify multiple propagation conflicts, as the following example illustrates.
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p-frontier = @(Q) p-X node/edge

— N Vo === - T Node/edge
—
X1 Y1 ﬁ\ﬁ
A B
pams = y3
Wy W3 W T[(W = =
5 3 Y2) =T(W3, ¥3) =0 @0
WZZOi>_—‘ Wy (=1@3
(a) Example circuit
w3, Y2) =0@0
W, =0@ 2 Typ) =0 @4/2

<—. Z =1 @ 3
w;=0@4/0 TI(K)

propagation
conflict
m(ys) =0 @4/ 2

(W3, y3) =0 @0
(b) Implication sequence

Figure 4.11: Example of an implication sequence

Example 4.9. An example of multiple propagation conflicts is illustrated in Figure 4.12. The
assignments x; = wy; =W, = 0 and wg = w, = 1 block propagation of a perturbation that can be
attributed to four distinct causes: fanout justification of ¢, and of {3 and fanin justification of {,
and of (5.

It is interesting to analyze the propagation conflict associated with the fanin justification
of 5. We have 1i(xy) = 1, (X, Y1) = 1 and 1i(y;) = 1. However, the assignment Ti(y,) = 1 resulted
from {, being a propagation cut, and propagation conditions to that node had not been established
yet. As aresult, propagation of a perturbation to y, is blocked by x4, {, cannot be fanin justified,
and a propagation conflict 1t(k) is defined. The antecedent assignment of TT(K) is given by

a(tt(k)) = { ({4, 1), (X1, 0), (T1(X4, Y1), O) }; propagation of a perturbation is blocked because {; isa
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(@) Initial condition

w; =0 _
t =0 W=l 7=1
X1 =0 |/ . ya=0 | [F—
A / |
- K\ | ZH = 1
Wy = 0
p-X node/edge _ _
wee p-T NOde/edige propagation conflicts

(b) Propagation conflicts detected
Figure 4.12: Different types of propagation conflicts

propagation cut, X; assumes a controlling value, and 11Xy, y;) = 0.
Assuming that the diagnosis engine can handle multiple conflicts, then the propagation

conflict yielding the best pruning conditions among the four conflicts can be chosen. O
4.5.2 Basic Deduction Engine

The basic deduction engine for a search agorithm based on the p-propagation model is
shown in Figure 4.13 and is based on the procedure for derivation of implications described in Fig-
ure 4.7. After each successful implication sequence a new set of propagation cuts is created, each
of which is defined at the current decision level. The logical deduction engine corresponds to
Deduce() described in Figure 3.6 on page 77, whereas the propagation deduction engine is
described in Figure 4.14, and is referred to as Pr opagat i on_Deduce(). Given that a p-clause
database ¢, is maintained, Deduce() isreformulated to also identify unsatisfied p-clauses of ¢ ;.

Propagat i on_Deduce() basically implements PCP() as described in Figure 4.8, but
incorporates additional functionality associated with the search process. In particular, it imple-
ments defining antecedent sets, decision and implication levels for each assigned variable, identi-

fying USPs, and related USIs, detecting propagation conflicts with Pr opagat i on_Bl ocked(),

156



Il d obal vari abl es: | nplication graph I¢
/[ No i nput or output argunents
/Il Return val ue: CONFLI CT or SUCCESS
I
PS_Deduce()
{
do {
if (Logical _Deduce() == CONFLICT)
return CONFLI CT;
Target _Application_Update();
i f (Propagation_Deduce() == CONFLICT)
return CONFLI CT;

}
whil e (changes to assignnments in either dinension);
Creat e_Propagation_Cuts(); /I Create new p-cuts; add to @

return SUCCESS;

Figure 4.13: Deduction engine for path sensitization

and maintaining propagation cuts. Procedure Pr opagat i on_Bl ocked() identifies inconsistent
fanin and fanout justification conditions for propagation cuts.

The outer loop of the deduction engine repeatedly identifies USPs, with procedure
I dentify USPs(). While new USPs are identified, additional propagation assignments are
implied. (Note that even though the pseudo-code of all procedures assumes manipulation of ante-
cedent sets and all algebraic manipulation assumes antecedent assignments, conversion between

the two is straightforward.)
4.5.2.1 Maintenance of Propagation Cuts

Derivation of implications causes propagation cuts to change, and may yield propagation
conflicts. For each propagation cut ¢;, any p-T node X in ¢; that propagates to a fanout node y,
causes y to be added to ¢;. Whenever all fanout nodes of x are either p-T or p-F, then x is removed
from ;. Any propagation cut ¢; that is modified at the current decision level ¢, causes a new prop-
agation cut {; to be created (after all implications are identified) with &({s) = ¢, and such that A({s)

is given by ¢; and by the nodes/edge assignments that block propagation from nodesin ¢;:
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/l d obal vari abl es: I nplication graph I¢
// No input or output argunents
/[ Return val ue: CONFLI CT or SUCCESS
1
Pr opagat i on_Deduce()
{
do {
Let 6 be a node or an edge;
while (B6is p-Xand (B(6) or P(8)) or Propagation_Bl ocked()) {
i f (Propagation_Bl ocked()) {
define new conflict node m(K);
define a(m(k)); IIWth either (4.22) or (4.23)
return CONFLI CT;
} else if (B(6)) {
(8) « 0;
set a(0) as elenents causing B(6) to hol d;
set o(8) and 1(0);
} elseif (P(6)) {
m(8) 1
set a(0) as elenents causing P(6) to hol d;
set o(68) and 1(0);

}
Updat e_Propagati on_Cuts(); // Update conposition of p-cuts

}
while (ldentify_ USPs()== SUCCESS); //lterate USPidentification

return SUCCESS;

Figure 4.14: Basic propagation deduction engine

A@;) = {(g;, 1)} O blockedby(Z;) (4.19)

where blockedby(¢;) identifies the set of nodes/edges assignments that directly block propagation

from p-cut ¢;. In generdl,
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Figure 4.15: Identification of blocking conditions

blockedby() = [] blockedby(x) (4.20)
x0O¢
where,
%ﬁlockedby(y), if (m(x, y) = 1) O(m(y) = 1) - pecut({ y})
blockedbyx) = [] o (0. 0%, if (1 ) = 0) (4.21)
yD O(x)%{ ((y), O)}, if (n(x, y) = 1) U(1(y) = 0)
-, otherwise
O

where pcut({y}) tests whether node y identifies a propagation cut. Note that in the proposed search

algorithm, only p-cuts of size 1 require fanin justification.

Example 4.10. Let us consider the example circuit of Figure 4.15, where {4 is theinitially defined
p-cut. Assume that at the current decision level ¢, wy and w, are assigned as shown, whereas wy
had been assigned at alower decision level. The assignments permit propagation fromy, toy, and

ys. As a result, a new propagation cut {, = { Y4, Y5 } can be created, such that &({,) = ¢ and
AL ={ ({1 1)} (mlys, Yg). 0) }, and where blockedby((y) = { (T(y3, Ys), 0) }- O

Let us assume first that a p-frontier becomes empty. In such a situation, a propagation cut
¢ cannot be fanout justified and a propagation conflict 11(k) is defined. The antecedent assignment

of 1t(K) is given by,
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Pr opagati on_Bl ocked()

{

if (exists ¢OP such that ¢(Q =10
return TRUE;

else if (exists ([ that cannot be fanin justified) //(4.17)
return TRUE;

else if (exists unsatisfied propagation inplicate)
return TRUE;

return FALSE;

Figure 4.16: Identification of propagation conflicts
A(m(k)) = {(¢, 1)} O blockedby(¢) (4.22)

which follows from (4.19). Conversely, let us assume that the propagation conflict results from
fanin justification. The only situation in which an empty p-frontier is not identified is when, in
(4.17), either B(y) holds or P(y) does not hold. In such a situation, let Ag denote the set of assign-
ments that cause the blocking situation to be identified. As a result, the antecedent assignment of

11(K) is given by,

A((K) = {(Z, 1)} O blockedby(] Ag (4.23)

Ap depends on the causes that lead (4.17) not to hold and, in some situations, it can be application-
dependent (even though that is not the case with Example 4.9).  isthe p-cut in the fanin of the p-
cut that yields the conflict.

The pseudo-code description of Pr opagati on_Bl ocked() is given in Figure 4.16.
Besides testing for p-cuts that cannot be fanout justified or fanin justified (and which require that
type of justification), the existence of unsatisfied propagation implicates is also tested. The con-

struction of these implicates is handled by the diagnosis engine.
4.5.2.2 |dentification of Unique Sensitization Points

While deriving propagation implications, USPs denote the unique form for propagation
cuts that can be identified by the proposed deduction engine. Several algorithms have been pro-
posed for the identification of USPsin test pattern generation. In FAN [62] and TOPS[92], prepro-
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cessing techniques are proposed, which require worst-case quadratic-time on the size of the
circuit, and do not identify dynamic USPs. In SOCRATES [145], a dynamic procedure is proposed
that is based on the intersection of lists of dynamic dominators for each node in the D-frontier.
This procedure requires worst-case quadratic time in the size of the circuit. In [87] alinear-time
procedure is claimed, but it is only sketched, and its actual complexity is difficult to assess. LEAP
[155] proposes a simple worst-case linear-time algorithm for identification of USPs based on lev-
elized breadth-first traversals.

I denti fy_ USPs() follows the main ideas of the procedure described in [155]. How-
ever, given that severa p-frontiers may exist, the identification of USPs must be accordingly
adapted. In addition, USPs correspond to implied p-cuts, and consequently, the antecedent assign-
ments of such p-cuts must be defined.

The pseudo-code description of | dent i fy USPs() isgiven in Figure 4.17. This proce-
dure identifies all USPs with respect to each p-frontier. No propagation conflicts need be detected,
since at least one potential propagation path exists to the primary outputs; otherwise a blocked p-
cut would have been detected by the deduction engine. Given that each p-frontier drives a disjoint
set of p-X nodes, then the above procedure runsin linear time in the number of circuit nodes. How-
ever, the deduction engine iterates callsto | dent i fy_USPs(), and thus an upper bound on the
worst-case running time is O(N?2) (whereas the procedure proposed in SOCRATES would require
O(N3) time). The worst-case bound of O(N?2) on the run time should hardly be exercised, since it
would require adecision level where O(N) USPs would be identified. Although possible, it is hard
to find in practice path sensitization problems with O(N) USPs identified at a given decision level.
This observation is supported by experimental data given in [154] and replicated in Chapter VII;
the number of USPsisusually significant, but it is far from being on the order of the number of cir-
cuit nodes (or even the largest depth in the circuit).

Nevertheless, a few optimizations can be implemented. For example, we can restrict the
number of callstol dent i fy_USPs() to afixed number k. This solution guarantees aworst-case
linear time, but it does not necessarily identify all USPs. Another solution isto restrict traversalsto
sets of p-X nodes that were subject to changes to the p-status of some nodes or edges. Even though

this solution does not improve the worst-case time bound, it prevents useless traversals over sets of
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I dentify_ USPs()

{
status = FAI LURE;
for each (p-cut (;in @ with p-frontier @()) {
schedul e nodes in p-frontier @) for levelized traversal;
o « {{y} O blockedby((,); /f1nitial causes for first USP
stop = FALSE;
while (xis next node to visit with | owest topol ogical |evel
&& !'stop) {
if (xis the only node to visit) {
defi ne new propagation cut (={x}
a(Q) =a; compute 8(0) = cand 1(Q);
e ={ylyl O and m(x,y) =X}
I
set xto p-T,
a(me)) ={¢} o(m)) =c; 1(r(x)) =1(Q) + 1L;
o {l} /I Initialize antecedent set of next cut
status = SUCCESS; /I USPs have been identified
}
for each (fanout node y of x) {
if (m(xy) ==0) add m(xy) to q;
else if (my) ==0) add 1(y) to q;
else if (yis p-X) schedule y to be visited;
else if (yis in a propagation cut {)
{ stop = TRUE; break; } I/l Process anot her p-frontier
}
set x as unschedul ed;
}
}
return status;
}

Figure 4.17: Identification of USPs

p-X nodes where additional USPs are known not to be found.
The definition of the antecedent assignment of a newly created p-cut ¢ as a function of

another p-cut (g in the transitive fanin of ¢, is defined as follows:
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AQ) = {({g 1)} OA (4.24)

such that A is computed by procedure | dent i fy USPs(), while traversing the p-X nodes, and

identifies assignments that block propagation.
4.5.3 Basic Diagnosis Engine

In this section we describe how conflicts involving propagation information are diag-
nosed. In particular, the details for implementing conflict-directed backtracking, failure-driven
assertions and conflict-based equivalence are given. We note, however, that failure-driven asser-
tions are exclusively defined for the logical dimension. Assertions on the propagation dimension
would require a significantly more complex agorithmic framework, asis suggested bel ow.

Basic conflict diagnosis, involving the propagation dimension, is based on the same prin-
ciples of conflict analysis for the logical dimension, but the global nature of propagation conflicts
regquires some modifications. After each conflict, implication sequences are analyzed, dependen-
cies are recorded, and implicates of the propagation consistency function &,; are created. These
propagation implicates identify a sufficient set of conditions for a propagation conflict to be identi-
fied. The format of propagation implicates (or p-clauses) is asfollows:

1. A propagation cut  that is associated with the propagation conflict.
2. A set of assignments that, given the propagation cut, identifies sufficient conditions for a
propagation conflict to be identified.

Consequently, a p-clause w; is defined as a 2-tuple,

Wy = [, wl (4.25)

such that whenever C identifies a propagation cut, then w is an implicate of the consistency func-
tion of the path sensitization problem, that would cause (4.4) not to hold or alogical conflict to be
identified. The propagation cut of w;; is assumed to be defined at a decision level less than c. A p-
clause w;; = [¢, wlis said to be unsatisfied whenever ( is apropagation cut and w is unsatisfied. A
p-clause wy = 4, wlis satisfied whenever either w is satisfied or { cannot be a propagation cut.

The definition of w follows the construction of conflicting clauses in Chapter 111. A con-
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flicting assignment set is defined by,

Acg = causesof (T(K)) (4.26)

where causesof(1t(k)) is defined by (3.7) on page 67 extended to all elements of V and the set of all
p-cuts.

In the search framework based on the p-propagation model, conflicting assignment sets
can contain node and edge assignments, and propagation cut assignments. In the proposed conflict
diagnosis procedure, however, a conflicting assignment set is required to contain at most one p-cut
assignment. Let Sdenote a set of nodes, edges and one propagation cut, and let cutof(S) denote the
only element 8 of Sfor which pcut(8) holds. Further let cutofS(S) = S— { cutof(S) }. Asaresult, w

for each p-clause is given by a modified form of (3.8) on page 68:

w = {68'®)|(8, v(B)) O cutof C(A.} (4.27)

and ( is defined to be cutof(Acg).

Since the characterization of propagation cut follows that of nodes and edges, the conflict
diagnosis structures used in the logical dimension can be extended to the propagation dimension.
As mentioned earlier, identified p-clauses are maintained in a dedicated clause database, ¢, and

the logical deduction engine can use ¢, to derive additional implicationsin the logical dimension.

Example 4.11. Let us consider the example circuit of Figure 4.18-a. The current decision level is
7, 8(¢) = 3, and the decision assignment is x; = 0. The resulting implication sequence is shown in
Figure 4.5-b, and yields a propagation conflict because all nodes in the p-frontier become p-false.
As aresult, we can create a p-clause wy 1 = ({4, wy[that identifies a propagation implicate of &
A(m(k))isgivenby {({, 1), (T(y3), 0), (T(y,), 0)} and from (4.26),

ACS = { (Zv 1)! (S]_v O)! (82’ 0)1 (X]_’ 0)! (T[(W]_! y5)1 O) ’ (T[(WZ’ yﬁ)! 0)}

Consequently, the propagation cut of wy; jisgivenby {1 = {={y;, y» } and the conditional clause
w, is defined by,
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» Assignments:
Unless otherwise stated, logic values are X. For nodes and edges, by default the p-status

is 0, assigned at decision level 0. p-X and p-T nodes and edges are shown. The current

decision level is 7 and the decision assignment considered isx; = 0.

node Y1 Y2 S ) S3 Sy y7 Ys
logical — — |0@2 0@2 0@3 | 0@3 — —
propagation | 1@1 | 1@1 K — — — — |0@5|0@3

(a) Example circuit

mwy, ¥5) =0 @0
Tiy3, ¥5) =0 @7/ 3,
y3) =0@7/4

)

Tys) =0@7/2
-0 =1@3
TI(K)
Tyg) =0@7/2
T[(y4’?/6) =0@7/3, propagation
My =0@7/4 conflict

Wy, Ye) =0 @ 0
(b) Implication subgraph for x; =0

Figure 4.18: Example of p-clause definition
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which signifies that whendér T V13,5 T A prEpagming d@)s, = s, = x, = T(wy, ye) =
T(W,, Ye) = 0 yield a propagation conflict. Finally, observe that for this example the propagation

conflict is due to an empty p-frontier. O

It interesting to note that the p-clause defined in the above example can now be applied
during the search to prevent a known propagation conflict from occurring, thus permitting the
early identification of propagation conflicts due to the same conditions.

It is more interesting to note that no target application was actually specified. The p-clause
was derived based on general blocking properties, that apply in both testing and timing. Conse-
guently, the derived p-clause is said to be pervasive across path sensitization applications and can
thus be used in both applications. This example aso shows that in the propagation dimension, it is
possible in some cases to define pervasive clauses, in addition to the pervasive clausesidentified in
the logical dimension. In general, however, not al propagation clauses are pervasive across path
sensitization applications, or even in the same application. In the following chapters examples of
such clauses will be described. Whenever the causes of a propagation conflict can be traced to
blocking conditions that are pervasive across path sensitization problems, then the defined p-
clauses are also pervasive across path sensitization problems. That is the case with the previous
example.

Propagation implicates derived during the search can be used in a variety of situations and
identify conditions for which the basic deduction engine might not prevent conflicts from being

identified.

Example 4.12. Examples of propagation conflicts are shown in Figure 4.19. For the example cir-
cuit of Figure 4.19-a, let us assume the assignment w = 0. Then ¢(Q) eventually becomes empty

and a propagation conflict isidentified. The resulting p-clause is given by,
W= 4, W=y, }, (WU

which signifies that whenever { = { y; } denotes a p-cut, then w must assume value 1. For the
example circuit of Figure 4.19-b, the same assignment is assumed and a propagation conflict is

also identified. The obtained p-clause is given by,
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Figure 4.19: More examples of p-clause definition

W= [, wlE Jlyy }, ({3, Ya) + W)U

which means that whenever { = { y; } is apropagation cut and propagation of a perturbation from

y3 toy, is blocked, then w must assume value 1. O

Backtracking Decision L evel
The techniques used in SAT, for creating assertions and computing backtracking decision
levels, can be extended to path sensitization. The main differences stem from handling different
conflict types and propagation cuts. In path sensitization, backtracking can result from three possi-
ble conflict interactions:
1. Decision assignment and resulting assertion result in logical conflicts.
2. Decision assignment and resulting assertion result in propagation conflicts.
3. Either the decision assignment or resulting assertion resultsin alogical conflict, and the oth-
er in a propagation conflict.
The situation where both conflicts are logical, and the identified dependencies correspond
solely to the logical dimension, was addressed in Chapter 111. The situation where alogical and a
propagation conflict are identified can be viewed, without loss of generality, as a specia case of
the situation where both conflicts are propagation conflicts. Consequently, in the following analy-
sis we assume that a given decision level ¢, two propagation conflicts are identified. Manipulation

of p-clausesis also required for any logical conflict whose diagnosis yields a p-clause.
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Let wy 1 = [d;, w;Odenote the first p-clause identified at a decision level ¢, and let some
variable w be asserted due to wy; 1. Now let us assume that another propagation conflict is identi-
fied. The resulting p-clause could contain two propagation cuts {; and {,, one from asserting w
and the other from the last conflict. However, by definition, p-clauses and conflicting assignment
sets can have at most one propagation cut. Hence, we must express both propagation cutsin terms
of another common propagation cut ¢. Let {4 and {, be two propagation cuts. Then, a common p-

cut is computed by join({,, {5), where:

%(Z]_a 1), if (1 =0,

join(Cy, ¢p) = Ejoin(cutof(A(Zl)), Z,) O cutof S(AZy)), if 8(Zy) 2 8(T,) (4.28)
Ejoi n({4, cutof (A(Z,))) U cutof C(A(Zz)), otherwise
.

join(¢q, ¢,) recursively searches for the case where {4 = {5, while adding node and edge assign-
ments associated with each visited propagation cut. The set of node/edge assignments computed
by join(¢;, {5) includes the definition of the common propagation cut ¢. Hence, join({4, {,) identi-
fies a set of conditions under which a propagation cut { O join({,, {,) causes both {; and ¢, to be
created. Given the definition of a conflicting assignment set, and assuming a computed conflicting
assignment set AiCS containing two conflicting assignment sets {; and {,, we can use join({y, {5)

to obtain a conflicting assignment set Axg containing just one p-cut as follows:
Acs = [ALs—{(23, 1), (Z 1} ] O joiny, Ty (4.29)
The backtracking decision level isthen defined as follows:
B, = max{3(6)[(6, v(8)) O A-g (4.30)
that basically generalizes (3.17) on page 86.

Besides computing the backtracking decision level, a p-clause wy; ; is created, wy; , = [,

wyL]such that ¢, is defined by cutof(Acg) and wy is given by (4.27). At the backtracking decision
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(W3, Yg) =0 @0 Ty y7) =0 @5

(Y3, ¥5) =0@7/5,
ny) =0@7/6
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Figure 4.20: Implication sequence triggered by x; — 1 for the circuit of Figure 4.5

level B, a propagation conflict is now forced by wy; », that serves to either derive additional p-
clauses or compute another backtracking decision level.

Another source of conflicts arises from unsatisfied p-clauses, which are detected by proce-
dure Pr opagat i on_BI ocked() that is described in Figure 4.16. The antecedent assignment of

the conflict node due to an unsetisfied p-clause w;; = [d, wLis then defined by,

AM(K) = {(Z, 1)} 0{O.ve))[6v® 0w (4.31)

where 8 in this case can either represent a node in either dimension or an edge in the propagation
dimension. It is worth noting that most of the concepts described in Section 3.6 for (logical) con-
flict diagnosis find application while diagnosing propagation conflicts, the major difference being

the manipulation of propagation cuts.

Example 4.13. To illustrate the computation of the backtracking decision level, let us continue
studying the example circuit of Figure 4.18. The generated p-clause (see Example 4.11) yields the
assertion x; « 1. Theresulting implication sequence is shown in Figure 4.20 and it yields another
propagation conflict. Taking into consideration the antecedent assignment of x;, the p-clause
Wy 2 = [, wplthat is created includes the same propagation cut as wy; 1, i.e. {5 = ¢, since { is
common to both conflicts and () < 7, and the associated conditional clause w; is defined as fol-

lows:
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Wy = (S + 8y + 53+ s, + Wy, Yg) + THWy, Yg) +

Y5, Y7) + TYg Yg) + TUWg, Yg) + TUWy, Y10))

From (4.30), the backtracking decision level is computed to be 5, due to the assignment of
T(Ys, Y7) to p-F at decision level 5. Hence, the search process backtracks to decision level 5. (Note
that at decision level 5, Ti(ys, y7) = 0 would now denote a unique implication point (UIP) and so the
assignment 1(ys, y7) = 1 could be used to trigger the second branch at decision level 5. However,
assertions in the p-dimension are disallowed. This type of assertion would require justification for
p-status assignments, and consequently lead to a more involved formulation.) The newly derived
p-clause wy; o = [, wylstatesthat if s; =s, =0 and s3 =54 = 1 there can be no propagation if the
possible propagation paths are as shown in Figure 4.5. O

The conflict diagnosing equations proposed above for handling propagation conflicts can
also be used in situations where a logical conflict is identified, but which involves a propagation
cut in its definition. In these situations, even though a logical conflict is identified, the result of

diagnosing the conflict is a p-clause.

Example 4.14. An example of alogical conflict whose diagnosisyields a p-clause is shown in Fig-
ure4.21. {; = { x } identifies a propagation cut created at decision level 3. At decision level 5, the
assignment s = 1 triggers an implication sequence, which creates anew p-cut {, = { z, }. The pro-
cess of fanin justifying , impliesy ~ 0, which eventually yields a logical conflict with z; = 1.
Even though alogical conflict isidentified, its causes are a direct consequence of fanin and fanout

justification of p-cuts. As aresult, the derived p-clause is given by,
Wrq = [, 0= X, (=2 +5s; + Ty, 2)) + T(S3, Sy) + ~S3)0]

which states that if {; = { X} isapropagation cut, and Ty, z,) = T(S3, S4) = 0, then either z; =0 or
s =1 or s3 =0. For this example, we could avoid creating a p-clause by taking Ul Ps into account.
The derived clause would then be (-2, + s;). This clause would block propagation to z,, and set

{ s4 } asanew propagation cut, which would imply s3 — 0. O

As the above example illustrates, we can use UIPs in the logical dimension. However, in
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Figure4.21: Logical conflict that yields a p-clause

order to guarantee that the decision assignment is implied to the complemented value (as the sec-
ond branch at the current decision level), a global clause must be defined. This fact results from
implications due to propagation cuts being unidirectional, and thus may not be re-created if deriva-

tion of p-clauses implements UIPs.

Organization of the Diagnosis Engine

The diagnosis engine for path sensitization, PS_Di agnose() is shown in Figure 4.22,
where Logi cal _Di agnose() corresponds to the basic diagnosis engine for the logical dimen-
sion described in Chapter 111, whereas the basic diagnosis engine for propagation conflicts,
Pr opagati on_Di agnose(), is described in Figure 4.23. The procedure basically follows the

steps described above. As mentioned earlier, p-clauses are maintained in a separate clause data-
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/I A obal vari abl es: [ nplication graph Ic

Il Cl ause dat abases ¢ and ¢

/I 1 nput vari abl e: Current decision level c

/I Qut put vari abl e: Backt racki ng decision |evel (3
/I Return val ue: CONFLI CT or SUCCESS

I
PS_Di agnose (c, &B|)
{

if (conflict uniquely dependent on |ogic val ues)
return Logi cal _Di agnose (c, B);
return Propagation_Di agnose(c, B);

Figure 4.22: Diagnosis engine for path sensitization

base, which is manipulated by the diagnosis engine to add new clauses, by the deduction engine
for deriving logical implications and by procedure Pr opagat i on_Bl ocked() for identifying
equivalent propagation blocking conditions.

Asin the case of SAT algorithms, improvements and simplifications to conflict diagnosis
can be defined. For example, straightforward extensions allows us to compute UIPs (in the logical
dimension) and identify multiple conflicts (either logical or propagation). Simplifications to con-
flict diagnosis are also possible and are described in the following chapters. The simplified diagno-
sis engines bound the growth of the clause databases ¢ and ¢

We can aso identify conditions under which consensus operations between p-clauses can
be defined. Let us consider two p-clauses wy; 1 = ({3, wland wy; o= [d5, wplkuch that {1 = {p, and
that consensus between w; and w, with respect to a variable x is defined. Then the resulting con-
sensus p-clause becomes wy; 3 = [z, w3l= 44, c(wy, Wy, X)LI (It is worth noting that consensus
between p-clauses is also suggested by how propagation conflicts are diagnosed.) Furthermore,
wy 3 isanimplicate of the consistency function & If both wy; 1 and wy; , are satisfied, then wy; 3
must also be satisfied. Conversely, if wy 3 is unsatisfied then either w;; 1 or wy; 5 is unsatisfied.

These facts necessarily hold since all three clauses share the same propagation cut.

4.6 Summary and Per spective

This chapter introduces the perturbation propagation model, an abstract model for path
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/I d obal vari abl es: I nplication graph I¢

I

Cl ause dat abases ¢ and ¢

/[ 1 nput vari abl e: Current decision level ¢
/I Qut put vari abl e: Backtracki ng decision |evel (3
/I Return val ue: CONFLI CT or SUCCESS

I

Propagati on_Di agnose (c, &B|)

{

Acs = Conput e_Conflicting_Assignment _Set () ; /' Using (4. 26)
I f (Acs contains assignnents of two p-cuts {; and {yp)
Acs < [Acs—1{(C4, 1), ({5, 1)} ] O join(Cq, Cy) IIUsing (4.28)

¢ = cutof( Acg) ;
w = Create_Conflicting_dause (cutofS(Acg)); Il Usi ng (4. 27)
Wy = 4, wl] /I New p-cl ause
Updat e_P_C ause_Dat abase (wy); // Add cl ause to database
B = Conput e_Max_Level (Aco; /I Usi ng (4. 30)
it (BL!=0 {

defi ne new conflict node m(K); /[ Set up new conflict node

define a(m(k)); /fUsing (4.31)

return CONFLI CT;

}
ret urn SUCCESS,;

Figure 4.23: Basic propagation diagnosis engine

sensitization that can be used in different target applications. A search algorithm for path sensitiza-
tion based on the p-propagation model is described. The algorithm implements most of the prun-
ing methods described in Chapter Il1. In particular, the agorithm allows implementing conflict-
directed backtracking, conflict-based equivalence and failure-driven assertions in the context of

path sensitization.

The p-propagation model facilitates the implementation of several agorithmic techniques

described in the previous chapter in the context of SAT. For this purpose, the model and algorithm
alow the definition and manipulation of propagation implicates associated with the consistency
function for path sensitization. Propagation implicates can describe powerful properties of path

sensitization, and in some situations they can be application-independent.
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Throughout the description of the search algorithm, the details of the target application
were deliberately overlooked, being our goal to just describe propertiesintrinsic to the p-propaga-
tion model that are valid for path sensitization in general. In the following chapters we address two
target applications, test pattern generation and timing analysis. We describe how to represent path
sensitization for those applications with the p-propagation model, and detail the search algorithm,
as well as its improvements and simplifications. In this analysis, we illustrate which differences
must be considered when implementing test pattern generation or timing analysistools.

Besides the details of the target application, other aspects of the search-based path sensiti-
zation algorithm were also skipped and must be further analyzed:

» We must specify which p-clauses can be considered pervasive, and how pervasiveness holds
across different target applications.

» The procedure for toggling p-T nodes into p-F nodes must be formalized for both test pattern
generation and timing analysis.

Another topic that must be addressed is comparing the p-propagation model with other
path sensitization models in each target application. For the particular case of test pattern genera-
tion, where more models have been proposed, we show that the p-propagation model can be scaled
to achieve any degree of precision that is achieved by other path sensitization models. We further
show that the p-propagation model can actually be made more precise than any other path sensiti-
zation model for test pattern generation proposed in the past.

One limitation of the proposed search agorithm for path sensitization is that assertionsin
the propagation domain are disallowed. The difficulty of handling assertions in the propagation
domain is due to the computational overhead associated with maintaining a large number of prop-
agation cuts, requiring fanin and fanout justification, and in relating these propagation cuts when-
ever fanin and fanout justification takes place. The implementation of assertions in the propagation

dimension is left as future research work.
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CHAPTER YV

PATH SENSITIZATION FOR TEST PATTERN
GENERATION

5.1 Introduction

The purpose of this chapter is to detail, using test pattern generation as the target applica-
tion, the path sensitization model and algorithm described in the previous chapter. The p-propaga
tion model is defined abstractly, and so it is independent of any specific target application.
Accordingly, we must define how the model is specified for path sensitization in test pattern gener-
ation.

Moreover, the path sensitization algorithm, LEAP, needs to be configured for test pattern
generation. The basic deduction and diagnosis engines are described and, as was done in Chapter
Il for SAT, more advanced engines are anayzed. Simplifications to conflict diagnosis are pro-
posed and analyzed in some detail, since they represent the core of the experimental results
reported in Chapter VII. The description of the search algorithm is concluded with a brief discus-
sion of solution and selection engines. Furthermore, different configurations of LEAP() are com-
pared with algorithms proposed by other authorsin the context of test pattern generation.

The formulation of the p-propagation model for test pattern generation is scalable, i.e.
depending on the amount of computational effort one iswilling to spend, the precision with which
path sensitization facts are deduced can be increased. We show that the degrees of precision pro-

posed by other path sensitization models for test pattern generation can also be attained with an
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adequate formulation of the p-propagation model. Moreover, we propose using the edge p-status
for increasing the reasoning ability of the model. This allows the precision of the p-propagation

model to surpass the precision of other models for path sensitization.

Outline

The top-level description of test pattern generation is given in Section 5.2. Section 5.3
describes how the p-propagation model can be used to represent path sensitization for test pattern
generation. Section 5.4 is dedicated to detailing the basic deduction and diagnosis engines, taking
into consideration the target application, and it is followed by an analysis of advanced deduction
engines in Section 5.5. Advanced deduction engines are based on the identification of propagation
implicates and application of consensus, and so we have to formalize consensus operations over p-
clauses characterized by different p-cuts.

Engines for postprocessing and for selecting decision assignments are studied in
Section 5.6 and Section 5.7, respectively. These engines are first described in Chapter I11 for SAT,
being our goal in the present chapter to describe the modifications required for test pattern genera-
tion.

Section 5.8 analyzes possible formulations of fault detection with the p-propagation
model. The emphasis is on how to increase the reasoning ability provided by the model, while
guaranteeing that the proposed pruning methods can still be implemented. This section provides

the basis for comparing, in Section 5.9, LEAP with agorithms proposed by other authors.

5.2 Fault Detection in Test Pattern Generation

The top-level agorithm for fault detection in test pattern generation in shown in Figure
5.1. A list of target faults is assumed. Random test pattern generation can be optionally invoked.
The agorithm then processes each fault until all faults are detected, proved redundant or aborted
due to resource constraints. For a detectable fault, and after a solution isidentified, fault simulation
can be optionally executed. In general fault smulation is invoked, the exception being when the
goa is to exclusively evaluate the path sensitization algorithm. After all faults are detected,
reverse-order fault ssimulation can be optionally executed to reduce the test set size [144]. Algo-

rithms for random test pattern generation and fault simulation can be found in [1] and are not fur-
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/I d obal vari abl es: List of faults fault _Iist

I
I
I

List of detected faults detected |ist
Li st of redundant faults redundant Iist
Li st of aborted faults aborted Iist

/[ Auxiliary variabl es: out come [{ FAI LURE, SUCCESS}

I

Test _Pattern_GCeneration()

{

define ¢ for circuit and initialize ¢
i f (RANDOM TPG Cenerate Random Tests (fault_[ist);
while (fault in fault_list) {
Del ete_ From List (fault_Iist, fault);
outconme = Detect_Fault (fault);
i f (outcome == SUCCESS) { /I Detected fault
Add_To List (detected list, fault);
if (FAULT_SIMJLATION) Fault_Simulation (fault_Iist);

}

else if (outcome == FAI LURE) // Redundant faul t
Add_To List (redundant Iist, fault);

el se if (outcone == ABORTED) /I Aborted fault

Add_To_List (aborted list, fault);

}
i f (FAULT_SI MJLATION) Reverse Order Fault _Simulation();

Figure5.1: Procedure for test pattern generation

ther considered in the present dissertation.

The procedure for detecting each fault is described in Figure 5.2, and its main purpose is

to invoke LEAP() (described in Figure 4.10 on page 152). Note that given the definition of
PS_Sear ch(), invoked by LEAP(), no faults are aborted. However, in practical implementations,
PS_Sear ch() controls either the run time or the number of backtracksin order to decide whether

agiven fault is deemed too hard to detect or prove redundant.

Internal to LEAP(), procedure Toggl e _Propagati on_Val ues() is invoked when-

ever the search process terminates successfully. Assuming a complete node and edge assignment
in both dimensions, this procedure sets to p-F nodes and edges assigned p-T, but which are not

included in sensitizable paths. Taking into consideration that nodes or edges that may be down-
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/l A obal structures: p-propagation nodel initialization @
/I I nput argunents: Fault specification fault

/[ Return val ue: status [ FAI LURE, SUCCESS }

I

Detect Fault (fault)

{
define  for TPG given fault; /lInitialize p-status for fault
status = LEAP();
return status; [/l 1t can either be SUCCESS, CONFLICT or ABORTED
}

Figure 5.2: Procedure for detecting each fault

graded from p-T to p-F are the result of fanout blocking conditions, then a simple levelized back-
ward circuit graph traversal can be used to visit nodes whose p-status must be toggled. It is clear
that such traversal does not change the p-status of any p-T primary output. This procedure is only
valid for test pattern generation, since for timing analysis additional conditions are involved in
downgrading p-T to p-F nodes and edges. Note that toggling the p-status of nodes and edges does
not affect the validity of computed tests, and it is only of interest if the sensitizable paths are to be
reported; otherwise toggling values may be skipped since it just increases the computational over-

head.
5.3 Modeling Fault Detection in Test Pattern Generation

In this section we detail how to represent path sensitization for test pattern generation
using the p-propagation model. The single stuck-at line fault model is assumed [1, pp. 110-118]
and two types of faults are distinguished. The stem fault X s-a-v to denote a node x whose logic
valueisfixed to alogic value v, and a fanout-branch fault (x, y) s-a-v denoting that the connection
between x and y always assumes a fixed |logic value v. Although the formulation of the model isthe
same for both types of faults, the initialization phase differs.

Let us assume a fault x s-a-v. Node x is said to be the source of the perturbation. Hence, x
isinitialized to p-T, al nodes and edges in its transitive fanout are initialized to p-X, because they
may propagate the perturbation, and the remaining nodes and edges are set to p-F. Consequently, a

perturbation can reach a primary output through any partial path connecting x to the primary out-

178



Z
1>
X2 X2

X3 sal Wiy} X3 e}
x5=0 X5
X4 X=1 550
p-X node/edge p-X node/edge
=== -T Node/edge === - T Node/edge
(@ x5 sal (b) (X4, X5) s-&0

Figure5.3: Initialization of p-status for test pattern generation

puts. In addition, the fault must be activated, and so x must actually assume value v, thus defining
the original j-frontier.

For fault (x, y) s-a-v, thej-frontier isinitialized in the same manner, i.e. x = v. However, the
p-status initialization differs. Edge (X, y) is set to p-T, al nodes and edgesin the transitive fanout of

y are set to p-X, and the remaining nodes and edges are set to p-F.

Example 5.1. Examples illustrating the initialization of the p-status for both types of faults are
shown in Figure 5.3. For fault x5 s-a-1, theinitialization of the p-propagation model sets node xs to
p-T and nodes and edges in its transitive fanout to p-X. The remaining nodes and edges are set to
p-F. Node x5 is assigned value O to denote activation of the fault.

For fault (x4, X5) S-&0, edge (x4, Xs5) IS set to p-T, the nodes and edges in the transitive
fanout of xg (including xs) are set to p-X, and the remaining nodes and edges are set to p-F. Node

X4 is assigned value 1 to activate the fault. O

Following the definition of p-statusin Section 4.3.2, the formulation of the p-propagation
model for test pattern generation will be completed by specifying predicates Bo(X), B(X, y), P(X)
and P(x, y).

Observe that the blocking predicate defined in (4.8) (see page 141) accounts for all possi-
ble blocking situations that can occur in test pattern generation with the exception of error signal

cancellation. Conseguently, predicate Bo(X) is defined as follows:
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Bc(x) = % ((m(w) = 1) dm(y) = 1) Lv(w) D v(y) = 1)) (5.1)
Y, wilH(x)

which states that if two fanin nodes of x are p-T, and the two nodes are assigned and assume oppo-
site values, then error cancellation takes place, and propagation to x is blocked. This situation
would correspond, for example, to having anodey set to D and anode w set to D at the input of a
gate, thus cancelling propagation of the error signal to the output x. (Note that the above condition
explicitly assumes simple gates, but can be easily extended to XOR/XNOR gates.) From (4.8) with
Bc(X) replaced with (5.1) we can define the blocking condition for test pattern generation as fol-

lows:;

B0) = | [1 (00 =0)]+ ] (xy)=0)]+
BANRICY) y 0 O(X)
(nty, %) = 0) ety %) | + (52)
Ty UT(%)
Y () = 1) ) = 1) Hvw) D vey) = 1)
Y, wWTI(X)

and whenever B(x) holds, then the p-status of x becomes p-F. Condition B(X, y) is defined to be
identically 0 and so B(x, y) is given by (4.9) (see page 141).
The node propagation predicate is defined as follows:

P(x) = [(Ty, x) = 1) L(v(y) # X) + (TI(y, X) = 0) Chc(y, X)] (5.3)

yt i)
that requires each fanin edge to either be p-T and the associated fanin node be assigned, or to be p-
F and the associated fanin node to assume a non-controlling value. The formulation of P(x) does
not require p-T edges to be driven by nodes assuming the same logic values, since the blocking
conditions take that into consideration, and the p-propagation model formulation gives preference

to blocking. Finally, P(x, y) is defined as follows:

P(x,y) = [1(x) = 1] (54)
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Figure 5.4: Applying the p-propagation model to test pattern generation

which states that an edge becomes p-T provided its fanin node becomes p-T.

It isworth noting that the definition of the edge p-status in test pattern generation is nones-
sential, and one can develop aformulation just based on node p-status. However, the proposed for-
mulation illustrates the relationship between different path sensitization applications. In
Section 5.8, the edge p-status definition is reformulated to allow for improved pruning ability.

Given the proposed configuration of the p-propagation model for test pattern generation

the following holds:

Theorem 5.1. Given a SSF fault in a combinational circuit, atest T detects the fault if and only if

under the p-propagation model T sets at least one primary output to p-T.

The above result is independent of how the computation of T is actually performed. Thus,

an immediate corollary is:

Corollary 5.1. A sound and complete search algorithm, based on the p-propagation model, com-

putesatest T for agiven fault if and only if such test exists.

Example 5.2. The operation of the p-propagation model for test pattern generation is illustrated
with the example of Figure 5.3-a. First, the assignment x5 = 0 impliesxg — 1and x4, — 1. Asa
result B(z,) holds, since Ti(x4, z,) = 0 and c(x4, ) holds. From (4.14) and (4.13), respectively,
T(Z) —~ 0and 1i(xg, z)) — O. Inthelogical dimension, z, — 1isimplied by the assignment to x,.
Because 1(Xs) = 1, then Ti(Xs, Xg) — 1 from (5.4).

Now let x, — 0. Hence, P(xg) holds and so 1i(Xg) — 1. From (5.4), (X, 1) — 1. Finaly,
let x; « O, that causes P(z;) to hold and so 1(z;) — 1. Figure 5.4 illustrates the logic values and
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propagation status after the above sequence of assignments. The assignment set { (x4, 0), (X, 0),
(X3, 1), (X4, 1) } identifies atest for fault x5 s-a1. For this example the existence of OUT nodesis
only implicitly assumed, since for test pattern generation if a perturbation reaches the output of a

gate connected to a OUT node z, then z also propagates a perturbation. O

Per spective

The p-propagation model is significantly different from the D-calculus and derived alge-
bras. Nevertheless, afew other path sensitization models share similarities with the p-propagation
model, in particular the SPLIT model [33] and the SAT-directed models of [24] and [162]. All
these models characterize the state of each circuit node with three values. The semantics of each
value differ slightly between models.

Inthe SPLIT model the values of the good and faulty circuits are kept. In addition, athird
value, referred to as the difference value, identifies whether the good and faulty values are or can
be different. Hence, the third value is defined locally, asis the p-status of nodes and edgesin the p-
propagation model. The definition of the difference value in the SPLIT model does not account for
fanout blocking information, as the formulation of the p-propagation model does.

The SAT-directed models of [24] and [162] also maintain the node values of the good and
faulty circuits. The third node value (referred to as the D-chain variable in [162] and the path vari-
able in [24]) indicates whether the node is part of a sensitizable path. This definition immediately
implies that a node is only said to be part of a sensitizable path after al logic assignments to the
relevant primary inputs have been made. Conseguently, these two models require decision assign-
ments on some of the path variables in order to identify sensitizable paths, which may increase the
size of the decision trees for some instances of path sensitization.

The p-propagation model is unique in that the notion of error signal is only implicitly con-
sidered. This formulation has the following advantages:

» The p-propagation model avoids some of the redundant information used by the SPLIT
model and SAT-directed models.

e Themodel isscalable (as described in Section 5.8) and can be adapted such that it supersedes
other path sensitization models for test pattern generation. It also suggests applications for

the edge propagation status with the goal of increasing the reasoning precision of the model.
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 Inthe context of search, as described in the previous chapter, it permits several pruning meth-
ods to be defined independently of the target application. In addition, it allows the diagnosis
engines described in Chapter 111 to be straightforwardly adapted.
The p-propagation model for test pattern generation is compared in more detail with other
modelsin Section 5.9.

5.4 Basic Deduction and Diagnosis Engines

The basic deduction and diagnosis engines for the propagation dimension are given by the
procedures described in the previous chapter. In order to formalize the description of these engines
for test pattern generation we only need to specify how antecedent assignments are established due
to blocking and propagation conditions. Moreover, implementation tradeoffs of the diagnosis
engine are described, which can be used to bound the maximum growth of the database of p-

clauses.
5.4.1 Deduction Engine

The basic deduction engine was described in Figure 4.13 (see page 157). In this section
we formalize the definition of antecedent assignments for each possible implied assignment. Let
us assume that a node x becomes p-F. Hence, (5.2) holds and the antecedent assignment of assign-
ing p-F to x is defined by one of the terms of (5.2) that holds true. Precedence is given to structural
blocking conditions (the first and second terms) followed by the controlling value condition and
then the error cancellation condition. The chosen precedence relation guarantees that antecedent
assignments common to severa path sensitization applications are identified whenever possible.
Consequently, this contributes to defining propagation implicates common to other path sensitiza-

tion applications.

Example 5.3. The definition of the antecedent assignment for several blocking conditionsisillus-

trated in Figure 5.5. In Figure 5.5-a, the antecedent assignment of T1(x) is given by all fanout edges:

AMX)) = {(T(x, y), 0)]y T O(x)} (5.5)

In Figure 5.5-b, the antecedent assignment is given by all fanin nodes in the propagation dimen-
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Figure 5.5: Blocking antecedents in test pattern generation
sion:
A(M()) = {(T(x, y), 0)]y O 1(x)} (5.6)

For the case of Figure 5.5-c, the antecedent assignment is given by the node that assumes the con-

trolling value and the associated edge:

AMX) = {(y, v(y)), (Ty, X), O)} (5.7)

Finally, for error cancellation, the antecedent assignment is defined by the two nodes whose p-sta-

tus cancel each other:

AM(X) = {(y, v(¥)), (TLy, ), 1), (w, v(w)), (T, X), 1)} (5.8)
Thus, al antecedent assignments for blocking propagation to a node are defined. O

Assuming that B(x) does not hold and P(x) holds, then x becomes p-T. The antecedent

assignment of T1(x) is defined as follows:

A(M(x)) = yDDI(X){(y, v(y)), (Tdy, x), vy, X))} (5.9)
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The antecedent assignments for the case of edge p-status are defined accordingly for both
blocking and propagation conditions. In all cases, the antecedent set is readily obtained from the
antecedent assignment with (2.14) on page 40.

We finally note that given the definition of antecedent assignment for propagation cuts,
introduced in the previous chapter, and for logic assignments, defined in Section 3.2, the anteced-
ent assignment of any element included in another antecedent assignment is well-defined, and so

conflict analysis can be implemented.

Value Probing

While identifying USPs we can check whether the logic value assumed by each USP can
be uniquely defined. If al propagation scenarios to a USP x require the same logic value to be
assumed by x, then x must be assigned that value, in order to fanin justify the p-cut associated with
the USP. The pracess of defining the logic value assumed by each USP isreferred to as value prob-
ing. The antecedent assignment of this logic assignment is defined by the p-cut in the transitive
fanin of the p-cut associated with the USP, the values assumed by the nodes in that fanin p-cut, and
the assignments traced while defining the admissible values at each node in the transitive fanin of

the USP.

Example 5.4. An example circuit where the logic value assumed by a USP can be identified is
shown in Figure 5.6-a. The admissible pairs of logic and propagation values imposed solely by
forward conditions are shown for each node, and where X or p-X denotes that both values are
admissible in that dimension. While traversing the circuit graph for defining USPs, the admissible
pairs of values are propagated forward and related with other pairs of values, with the goal of iden-
tifying the possible combinations of values at each node. When node u, is visited (denoting a
propagation cut that requires fanin justification) we can immediately conclude that the combina
tion of values (O, p-F) for u; would be the result of a propagation conflict and so the only admissi-
ble combination of values for u; is (1, p-T). Consequently, u; 1 isimplied with antecedent
assignment defined by { ({4, 1) , (X1, 1), (X5, 0), (T(X1), 1), (T(X5), 1) }. The assignment of u, in the
logical dimension implies several other assignments, which further constrain the search as shown

in Figure 5.6-c. It is interesting to note that for this example, the final p-status of ys is actualy
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Figure 5.6: Example of application of value probing

irrelevant for propagating the perturbation, and ¢, could be said to be fanin justified, and {3

(derived from () to be fanout justified. However, by definition of the model, the final p-status of

y3 is required to be known. Nevertheless, we are guaranteed that no conflict will be identified

between {3 and (.

The implementation of value probing can be incorporated into the algorithm for identifica-

tion of USPs, as was suggested by the previous example. Starting from a given p-frontier, all

admissible pairs of values, which can be defined only by forward propagation, are associated with

each visited node. For any node in a p-cut requiring fanin justification, for which only one logic

value is admissible with a p-T status, then that assignment must be made. The antecedents of the

node assignment are defined by the initial p-cut, by the nodes in the initial p-cut (in both dimen-
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sions), and by the edges blocking propagation (which contribute to defining the p-cut that requires
fanin justification).

It isimportant to note that value probing does not always identify the logic value of a USP
even if that value can be uniquely determined. On the other hand, whenever the logic value of a
USP is identified with value probing, then that assignment is guaranteed to be a hecessary condi-
tion for the perturbation to propagate to a primary output, given the current stage of the search pro-

cess.

5.4.2 Diagnosis Engine

The basic diagnosis engine was described in Section 4.5.3, and can be readily imple-
mented given the antecedent assignment definitions of the previous section. In the remaining of
this section we focus on improvements to the diagnosis engine that can be implemented in linear
time. We start by reviewing the improvements described in Section 3.6.2. Afterwards, application-
specific techniques are described. In particular, the notion of subleveling is introduced, which pro-
poses to diagnose conflicts taking into account that implications are identified by two distinct
deduction engines, the logic and the propagation deduction engines.

The formulation of conflict diagnosis developed in the Section 4.5.3 alows straightfor-
ward extensions of UIPs, multiple conflicts and iterated conflicts to path sensitization. The imple-
mentation of each of these pruning methods increases the number of identified implicates.
However, for path sensitization the relevance of each of these implicates depends on its composi-
tion.

Logical implicates are associated with the consistency function of the circuit and conse-
guently are defined as pervasive. Hence, logical implicates can be derived within any target appli-
cation and applied to any other target application. For example, logical implicates identified in
logic verification can be used in timing analysis and in test pattern generation, or the ones derived
in timing analysis can be used while performing satisfiability tests to the primary outputs of the
circuit.

Propagation implicates are only valid where a propagation consistency function is defined,

i.e. in target applications involving path sensitization. For the applications described in this disser-
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tation, and whenever propagation implicates are solely derived from common blocking conditions,
then the propagation implicates are pervasive across path sensitization applications. This was the
case with every example described in the previous chapter. On the other hand, and for the specific
case of test pattern generation, whenever a propagation implicate results from application specific
blocking or propagation conditions (e.g. error cancellation), then the derived propagation impli-
cates are no longer pervasive across path sensitization applications. Nevertheless, these implicates
are still pervasive for queries regarding test pattern generation. Thus, propagation implicates based
on blocking and propagation conditions specific to the test pattern generation are defined as perva-

sive within test pattern generation.

Diagnosis with Subleveling

Derivation of implications with the path sensitization deduction engineis divided into two
main phases: the identification of logical implications and the identification of propagation impli-
cations. Whenever a conflict isidentified, the causes of the conflict are traced back to the decision
assignment. The general improvements mentioned above consider exploiting some of the structure
with which implications are derived. However, it is possible to identify other forms of structure
that result from having two cooperating deduction engines. This can be attained by forcing addi-
tional structure on how implications are identified. The basic idea is to define a decision sublevel
each time a new propagation cut is identified. In the presence of conflicts, the decision sublevels
define an order on how to trace the causes of the conflict to the decision assignment. This order can
be used to identify additional and stronger propagation implicates.

In order to implement subleveling, the state of each assigned symbol 6 (node, edge or p-
cut definition) is characterized by a new term, a(8), referred to as the sublevel of that symbol. Sub-
levels can then be used to identify portions of the implication sequence that include sufficient con-

ditions for blocking propagation of a perturbation.

Example 5.5. The application of subleveling isillustrated with the example circuit of Figure 5.7-a.
The current propagation cut is assumed to be {4, and the decision assignment isws = 0. The resullt-
ing implication sequence is shown in Figure 5.7-b, where edge assignments are omitted for simpli-

fication purposes. Conflict diagnosis yields the p-clause:
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Figure 5.7: Example of application of subleveling
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If subleveling is cor%ﬂévé/é, thed frh(re[%ﬁ’rﬁ/ ﬂ)oFlr cr)g\%léc},é%lt&rgvﬁl&/\y é&?si on sublevel. Theimplica-

tion sequence at the new sublevel leads to a conflict, for which ys is now a unique implication

point (UIP). Conseguently, from Figure 5.7-c, the following propagation implicate can be defined,
o, (Y5, Ye) + TUY5, Y;) + 2 Ys)0 (5.10)

that defines blocking conditions with respect to {,, which are independent of node assignmentsin
the fanin of {,. The implicate derived with subleveling identifies blocking conditions local to {5,
which can be used to constrain the value assumed by ys.

The above implicate, derived with subleveling, can now be used in other instances of path
sensitization. For example, let us assume a different stage of the search process with one p-cut
(3={ % }. Inthis situation, the p-cut {, ={ y3 } is created due to USP y;. Consequently, the p-
clause of (5.10) is considered and y5 — Oisimplied. Note that T(ys, Ye) and 1(ys, y7) must be p-F,

due to the composition of p-cut (3. O

The structure of the implication and diagnosis engines can be modified so as to permit the
implementation of subleveling. A distinct decision sublevel is associated with assignmentsimplied
by each newly defined p-cut. The decision sublevel associated with each symbol 6 is defined as

follows:
0(8) = max{o(0)|(6' T a(®)) T(a(0) = d(8))} (5.11)

After aconflict is detected, the sublevel of each element in the implication graph provides a parti-
tion of the implication subgraph at the current decision level, that can then be used to create local-

ized p-clauses.
5.4.3 Implementation Tradeoffs

As with SAT, the path sensitization algorithm proposed in the previous chapter may face
efficiency problems if the number of derived implicates becomes too large. In addition, mainte-
nance of p-cut information can introduce significant computational overhead, since p-cuts have to

be updated after each implication sequence. In this section we propose to adapt the simplified
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diagnosis engine described in Section 3.6.3 on page 97 to path sensitization for test pattern gener-
ation. The major advantage of the smplified diagnosis engine is that is guarantees a constant size
clause database. Diagnosis engines that lead to worst-case polynomial size growths of the clause

database are also reviewed.

Constant Size Clause Database

The basic ideaisto maintain global conflicting assignment set information with level con-
flicting assignment sets associated with each decision level. Each time a conflict is identified, a
conflicting assignment set is created, which is then used to update the level conflicting assignment
sets. Assertions are defined as in Section 3.6.3 (see page 97), but are restricted to the logical
dimension. The backtracking decision level is defined as the highest level of a non-empty level
conflicting assignment set.

Additional complexity reduction is attained by simplifying the definition of the antecedent
assignments of USPs. Every time a node or edge p-status becomes p-F, a global antecedent assign-
ment U for USPs is updated. Consequently, the antecedent assignment of any USP is contained in
U, and the antecedent assignments of USPs are only implicitly manipulated with references to set
U. Thisfact also implies that the computational effort to manipulate USPs can then be associated
solely to the performed graph traversals. All blocking conditions that define USPs and reduce the
potential propagation paths are maintained in set U, hence the computation of functions
blockedby() (see page 158) and causesof() (see page 67) isimplicitly maintained by set U for every
p-cut.

Since set U records all blocking conditions, p-cuts need not be explicitly maintained; only
USP indications are required to be known, and their manipulation guarantees fanin and fanout jus-
tification of the associated p-cuts. Conseguently, we can conclude that simplified conflict diagno-
sis and simplified p-cut maintenance can be implemented with small computational overhead
when compared to the basic diagnosis engine and associated antecedent assignment manipulation.

The above approximations trade off some pruning precision with a potential reduction of
the computational overhead involved in processing each decision level. Aswith the logical dimen-
sion situation (described in Section 3.6.3) we can easily construct examples where the effect of

these approximations leads to an increase in the computed backtracking decision level.
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We finally note that simplified conflict diagnosis does not allow for conflict-based equiva-
lence, and so conflicts due to the same conditions may be identified more than once during the

search process.

Polynomially Bounded Clause Database

Diagnosis engines, where recorded implicates are bounded in size, can also be devised.
For p-clauses, two degrees of freedom exist. We may eliminate p-clauses with large p-cuts, or with
large conditional clauses. In any situation, the growth is guaranteed to be polynomial in the size of
the original representation for a maximum p-clause size of m. Note, however, that these diagnosis
engines will require the manipulation of p-cuts whereas the constant size diagnosis engine deals
with p-cuts implicitly.

Polynomially bounded diagnosis engines can be particularly useful in identifying and
recording small p-clauses, which can be used often to imply assignments or to find equivalent con-
flicting conditions, and in discarding large p-clauses, which are necessarily harder to be subse-
guently used for deriving implications and for finding equivalent conflicting conditions.

Finally, note that we can also alow for different growths in the logical and propagation
clause databases. For example, we may allow for a polynomia growth of the logical clause data-
base and restrict the propagation clause database to a constant size, which then avoids the over-

head of explicitly manipulating p-cuts.
5.5 Advanced Deduction Engines

In this section we describe advanced deduction engines for path sensitization, that extend
the ideas described in Section 3.5.3 (see page 77) to the p-propagation model, but which restrict
the subsets of variablesto be tested to the logical dimension. This restriction isjustified by the fact
that p-T assignments in the propagation dimension would have to be viewed as p-cuts, and in such
a situation the manipulation of p-cuts would become more complex. (This is the same reason why
assertionsin the p-dimension are disallowed.) Note, however, that if the size of the subsets of vari-
ables is restricted to 1, then the requirement to manipulate severa p-cuts no longer holds, and a
restricted form of deduction engine can then be defined, which assigns values in the propagation

dimension. Nevertheless, this restricted form of deduction engineis not extensible to larger sets of
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variable assignments tested by the advanced deduction engine.

Given the above restriction, the basic ideas described in Section 3.5.3 can be used (with
the algorithm described in Figure 3.8 on page 80) to define Pr opagat i on_Deduce_k(). The
main difference results from the need to compute consensus between p-clauses. Since consensus
of two p-clauses is defined only when the two p-clauses have the same p-cut, the join operation,
defined in (4.28) on page 168, can be utilized to relate two p-clauses to a common p-cut.

Let w1 = g, wyland wy o = [y, wyllbe p-clauses such that w,; contains aliteral 6 and
w, contains a literal ~0. Furthermore, let us assume that wy 1 and wy; » have been identified by
diagnosing conflicts associated with a given set of variables, i.e. {; and {, currently define propa-

gation cuts. We start by computing an assignment set that results from finding a p-cut common to

Zl and Zz:
A, = joiny, ) (5.12)

Now, let { = cutof(A ;). Then the resulting p-clause is defined as follows:

w, = [, c(0y, Wy, 8) O { M| (p, v(u)) O cutof S(A )} O (5.13)

which adds the literals of the symbols included in cutof“(A ;) to the consensus of the conditional
clauses. Note that 8 cannot be included in A;, since it is unassigned at the current decision level
and only becomes assigned due to the assignments tested by the deduction engine, whereas join()

is computed without these assignments being defined.

Preprocessing

Different degrees of preprocessing can be implemented in test pattern generation. The log-
ical clause database can be preprocessed with the objective of identifying additional implicates of
the logical dimension consistency function. As described in Section 3.7 (see page 106), different
preprocessing engines can be applied, which identify different sets of implicates.

For each fault, and before starting the search process, preprocessing for the path sensitiza-
tion problem can be invoked. At this stage the objective is to identify propagation conflicts so that

incorrect decision assignments can be prevented while searching. Any advanced deduction engine
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Pr opagat i on_Deduce_Kk() can be used for preprocessing, but for practical purposes k has to
be kept small. Note that the derived propagation implicates are pervasive for test pattern genera-
tion and consequently may be applied to the detection of other faults. The same necessarily holds

true for all derived logical implicates.
5.6 Postprocessing Engine

Solution processing involves two orthogonal activities: removing redundancies from solu-
tions and caching solutions for simplifying subsequent queries. The implementation of these tech-
niques follows the description given in Section 3.8 (see page 111), but the existence of

propagation information must be taken into consideration.
5.6.1 Removing Redundancies from Solutions

Computed solutions for path sensitization can include some redundancies, i.e. decision
assignments that are not relevant for satisfying the original objectives. The approach for removing
redundancies from path sensitization solutions is based on constructing the node justification
graph (defined in Section 3.8.1), now referred to as the variable justification graph. For path sensi-
tization, each p-T primary output defines by itself a sufficient condition for propagating a perturba-
tion, i.e. for sensitizing a path. Hence, we can create the variabl e justification graph with respect to
any single p-T primary output, and to theinitial logical objective that activates the fault. Neverthe-
less, as we show below, for caching solutions the complete justification graph is useful, and so we
propose to construct the variable justification graph for all p-T primary outputs, and remove redun-
dancies with respect to a randomly chosen p-T primary output. (In practice, al p-T primary out-
puts can be analyzed and the one with the least number of decision assignments can be chosen.)

The definition of sets M(y) is extended to node and edge p-status. Hence M(0) identifies
the conditions that (fanin) justify 0. Inisimportant to note that any traced assignment in the prop-
agation dimension cannot be assigned due to fanout conditions, because such an assignment isin
the transitive fanin justification chain of ap-T primary output. For ap-T / p-F node or edge 6, set
M(0) is defined by the antecedent assignment of 8. With respect to definitions for the node justifi-
cation graph Jg = (V;, E;) given in Section 3.8.1 that apply for logic assignments, the following
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maodifications are required for the variable justification graph:

1. Every p-T primary output z corresponds to avertex n(1(2)) in V;. Theinitial logical objective
y = vy corresponds to a vertex n(y) in V.

2. For each vertex n(0) in V3, denoting the assignment of 8 and such that n(6) has no incoming
edges and y is not a primary input, identify M(8). For each node p in M(8), add n(p) to V;
andlet (n(u), n(®)) U E; .

The next step is to choose one of the p-T primary outputs. Let z be such a primary output
and let J, = (V,, E,) be the subgraph of Jg defined from sink vertex n (1(z)) and from theinitial log-
ical objective. Then, the set of primary inputs assignments to be considered as the solution to the

path sensitization problem is given by,

Ag = {(x,v(X¥))|xOPIH (x) OV, (5.19)

that is necessarily included in the solution assignment set Ag. Any primary output z can be chosen

for defining Ag'.

Example 5.6. Redundancy removal from solutionsisillustrated with the example of Figure 5.8-a,
which is based on the example circuit of Figure 3.21 (see page 112). The decision tree for the
search process is shown in Figure 5.8-b, and the corresponding variable justification graph is
shown in Figure 5.8-c. It isimmediate that the assignments x; = 1 and x, = 1 are redundant. Con-
sequently the assignment set obtained from the variable justification graph becomes A = { (x3, 0),
(X4, 0), (X5, 1), (X6, 1) }, thus reducing the computed decision assignment set. Finally, note that A
can be further ssimplified (as was described in Section 3.8.1). O

Another approach for removing redundancies from solutions is to consider subsets of the
assignments to the primary inputs, and test whether any subset identifies a solution to the path sen-
sitization problem. The complexity of this approach is given in Section 3.8.1 and depends on the

amount of solution simplification attempted.
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Figure 5.8: Removing redundancies from solutions

5.6.2 Caching Solutions

The node justification graph forms the basis upon which relevant information about com-
puted solutions can be identified so that it may be applied to simplifying the search for solutions of
subsequent queries. The construction of the variable justification graph includes all p-T primary
outputs. In the following, the restriction of the previous section is assumed, i.e. one primary output
is randomly chosen and a subgraph of that primary output and of the original logical objectiveis
created. The procedure described below can then be applied to each individual p-T primary output.

The steps described in Section 3.8.2 (see page 116) are implemented, such that the sets
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Po, ..., Pk denote a partition of V; and the level cuts T; associated with each decision level are
defined using the partition and (3.28) on page 118. In such a situation, the conditions for matching
cached solutions are given by (3.31), whereas the resulting assignment set to the primary inputsis
defined by (3.32).

Note that since the variable justification graph may not include information regarding
some decision levels and is based on a sequence of required justification assignments, the condi-
tions created for solution caching are necessarily less redundant than those of EST [70, 71], which
creates conditions based on node assignments of cuts of the circuit graph and current D-frontiers,

and thus does not consider any dependency information for simplifying the created conditions.
5.7 Decision M aking Procedures

The decision making procedures (or selection engines) described in Section 3.9 can be
used with the path sensitization algorithm, where decision assignments are restricted to the logical
dimension. Nevertheless, afew modifications must be introduced. First, the definition of new head
lines cannot include p-X nodes, since these nodes may become involved in propagating the pertur-
bation and so nodes in their transitive fanin must be assigned in the logical dimension. Second, the
definition of don't care nodes cannot involve p-X nodes, since these nodes can potentially propa-
gate a perturbation. Finally, objectives for backtracing can be defined from any propagation fron-
tier as well as the justification frontier, whereas in the logical dimension, objectives are always
drawn from the j-frontier.

The selection engine can be organized in several different ways. For example, decision
assignments may always be based on the same procedure for making decisions, e.g. ssimple or mul-
tiple backtracing. Note, however, that the search framework also permits several decision making
procedures to be iteratively applied after a given threshold on the number of backtracks. Since the
search process records logical and propagation implicates, the search effort spent on a given deci-
sion making procedure provides additional information that can be used by subsequent decision
making procedures for pruning the search. We can thus conclude that most selection engines can
be used in LEAP().

The implementation of simple and multiple backtracing in the p-propagation model must
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specify which nodes are to be traced. For test pattern generation, tracing is restricted to p-F nodes
and is conducted until elementsin the current set of head lines are visited. Different controllability
and observability measures can be implemented [1, pp. 213-220], which can take into account the
potential existence of several p-frontiers. For the results reported in Chapter VII for test pattern
generation, the implemented selection engine can use simple and multiple backtracing and is
solely based on topological controllability and observability measures. Since the selection engine
is orthogonal to how the search process is implemented, other more elaborated measures can be
implemented, some of which can be based on dynamic testability considerations derived from the

test pattern generation process [ 26, 85].
5.8 Scaling the Perturbation Propagation M odel

Path sensitization models based on the D-calculus have attempted over the years to
increase the reasoning ability on the cone of influence of the fault effect. The motivation for the
added reasoning ability is that conflicting conditions can be more easily identified, and therefore
the amount of search can be reduced. The quest for added reasoning ability hasled to 5, 9, 10, 11
and 16-valued algebras (among others) [1, 2, 23, 33, 37] derived from the D-calculus.

We propose to show that the p-propagation model can incorporate any such degree of rea-
soning ability, without compromising any of the features that allow the search agorithm to imple-
ment conflict diagnosis.

As noted by other authors [37], m-valued algebras are approximations to considering all
possible values at each node in the cone of influence of the fault effect, and this corresponds to
considering a 16-valued algebra. Thus, let us consider for each node all admissible pairs of values
it can assume in both dimensions. For a complete node assignment, each node must assume one
out of four admissible pairs of values: (0, p-F), (1, p-F), (O, p-T) and (1, p-T). Let us assume a p-
cut ¢ and for each node x in C let us consider all possible values it can assume; since x isa p-T
node, and assuming that it can be part of a sensitizable path, then at most two combinations of val-
ues are possible, (0, p-T) and (1, p-T), or (v, p-T) if x is aready assigned value v. Afterwards, we
propagate through the circuit the admissible pairs of values for each node, relate those pairs of val-

ues with the ones of other nodes and compute the admissible pairs of values for the fanout nodes.
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(c) Resultof z=0
Figure5.9: Potential value propagation

Whenever only one value in either dimension becomes admissible, an assignment isimplied. The
antecedent assignment for such assignment is defined by all assignments in either dimension that
constrain the admissible pairs of values from the p-cut until the node is visited. Moreover, it should
be noted that this procedure is a generalization of value probing described in Section 5.4.1, where

probing is extended to any circuit node.

Example 5.7. Propagation of admissible valuesisillustrated in Figure 5.9. Let x = 1 and 1i(x) = 1,
andlet () =1 (i.e. zisaUSP). Now let us consider estimating the admissible logic and propaga-
tion values at each node in the transitive fanout of X, as shown in Figure 5.9-b. y; can either assume
the pairs of values (1, p-F) or (O, p-T) and y, can assume (1, p-T) or (0, p-F). As a result, the
admissible pairs of values at z would be (1, p-F) or (0, p-T). However, z must be p-T since it
denotes a USP, and consequently the assignment z — 0 isimplied. The antecedent assignment of z
isgiven by A(2) = { (¢4, 1), &, 1), (11&), 1) }. The consequences of this assignment are shown in
Figure 5.9-c, and consequently ¢ becomes fanin justified. O
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Observe that for each node al possible cases for propagating a perturbation are consid-
ered, and so the formulation of the model identifies no fewer implications that the 16-valued D-
calculus based algebra. Furthermore, advanced deduction engines can also use the above analysis

to identify additional implications.

Changing the Semantics of Edge Propagation Status

The p-propagation model can be further improved. As mentioned earlier, the edge p-status
can be made redundant, provided blocking conditions are expressed solely in terms of node values.
We start by showing how edge p-status may not be considered in the formulation of the p-propaga
tion model for test pattern generation. Afterwards, the semantics of the edge p-status is redefined
in order to increase the reasoning ability in the propagation dimension.

In test pattern generation if two connected nodes x and y are p-X, then 11(%, y) is also p-X.
Conseguently, the edge p-status can be made redundant, and the blocking condition is defined as

follows:

B = | [] =0+ [] =0+
yUI(x) y 0 O(X)
(1) = 0) [y, ) | + (5.15)
“y T
3 () = D) = 1) ) vy = 1)
Y, WITI(X)

The propagation condition becomes,

P(X) = [(Ty) = 1) Lv(y) # X) + (1(y) = 0) Lhc(y, X)] (5.16)
yl1(x)
where with respect to (4.19) and (4.20) on page 159, each edge p-status reference has been
replaced by the appropriate node p-status reference.
Edge p-status can now be used to identify situations where a perturbation may reach a
node but cannot propagate to a primary output. Given the stage of the search process we may not

be able yet to assign p-F to the fanout node, but we may use the edge information to focus the
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search on other potential propagation paths. The p-status of an edge is now defined as follows:
1. (%, y) = 0if either the edge cannot propagate a perturbation, or even if it propagates the per-
turbation, the edge will not be part of a sensitizable path.
2. T(X, y) = 1 the edge propagates a perturbation.
3. (X, y) = Xif the edge can potentially propagate a perturbation.

This modified formulation of the edge p-status can lead to situations where a p-F edge
connects two p-X nodes x and y. This then signifies that a perturbation does not propagate from x to
y, even if both nodes may propagate a perturbation. With the new formulation, edge p-status is
maintained separately from node p-status and logic value relations can be used to identify edges
that must be p-F. This is the case, for example, of every edge whose fanin node assumes a non-
controlling value of a controlled fanout node; a perturbation in the fanin node cannot propagate to

the fanout node and so the edge p-status can be assigned p-F.

Example 5.8. The application of the new definition of edge p-statusisillustrated with the example
circuit of Figure 5.10-a. Let us assume the objective isto compute a test for fault x3 s-a-1. Logical
implications create the implication subgraph shown in Figure 5.10-b. Next we note that since the
value of x;q is 0, and the value of x;; is 1, then a perturbation in x;o will not propagate to x;4; it
either cancels propagation from xq4, if it becomes p-T, or allows perturbation to x4, if it becomes
p-F. The same holds true with respect to propagation from x;, to X;5. These relations are high-
lighted in Figure 5.10-b, We can then say that Ti(X1g, X14) = 0, and similarly 1(x;5, X15) = 0. Asa
result, USP computation (over p-X nodes and edges) identifies xg and xq;, as USPs, since these
nodes must indeed propagate the perturbation for it to reach a primary output. The new p-cut
{ X411 } requiresfanin justification and hence xg — 0 isimplied. The conseguence of these implica-
tions is shown in Figure 5.10-c, and a propagation conflict is identified. (o, identifies a p-cut
driven by the primary outputs, which requires fanin justification as defined in Section 4.3.4.1.)
Since no decisions have been made, the fault is proved redundant. Observe that a crucia stepisto
set the edge p-status to p-F, so that the USPs can be defined and the propagation conflict identified.

L]

Antecedent assignments for edge p-status assignments are defined by the assignments that
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Figure 5.10: Application of redefined edge p-status

areinvolved in downgrading or upgrading the edge p-status. For the above example, A(Ti(X;q, X14))
={ (X10. 0), (x14, 0) }.

For test pattern generation we can either use the basic definition of edge p-status, not con-

sider edge p-status at all, or use the modified definition of edge p-status with the goal of further

pruning the search. The first option simplifies the integration of test pattern generation with timing
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analysis in a common path sensitization framework. The second simplifies the implementation of
test pattern generation, and necessarily reduces the overhead of maintaining path sensitization
information. Finaly, the third option increases the model precision which can be useful for diffi-

cult faults.
5.9 Comparison with other Test Pattern Generation Algorithms

The proposed test pattern generation algorithm introduces the following improvements
over most path sensitization algorithms:

» The development of diagnosis engines, that allow severa pruning methods to be defined and
applied in an integrated procedure for handling conflicts. Most test pattern generation ago-
rithms such as PODEM [72], FAN [62], SOCRATES [144, 145], TOPS [92], QUEST [37],
TAGUS [162], SSR [167], TRAN [24] and recursive learning [101] do not provide any form
of conflict diagnosis. For combinational circuits, EST allows defining equivalent conflicting
conditions but, as shown earlier, the recorded conditions can be significantly redundant since
they do not directly reflect the causes of a conflict. For sequential circuits, the algorithms of
[113] and [114] propose restricted forms of non-chronological backtracking, but are only
informally sketched and, given the descriptionsin [113] or [114], are incomplete.

» The definition of deduction and preprocessing engines that can identify implicates of the
consistency function (in both dimensions) with different degrees of precision. These engines
extend other procedures for derivation of implications[24, 37, 101, 145] in that any degree of
deduction can be achieved and implicates are added to the clause databases. Furthermore, in
some cases these implicates are identified as pervasive. In such asituation, derived implicates
can be permanently added to the clause databases and applied for subsequent problem
instances. They can also be potentially used in different target applications.

* The introduction of postprocessing engines that alow processing computed solutions for
path sensitization problems. Redundancy removal from solutions is a new concept, whereas
solution caching has been proposed before, with a different formulation, in EST [70, 71]. As
mentioned earlier in this chapter, the proposed procedure for caching solutions is necessarily

more precise than that of EST.
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» The definition of a scalable path sensitization model, where different degrees of propagation
reasoning precision can be implemented within the same search framework. The most pre-
cise formulation supersedes existing models for path sensitization in test pattern generation.

Conflict diagnosis offers other interesting possibilities. As noted earlier, derived logical
implicates are pervasive across circuit analysis applications. Propagation implications are perva-
sive within test pattern generation and, under appropriate conditions, are pervasive across path
sensitization applications.

Finally we note that the proposed test pattern generation agorithm can be configured to
realize a large number of other test pattern generation algorithms, some of which have been pro-
posed by other researchers. For example, with an adequate formulation of the diagnosis and
deduction engines, and no redization of the preprocessing and postprocessing engines, we can
readily implement PODEM and FAN. SOCRATES can be implemented by allowing for restricted
preprocessing, and identification of USPs. (Our algorithm for identification of USPs is more effi-
cient than that of SOCRATES, and this leads to a more efficient implementation of SOCRATES.)
In order to emulate the af orementioned algorithms, the formulation of the p-propagation just needs

not consider fanout blocking conditions in order to emulate the D-calculus.

5.10 Summary

This chapter details the application of the path sensitization model and algorithm to test
pattern generation. Most of the concepts regarding the path sensitization algorithm were previ-
ously described in Chapter 111 and Chapter IV, and the purpose of this chapter is solely to describe
the necessary modifications given that the problem being solved is path sensitization for test pat-
tern generation.

The engines associated with the search algorithm for path sensitization are described, and
emphasisis given to conflict diagnosis. The concepts of subleveling and value probing are intro-
duced, which can be respectively used to derive smaller propagation implicates in the presence of
conflicts and identify more implications. Simplifications to conflict diagnosis are proposed, which
provide computationally inexpensive methods to diagnose conflicts and guarantee constant size

clause databases. Diagnosis engines with worst-case polynomial size growth of the clause data-
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base are reviewed, which are based on equivalent engines described in Chapter 111. Engines for
advanced deduction, postprocessing and selection are analyzed in the context of path sensitization
for test pattern generation.

The chapter concludes with a study of accuracy tradeoffs provided by the p-propagation
model, and describes how accuracy can be improved. In addition, the path sensitization algorithm

is compared with algorithms proposed by other authors.
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CHAPTER VI

PATH SENSITIZATION FOR TIMING ANALYSIS

6.1 Introduction

As mentioned earlier in Chapter 1, timing analysis poses key challenges to search algo-
rithms, since the final result of the search is most often to prove unsatisfiability of a given path sen-
sitization goal. Instances of path sensitization for timing analysis thus pose interesting test cases
for pruning methods associated with diagnosis engines.

This chapter describes how to apply the p-propagation model and LEAP to path sensitiza-
tion for timing analysis. The organization of LEAP proposed in Chapter IV is assumed. As in
Chapter V, the emphasis is how to solve atarget application that is based on path sensitization. In
particular, we focus on how to represent path sensitization for timing analysis with the p-propaga-
tion model and how to configure LEAP() for timing analysis.

Simplifications to conflict diagnosis are described in some detail, since they represent the
core of the experimental results described in Chapter V11 and can be particularly useful in timing

analysis, where delay-based dependencies can lead to large propagation implicates.

Outline

The general procedure for circuit delay computation is described in Section 6.2, where
several techniques for iterating threshold delays are analyzed. Section 6.3 describes how to repre-
sent path sensitization in timing analysis with the p-propagation model. Afterwards, in Section 6.4,

the basic deduction and diagnosis engines are detailed for timing analysis. For these engines, iden-
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/[ Qut put argunent : status I ABORTED, FAILURE, SUCCESS}
/I Return val ue: Conputed circuit del ay

I

Circuit_Delay Conputation (&status)

{
define ¢ for circuit;
A = LTP; /l1nitial path delay is | argest topol ogi cal path
while (A>0) {
define Y for timng analysis given A;
status = LEAP(); /I Attenmpt to sensitize path delay A
if (status == SUCCESS && Circuit _Delay ldentified())
return Define_Sensitizable Delay (); /I Return A
el se if (status == ABORTED)
return -1; /l Conput at i onal resour ces exceeded
A = Iterate_Next Delay(); /['1dentify next path del ay
}
return A;
}

Figure6.1: Circuit delay computation procedure

tification of antecedent assignments due to delay-based blocking conditions plays akey role. Other
engines that can be used for implementing timing analysis are described in Section 6.5. A compar-

ison of LEAP with other timing analysis algorithms is conducted in Section 6.6.
6.2 Circuit Delay Computation in Timing Analysis

The main objective of timing analysisis circuit delay computation, that entails computing
the maximum delay A over the sensitizable paths of the circuit. Such delay is referred to as the
sensitizable path delay (or circuit delay). The general procedure for circuit delay computation is
shown in Figure 6.1. A procedure for iterating threshold delays is assumed. The search for the
largest sensitizable path iteratively defines the next threshold delay and invokes procedure LEAP()
that was described in Figure 4.10 on page 152. The process is iterated until a sensitizable path is
found for a chosen threshold delay and such that this delay is declared to be the last threshold
delay by procedure Circuit _Del ay_I denti fi ed(). Note that this implementation permits
severa procedures for iterating threshold delays to be modeled and used. Furthermore, the pro-
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posed circuit delay computation procedure is said to implement concurrent path sensitization
[152] since it considers the sensitization of all paths within a given delay range. In contrast with
the path-by-path analysis of initial solutionsfor circuit delay computation [8, 15, 31, 55, 117, 129,
149], concurrent path sensitization entails some mechanism to iterate path delays or delay thresh-
olds and, in each case, to specify the associated path sensitization problem. For example, threshold
delay iteration procedures can perform a binary search over the possible range of path delays or
enumerate threshold delays in decreasing order starting from the largest topological path delay.

One procedure for iterating path delays is described in [152]. However, if the number of
distinct path delaysis Iargel, then the time to find the largest sensitizable path can become unac-
ceptable. Another procedure isto choose afixed delay decrement d and at each iteration decrement
the target threshold delay by d. In such asituation, if asensitizable path isfound with delay A, then
the result reported must be Az = A +d, and the largest delay error is d. Note, however, if the |east
path delay above A is larger than or equal to A + d, then the delay value returned isA¢ = A thisis
the case, for example, whenever unit delays are assumed and d = 1.

More precise approaches can be developed. If € isthe allowed error in computing the larg-
est sensitizable path, then the following procedure can be used:

1. Let A bethefirst threshold delay for which a sensitizable path isfound, i.e. for A +d no sen-
sitizable path was found.
2. Perform binary search in the delay range (A, A + d), starting with A" = A /2, until the delay
different between iterationsislessthan €. Report delay A' + €.

In such a situation, the computed delay is at most off by an excess of € with respect to the
largest sensitizabl e path delay in floating mode operation. The number of iterationsin the range (A,
A +d) is then given by O(log,(d/€)). Assuming that A is computed by iterated decrements of d
with respect to the original longest topological path (LTP), then the number of iterations is
bounded by:

O(LTP/d +log,(d/€)) (6.1)

On the other hand, if binary search is used to compute the first sensitizable delay A above, then the

L |n the worst-case the number of path delaysis exponential in the number of circuit nodes.
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number of iterationsis bounded by:

O(log,(LTP/d) +log,(d/€)) = O(log,(LTP/¢€)) (6.2)

Note, however, that in most cases the largest sensitizable path delay is close to LTP, and conse-
guently the procedure based on iterated decrements requires fewer iterations. Thisis the case, for
example with al the ISCAS 85 benchmark circuits [156]. On the other hand, carry-skip adders
contain alarge number of path delays for which no sensitizable paths exist. For some of these cir-
cuits, binary search requires fewer iterations than iterated decrements of the delay threshold.

In the remaining of this chapter athreshold delay A is assumed to be defined prior to creat-
ing the path sensitization problem, with any of the above procedures.

Procedure Toggl e_Propagati on_Val ues() (invoked from procedure LEAP() in
Figure 4.10 on page 152) must also be defined. After a solution to the circuit delay computation
problem is identified, the set of sensitizable paths must satisfy (4.5) on page 139. All other p-T
edges and nodes are downgraded to p-F. A backward traversal from the primary outputs can be

used to visit each circuit node / edge and downgrade those for which the blocking condition holds.
6.3 Modeling Circuit Delay Computation in Timing Analysis

In this section we describe how the p-propagation model can be used to model the path
sensitization problem associated with the following question: Given a threshold delay A, are there
any floating-mode sensiti zable paths with delay no less than A? Recall from Chapter | that apathis
said to be floating-mode sensitizable if and only if for a given primary input assignment, each node
on the path stabilizes as a direct consequence of its fanin node on the path also stabilizing [31, 50,
151, 153).

The definition of the p-propagation model for timing analysis assumes a set of delay esti-
mates at each node and at each edge. In particular, the following delay estimates are assumed:

1. DTo(x) denotes the estimate of the maximum propagation delay for a signal transition to
propagate from a primary input to X.
2. DFrom(x) denotes the estimate of the maximum propagation delay from x to any primary

output.
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3. DThru(x) denotes the estimate of the maximum propagation delay for a signal transition to
propagate from a primary input to a primary output if that signal transition propagates
through x.

4. DThru(x, y) denotes the estimate of the maximum propagation delay for asignal transition to
propagate from a primary input to a primary output such that the signal transition propagates
through edge (X, y).

Each delay estimate is computed as follows:

=0 if x 0PI

DTo(X) = 'aX{ DTo(y) + D(y, X)|y O I(x)} , if =Cont(x) ©3)
) %max{ DTo(y) + D(y, X)|y O U(X)} , if Cont(x) OUnjust(x) :

Emi n{ DTo(y) + D(y, X)|y O C(x)} , if Cont(x) O Just(x)

L
The propagation delay estimate to a primary input is defined to be 02. If x is not controlled, then
the maximum propagation delay estimate to x is given by the maximum of the delay estimates to
its fanin nodes added with the corresponding edge delays. Otherwise, if x is controlled but unjusti-
fied, then the maximum delay estimate to x is given by the maximum of the delay estimates to its
unassigned fanin nodes added with the corresponding edge delays. Finally, if x is controlled and
justified, then the propagation delay to x is given by the minimum of the delay estimatesto its con-
trolling fanin nodes added with the corresponding edge delays. Note that from a smulation per-

spective, (6.3) corresponds to modeling floating-mode operation and DTo identifies the stable time

of each node.
-, if x 0 PO
DFrom(x) = %nax{ D(x, y) + DFrom(y)|y O R(x)} , if R(x) # O (6.4)
%m if R(x) = O

The propagation delay from a primary output is defined to be 0. If the set of relevant outputs of x is

not empty, then the maximum propagation delay estimate from x to a primary output is the maxi-

2 1f each primary input x has a distinct arrival time, then DTo(X) is defined to be that arrival time.
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Assignment DTo(xg) DFrom(xg)

none 3 2
x =1 3 1
Xo = 1 2 1

Figure 6.2: Example of updating propagation delay estimates

mum delay over the outputs for which x can be relevant added with the corresponding edge delays.
If the set of relevant outputsis empty, then the propagation delay estimate from x to a primary out-

put is —oo, which means that a signal transition that reaches x does not propagate to a primary out-

put.
DThru(x) = DTo(x) + DFrom(x) (6.5)
and finally,
0= if ydR(X)
DThru(x,y) = E (6.6)

%DTO(X) + DFrom(y) + D(x, y), if y O R(X)

since x can propagate to y provided it can be relevant to the propagation delay toy.

Example 6.1. An example of how delay estimations are updated is shown in Figure 6.2. For node
Xg, With no logic assignments, DTo(Xg) = 3 and DFrom(xg) = 2. The assignment x, = 1, guarantees
that Xg stabilizes no later than time unit 2, i.e. DTo(xg) = 2. After all assignments are made,
DThru(Xg, z;) = —eoand DThru(Xg, zo) = 3. O

For each circuit, and with all hodes unassigned, the delay estimates can be initially com-
puted with two levelized breadth-first traversals of the circuit graph; one forward traversal for
computing DTo estimates, and one backward for computing DFrom as well as DThru estimates.
Given the initial delay estimates for each node and edge, the initialization of the p-propagation
model consistsin setting to p-X all nodes x, with DThru(x) = A, and edges (X, y), with DThru(x, y)

211
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p-X node/edge 11
=== D-T NOde/edge X6 Y5

Figure 6.3: Initialization of the p-propagation model for timing analysis

> A

Example 6.2. The example circuit (adapted from [83]) shown in Figure 6.3 illustrates the initial-
ization of the p-propagation model for timing analysis. For A = 7, only two paths can propagate a
perturbation, respectively X1, Y1, Y2, Ya, Ya, Y6, Y7, YsLand (Xo, Y1, Y2, V3, Y, Y6, Y7, YalJ These paths
define the set of p-X nodes and edges. Note that since delay computation entails a given threshold
delay, the p-status definitions for each node or edge must include conditions on delay estimates
that will contribute to defining the final p-status of that node or edge. O

The condition for the initialization of the p-status of each node, implies that every node in
each path P, such that D(P) = A, isinitialized to p-X. The same holds true for every edge associated
with each such path P. Conversely, we may have paths Q, with D(Q) < A, such that all its nodes
and edges areinitialized to p-X. The agorithmic framework must then guarantee that no such path
Qisidentified as sensitizable.

In timing analysis, and besides the common blocking conditions, propagation of a pertur-
bation to a node x becomes blocked if DThru(x) < A, meaning that a perturbation cannot reach a
primary output with propagation delay no less than A if it propagates through x. This condition
defines B(x); whereas condition DThru(x, y) < A defines Bo(x, y) for blocking propagation to
each edge (X, y). Consequently,
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Bp) = | [ (9 =0)]+ ] (xy=0)]+

yo () y 0 O(x) 6.7)
| Sty = 0) Ce(y, )| + [DThru( <]
y U1
and,
B(x,y) = [T = 0] +[1(y) = 0] * [DThru(x,y) <4 (68)

The conditions for propagating a perturbation to a node and edge are similar to the test

pattern generation case, and (5.3) and (5.4) (see page 180) can be adapted:

P(x) = [xOPID (X)#X] +
[(T(y, X) = 1) CV(y) # X) + (1Y, X) = 0) Che(y, X)] (6.9)
y O 1(x)

and,

P(x,y) = [1(x) =1] (6.10)

Thus, propagation to a p-X primary input occurs when itslogic value is assigned (i.e. asignal tran-
sition is defined). Edge propagation is the same as for test pattern generation.

Observe that we may have a gate output z set to p-T, that drives a primary output, but such
that the primary output is p-F. This situation can happen when the gate output drives other nodes,
some of which are or can become p-T. By specifically considering OUT nodes, a primary output
that becomes p-T indicates in fact the existence of a floating-mode sensitizable path with delay no

less than A.

Example 6.3. For the example circuit of Figure 6.3, let us consider the logic assignments x; =0
and X, = 1. Immediately, DFrom(x;) = —oo, DThru(x;) = —co and DThru(xy, y;) = —co. Hence,
i) < 0, 1€xq, Y1) < O, and 1i(Xy, Y1) < 1. Since no blocking condition applies to y;, we have
m(y;) < 1. Finally, no blocking conditions can be derived for (y4, yo) and so 1(y;, ¥») < 1. The

new assignments are shown in Figure 6.4. Note that the final p-status of x; could also be p-T, if the
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Figure 6.4: Updating p-status for timing analysis

p-status was updated before updating delay information. However, such change to the p-status of
X1 is not relevant for the goal of path sensitization, and would eventually be toggled to p-F pro-
vided some other path was proved to be sensitizable. The order of implications in this example

assumes the implementation of the deduction engine described in Chapter 1V. O

Correctness of the p-propagation model for path sensitization in timing analysisis guaran-

teed by the following:

Theorem 6.1. A combinational circuit contains a floating-mode sensitizable path of delay no less
than A, for atest T, if and only if under the p-propagation model such test T sets a primary output

top-T.

Asin the case of test generation, an immediate corollary follows:

Coroallary 6.1. A sound and complete search algorithm, based on the p-propagation model, com-

putes atest T that sensitizes a path with delay no lessthan A if and only if such test exists.

Per spective

Other models for path sensitization based on differently formulated delay estimates are
described in [29, 30, 50, 52]. While in these models only delay information is involved, in the p-
propagation model additional blocking conditions based on structural and functional relations are
defined, which permit, in the case of search-based algorithms, pruning the amount of search with
delay-independent information. As described in Chapter 1V, the implementation of some of the

pruning methods becomes greatly simplified if conflicts can be associated with structural and
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functional blocking conditions. We further note that relying on structural and functional blocking
conditions can be particularly useful for the timing analysis of practical circuits, since circuits are

designed subject to structure and function and not necessarily signal delay interactions.
6.4 Basic Deduction and Diagnosis Engines

In contrast with test pattern generation, the implementation of atiming analysis tool based
on the p-propagation model requires defining Tar get _Appl i cat i on_Updat e(), with the
purpose of updating delay estimates after each implication sequence in the logical dimension is
derived. After each decision assignment causes an implication sequence in the logical dimension,
propagation delay estimates can be updated. Thisis done by traversing (on a per need basis) nodes
/ edges whose propagation delay estimates change. First a forward levelized traversal on these
nodes updates the DTo propagation delay estimates. Afterwards, a backward levelized traversal
updates the DFrom and DThru estimates.

Observe that for p-X nodes and edges, changes to the propagation delay estimates are nec-
essarily the result of some other p-X nodes / edges becoming p-F, since delay estimates of p-X
nodes are defined from propagation delay estimates of other p-X nodes. Furthermore, delay esti-
mates for p-F nodes need not be updated. First, because these delay estimates do not contribute for
the delay estimates of p-X nodes and edges. Second, because updating such delay estimates would
just increase the computational overhead. Consequently, whenever a node or edge is downgraded
to p-F all its delay estimates are set to —c. Since the delay estimates of p-F nodes are fixed at —oo,
and only required delay estimates are otherwise updated, the computational overhead of updating
delay is reduced, in explicit contrast with other algorithms for timing analysis, which base al
deductive reasoning on delay estimates [29, 30, 50, 52].

6.4.1 Deduction Engine

The deduction engine described in Figure 4.14 (see page 158) is used for deriving implica
tions in timing analysis. We only need to define how the antecedent assignments of propagation
assignments are defined.

For blocking propagation to a node, the antecedent assignment definitions of Section 5.4.1
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(see page 183) are applied with the exception of error cancellation, which is not applicable to tim-
ing analysis. On the other hand, we need to define the antecedent assignments of nodes and edges
that are downgraded to p-F due to delay conditions.

Some facts are useful for identifying the direct causes of delay changes. First, as men-
tioned above, delay changes are a direct consequence of downgraded nodes and edges, which may
not be connected to the nodes and edges upon which they cause changes to the delay estimates.
Second, delay changes may require several updates before a node/edge is finally downgraded to p-
F. The identification of the specific set of downgraded nodes and edges that cause blocking due to
delay conditions is complicated by all the above facts. Our solution is to maintain global informa-
tion of the nodes and edges that are downgraded and consequently cause changes to the delay esti-
mates of other nodes. Each time a node or edge is downgraded and causes a change to the delay
estimates of any other node or edge, such node or edge is added to a set U of nodes directly affect-
ing the delay estimates. Any node or edge that becomes downgraded due to delay conditions
assumes set U asits antecedent assignment. (Note that this definition of antecedent assignment for
blocking due to delay estimates is an intermediate step to simplifying antecedent manipulation, as
was proposed in Chapter V (see page 191) for test pattern generation, but for timing analysis the
coupling introduced by delay estimates can only be efficiently handled by assuming a global defi-

nition of the antecedent assignment.)

Example 6.4. The effect of delay conditions on the node and edge p-status is illustrated with the
example circuit of Figure 6.5. The specified threshold delay is A = 17, and the current decision
assignment implies u; — 1. As a result, 1i(ys, 1) = 0, and this then implies m(yg) ~ 0 and
T(Ys, Ye) < 0. Symbol 11(ye) is added to set U; because the p-status of edge (ys, Yg) is downgraded,
the delay estimates of the nodes in the transitive fanin of ys are modified as shown in Figure 6.5-b.
The resulting delay estimates cause Yy, Ya, (Y, Y4) and (Ya, Ys) to be downgraded to p-F. The ante-
cedent assignment of T(y,, Ys) is defined by set U (thus including 1i(yg)), whereas structural con-
straints define the antecedent assignments for the remaining nodes and edges. The example
illustrates how delay-based blocking conditions may cause the antecedent assignment of nodes or

edges to include unconnected nodes and edges. O
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A=17
DTo(xq) = DTo(xp) = 10; x; and X, are p-T and define a p-cut ¢

y; through yg, 7, z, and z are the only p-X nodes in the circuit

Current decision assignment impliesu; « 1

(a) Example circuit

Initial estimates Final estimates
Y1 Yo Y3 Ya Y5 Y1 Yo Y3 Ya Y5
DTo 12 11 14 12 15 12 11 14 12 15

DFrom 7 6 5 5 4 5 4 3 3 2
DThru 9 |17 19 | 17 | 19 | 17 | 15 | 17 | 15 | 17

(b) Delay estimates after assigning u;

Figure 6.5: Example of delay-based blocking conditions

For anode that is upgraded, the antecedent assignment if given by (5.9) on page 184 if the
node is not a primary input. Otherwise, and due to (4.27) on page 164, the antecedent assignment
of ap-T primary input x isgiven by { (x, v(X)) }. For upgraded edges, the antecedent assignment is
given by the assignment to p-T of the fanin node.

Having defined the antecedent assignments for all types of implications, the deduction

engine of Figure 4.14 can now be applied to timing analysis.
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Reverse Value Probing

Value probing, as described in Chapter V, can be extended to backward analysis of admis-
sible pairs of values. This technique can be of interest for timing analysis since the logic values of
USPs may help identifying the logic values of USPsin their transitive fanin; for test pattern gener-
ation this situation can never occur. Reverse value probing operatesin the same way value probing
does. However, the definition of admissible pairs of values is done backwards, after reaching each
USP x with a specified logic value, and with respect to USP y in the transitive fanin of x. The ante-
cedent assignments of implied assignments due to reverse value probing are defined the same way

asfor (direct) value probing.

Example 6.5. An example of applying reverse value probing is shown in Figure 6.6-a. The deriva-
tion of values is due to the assignment u, = 1, which isimplied because uz isaUSP and y3 ~ O.
Propagation of values from u; to u, can only occur if u; assumes a value that propagates to u, and
is compatible with the value of u,. Hence, u; —~ 0isimplied with antecedent assignment { ({,, 1),
(uy, 1) }. Furthermore, if a perturbation in u, propagates to us, then the value of uz must be 1, and
thusuz — 1isimplied. The resulting assignments are shown in Figure 6.6-b. Note that p-cut {3

becomes fanin justified and {4 (that results from ¢,) becomes fanout justified. O
6.4.2 Diagnosis Engine

The basic diagnosis engine is described in Figure 4.21 (see page 159), and can readily be
applied to timing analysis given the above definition of antecedent assignments. Note, however,
that propagation implicates involving nodes or edges downgraded due to delay estimate conditions
can become significantly large.

As with the test pattern generation case, improvements to the basic diagnosis engine are
possible. For example, one can implement UIPs, multiple conflicts and iterated conflicts. In addi-
tion, subleveling (described in Section 5.4.2 (see page 187)) can be applied whenever several
USPs are identified.

Implicates derived with conflict diagnosis in timing analysis can also be defined as perva-
sive under some conditions. Logical implicates are defined as pervasive across al circuit analysis

applications that use the circuit’s consistency function. Propagation implicates derived with block-
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* TI(Uy, Y3) = 0 due to delay constraints

* UpyisUSPandimpliesyy — O, whichimpliesu, — landw; « 1
(a) Example circuit

W3 = 1

y1=1

W5=1

(b) Resulting assignments a

Figure 6.6: Reverse value probing

ing conditions common to both path sensitization applications are defined as pervasive across path
sensitization applications. Finaly, propagation implicates derived from delay estimate blocking
conditions are defined as non-pervasive. Delay conditions are a function of the threshold delay
associated with each instance of the path sensitization problem. While computing the longest sen-
sitizable path, the delay threshold changes at every iteration; hence the propagation implicates
based on delay estimates cannot be applied in different iterations and must be declared non-perva-
sive. Note, however, that these implicates can still be used within the current instance of the path

sensitization problem.

Example 6.6. The derivation of propagation implicates for timing analysis is illustrated with the
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(b) Pervasive implicate

Figure 6.7: Derivation of propagation implicatesin timing analysis

example circuit of Figure 6.7 (that isthe same asin Figure 6.5). For Figure 6.7-a, et us assume the
assignment u; = 1. As aresult (from Example 6.4), y; becomes a USP and the assignment s, = 0

results. This in turn implies s3 = 1, which blocks propagation to y3 and a propagation conflict is

identified. Diagnosis of the conflict yields the p-clause,
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W 1 = OXp Xk, (2ug +57 + Uy, 29) + (S, yy))O (6.11)

which is declared as non-pervasive, since propagation from X, to z, or z3 is blocked due to delay
conditions. Hence, this implicate is only valid for the current path sensitization problem and for
the specified threshold delay. If the threshold delay is decreased, the above condition is not neces-
sarily a propagation implicate.

For the example of Figure 6.7-b, let us assume that the assignment s, = O replaces the
assignment u; = 1 of the previous case. Once again a propagation conflict is detected, since s,
blocks propagation to y,, which is assigned value 0 and consequently blocks propagation to ys.

Conflict diagnosis yields the p-clause,

W p =  Xq, X5} 5 (84 + TSy, Y ))O (6.12)

which immediately requires s, = 1 whenever TSy, Y4) IS p-F and { X4, X, } is a p-cut. This last
propagation implicate is pervasive across path sensitization applications, since only general block-

ing conditions are involved in its derivation. I
6.4.3 Simplificationsto the Diagnosis Engine

As with test pattern generation, we can simplify the diagnosis engine by not creating
implicates and by maintaining potentially large antecedent assignments implicitly defined. The
proposed engine follows the procedures described in Section 3.6.3 and Section 5.4.3, in that level
conflicting assignment sets are defined and updated each time a conflict is identified. As in
Section 5.4.3, the antecedent assignments of USPs are maintained in a set of dependencies U,
which records all downgraded nodes and edges. (Note that this is the same set that is used for
recording dependencies for delay-based blocking conditions, but how no propagation implicates
are created. Furthermore, the manipulation of set U can be optimized by being ordered by decision
levels. Each level conflicting assignment set is then directly related to a corresponding partition of

set U)

Example 6.7. Simplifications to conflict diagnosis trade off pruning precision for the guarantee of
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Figure 6.8: Pruning precision tradeoffs

fixed size clauses databases. The example circuit of Figure 6.8 illustrates how pruning precision
may decrease when simplified conflict diagnosis is considered. Let us assume that the current
decision level is 5, and that at decision level 4, u; = 1 led to a conflict whose conflicting assign-
ment set is specified by (6.11), thus yielding the assertion u; = 0. Consequently, the level conflict-
ing assignment set Acd3] now contains entry (s;, 0), whereas the remaining dependencies are
assumed at decision level 0 and update Acd0]. At decision level 5, let the first assignment be
w, = 1, whichimplieswg ~ 1, and consequently a propagation conflict isidentified. Conflict diag-
nosis causes level conflicting assignment set A4 2] to be updated with (w3, 1), and the other p-sta-

tus dependencies to be added to A 0]. As aresult, w;, is asserted to O at decision level 5. The
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resulting implication sequence also yields a propagation conflict, whose diagnosis causes Acq 1]
to be updated with (wq, 0), and other p-status dependencies to be added to Acd0]. Since w;, is
asserted and yielded a conflict, it is necessary to backtrack, and the computed backtracking deci-
sion level (using (3.21) on page 99) is 3 dueto s; in Acd 3]. If propagation implicates were explic-

itly created the backtracking decision level would be 2 due to p-clause,

W = HXg, X, (W3 + Wy + TWg, Yg) + THW,, Z) + T(W+, Z3))0

which for this example would be pervasive across path sensitization applications. O

Completeness of simplified conflict diagnosis is guaranteed because all assignments that
contribute to conflicts are recorded in the level conflicting assignment sets. Hence, whenever a
conflict is identified, the union of the level conflicting assignment sets defines an implicate of the
propagation consistency function. Furthermore, simplified conflict diagnosis yields backtracking
decision levels that are always no less than the backtracking decision level computed with the
basic diagnosis engine.

For simplified conflict diagnosis, and as the above example suggests, dependencies on the
p-status that result from the initialization phase (i.e. at decision level 0) need not update Acd0],
since no p-clauses are to be created and these dependencies are constant throughout the search
process. This fact allows further simplifying the manipulation of dependencies associated with p-
status assignments for simplified conflict diagnosis.

Diagnosis engines with worst-case polynomial size growth of the clause databases can
also be implemented. For a maximum propagation implicate size of m, the implementation can
decide whether to give preference to large p-cuts or to large conditional clauses. Furthermore,
given that propagation implicates due to delay-based blocking conditions are non-pervasive, we

may not add them to the p-clause database, and given preference to pervasive implicates.
6.5 Other Enginesof LEAP

In this section other engines that are required to implement timing analysis are described.

Note that postprocessing engines are not relevant for timing analysis; redundancy removal is of
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reduced interest for circuit delay computation, and so is solution caching, since circuit delay com-
putation isto be executed only once for a given circuit.

Advanced deduction engines can be implemented for path sensitization in timing analysis,
and follow the implementation proposed in Section 3.5.3 and Section 6.5 for SAT and for test pat-
tern generation, respectively. However, implication sequences require updating the delay estimates
for each node and edge. Consensus of p-clauses is defined based on the join() operation and is
given by (5.13) (see page 193). For large p-clauses, derived from conflicts involving delay-based
blocking conditions, the application of advanced implications engines may produce implicates of a
reasonably large size that are not pervasive and that will hardly contribute to pruning the search.
Consequently, advanced deduction engines can be useful for identifying logical implicates and
propagation implicates in circuits where delay-based blocking seldom occurs.

Preprocessing engines can aso be implemented. If applied to the logical clause database,
then a more complete database is used for circuit delay computation. If preprocessing is invoked
after the path sensitization goal is specified, then an advanced deduction engine can be used for
identifying propagation implicates.

The decision making procedures described in Section 3.9 and in Chapter V can be
straightforwardly adapted to timing analysis. As in test pattern generation, the existence of p-X
nodes constrains the definition of head lines and don't care nodes, and constrains how backtracing-
based procedures can trace objectives. We have implemented simple and multiple backtracing pro-
cedures based on topological controllability and observability relations, and the results are givenin

Chapter V1.
6.6 Comparison with other Timing Analysis Algorithms

The proposed path sensitization agorithm for timing analysis is unique in that it imple-
ments conflict diagnosis. Existing timing analysis tools do not implement any form of conflict
diagnosis[5, 29, 30, 50, 52, 119, 120]. In addition, we allow for structural properties of the circuit
to be identified and used to prune the search, whereas other search-based approaches are exclu-
sively based on delay considerations [29, 30, 50, 52]. For SAT-based formul ations of timing analy-

sis, there can be worst-case exponential size problem instance representations [117, 119]. In
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contrast, the p-propagation model guarantees representations linear in the size of the combina-
tional circuit.

Constructive approaches, which compute all logical conditions for a number of (poten-
tialy all) path delays, perform reasonably well in certain forms of regular circuits (e.g. carry-skip
adders), but perform particularly poorly in random circuits such as the ISCAS 85 benchmark cir-
cuits [7]. The advantage of these approaches is that all the path sensitization information is com-
puted in one step; the problem being that the size of the representation may be unacceptably large.

The potential advantages of the proposed algorithm can be characterized as follows:

» Framework for implementing conflict diagnosis, where different pruning methods can be
integrated and several forms of implicates, some of which pervasive across several applica-
tions, can be identified.

» Specific consideration of the structure of the path sensitization problem, in particular USPs,
which permit identifying more logical implications and consequently further prune the
search.

» Configurable path sensitization algorithm, where different degrees of deduction and diagno-
sis ability can be implemented and applied to timing analysis.

* Linear size representation of the path sensitization problem, which makes the representation

of the problem independent of the distribution of delaysin a given combinational circuit.

6.7 Summary

In this chapter the path sensitization algorithm for timing analysis is detailed. It mostly
follows the algorithm delineated in Section 4.5, with suitable modifications to take into consider-
ation the formulation of the p-propagation model for timing analysis. Simplifications to conflict
diagnosis were described, which guarantee constant size clauses databases, and a reduction in the
overhead for manipulating large antecedent assignments.

Other engines, required for implementing the timing analysis tool were also described.
Finally, we compared the proposed path sensitization algorithm with algorithms proposed by other
authors. The main difference resides in the ability of the proposed agorithm to exploit the struc-

ture of the problem and to diagnose the causes of conflicts.
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CHAPTER VII

EXPERIMENTAL RESULTS

The agorithms proposed in the past chapters constitute the main components of the
GRASP+LEAP toolset for the analysis of combinational circuits, proposed in Chapter | and shown
in Figure 7.1. In this chapter we describe the implementation details of some of those algorithms,

and study experimental results obtained with each toal.
7.1 Tool Implementation

At the time of thiswriting, the following tools have been implemented:
1. A test-pattern generation tool, TG-LEAP, first described in [155].
2. A timing analysistool, TA-LEAP, first described in [156].
3. An experimental SAT algorithm, associated with the kernel of GRASP, that can be interfaced
with a front-end for solving SAT problems on CNF formulas. This algorithm is based on the
simplified diagnosis engine. Results of a preliminary implementation were described in [150,

152] where the generated instances of SAT were related to circuit delay computation.

Implementation of TG-LEAP
The test pattern generation tool (TG-LEAP) follows the implementation described in
Chapter V but with the following configuration:
» Use of asimplified diagnosis engine, that is based on level conflicting assignment sets and
records blocked nodes and edges in a dedicated set U. This engine, as described in Chapter

V, guarantees a constant size representation of the path sensitization problem and avoids the
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(TA-LEAP) Delay Testing

Figure 7.1: The GRASP+LEAP toolset

explicit manipulation of propagation cuts and multiple p-frontiers. The diagnosis engine cre-
ates assertions based on unique implication points.

« Implementation of the basic deduction engine. Logical implications and propagation impli-
cations are identified directly on the circuit structure, and the logical clause database needs
not be constructed. Furthermore, manipulation of propagation cutsis simplified due to using
the simplified conflict diagnosis engine. Unique sensitization points (USPs) are identified
and used to derive unique sensitization implications (USIs) in the logical dimension.

» Preprocessing restricted to the logical dimension and restricted to Pr epr ocess_1(), i.e.
implicates of size two are derived (in the absence of other assigned nodes). The implementa-
tion of Preprocess_1() adds implicates to the clause database as they are identified.
(Hence the final set of identified implicates depends on the order in which assignments are
tested.)

» No postprocessing engine has been implemented. In a practical tool, the postprocessing

227



engine can be useful for reducing the test set size, and for simplifying the search for some
instances of path sensitization.
» The decision making engine can implement simple and multiple backtracing based on topo-

logical controllability and observability measures.

Implementation of TA-LEAP
The timing analysis tool (TA-LEAP) implements the circuit delay computation procedure
described in Chapter VI but configured as follows:
» The delay iteration procedure iteratively decrements threshold delays starting from the long-
est topological path (LTP).
» Use of asimplified conflict diagnosis engine equivalent to the one of TG-LEAP.
* Implementation of the basic deduction engine, but with the simplifications to the deduction
engine described for TG-LEAP.
» Preprocessing solely based on Pr epr ocess_1().
* The same decision making procedure of TG-LEAP isused, i.e. simple and multiple backtrac-

ing can be used.

7.2 Results

The tools described above have been implemented in the C++ programming language, and
al the results were obtained on a DEC 5000/240 workstation with 32 MByte of RAM using the
ATT C++ compiler (version 3.0.1). The ISCAS85 benchmark circuits[17] are used for al test pat-
tern generation results. For timing analysis, the same circuits are used, but other circuits proposed

in [50, 52] are also tested.

7.2.1 Resultsfor Test Pattern Generation

Some statistics of the ISCAS85 benchmark circuits are shown in Table 7.1. Of interest are
the total number of faults for each circuit, as well as the number of redundant faults. The set of
faults considered corresponds to the faults specified in the original distribution of the ISCAS 85
benchmark circuits [17]. The number of implicates identified with Pr epr ocess_1() for each

benchmark circuit is also shown. These implicates are commonly referred to as non-local (or glo-
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Circuit Gates Pls POs Faults Re?:ur:?;\nt P{i?n%r(cixr:]r)]g ! r;péi;:tzes
C432 160 36 7 524 4 0.082 138
C499 202 41 32 758 8 0.176 40
C880 383 60 26 942 0 0.207 116
C1355 546 41 32 1574 8 0.902 208
C1908 880 33 25 1879 9 1.644 1310
C2670 1193 233 140 2747 117 2421 1951
C3540 1669 50 22 3428 137 14.600 6906
C5315 2307 178 123 5350 59 4.137 3609
C6288 2406 32 32 7744 34 0.832 830
C7552 3512 207 108 7550 131 12.060 10139

Table 7.1; Statistics for the ISCAS 85 benchmark circuits

bal) implications [106, 144].

In the following, the results shown correspond to detecting every specified fault for each
circuit. The purpose of the experiments is to evaluate the path sensitization algorithm, and hence
we are interested in the largest number of faults. In a practical test pattern generation tool, fault

simulation would be employed to detect some faults and reduce the test set size.

7.2.1.1 Benchmarking Run Time Options

Thetest pattern generation tool can be configured to implement several algorithms for test
pattern generation. In the following tests, ten different algorithms were tested as described in Table
7.2, which correspond to different combinations of the following options:

1. How to manipulate head lines. Head lines may either not be computed (option N), computed
statically (option S), or computed dynamically (option D).

2. How to preprocess the circuit structure (to identify implicates of size 2, also referred to as
non-local implications). A circuit may either not be (option N) or be (option'Y) preprocessed.

3. The computation of unigue sensitization points (USPs). USPs may either not be computed

(option N), computed only when the size of p-frontier is1 (option Y 1, solely used to emulate
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Algorithms A | AL | Ay | Ag | AL | A | A | A | Ag | A
Head lines [N/S/D] N S D D S S S S S S
Preprocessing [N/Y] N N N Y N Y Y Y Y Y
USPs[N/Y1/Y] N N N N Y1 Y1 Y Y Y Y
Backtracking [C/N] c|lc|,c|c|,c|lc|]c| N C | N
Assertions [N/Y] N N N N N N N Y Y
Table 7.2: Combinations of options tested

a. PODEM*

b. FAN*

c. SOCRATES*

d. TG-LEAP

FAN), or be dynamically computed (optionY).

4. The backtracking option. Backtracking can either be chronological (option C) or non-chro-
nological (option N).

5. The failure-driven assertions option. Assertions can either identified (option Y) or not be
identified (option N). With option'Y, unique implication points are computed.

Decision making procedures rely on either simple or multiple backtracing. Because our
main goal is to compare the pruning ability of each configuration of the algorithm, only structural
controllability/observability measures are used [1]. The tested backtracing schemes were the fol-
lowing:

1. Simple backtracing, starting by trying to satisfy the most difficult controllability problems
and afterwards trying to satisfy the most simple observability problems.

2. Multiple backtracing, as proposed in [62], but using structural controllability/observability
measures.

It isimportant to note that in TG-LEAP backtracing is always performed to ahead linein
opposition to the backtracing schemes used in FAN and SOCRATES, where backtracing can stop
at fanout points [62, 144]. Our goal isto guarantee that decision assignments are restricted to head
lines, even though this may increase the size of the decision tree is some cases.

Some of the algorithms shown in Table 7.2 can be viewed as customized implementations

of well-known test pattern generation algorithms. In particular, A is amodified implementation of
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PODEM, which we refer to as PODEM*, A, corresponds to FAN, referred to as FAN*, and Ag
corresponds to SOCRATES, referred to as SOCRATES*. Finally, Ag denotes the actual implemen-
tation of TG-LEAP.

The customized implementations of PODEM [72], FAN [62] and SOCRATES [144] have
some differences with respect to the original algorithmic descriptions. PODEM* can perform both
forward and backward implications, and thus must maintain a j-frontier. FAN* identifies unique
sensitization points whenever the size of the (only) p-frontier is one, using the algorithm described
in Section 4.5.2.2 (see page 160). SOCRATES* implements the concepts described in [144] and
also computes dynamic unique sensitization points, but using the algorithm proposed in this dis-
sertation. Hence, SOCRATES* corresponds to a more efficient implementation of the pruning
methods described in [144] and [145] until phase DYN_1, but without the implementation of
instruction 2 of the unigque sensitization procedurel. Moreover, the results given for SOCRATES*
are based on the preprocessing with Pr epr ocess_1().

The results shown below assume multiple backtracing for al configurations and that the
backtracking limit is 500. Table 7.3 contains the total CPU times for each algorithmic configura-
tion and for each benchmark circuit. The total number of aborted faults for each benchmark circuit
isgivenin Table 7.4. The total number of backtracks and of decisionsare givenin Table 7.5 and in
Table 7.6, respectively.

From the number of aborted faults for each algorithm, we can conclude that the identifica-
tion of unique sensitization points (USPs), failure-driven assertions (FDAS) and non-chronol ogical
backtracking (CDB) are of key significance for pruning the search in test pattern generation. Note
that by applying USPs and then by applying FDAs, the number of aborted faults decreases sharply.
It is worth noting that preprocessing may not always perform well. Algorithm A5 uses preprocess-
ing with respect to A, and performs worse. This fact is justified due to non-local implications cre-
ating larger j-frontiers, which may cause multiple backtracing to make incorrect decision
assignments. Without pruning methods that can handle these incorrect decisions, larger j-frontiers

may in some cases lead to increased backtracking.

L Phase DY N_2 [145] corresponds to dynamic learning, which in our framework can be modeled
with Deduce_1(), whereas instruction 2 attempts to identify logic assignments which, if do not
hold, block propagation [144].
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Circuit | A A, A, As A, Asg Ag A, Ag Ag

C432 3063 | 2694| 2786| 2836| 2980| 2214| 2157| 2572| 1339 1355
C499 11800 | 10260 | 110.60 | 108.70 | 7126 | 6877 | 7013 | 71.86| 70.86| 7055
C880 2324 | 27.92| 3067 | 3058 | 27.68| 27.00| 2742 | 2716| 27.44| 2749
C1355 | 402.00 | 397.70 | 41490 | 41150 | 365.20 | 357.20 | 36250 | 360.40 | 360.60 | 360.50
C1908 | 306.10 | 286.80 | 304.80 | 265.60 | 20850 | 209.20 | 17410 | 17390 | 17360 | 1741
C2670 | 625.60 | 616.10 | 76320 | 966.7 | 50840 | 51590 | 526.00 | 584.70 | 359.20 | 358.10
C3540 | 738.80 | 676.80  541.00 | 641.9 | 430.60 | 39250 | 400.40 | 401.70 | 390.40 | 389.80
C5315 | 541.70 | 696.70 | 798.20 | 799.30 | 645.00 | 647.30 | 667.60 | 649.60 | 643.00 | 642.30
C6288 | 3446.00 | 3443.00 | 3694.00 | 5003.00 | 3405.00 | 4912.00 | 4617.00 | 3760.00 | 3278.00 | 3275.00
C7552 | 2784.00 | 2852.00 | 3223.00 | 3250.00 | 2416.00 | 2504.00 | 2455.00 | 2609.00 | 2056.00 | 2051.00

Table 7.3: CPU times for test pattern generation

Circuit Ag Aq A, As A, As Ag Ag Ag Ag

C432 3 3 4 4 3 2 2 2 0 0
C499 8 8 8 8 0 0 0 0 0 0
€880 0 0 0 0 0 0 0 0 0 0
C1355 8 8 8 8 0 0 0 0 0 0
C1908 12 14 13 11 6 2 0 0 0 0
C2670 49 51 51 64 33 26 24 12 0 0
C3540 33 33 30 25 12 0 0 0 0 0
C5315 7 7 6 6 0 0 0 0 0 0
C6288 7 7 7 16 2 15 15 4 0 0
C7552 119 188 187 184 124 120 105 95 2 0
Total 246 319 314 326 180 165 146 113 2 0

Table 7.4: Number of aborted faults

Finally, we note the variation in the total number of backtracks over all benchmark cir-

cuits. The identification of head lines leads to mixed results, which we conjecture to be related to

the decision making procedure chosen. Over al algorithms, the total number of backtracks

decreases significantly as more pruning methods are considered. For TG-LEAP (i.e. Ag) the total
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Circuit Ag A, A, As A, Asg Ag A; Ag Ag

C432 2041 | 2002 | 2379 | 2379 | 1876 | 1376 | 1376 | 1376 90 76
C499 4078 | 4078 | 4078 | 4078 74 74 74 74 74 74
€880 0 0 0 0 0 0 0 0 0 0
C1355 4002 | 4002 | 4002 | 4002 0 0 0 0 0 0
C1908 8223 | 9160 | 9009 | 5920 | 3308 | 1091 59 51 57 53
C2670 27585 | 28615 | 28592 | 32876 | 16563 | 13037 | 12647 | 8191 666 254
C3540 18479 | 18479 | 17643 | 14684 | 6769 699 763 687 216 206
C5315 5558 | 5537 | 5321 | 4961 | 1091 | 1029 | 1636 263 181 125
C6288 8717 | 8717 | 8717 | 13318 | 3405 | 10661 | 10661 | 4184 | 2092 | 1796
C7552 65576 | 101069 | 100929 | 100151 | 62733 | 62381 | 54925 | 49734 | 14275 | 12507
Total 144259 | 181659 | 180670 | 182369 | 95819 | 90348 | 82141 | 64560 | 17651 | 15091

Table 7.5: Total number of backtracks

Circuit Ao Aq A, As A, As Ag A, Ag Ag

C432 13466 | 13356 | 13905 | 13820 | 12197 | 9458 | 9458 | 9458 | 5765 | 5765
C499 36960 | 36960 | 36944 | 36944 | 26620 | 26620 | 26620 | 26620 | 26618 | 26618
€880 8251 | 8149 | 8103 | 8077 | 6953| 6930 | 6965| 6965 | 6965 | 6965
C1355 59537 | 59537 | 59537 | 58951 | 52182 | 51426 | 51426 | 51426 | 51426 | 51426
C1908 42746 | 42584 | 42128 | 36733 | 29147 | 26068 | 24420 | 24420 | 24199 | 24199
C2670 89388 | 89816 | 90347 | 115033 | 68568 | 72982 | 71112 | 84996 | 47884 | 47834
C3540 76559 | 76556 | 73704 | 69461 | 45052 | 34714 | 34662 | 34522 | 33566 | 33566
C5315 70885 | 70742 | 70350 | 69863 | 57244 | 57413 | 58415 | 55798 | 55463 | 55411
C6288 | 200043 | 200028 | 200021 | 242541 | 188644 | 235028 | 235022 | 221051 | 214785 | 214785
C7552 | 283499 | 325693 | 329831 | 322738 | 244017 | 247798 | 222420 | 235219 | 168314 | 170012

Table 7.6: Tota number of decisions

number of backtracks reaches a minimum, far from the total number of backtracks of the other

agorithms.

Another data point of interest is to identify which types of faults are actually aborted. For

this purpose, PODEM*, FAN*, SOCRATES* and TG-LEAP were run with simple and multiple

backtracing and a backtracking limit of 500. The results obtained with simple backtracing are
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PODEM* FAN* SOCRATES* TG-LEAP
Circuit
#D #R #A #D #R #A #D #R #A #D #R #A

C432 519 0 5| 519 1 41 519 2 3| 520 4 0
C499 750 0 8| 750 8 0| 750 8 0| 750 8 0
€880 942 0 0| 942 0 0| 942 0 0| 942 0 0
C1355 1566 0 8| 1566 8 0| 1566 8 0| 1566 8 0
C1908 | 1864 6 9| 1868 9 2| 1868 9 2| 1868 9 2
C2670 | 2626 62| 59| 2630 86| 31| 2630 93| 24| 2630| 117 0
C3540 3282 | 114 32| 3287 | 132 9] 3201 | 137 0] 3291 | 137 0
C5315 5291 55 4| 5291 59 0 5391 59 0| 5291 59 0
C6288 | 7675 34| 35| 7700 34| 10| 7710 34 0| 7710 34 0
C7552 7375 62| 113 | 7388 73 89| 7390 77 83| 7417 | 131 2
Total 273 145 112 4

Table 7.7: Test generation results with simple backtracing

shown in Table 7.7. Note that TG-LEAP aborts 4 detectable faults (given a backtracking limit of
500 and simple backtracing). As can be seen the remaining algorithms abort a much larger number
of faults. The results obtained with multiple backtracing are shown in Table 7.8. In this situation,
TG-LEAP aborts no faults. With respect to the simple backtracing case, the number of aborted
faults decreases for PODEM* and SOCRATES*, but increases for FAN* . With multiple backtrac-
ing, and for C6288, FAN* performs better than SOCRATES*. The reason for this result is attrib-
uted to the larger j-frontiers created by SOCRATES* with non-local implications. As mentioned
earlier, the existence of larger j-frontiers may cause some wrong initial decisions, which are diffi-
cult to correct when the size of the decision tree becomes large. Although TG-LEAP uses the same
decision assignments as SOCRATES*, the initial wrong assignments are overcome by conflict
diagnosis; conflict-directed backtracking and failure-driven assertions.

For both tests above, the average run times per fault (in seconds) are shown in Table 7.9,
where columns labeled S denote simple backtracing, and columns labeled M denote multiple
backtracing. For circuits where several faults are aborted by the other algorithms, TG-LEAP per-
forms better. However, in circuits where SOCRATES* does not abort any fault (e.g. C499, C880,

234



PODEM* FAN* SOCRATES* TG-LEAP
Circuit
#D #R #A #D #R #A #D #R #A #D #R #A
C432 520 1 3| 520 1 3| 520 2 2| 432 4 0
C499 750 0 8| 750 8 0| 750 8 0| 750 8 0
C880 942 0 O 942 0 O 942 0 O 942 0 0
C1355 1566 0 8| 1566 8 0| 1566 8 0| 1566 8 0
C1908 1861 6 12 | 1866 7 6| 1870 9 0| 1870 9 0
C2670 | 2630 68 49 | 2628 86 33| 2630 93 241 2630 | 117 0
C3540 | 3281 | 114 33| 3284 | 132 12| 3291 | 137 0 3291 | 137 0
Ch315 5290 53 7| 5291 59 0| 5291 59 0| 5291 59 0
C6288 | 7703 34 7| 7708 34 2| 7695 34 15| 7708 34 0
C7552 7369 62| 119 | 7349 77| 124 | 7368 77| 105| 7419 131 0
Total 246 180 146 0
Table 7.8: Test generation results with multiple backtracing
PODEM* FAN* SOCRATES* TG-LEAP
Circuit
S M S M S M S M

C432 0.054 0.058 0.025 0.057 0.023 0.041 0.013 0.026
C499 0.066 0.156 0.038 0.094 0.038 0.093 0.039 0.093
C880 0.020 0.025 0.025 0.029 0.025 0.029 0.025 0.029
C1355 0.123 0.255 0.103 0.232 0.102 0.230 0.103 0.229
C1908 0.120 0.163 0.113 0.111 0.084 0.093 0.090 0.093
C2670 0.166 0.228 0.109 0.185 0.112 0.191 0.072 0.130
C3540 0.164 0.216 0.093 0.126 0.079 0.117 0.080 0.114
Ch315 0.069 0.101 0.097 0.121 0.099 0.125 0.099 0.120
C6288 0.324 0.445 0.199 0.440 0.221 0.596 0.210 0.423
C7552 0.218 0.369 0.206 0.320 0.211 0.332 0.186 0.272

Table 7.9: Run time per fault with simple and multiple backtracing

C1355, C1908, C3540 and C5315), the average running time per fault for TG-LEAP can be
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dightly larger. The main reason for the larger run times is related to the overhead of diagnosing
conflicts, that leads to larger run times when the number of backtracks of SOCRATES* and TG-
LEAP are similar. For circuits where SOCRATES* aborts faults, TG-LEAP has smaller run times.
However, if the backtrack limit is reduced, SOCRATES* would eventually have smaller run times
at the cost of some aborted faults.

As Table 7.9 indicates, the average CPU times using the multiple backtracing scheme are
most often larger than the average CPU times using simple backtracing. In several of the circuits,
the average run time per fault almost doubles with multiple backtracing. The main reason for this
discrepancy in run times is due to the difference in the number of nodes traversed by multiple
backtracing and by simple backtracing. Consequently, simple backtracing is most often the better
option, the prablem being that TG-LEAP can abort a few faults with simple backtracing. These
results immediately suggest using one the algorithms with simple backtracing to detect most
faults, and use another algorithm (e.g. TG-LEAP) to detect or prove redundant the remaining

faults.

7.2.1.2 Asymptotic Behavior With Time and Backtrack Limits

In general, limited resources are available for detecting each fault or proving that the fault
is redundant. Consequently, we tested how hard can it be for detecting each fault with each of the
above agorithms. PODEM*, FAN*, SOCRATES* and TG-LEAP were run, using multiple back-
tracing, with increasing backtracking limits and with increasing maximum allowed CPU time per
fault.

The results of running the algorithms with increasing maximum allowed time per fault are
shown in Figure 7.2. As can be concluded, TG-LEAP may require areasonable amount of time for
detecting a few faults. On the other hand, the remaining algorithms abort a significant number of
faults even when the maximum CPU time per fault is on the order of hundreds of seconds.

The results of running the different algorithms with increasing backtrack limits are shown
in Figure 7.3. Once more, we can conclude that TG-LEAP may require areasonably large number
of backtracks for detecting afew faults. On the other hand, the remaining algorithms abort alarge

number of faults even if tens of thousands of backtracks are allowed. Further note that after a back-
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Figure 7.2: Number of aborted faults versus CPU time per fault

track limit of 50, the number of aborted faults for PODEM*, FAN* and SOCRATES* decreases

slightly with increases in the number of allowed backtracks per fault.

7.2.1.3 Handling Difficult Faults

TG-LEAP is primarily targeted at difficult faults, either hard to detect or redundant. With
the purpose of comparing TG-LEAP with the other agorithms on difficult faults, a small set of
redundant and hard to detect faults was chosen from some of the benchmark circuits. The results
obtained are shown in Table 7.10; columns labeled #B denote the number of backtracks and the
column labeled #A denotes the number of assertions identified by TG-LEAP. The backtrack limit
was set to 50000 for all algorithms and for all faults. For al the redundant faults, TG-LEAP proves
redundancy with a small number of backtracks. On the other hand, the other algorithms cannot
prove redundancy in some cases, given a backtrack limit of 50000. The difference in the number of
backtracks between SOCRATES* and TG-LEAP illustrates the strength of the pruning methods
incorporated into TG-LEAP. For both algorithms, the decision tree created for each fault is the
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Figure 7.3: Number of aborted faults versus number of backtracks

same until backtracking is required. Afterwards, while SOCRATES* usually requires avery large
number of backtracks, TG-LEAP manages to derive the information required to skip several deci-
sion assignments, thus proving redundancy with avery small number of backtracks. Furthermore,
in each of the examples shown, which require backtracking, several assertions are determined by
analyzing the causes of conflicts.

PODEM*, FAN* and SOCRATES* abort fault 2282 s-a-1. It interesting to analyze the
difference of run times for each of these algorithms. PODEM* is the simplest and executes 50000
backtracks faster than the others. SOCRATES* isthe slowest. The reasons are the non-local impli-
cations that must be processed, and which introduce some overhead, and the requirement to com-
pute unique sensitization points at each decision level. Even though the procedure for computing

unique sensitization points has linear time complexity, its overhead increases the run time, which
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Circuit PODEM* FAN* SOCRATES* TG-LEAP
R: redundant
D: detectable #B Time #B Time #B Time #B #A | Time

C432 (R) | >50000 | 92.86 5618 | 50.09 793 4.29 35 66 | 0.33
259gat s-a-1
C432 (R) | >50000 | 127.90 5740 | 38.20 921 5.92 11 20| 0.09
347gat sa-l
C1908 (R) > 50000 | 331.80 | > 50000 | 569.30 0 0.03 0 0| 0.03
565 sal

C2670 (R) | >50000 | 460.50 | >50000 | 650.80 | > 50000 | 882.50 9 16| 020
2282 sal

C2670 (R) > 50000 | 476.80 1872 | 4154 15592 | 242.20 4 6| 012
2417 sal

C7552 (D) > 50000 | 438.00 | >50000 | 390.00 | >50000 | 397.50 107 48 1.80
3695 sa-1

Table 7.10: Handling difficult faults

becomes noticeable when a large number of backtracks is required. FAN* does not process non-
local implications, and hence the excess of run timeis only due to the procedure for the identifica-
tion of unique sensitization points (when the size of the p-frontier is 1).

For fault 2417 s-a-1 of C2670, FAN* manages to prove redundancy with fewer backtracks
than SOCRATES*. As mentioned earlier, the reason is conjectured to be the larger j-frontier in
SOCRATES* caused by non-local implications, that in some situations may cause the multiple
backtracing scheme to make several wrong assignments, and which can result in SOCRATES* not
being able to either detect the fault or prove the fault redundant. For the particular case of fault
2417 s-a1 of C2670, this fact causes SOCRATES* to require an order of magnitude more back-
tracks than FAN*.

For fault 3695 s-a-1 in circuit C7552, although LEAP requires 107 backtracks to find a
test pattern to detect the fault, none of the other algorithms is able to detect the fault in less than
50000 backtracks. This example further illustrates the applicability of the pruning methods used in
TG-LEAP when compared to SOCRATES*.
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Decisions Backtracks Assertions USls Head lines
Circuit

S M S M S M S M S M

C432 1249 | 11.00 | 0170 | 0.145 1.05 0.48 3.98 3.96 2.02 141

C499 3410 | 3512 | 0169 | 0.098 | 243 | 246 | 061 093 | 051 0.07

C880 10.87 739| 0015| 0000| 004, O0O0Of 260| 210| 360 | 204

C1355 3288 | 3267| 0000 | 0000| 191| 020| O71| 059| 0.02| 001

C1908 1832 | 12.88 | 0.850 | 0.028 1.52 0.27 1.87 210 071 0.44

C2670 1693 | 1741 | 0.088 | 0.092 066 | 0.19 283 | 284 | 1271 | 1271

C3540 11.56 979 0009 | 0060| 052 | 047 | 280 | 28| 043 | 038

C5315 977 | 1036 | 0024 | 0023| 025, 0.09 220 | 223 | 088 | 083

C6288 2694 | 2774 | 0.034 | 0.232 035 | 0.69 031 0.32 0.01 0.01

C7552 3373 | 2252 | 1165 | 1.657 1.00 1.38 2.99 3.35 1.03 101

Table 7.11: Statistics for TG-LEAP (average numbers per fault)

7.2.1.4 Statisticsfor TG-LEAP

Some of the relevant statistics of running TG-LEAP with simple and multiple backtracing
on each of the benchmark circuits are shown in Table 7.11; columns labeled S denote simple back-
tracing whereas columns labeled M indicate multiple backtracing. The results were obtained with
dynamic head line evaluation, in order to also obtain data with respect to head lines. For TG-
LEAP, the number of decision assignments is usually small when compared with the number of
primary inputs of each circuit. The average number of decision assignments depends on the back-
tracing scheme chosen, and none of the backtracing schemes implemented seems to be definitely
better. On average, the number of backtracks per fault is negligible; the only exception being
C7552. The same holds true with the number of failure-driven assertions. Since the average num-
ber of backtracks is small, the number of assertions is also necessarily small. Except for specific
circuits (C499, C1355 and C6288), a reasonable number of unique sensitization implications is
determined for each fault. These implications are crucial for pruning the amount of search, as the
results of Table 7.4 show.

For several circuits, static as well as dynamic head lines are found and reduced. C432,
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PODEM* (backtrack limit of 5) | TG-LEAP (backtrack limit of 500)
Circuit Time/Fault

#HT #D #R #A #T #D #R #A
C432 524 510 0 14 14 10 4 0 0.022
C499 758 750 0 8 8 0 8 0 0.040
€880 942 940 0 2 2 2 0 0 0.020
C1355 1574 | 1566 0 8 8 0 8 0 0.105
C1908 1879 | 1818 6 55 55 52 3 0 0.059
C2670 2747 | 2624 49 74 74 6 68 0 0.053
C3540 3428 | 3262 100 66 66 29 37 0 0.071
C5315 5350 | 5268 46 36 36 23 13 0 0.059
C6288 7744 | 7534 34 176 176 176 0 0 0.163
C7552 7550 | 7364 52 134 134 55 79 0 0.146
Total 32496 | 31636 287 573 573 353 220 0

Table 7.12: Results using PODEM* followed by TG-LEAP

C880, and C2670 appear to be specially suited for producing head lines. For circuits C499, C1355
and C6288, on the contrary, the number of head lines is small. As noted before, dynamic identifi-
cation of head lines only contributes with noticeable overhead and leads to an increase on the run

times in most cases.

7.2.1.5 Optimizing Test Pattern Generation

The results of the previous sections suggest that TG-LEAP introduces unnecessary over-
head for easy to detect faults. Furthermore, the use of multiple backtracing also introduces signifi-
cant overhead and should be used only when required. In general, PODEM*, with simple
backtracing, can be used to detect most of the faults with very reduced computational overhead.
On the other hand, using TG-LEAP is preferable to detect or prove redundant the more difficult
faults. Hence, we ran PODEM*, with simple backtracing and a backtrack limit of 5, on al the
benchmark circuits. Afterwards, we ran TG-LEAP, with multiple backtracing and a backtrack limit
of 500, on the set of faults aborted by PODEM*. The results obtained are shown in Table 7.12. The
total number of faults analyzed by each algorithm is denoted by #T. The number of detected,
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redundant and aborted faults is denoted by #D, #R and #A, respectively. PODEM* detects a total
31636 detectable faults from atotal of 32496 faults, proves redundant 287 faults, and aborts 573
faults. Afterwards, TG-LEAP detects 353 faults from an initial total of 573, proves redundant 220
faults and aborts no faults. For C499, C880 and C1355 some of the algorithms described earlier
can perform better aone without aborting faults. For the remaining benchmark circuits, using the
combination of PODEM* followed by TG-LEAP achieves a much better performance than any of
the other algorithms alone. Furthermore, as expected no fault is aborted, since TG-LEAP with
multiple backtracing aborts no faults.

Even though the integrated application of the two agorithms yields promising run times,

better results are to be expected by tuning the implementation of TG-LEAP.

Per spective

The results presented in this section are intended only to illustrate the effectiveness of TG-
LEAP for difficult faults, both redundant and detectable. In a complete test pattern generation sys-
tem (as proposed for examplein [37, 144, 174]), fault simulation would be employed to reduce the
test set size, and to randomly detect some difficult detectable faults. We further note that our
implementation of SOCRATES* has some relevant differences with respect to the original algo-
rithm [144, 145]. SOCRATES uses an improved multiple backtracing procedure as well as
improved controllability/observability measures to guide the decision procedure. Furthermore,
SOCRATES* only implements one of the unique sensitization procedures of SOCRATES. These
differencesjustify the differencesin results observed between SOCRATES* and SOCRATES.

7.2.2 Resultsfor Timing Analysis

The results obtained for timing analysis assume a unit delay for every circuit gate. The
delay iteration procedure decrements a unit delay at each iteration. The final circuit delay reported
corresponds to the threshold delay of the last iteration.

Theresultsfor thetiming analysistool are shown in Table 7.13, and are compared with the

results obtained with TrueD-F [50, 52]2. The ISCAS 85 benchmark circuits, as well the bench-

2. \We choose to compare TA-LEAP with TrueD-F since the circuit delay results of TrueD-F are
consistent with ours, and are based on a detailed experimental procedure. TrueD-F is implemented
in the C programming language and the results were obtained on a SUN 4 workstation.
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TrueD-F [50, 52] TA-LEAP TA-LEAP

Circuit LTP | Delay A (multiple) (smple)
#B Time #B Time #B Time
C432 17 17 — — 0 0.18 0 0.08
C499 11 11 — — 0 0.52 0 0.40
€880 24 24 — — 0 0.13 0 0.07
C1355 24 24 — — 0 0.86 0 0.90
C1908 40 37 — — 23 2.90 23 2.00
C2670 32 30 — — 17 3.12 12 1.40
C3540 47 46 — — 12 2.65 9 1.40
C5315 49 47 — — 256 31.23 428 4321
C6288 124 123 — — 5713 | 1981.00 2663 | 679.20
C7552 43 42 — — 2383 282.60 27 4.17
C432 (N) 19 19 1 0.06 0 0.18 0 0.09
C499 (N) 25 25 1 0.37 0 0.84 0 0.77
C880 (N) 20 20 31 0.59 0 0.14 0 0.11
C1355 (N) 27 27 0 0.39 0 1.03 0 1.05
C1908 (N) 34 31 89436 | 3674.52 6 141 9 1.40
C2670 (N) 25 24 5306 200.23 0 0.73 1 0.44
C3540 (N) 41 39 3941 181.63 0 0.46 1 0.58
C5315 (N) 46 45 116 5.15 62 7.61 5 0.85
C6288 (N) 123 122 10345 802.60 5970 | 2352.00 1068 | 293.80
C7552 (N) 38 37 61 5.89 2 0.93 13 135
CBPR12.2 40 23 31134 233.27 1522 46.08 887 21.58
CBP16.4 14 27 33454 238.24 420 18.96 191 7.11
CLA.16 34 34 0 0.04 0 0.02 0 0.02
TAU92EX1 27 24 33530 217.48 23 243 22 2.26
TAU92EX2 93 42 12413 | 2210.10 2177 885.00 2588 | 918.80
MULT-CSA 78 78 5972 | 1352.55 135 60.04 126 41.42
MULT-RPL 107 106 3692 544.15 5052 | 8651.00 688 | 1044.00
MULT-WALL 52 51 22474 | 933450 | 31610 | 11200.00 | 12306 3482.00
Total 251907 55383 21067

Table 7.13: Results for TA-LEAP; number of backtracks and CPU time

mark circuits of [50], are used to evaluate TA-LEAP. Results with simple and multiple backtracing
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are shown. As can be concluded, simple backtracing performs better than multiple backtracing
over al circuits, even though for some cases it requires more backtracks. When compared with
TrueD-F, TA-LEAP requires fewer backtracks for all benchmark circuits for which backtracking is
required. For these circuits, only for MULT-RPL does TA-LEAP require more CPU time3. For
some benchmark circuits, TA-LEAP requires several orders of magnitude fewer backtracks than
TrueD-F. Moreover, for most benchmark circuits the number of backtracks required by TA-LEAP
is negligible. Further note that over all benchmark circuits, TA-LEAP with simple backtracing
requires an order of magnitude fewer backtracks than TrueD-F, even though TA-LEAP is applied
to alarger number of benchmark circuits.

It isinteresting to note that for circuits where simple and multiple backtracing require ssim-
ilar number of backtracks, multiple backtracing requires significantly more time. This fact shows
that a reasonable amount of time is spent on backtracing, which in some cases can introduce more

overhead than conflict diagnosis.
7.2.2.1 Statisticsfor TA-LEAP

Table 7.14 contains the statistics of running TA-LEAP on the benchmark circuits with
simple (S) and multiple (M) backtracing. As can be concluded, alarge number of logical implica-
tions is identified due to unigue sensitization points and implications (USPs and USIs). These
implications are particularly effective in reducing the amount of search and have not been used by
previous algorithms for circuit delay computation. The number of assertions is also significant,
which illustrates that the structure of implication sequences often contain several unique implica
tion points (UIPs), and which can be used to reduce the amount of search.

For circuits where alarge number of backtracksisrequired, the number of USIs and asser-
tions can become particularly large. This fact results from USIs and assertions being rediscovered
alarge number of times, since the search process visits related stages of the search several times.
For USPs this fact indicates that logical conditions may constrain the set of propagation paths such

that USPs are defined. For assertions the results suggest that conflict-based equivalence might pre-

3 The performance of the two machines differs. For integer processing, a program should on aver-
age take 30 to 40% more time on a SUN 4 than on a DEC 5000/240. Note, however, that C++ code
aso runs slower than C code, and so the results for TA-LEAP would improve if it was coded in C.
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TA-LEAP

Circuit Decisions Backtracks Assertions USls Head

s | M s | M s | M s Mo | Lines

C432 16 35 0 0 0 7 10 4 0
C499 40 41 0 0 4 0 3 0 0
C880 15 28 0 0 2 0 13 6 0
C1355 38 32 0 0 0 1 11 17 0
C1908 48 58 23 23 3 35 167 184 0
C2670 68 68 12 17 19 61 45 41 9
C3540 30 34 9 12 27 25 250 277 0
C5315 959 536 428 256 602 286 | 24437 | 18253 0
C6288 4534 | 12337 2663 | 5713 6390 | 20133 27339 | 52795 0
C7552 126 | 4858 27| 2383 116 | 3055 2812 | 193899 0
C432 (N) 10 24 0 0 0 0 11 9 0
C499 (N) 35 40 0 0 0 0 6 7 0
C880 (N) 23 29 0 0 0 0 14 15 0
C1355 (N) 36 32 0 0 0 2 11 17 0
C1908 (N) 35 34 9 6 2 4 70 63 0
C2670 (N) 56 36 1 0 25 27 27 25 0
C3540 (N) 18 8 1 0 32 2 62 63 0
C5315 (N) 32 282 5 62 5 72 230 2612 0
C6288 (N) 1977 | 12906 1068 5970 | 4306 | 26736 8087 | 69676 0
C7552 (N) 40 33 13 2 3 3 421 142 0
CBPR12.2 1156 2347 887 1522 473 2232 | 13587 | 33627 0
CBPR16.4 251 653 191 420 107 408 5949 | 15039 0
CLA.16 13 13 0 0 0 0 30 30 0
TAU92EX1 68 68 22 23 32 34 772 1149 2
TAU92EX2 4344 | 4370 2588 2177 1994 2361 | 72018 | 48418 0
MULT-CSA 241 228 126 135 301 293 2620 7264 0
MULT-RPL 1383 8792 688 5052 1334 7740 1722 | 47473 0
MULT-WALL | 22408 | 57272 | 12306 | 31610 | 33590 | 83732 | 361935 938278 0

Table 7.14: Statistics for TA-LEAP with simple and multiple backtracing

vent some of the conflictsthat yield failure-driven assertions, and consequently reduce the number
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Number of bits
Block Size 8 12 16 20 24 32 64
2 (25;14) | (37;18) | (49;22) | (61;26) | (73;30) | (97;38) | (193; 70)
4 (21;18) | (31;20) | (41;22) | (51;24) | (61;26) | (8L;34) | (161;46)
8 (19;19) | — | @734 | — | (5536)  (73,38) | (145; 46)
16 — — | (53| — — | (69;66) | (137;70)
32 — — — — — | (67;67) | (133; 130)
64 — — — — — — | (131;13Y)
128 = — — — — — —

Table 7.15: Delay values (LTP; Ag) for carry-skip adders

of assertions.
The contribution of head linesis negligible. The results shown just include static head line
identification. From our experiments we have concluded that dynamic head line identification only

increases the run times without significantly reducing the amount of search.
7.2.2.2 Analysis of Carry-Skip Adders

Even though the results of the previous section appear to indicate that TA-LEAP performs
particularly well for most practical circuits, this may not always be the case. For some instances of
carry-skip adders (CSASs), the search space can become too large for TA-LEAP to manage to iden-
tify a solution.

Table 7.15 contains delay information for several carry-skip adders with varying total
number of bits and block sizes. In particular, the longest topological path delay (LTP) as well as
the longest sensitizable path delay (Ac) are shown. (The organization of carry-skip adders as well
as the different delay expressions are described in Appendix C, where CSAs of fixed block sizes
are assumed.)

The results obtained with TA-LEAP using simple backtracing and a backtrack limit of
50000 are shown in Table 7.16. Whenever TA-LEAP is unable to identify a solution, the largest
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Number of bits

Block Size 8 12 16 20 24 32 64
2 14 18 22 <29 <41 <65 | <161
4 18 20 22 24 <28 <48 | <128

8 19 — 34 — 36 38 <97

16 — — 35 — — 66 70

3 _ — — — — 67 130

o4 _ _ _ — — — 131

128 — — — — — — —

Table 7.16: Computed delay A for carry-skip adders

path delay proved falseisincluded; otherwise the circuit delay A computed by TA-LEAP is shown,
which is always the same as predicted by the analysis of CSAsin Appendix C. As can be con-
cluded, TA-LEAP aborts circuit delay computation for CSAs with alarge number of bits and with
small block sizes. For each number of bits of a CSA we can define an optimal design as the one
that minimizes area while guaranteeing minimum circuit delay. The optimal design for each num-
ber of bitsis marked in Table 7.16. As the number of bits in the carry-skip adder increases, TA-
LEAP becomes unable to compute the circuit delay for these optimal designs. We can thus con-
clude that for a large number of combinational circuits (e.g. the benchmark circuits), TA-LEAP
performswell in almost all cases. On the other hand, we have constructed examples of regular cir-
cuits where TA-LEAP is unable (under the backtrack limit specified) to compute the circuit delay.
For carry-skip adders, structural information is useful for delays close to the largest topo-
logical path delay because a large number of USPs and USIs is identified. For smaller delays,
structural properties can no longer be exploited since the carry bypass logic begins to be involved
in potential sensitizable paths, thus reducing the number of USPs and associated USIs. Given that
there are more options on how to sensitize a path, TA-LEAP needs to consider more primary
inputs assignments to prove all paths false. For this reason the search space grows significantly as

the threshold delay approaches the sensitizable path delay, and too large a number of backtracks
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may be required to prove intermediate delays as false. CSAs denote a type of circuits where prun-
ing methods based on delay information can be particularly useful. A large number of USPs in
CSAs can be shown not to be sensitizable with delays corresponding to the longest topological
path. This information can be used to prune the considered threshold delays without having to use
search to prove that such threshold delays cannot be sensitized. Further research work is needed on
how to incorporate delay-based pruning methods within the search framework proposed in this

dissertation.

7.3 Conclusions

For both circuit analysis tools described in the present chapter, the obtained experimental
results are promising. As noted above, the tools have yet to be subject to implementation fine-tun-
ing, and the processing overhead islikely to be reduced. Furthermore, not all algorithmic function-
ality has been implemented and tested. Additional search pruning is to be expected with a more
complete implementation of the path sensitization algorithms for both tools. In particular, the
application of diagnosis engines with bounded growth of the clause database, permit restricted
forms of conflict-based equivalence, and may prove useful in identifying strong search pruning
conditions.

The timing analysis tool performswell for unstructured logic circuits. In contrast, an anal-
ysis of several carry-skip adder configurations showed that TA-LEAP is unable to compute circuit
delay for CSAs with large number of bits and with small block sizes. The implementation of the
basic diagnosis engine, or diagnosis engines with bounded growth of the clause database, can be
of usefor these circuits. Furthermore, we briefly mentioned how delay-based pruning methods can
be applied to some circuits, CSAs included.

The results presented in this chapter for both tools are comparable to, when not better
than, most results obtained in recent years with other test pattern generation and timing analysis
tools. This fact justifies and motivates the integrated development of circuit analysis tools, where

common pruning methods can be implemented and shared among the different tools.
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CHAPTER VIII

CONCLUSIONS

8.1 Contributions

The contributions of our work can be divided among the following main areas:
» Satisfiability algorithms.
* Path sensitization model.
 Path sensitization algorithms.

The following sections review the contributions in each of these areas.
8.1.1 Search-Based Satisfiability Algorithms

We developed a search algorithm for satisfiability, GRASP, that can be configured with
different engines: selection, deduction, diagnosis, preprocessing and postprocessing engines.

The description of diagnosis engines was emphasized since conflict diagnosis has seldom
been applied to SAT. Conflict diagnosisis based on several methods to prune the amount of search.
We described conflict-directed backtracking, conflict-based equivalence and failure-driven asser-
tions. Moreover, unique implications points, multiple conflicts and iterated conflicts were pro-
posed as additional techniques for conflict diagnosis. Engines for conflict diagnosis can also be
simplified, whenever the computational overhead at each decision level isimportant, or improved
whenever precise diagnosisis the goal. We proposed a hierarchy of simplified diagnosis engines
that permit a wide spectrum of diagnosis ability versus clause database growth complexity.

Deduction engines are characterized by their deduction ability. We described a hierarchy
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of deduction engines, and associated deduction abilities, based on testing combinations of assign-
ments and applying consensus operations. These deduction engines supersede deduction proce-
dures proposed by other authors. The same techniques were applied to preprocessing and a
hierarchy of preprocessing engines was also described.

The objectives of postprocessing engines can be divided into redundancy removal and
solution caching and were described solely for combinational circuits. Redundancy removal
allows deleting from a computed solution decision assignments that are irrelevant for the goal to
be satisfied. Solution caching permits identifying signatures of computed solutions that can be
used to reduce the amount of search for other queries on the clause database.

Finally, we reviewed decision making procedures and described a relationship between

head line identification and consensus on a clause database.

8.1.2 Path Sensitization M odel

The perturbation propagation (p-propagation) model allows capturing path sensitization in
different applications. The main characteristic of the model is that the logic value assumed by each
node is uncoupled from the path sensitization information associated with the node. We illustrated
how path sensitization for test pattern generation and for timing analysis could be represented with
adequate formulations of the model.

By formulating path sensitization in terms of the p-propagation model, the following
advantages can be identified:

» The logical clause database is common to different path sensitization applications and the
notion of pervasive implicate is introduced to justify sharing identified implicates across dif-
ferent circuit analysistools.

* Most propagation reasoning is similar for different path sensitization applications. This aso
leads to the derivation of implicates that are valid across different path sensitization applica-
tions.

» Path sensitization specific pruning methods can be generalized and applied to other applica-
tions. This is the case, for example, of unique sensitization points, which were shown to be

applicable to timing analysis, even though the concept on unique sensitization point was
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originally developed for path sensitization in test pattern generation.
The precision of the model can be scaled and we describe several improvements for test

pattern generation that extend the accuracy of models based on the D-calculus.
8.1.3 Search-Based Path Sensitization Algorithms

Using the ideas proposed for SAT algorithms, we developed LEAP, a generic path sensiti-
zation algorithm, and described how it can be applied to test pattern generation and timing analy-
sis. The path sensitization algorithm can be configured in much the same way the SAT algorithm
can. Once more, we emphasized conflict diagnosis, since previous path sensitization algorithms
have seldom implemented conflict diagnosis techniques. Diagnosis of propagation conflicts is
defined in terms of identifying propagation implicates, that describe conditions for blocking prop-
agation.

The notion of propagation cut wasintroduced to formalize the evolution of the search pro-
cess, the notion of unique sensitization points (USPs) and how to define propagation implicates.
Several problem-specific pruning methods were devel oped, that included direct and reverse value

probing, and subleveling.

8.2 Future Research Work

The problems addressed in this dissertation are known to be algorithmically hard and,
consequently, we can always construct test cases for which the proposed algorithms perform
poorly. The purpose of research work in these areas is to develop agorithmic techniques that
reduce the number of cases where the algorithms perform poorly. We have described several ways
on how this can be achieved for circuit analysis tasks, but additional work is necessary.

The following sections describe severa pending research problems, as well as empirical

validations, that are of interest in the continuation of the work described in this dissertation.
8.2.1 Satisfiability

We described a general search framework for SAT (GRASP), but emphasized its use in

solving path sensitization problems. The individual analysis of the proposed techniquesin the con-
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text of SAT (without specifying target applications) is of interest. For example, it would be inter-
esting to identify the best configuration of GRASP for the instances of SAT obtained by mapping
circuit analysis problemsinto CNF (some examples of which were mentioned in Chapter 1). More-
over, it would be interesting to empirically study how well GRASP performs on other instances of

SAT, not necessarily related to circuit analysis.

Logic Verification

Among the applications of GRASP to circuit analysis tasks, logic verification is especially
suitable given the formulation of the problem. We propose applying the conflict diagnosis tech-
niques described in this dissertation to the logic verification problem. In particular, it would be of
interest to evaluate whether implicate identification and controlled forms of advanced deduction
engines could help inducing structure on the logic verification problem so that the application of
conflict diagnosis methods could be facilitated. One possible approach is to replace nodes proved
equivalent by a single copy and rearranging the clause database accordingly (by adapting ideas
first proposed in [16, 100]). This solution constraints the number of implication paths, thus induc-
ing structure that GRASP can exploit.

8.2.2 Path Sensitization Algorithm

The algorithmic model for path sensitization needs extending failure-driven assertions to
the propagation dimension. As mentioned in earlier chapters, this type of failure-driven assertions
poses agorithmic difficulties because the number of p-cuts can become significantly large. In
addition, different types of p-cut interactions can exist, which makes it difficult to define an inte-
grated procedure for maintaining p-cuts. The same problem arises in advanced deduction engines,

where we restrict the sets of tested variable assignments to the logical dimension.

8.2.3 Test Pattern Generation

The experimental results obtained with TG-L EAP are promising, and motivate incorporat-
ing additional pruning ability into the tool. TG-LEAP was devel oped as a prototype and the imple-
mentation can be further optimized. An exhaustive analysis of the different pruning methods, on a

benchmark set larger that the one currently available, may permit defining which pruning methods

252



are the most useful. The results we obtained suggest that unique sensitization points and failure-
driven assertions are particularly useful, followed by conflict-directed backtracking. It may be
interest to empiricaly study how useful constrained creation of implicates (logical and propaga-
tion) may help reducing the search on average problems.

In addition, we propose to study the usefulness of postprocessing engines for test pattern
generation. In EST [70, 71] promising results were obtained with different formulations of solu-
tion caching. Since our procedure caches less information than that of EST, we expect that
restricted solution caching can be of usein reducing the test sizes obtained with EST. Redundancy
removal from solutions was originally proposed in this dissertation, and can be of use whenever
conflicts are identified, since in this situation, some of the existing decision assignments can
become redundant. Experimental evaluation of both solution processing techniques is proposed.

Finally, the p-propagation model can be automatically scaled to provide for different prop-
agation reasoning precisions. We believe it would be of interest to study for a representative set of
benchmark circuits, which formulation of the p-propagation model is best suited for test pattern

generation in both test pattern generation time and test size.
8.24Timing Analysis

The experimental results obtained with TA-LEAP fare well against those of other timing
analysis tools [50, 52], even though several pruning methods have not been incorporated into TA-
LEAPR.

As with TG-LEAP, additional benchmarking of TA-LEAP is suggested. In addition, the
implementation of a configurable tool, able to implement the whole range of proposed pruning
methods might be particularly useful in ascertaining the best configuration from a practical stand-
point.

TA-LEAP can perform poorly for some forms of regular circuits (e.g. some instances of
carry-skip adders) as other search-based timing analysistools do. Further insights into the problem
formulation and the full implementation of the path sensitization algorithm may help curbing the
difficulties faced by TA-LEAP with these types of circuits. For example, as mentioned in Chapter

VI, it may be of interest to study the development of delay-based pruning techniques (by adapting
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ideas first proposed in [119]), which augment structural and functional pruning methods with con-

ditions on the maximum propagation delay to specific nodes in the circuit.
8.2.5 Other Applications

Severa other circuit analysis tasks can benefit from the ideas described in this disserta-
tion. Delay fault testing is another application that involves path sensitization [108, 159], and con-
sequently, we propose studying the application of the p-propagation model and the proposed
search algorithmsto delay fault testing.

The analysis of sequential circuits is the next step where to try to apply the search algo-
rithms proposed in this dissertation. In particular, we believe that path sensitization tasks may ben-
efit from the proposed agorithmic techniques. At this level, several differences exist between path
sensitization applications. Nevertheless, a few similarities aso exist, since al path sensitization
problems for sequential circuits must solve different formulations of the state reachability prob-
lem. For test pattern generation the existence of faults affects how fault activation is performed
(and consequently how state reachability is solved). For timing analysis and for circuits with flip-
flops, the path sensitization problem must only take into account that not all states of afinite state
machine are reachable. For circuits with level-sensitive latches, it ishot yet clear how the existence
of uncertainty intervals at a combinational block inputs can affect the path sensitization problem.

Future generations of circuit analysis tools will necessarily have to manipulate some form
of hierarchical circuit descriptions. We believe that algorithmic solutions for circuit analysis prob-
lems of hierarchically described circuits will have to involve some form of search procedure. In
such a situation, we believe that the algorithmic framework proposed in this dissertation may be
extended to the analysis of hierarchically described circuits, for verification aswell as path sensiti-

zation problems.
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APPENDIX A

FORMAL RESULTSON SATISFIABILITY

This appendix includes the proofs for all formal results of Chapter I11. We also include an

analysis of the computational complexity of processing each decision level with GRASP.
A.1 Soundness and Completeness

The purpose of this section is to prove the soundness and completeness of two configura-
tions of GRASP. Theorem 3.1 (see page 64) establishes the soundness and completeness of
GRASP configured with the basic deduction and diagnosis engines. Theorem 3.8 (see page 100)
establishes the soundness and completeness of GRASP configured with the basic deduction engine
and with adiagnosis engine that ensures a constant size clause database (i.e. Di agnose_ C()).

In subsequent proofs involving Di agnose() the following configuration is assumed:

1. No clauses are subsumed or merged (i.e. REDUCE _DATABASE is fase in Figure 3.12 on
page 90).

2. No unique implication points are identified.

3. No implementation of iterated or multiple conflicts.

In addition, several proofs examine the effects of added clauses to the clause database. For
aconsistency function &, associated with an initial clause database ¢;, a modified clause database
¢ issaid to bevalid if and only if E|A = ¢|A.

The plain backtracking search algorithm is both sound and complete [97]. Thus, to prove
that GRASP is also sound and complete, it is only necessary to prove that:

1. The basic deduction engine only implies assignments that are necessary for finding a solution
to the query. Thisis guaranteed by Theorem 2.1 (see page 38).

2. Both conflict diagnosis engines do not affect either the soundness or completeness of the al-

256



gorithm. The proof of this statement is the main result of this section.
A.1.1 Soundness

The following result establishes that the search algorithm is sound, i.e. any computed

solution to a given query isindeed a solution to that query.
Theorem A.1. GRASP s sound.

Proof: By definition of clause database the original clause database can only be satisfied if
the variable assignments are consistent, hence denoting a solution to a query. In addition, clauses
can only be added to the clause database (with Di aghose_C() no clauses are added). Conse-
quently, given an initial clause database ¢; and the current clause database ¢, then ¢; [Ip . Conse-
quently, a satisfying assignment for ¢ must also be a satisfying assignment for ¢;.

Furthermore, from Theorem 2.1 on page 38, any variable assignment implied by Boolean
constraint propagation is necessary for identifying a solution to a query, and any violated clause of
¢ isidentified by the procedure of Figure 2.6. Hence, any computed solution variable assignment

for the current clause database, must indeed be a solution to the query. [ |

Observe that the above proof holdsindependently of whether conflicting clauses are or not
added to the clause database, and so it holds for GRASP configured with either Di agnose() or

Di aghose_C().
A.1.2 Completenesswith Di agnose()

The proof that the search algorithm is complete hinges on the fact that any clause that is
added to the clause database during the search process is an implicate of the consistency function
&. In order to prove this fact, we will use induction on the number of conflicts found during the
search and consequently on the number of conflicting clauses added to the clause database. As a
result, we have to prove that the first conflicting clause is an implicate of . This requires showing
that if apartia variable assignment includes the conflicting assignment set associated with a given
conflict, then a conflict must be identified. Using these results, we can then show that the non-

chronological backtracking procedure does not skip potential solutions. Finally, the previous
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results can be used to prove GRASP to be complete. Consequently, the proof is organized as fol-

lows:

1. Let A be the assignment set associated with a partial variable assignment and let A-g be giv-

en by (3.6) on page 67 for some identified conflict. Then A5 A implies that A causes a

conflict.
2. Thefirst conflicting clause is an implicate of &.

3. Every conflicting clauseis an implicate of &.

4. Let 3, bethe backtracking decision level given by (3.17) (see page 86). Then a solution can-

not be found by backtracking to adecision level b suchthat 3, <b<c.

5. GRASP iscomplete.

Wefirst show that the node assignments identified by Acg (from (3.6)) imply aconflict. In

order to prove this result, some additional definitions are required. Let Ag; denote the assigned

variables of the subgraph of the implication graph assigned at decision level c. Ag; can be com-

puted with trace: vV - 2V *{0.1}:

Ag = [] trace(y)
(y, v(y) O 2(k)

where,

%x, v(X)), if1(x)=0
trace(x) = U
%, V() D[ N trace(y)}, otherwise
0 (

y: v(y)) 0 Z(x)
IT

The implication levels are used to partition Ag; as follows:

Agsli] = {(xv(¥))|(x,v(x)) O Ags I (x) =i} ,0<i<N

(A1)

(A.2)

(A.3)

where the highest implication level can be no greater than the number of variables N. For each

Aggli], let Q[i] denotethe set of clausesthat imply the assignmentsincluded in Ag;[i] . Given
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the above definitions, the following properties can be established.

LemmaA.l Let (y, vy) 0 Agglk], 0<sk<N beany assignment in Ags. In such asituation,
O((w, vyy) O AW), [(w, v,,) O Acg D0 < j <k), (W, v,) O Ags[i])] (A.4)

Proof: Assume that a given assignment (y, v) is in Ags, then from (A.1) and (A.2) the
assignment of all its antecedents, assigned at decision level ¢, areasoin Ags. If (Y, v) is contained
in Ags[K], then by definition of implication level, in (3.3), these assignments must be contained
insets Ag[j], with 0< j <k. The assignments of the remaining antecedents, assigned at deci-

sion levelslessthan c, are contained in Acgfrom (3.6) and (3.7). Hence (A .4) follows. [ |

LemmaA.2. Assume a conflict such that Acgis given by (3.6) and Ags[K] is given by (A.3). Fur-
thermore, assume a partial variable assignment A, and let (1< j <k), Agg[j] O A. Then, for

each clause w in Q[K], either w is satisfied, unsatisfied or it is a unit clause.

Proof: Given the definition of Q[K], assuming (A.4), and since by hypothesis the condition
O(1<j<k), Aggli]l O A holds, then the following conclusions can be drawn from LemmaA.1.
All literals of w0 Q[K] are assigned with the possible exception of one literal yI whose assign-
ment is implied by . If y is assigned, and y = i, then w is unsatisfied and yields a conflict; if

= =i, then wissatisfied. If yis unassigned, then w is aunit clause. [

We can now use the previous results to show that given Acg, any partial variable assign-

ment A causes aconflict if ACS O A.

Lemma A.3. Assume a given conflict node Kk at decision level c. Let Acg be given by (3.6) and
Ag; be given by (A.1). Inthis situation, for any partial variable assignment A, such that A-g U A,

then a conflict is detected.

Proof: Suppose that Ag; U A, since by hypothesis Ag0 A, then Agl Ags U A, and
since A(K) O AcsU Ags, then a clause of the clause database is unsatisfied under A, and a con-
flict is detected.

The next step is to show that if A-g0 A, then either Ag; [ A or aconflict is detected, and
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hence a conflict is necessarily detected. We use induction of the implication level to show that for
each implication level i, either Ag;[i] O A or aconflict isidentified. Consider Asg U A.

Basis step (k = 0). Any node x assigned to v, at implication level O is either asserted due to
some clause or is a decision assignment. If (X, v) is a decision assignment, then by definition
(X, Vy) U Acs Otherwise (X, vy) isimplied due to some clause w, such that the assignments (y, vy)
of al its other Iiteralsyi arein Acg again by definition of conflicting assignment set. Hence (X, vy)
must be included in Ag;[0] or otherwise a conflict is identified. In any case Ag;[0] O A holds
or aconflict isidentified.

Induction hypothesis (k < m). Assumethat Ag;[k] U A for 0sk<m.

Induction step (k = n+1). By LemmaA.2 and by the induction hypothesis, each clause win
Q[K] must either be satisfied, unsatisfied or be a unit clause. Note that w cannot be a unit clause,
since Deduce() would imply an assignment and satisfy w. If w is unsatisfied a conflict is identi-
fied and the claim holds. If w is satisfied, then the assignment (y, vy,) implied by w at implication
level k has been made. As aresult, either aconflict isidentified, or all assignmentsin Ags[K] hold.
Hence, Ags[k] O A.

Consequently, we can conclude that if A-g [ A, then aconflict is detected. [ |

The next step is to show that the first identified conflicting clause is an implicate of the

consistency function &.

Lemma A.4. Assume a search process, a valid clause database and let ¢ be the current decision
level. Further, let x be the node assigned due to the most recent decision (i.e. X = v,), and let the
resulting implication sequence result in the first conflict. Then, the conflicting clause w created

with (3.8) isan implicate of §.

Proof: Let Acg be the conflicting assignment set associated with the conflict (from (3.6)) and
let w be the conflicting clause created from Acgwith (3.8). Consequently, for some A if w)| A= 0,
then Acs U A, by definition. In addition, Acs A implies a conflict (i.e. §| , = 0) from Lemma
A.3. Hence, (co|A =0) 0 (E|A = 0). Conversely, suppose A such that E|A = 1. Hence, Acs U A,
and so oo|A = 1. Asaresult we can conclude w|A O E|A istruefor al A, for which w|A =Q0or

E|A = 1, and thus wisanimplicate of &. [ |
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The above result establishes that, under the assumption that the clause database is valid,
the first conflicting clause is an implicate of &. We now prove that any clause added to the clause

databaseisan implicate of €.

LemmaA.5. All clauses derived from conflicting assignment sets identified during the search pro-

cess are implicates of the consistency function §.

Proof: We use induction on the number of conflicts k, identified during the search process, to
show that every conflicting clause created after diagnosing a conflict is an implicate of &.

Basis step (k= 1). From LemmaA .4.

Induction hypothesis (k = m). The conflicting clause created after the m™ conflict isan impli-
cate of €.

Induction step (k= m+ 1). If the(m + 1)th conflict results from a decision assignment, then
Lemma A.4 guarantees that the identified conflicting clause is an implicate of &. Otherwise, the
conflict results from an implication sequence triggered by an asserted variable x. Let w; be the
conflicting clause associated with asserting x, and let w, be the conflicting clause identified from
analyzing the (m + 1)th conflict. Further let X' bethe literal of w, associated with x. Now define the

clause,
w3 = [wy— (0w —{x})] O {-x} (A.5)

wy can be viewed as the conflicting clause that is created as a result of diagnosing the conflict
caused by the decision assignment x = —i. Hence, from LemmaA.4 w; is an implicate of & since
the clause database is valid until the m™ conflict. In additi on, Wy, = ¢(wy, wg, X), and henceitisalso
an implicate of . (Observe that even though several nodes can be asserted at a given decision
level, only one is associated with the decision variable of that level. The other assertions result
from implicates of the clause database by the induction hypothesis.)

Asaresult, any conflicting clause given by (3.8) isan implicate of &. [ |

The next step consists in showing that non-chronological backtracking does not skip any

potential solutionsto the query.

261



LemmaA.6. Let B be computed with (3.17) and let ¢ be the current decision level, with B, <c.
In this situation, no solution to the query can be found by backtracking to a decision level b, such

that B, <b<c.

Proof: Let Acg be the conflicting assignment set from (3.6). Hence, the associated conflict-
ing clause w is an implicate of the consistency function from LemmaA.5. Furthermore, from The-
orem 3.4 on page 75, ABL 0 A while the search process does not backtrack to decision level (3, .
From (3.17) we can conclude that A-g U ABL’ and from LemmaA.3 E|A = Ofor al A, such that
AcgU ABLD Ay Hence, asolution to the problem cannot be found until the search process back-

tracks to decision level 3, . [
Theorem A.2. GRASP configured with Di agnose() is complete.

Proof: From [97] the plain backtracking search algorithm is known to be complete. Hence, it
is necessary to show that (1) all implications derived by boolean constraint propagation are neces-
sary conditions for a solution to the satisfiability problem to be found; and that (2) Di agnose()
will not cause the search process to skip any possible solutions to the query. (1) follows from
Lemma2.1; (2) follows from LemmaA .6, which ensures that any decision level that is skipped by
the search process cannot contribute to finding a solution to the query. Consequently, the search

algorithm is complete. [ |
Finally, Theorem 3.1 (see page 64) follows from Theorem A.1 and Theorem A.2.
A.1.3 Completenesswith Di agnose_C()

To prove that GRASP configured with based on Di agnose_C() is complete, we invoke
the results of Section A.1.2. In addition, we prove that, whenever a conflict is diagnosed, the con-
flicting clause derived from the union of the level conflicting assignment setsis an implicate of the
consistency function. This fact guarantees that the computed backtracking decision level is correct
in the sense that no potential solutions are skipped. The completeness result then follows from
LemmaA.6. Asin the proof of LemmaA.5, we use induction on the number of conflicts to show

that each created conflicting clause is an implicate of the consistency function.
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LemmaA.7. Assume a search process, avalid clause database, let ¢ be the current decision level

and let a conflict be identified. Further, define the following conflicting clause:
U L0
W = Bxv(x)|(x, v(x)) O OQSCACS[l]E (A.6)

where A-di] is given by (3.20) on page 98 and by applying Di agnose_C(). Then, w is an

implicate of the consistency function §.

Proof: As with the proof of Lemma A.5, we use induction on the number of conflicts and
start by showing that the first clause created with (A.6) is an implicate of . Note, however, that
thisfollows from LemmaA .4. The next step isto prove the induction step. Assume that after the ith
conflict, (A.6) is an implicate of €. Then we have to show that after the (i+1)th conflict, (A.6)
yields an implicate of £. If the (i+1)™ results from a decision assignment, then LemmaA .4 applies
and (A.6) is an implicate of the consistency function. Otherwise, we can reason as in the proof of
LemmaA.5, and construct a clause w3 with (A.5) which then guarantees (A.6) to be an implicate

of the consistency function. Thus, after each conflict, (A.6) always denotesan implicateof . W
Theorem A.3. GRASP configured with Di agnose_C() iscomplete.

Proof: The backtracking decision level computed with (3.21) is aways derived from an
implicate of & dueto LemmaA.7, which guarantees that LemmaA .6 holds. From Theorem A.2 the

results follows. [

Per spective

Even though there has been extensive work on non-chronological backtracking search
algorithmsin artificial intelligence, completeness proofs have seldom been established. In[19], M.
Bruynooghe proposed a convincing argument for the completeness of a search algorithm for con-
straint satisfaction problems which implemented non-chronological backtracking but did not prop-
agate constraints (in GRASP this would correspond to having no deduction engine). This same
argument was used by M. Shanahan and R. Southwick in 1989 [148, pp. 65-66] to prove that the

same algorithm and some of its variations were indeed complete. A different proof for the same
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algorithmis given in [143], but under the assumption that nogoods are identified and recorded.

Although backjumping® was proposed by J. Gaschnig in 1979 [66], only recently an
abstract definition of backjumping was shown to be complete by M. Ginsberg [68].

The proofs given in this dissertation are distinct from the af orementioned proofs. Specifi-
cally, our proofs consider the derivation of implication sequences, while the others do not. In addi-
tion, the proof for Di agnose() entails the construction and application of conflicting clauses
which, in contrast with nogoods [54, 161], are not necessarily specified in terms of decision

assignments.
A.2 Time and Space Complexity

In this section we establish results regarding the computational complexity of processing
each decision level during the search process. The clause database is assumed to be derived from a
combinational circuit.

The time complexity to find a solution to an instance of SAT using GRASP isin the worst-
case clearly proportional to the product of the worst-case time required to process a given decision
level (T, ) and the exponential of the number of primary inputs (i.e. 2IP11y. This result can be con-
cluded from the fact that the search algorithm implicitly enumerates all possible primary input
assignments and each decision involves some processing (i.e. T;). (This result is also expected,
because SAT is an NP-complete decision problem [34, 35, 65].) If the clause database is permitted
to grow without bound, then the space complexity if clearly exponential in the number of vari-
ables, because in the worst-case an exponential number of implicates can be identified and added
to the clause database. As aresult, the time complexity to process a given decision isin the worst-
case exponential in number of variables. For a first query this leads to T = O(2N). For a
sequence of queries, an upper bound on the growth of the clause databaseis T, = 0o(3N). (Both
bounds are somewhat 1oose, but suggest the computational effort that may be involved in process-
ing agiven decision level. A more accurate bound is given below.)

In practice, however, only alimited amount of computational resources can be allocated to

finding the solution of a given query. Most often the bounds on these resources are specified by a

L Backjumping is a non-chronological backtracking procedure specifically developed for CSPs
[66, 133].
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bound on the amount of search (i.e. a maximum number of backtracks) and by bounds on how to
update the clause database (i.e. maximum number and size of implicates that can be added to the
database and what operations can be performed on those implicates). As a result, we can analyze

the complexity of GRASP under the following constraints:

Assumption A.1. In the analysis of GRASP the following resource constraints are assumed:

1. The maximum number of backtracks to solve a given query isB.

2. After solving a query, the clause database is reset to its original structure (e.g. for acombina-
tional circuit the clause database is given by the conjunction of clauses associated with the
consistency function of each gate). (In general, we may relax this constraint by allowing a
constant number of conflicting clausesto be kept in the clause database.)

3. The addition of anew clause to the clause database is not subject to subsumption or merging

operations.

Given these constraints, we can improve the complexity bounds on the space required to
solve SAT and on the time required to process each decision. We note that these new bounds are
obtained under the assumption that if solving a query requires more than B backtracks, then the
algorithm declares itself incapable of finding a solution to that particular query, because the query
requires more computational resources than the algorithm is allowed to spend on any given query.
Furthermore, we assume an initial clause database for which |¢|| = O(N). This is the case with
clause databases derived from combinational circuits.

At any stage of the search process, the worst-case number of backtracks already executed
is O(B), given the bound on the number of backtracks. As aresult, the size of the clause database
can have increased with clauses that contribute with at most O(N [B) literals, due to the creation
of two conflicting clauses associated with each backtrack. Hence, the number of literals in the
clause database is at most O(||¢| + N [B) = O(N [B), which also denotes the bound on the space
required by the algorithm. At any decision level, the time complexity for the derivation of implica-
tion sequences is linearly related to the size of the clause database, and thus it is O(N [B) given
the above assumptions. Diagnosing each conflict requires computing the associated conflicting

assignment set (using (3.6)), and consequently it is necessary to recursively identify antecedent

265



assignments. Each clause in the clause database can be associated with at most one antecedent
assignment. Hence, the recursive identification of antecedent assignmentsis bounded by O(N [B),
i.e. the worst-case size of the clause database. This immediately implies that a conflicting assign-
ment set, at any decision level, is computed in O(N [B) time. Furthermore, since there can be at
most B backtracks, the total run time is in the worst-case O(N [B2). The previous analysis sup-

ports the following:

Theorem A.4. Under Assumption A.1, and for clause databases where initialy [[¢] = O(N), the
gpace complexity of GRASP is O(N [B) and the time complexity at each decision level is
T, = O(N [B), where B is the maximum number of allowed backtracks, and N is the number of

variables. Moreover, the worst-case running time of GRASP is O(N [B?).

Consequently, the size of the clause database and the time required to process each deci-

sion level are bounded by the size of the problem and by the number of allowed backtracks.
A.3 Diagnosis Engines

In this section we prove results of Chapter |11 regarding conflict analysis and diagnosis
engines. The results are associated with unique implication points (UIPs), maintenance of the

clause database and identification of multiple conflicts.

Theorem A.5. (Theorem 3.2 on page 69) Let a conflict be identified at decision level c, and let
U = {(ug, v(uy)), ..., (u,, v(u,))} denote the set of UIPs. Then the isolated assignment of

each UIPisasufficient condition for causing the same conflict.

Proof: To provethat a UIP indeed represents a sufficient condition for the same conflict to be
detected, we just have to take into consideration the definition of dominator [166]. All elementsin
U are dominators of the subgraph defined by Ag; (given in (A.1)). Let (u, v(u)) be a UIR, and let
1(u) = i. Further, let (y, vy) 0 AgglK], i <k<N. Then for any k>i, (A.4) can be re-written as

follows:

O((w, vi) D AWY)), [(w, vy) O Acg O < j <k), (W, v,) O Aggslil)] (A7)
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Suppose that (A.7) does not hold because for some assignment (y, vy) with (1(y) = m) O(m>1)
thereexists  (w, v,,) O A(y) O[(w, v,,) O Agg[j] O(j <i)] .Butthen (u, v) would no longer be
a dominator since the subgraph at decision level ¢ would contain an edge between (w, v,) and
(¥, w) (by definition of implication graph); a contradiction. Since (A.7) must hold, then each UIP

must trigger an implication sequence leading to the same conflict. [ |

Theorem A.6. (Theorem 3.3 on page 74) With the definitions of w, w, and w3 given above (see
page 74), w, [W, - 5. Clause ws is an implicate of the consistency function &. Moreover, w;

and w, can be removed from the clause database if w3 is added to the clause database.

Proof: Suppose a partial variable assignment A such that oo3|A = 1. Then,
—{l, =1]0 {1, =1
[(wy={1y )|, = 1 Ol ~{15 )|, =1

Consequently, °°1|A = 1and co2|A = 1 Hence, w; [, = 1. On the other hand, if wg A =0,

then,
(wl_{ll,i})|A = (wz_{lzli} )|A =0

and because |4 ; is the complement of |, ;, either w1| = 0or oo2| = 0. Hence, w, (o, = Oand
’ ’ A A
w; [, - w5. Asaresult, w; and w, can be removed from the clause database if ws is added to

the clause database. [

Theorem A.7. (Theorem 3.7 on page 96) Diagnosis of multiple conflicts, where each conflict is
separately diagnosed, and where |¢|| = O(N), has a lower bound on the worst-case run time of
Q(N2).

Proof: The proof is based on constructing a specific circuit structure for which a given deci-
sion assignment triggers an implication sequence leading to O(N) conflicts, such that the separate
diagnosis of each conflict requires O(N) time. Hence the worst-case lower bound of Q(N?2) fol-

lows. Consider the circuit shown in Figure A.1. Let mbe aconstant and let M = [ N/m]. Let x;
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FigureA.1l: Lower-bound on multiple conflict diagnosis

be assigned value 0. As a result, nodes X, through xy;+; become assigned value 1 (through an
implication sequence of size M). Afterwards, each gate output in the tree of OR gates is assigned
value 1, and consequently Xz, through xgy, are assigned value 1. The implication of any xg; to 1
causes a conflict with z assigned value 0, for every 1<i <M. Since M = [ N/m, we have O(N)
conflicts. Diagnosing each conflict separately requires traversing O(N) nodes (i.e. J nodes in the
OR tree and [ N/m7 nodes from xy4+1 back to x;). Hence, diagnosing O(N) conflicts requires
O(N?) time. To conclude the proof, we need to show that the number of circuit nodesis ©(N), and
thus the circuit can be designed with N nodes given adequate constants.

The generation of x; from x;_; requires 5 nodes. Hence to generate xy;41 from x; a total of
5 N/m7 + 1 nodes are required. For the OR treg, to generate [ N/ m| outputs it is necessary to
have |_IogK(|’N/m‘|)J <J< [IogK(l’N/m‘l)‘| which contributes L nodes such that,

J
X J_
L = {2x ) KJ}+1 = [2xf<_11+1}
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and given the bounds on J,

(LloacTN/mD | ([1oaN/mDT

2% K1 +1<L<2x K1 +1

Finally, each module linking xg; to z requires 5 nodes for atotal of 5[] N/m| nodes. As aresult,

withM = [ N/m] = O(N), the total number of nodes T is such that,

KUOQK(M)J_l KUOQK(Mﬂ_l

+ - T 4+2<T< + - — 4
10x M +2x K1 2<T<10xM+2x K1 2

which meansthat T = ©(N). Hence, if K isfixed, then we just have to choose m and N such that
the above condition is satisfied. Since there are ©(N) nodes and each gate has two inputs, the fanin
constraints are clearly satisfied. Thus, it follows that alower bound on the worst-case time for pro-
cessing adecision level is Q(N2) if multiple conflicts are identified and each conflict is separately

diagnosed. [ |
A.4 Deduction Engines

Theorem A.8. (Theorem 3.5 on page 82) Let ¢ be aclause database. Léet |l | be the current num-
ber of vertices of the implication graph, and let N — | | identify the total number of unassigned
nodes. Then, the worst-case run time of Deduce_Kk(), assuming that SIMPLIFY _¢ does not

hold, is bounded by:

0%\' _k"CE ol 24+ N Tk (342 (A.8)

The worst-case run time of Deduce_k,R() is bounded by,

o%\' | C|B E[[Ilcbll +N [HV _k" CE uak} 2+ N [k E(sk)z} EE\I _k“ C|E EBKE (A9)

k

For both procedures the worst-case space is bounded by,
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o4l +N [g\‘ _k“ C'g B4 (A.10)

and the space growth if bounded by O(N BN).

Proof: Let us consider Deduce_k() as described in Figure 3.8 on page 80. A decision

assignment is assumed to have been made, and the first invocation to Deduce() decides whether

the implication sequence thus created |eads to a conflict. Assuming that | I c| denotes the size of the

implication graph (i.e. the number of assigned variables), then set ' is the set of all combinations

L
of k nodes out of N —|I c| unassigned variables, i.e. || = g\l k| CE Let |$] denote the current

size of the clause database (i.e. the total number of literalsin ¢). In such a situation, deriving an
implication sequence with Deduce() requires time O(||¢|). (Note that the size of the clause data-
base remains unchanged until all setsin I are analyzed.) Since there are 2X node assignments
associated with each set of nodesy of size k, an upper bound on the time for processingasetyinl
is O(||¢|| CRX). The effect of last phase, for prime implicate generation, can be obtained by adapt-

ing (2.17) on page 45; each clause has O(N) literals but consensus operations are restricted to k

variables. As aresult, an upper bound on the run time of the k-consistency procedureis:
L
C
o%\' |<| E ol 2%+ N Tk 342 (A.11)

i

and the size of the resulting clause database is O%M)M + N Eg\‘ .

B EB'%, because O(3%) prime

implicates can be generated for each subset y, and each implicate has size O(N), out of atotal of

=11
g\l k| C|E subsets. Clearly, the size growth if bounded by O(N [BN), which denotes an upper

bound on the size of the clause database.
With respect to k-consistency with relaxation, two additional factors constraint the run time.

First, the procedure iterates over Deduce_k() while more implicates are derived. Second, the size
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of the clause database changes each time Deduce_ k() isinvoked. A valid upper bound to the run
is then to consider both effects for derivation of implications. Moreover the phase for the genera-

tion of prime implicates has to be cons dered?:

o%\l _|IC|E E[[nq)n +N [g\‘ _k" C'E [Bk} 2K+ Nk t(3k)2} E[g\l _k“ C|E EBKE (A.12)

k

N-[I¢

where term [D . EEBK} denotes the worst-case number of iterations, and the remaining

terms account for the run time of Deduce_k() for each iteration. Deduce_k,R() exhibits the same

bound on space growth that Deduce k() does. Moreover, the size growth is bounded by

O(N BN), which denotes an upper bound on the size of the clause database. [ |

Theorem A.9. (Theorem 3.6 on page 84) For each deduction engine Deduce_k(), with fixed k,
it is aways possible to construct a clause database for which the identification of al implications

requires a deduction engine Deduce_m(), with m > k.

Proof: The proof consists in developing an example circuit (or generic clause database) that
for any k can be scaled in such away that k-consistency does not derive all possible logical conse-
guences. One such example circuit is shown in Figure A.2. We assume the deduction engine to be
Deduce_k(). It is clear that the objective z = 1 is not satisfiable. since y,, 1 and yy, » aways
assume the same logic value. Next, we show that Deduce_k() does not derive al logical conse-
guences given theinitial clause database.

The key ideais to show that for any assignment of size k to variables y; 4 through y; | will
not create any unique assignments on the variables y; 44 through y; 2, and consequently, no set
of conflicts will be detected such that the objective is shown to be unsatisfiable.

We start by claiming that for any assignment set A;, with respect to the variables in
{Yy1 1:¥1 2 -1 Y1 @ » there exists more than one assignment set A, with respect to the variables

in {y1,k+1, Y1 k420 0 Y1, ot » that has the same parity as A;. Indeed, there are 2k=1 gych

2 (A.12) is aloose upper bound because we assume the worst-case scenario for both the number of
iterations and the size of the clause database; as future research work, a tighter bound ought to be
derived.
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U2k-1 Y12

Withm = [Iogz(kﬂ +1

FigureA.2: k-consistency not able to prove the assignment unsatisfiable

assignments, since half of the 2K assignment sets A, have the same parity asA;, and the other half

have opposite parity. Our second claim is that for each of these possible assignments A,, there

exists at least one consistent assignment to the variablesin { Uy, Uy, ..o u2k} . Define the following

variables;

Vi =Y Uy

Vi = Y1k H Y1 ok

(A.13)

Then, by simple algebraic manipulation, one possible solution for { uy, u,, ..., U, } isgiven by:

1
= 10[v, 0.0 v]

c
N
|

up =y du,

c
D
|

Upj_1 = ¥q,2j—1 1 Uy;
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=10[v,0..0 vj_q valD... Vi



where the last two rows correspond to the general solution, j = 1. The above result proves that,
given an assignment of the k variablesin {y1’ vY1 2 Yy i » there are an exponential number
of possible assignments to the variables in {yL k+1 Y1 k+20 0 Y1, oid » that yield consistent
assignments to the variables in {u;, u,,...,uy} . Consequently, for any assignments to
{yll Y12 Y1 i » aconflict is not detected.

It is also necessary to guarantee that backward implications and other derived implicates will
not imply assignments to the variablesin { Y1 k+1 Y1 k+20 0 Y1, ot » given aset of assignments
tothevariablesin{y; 1,¥; 5, ..., ¥y ¢ - Toshow that this requirement holds we consider the case
of yyn 1 and yy 2. Application of Deduce_2() yields the implicates (ym, 1% Ym, ,) and
(= Ym1t " Ym »), which requireyy, 1 and yy,, , to always assume opposite logic values. Now con-
sider the previous set of variables in the circuit, i.e. {ym_ly 2 Ym-12Ym-13Ym-1 a4 -
Deduce_4() is required to identify implicates that disallow assignments of even parity (since a
conflict with zwould then be identified). Hence, the implicates on y,, ; and y,, , do not contribute
for constraining the variables at level m — 1 A similar analysis guarantees that implicates at level 2
will not constrain the variables at level 1. It follows that Deduce k() will not identify a conflict
from the original objective. We further node that the exampleis scalable. For any inference engine
Deduce_k(), the circuit is created given k, and hence Deduce_ k() will not prove the query to be

unsatisfiable without search. [ |
A.5 Postprocessing Engines

LemmaA.8. (Lemma 3.1 on page 119) Assume a solution to a query identified by an assignment
set A, and let the associated node justification graph Jg be defined. For each decision level j, define
T; by (3.28) on page 118. In such asituation, any node'y, such that J(y, x) holds for x assigned at a

decision level greater than |, either y is also assigned at adecision level greater than j or is such that

ny) oT;.

Proof: Assume otherwise. Then there would exist s assigned at a decision level less than or
equal to j such that n(s) would not beinT;. Let x be assigned at adecision level greater than j, such
that J(s, X) holds. Then by definition of predicate J, there must be an edge between n(s) and n(y).

But by definition of T;, then n(s) must bein T;; a contradiction. [ |
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Theorem A.10. (Theorem 3.9 on page 120) If one of the conditions identified by (3.31) on page

120 holds, then Ag' given by (3.30) isasolution to the query.

Proof: Thisresult basically follows from LemmaA.8. Assume that condition C(j) (see (3.31)
on page 120) is satisfied. Let T; denote the level cut associated with C(j). For the assignment set of
the previous query, Ag, consider the decision assignments after decision level j. Then, by Lemma
A.8 and for any assigned node x, with (x) > j, any nodey, such that J(y, X) holds, either is assigned
at decision levels greater than j or n(y) is contained in T;. After K — j additional decisions, a solu-
tion to the query is identified. Let those decision assignments be represented by A.

Now consider the current query. At some decision level i condition C(j) is matched. Hence,
the assignments associated with componentsin T; are matched. Furthermore, assignments at deci-
sion levels greater than j for the previous query are not contradicted. Consequently, in K — j addi-
tional decisions we can identify a solution to the query. This solution consists of the union of the

current assignment set A, with A. [
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APPENDIX B

FORMAL RESULTSON PATH SENSITIZATION

This appendix includes the proofs for all formal results on path sensitization that are
related with the validity of the p-propagation model when applied to test pattern generation and
timing analysis. In addition, we use the results for GRASP to argue the soundness and complete-

ness of LEAP,
B.1 Test Pattern Generation

Theorem B.1. (Theorem 5.1 on page 181) Given a SSF fault in a combinational circuit, atest T
detects the fault if and only if under the p-propagation model T sets at least one primary output to
p-T.

Proof: The proof relates p-status values with D-calculus values. Since atest T detects a fault
under the D-calculus if and only if the fault is detectable with T [141], then under the p-propaga-
tion model a primary output becomes p-T for atest T if and only if the fault is detectable with T.
Simple gates are assumed.

(If part) Let T detect a fault under the D-calculus and let z be a primary output that assumes
value D or D. Further let s be the site of the fault. The goal is to show that under the p-propagation
model primary output zwould be set to p-T. Identify the set I of all nodesy, in the transitive fanin
of z and in the transitive fanout of s including s, such that y is connected to z by a partial path
where every node assumes value D or D and sort in reverse topological the nodes in M. Now we
can traverse in reverse level order the elements of I, starting at z and terminating at s. For each vis-
ited node w, let us assume that all its fanin nodes with value D or D can be set to p-T. Under this

assumption, B(w) does not hold, and P(w) holds. Consequently. we can tentatively set w to p-T,
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under the assumption that all fanin nodes assuming value D or D can also be set to p-T. Eventually
sis reached, which would be p-T by initialization of the p-propagation model. Hence under T all
nodes in I would be set to p-T and the fault would be detected.

(Only if part) The above reasoning immediately applies, but now we establish conditions for
anode to be conditionally set to D or D. Consequently, if under T a primary output becomes p-T,

then that output would assume value D or D under T. [ |

Corollary B.1. (Corollary 5.1 on page 181) A sound and complete search algorithm, based on the

p-propagation model, computes atest T for agiven fault if and only if such test exists.

Proof: Since from Theorem B.1 atest T detects afault if and only if under the p-propagation
model T sets at least one primary output to p-T, a sound and complete search algorithm eventually

enumerates T and so asolution isfound if and only if a solution exists. [ |
B.2 Timing Analysis

Theorem B.2. (Theorem 6.1 on page 214) A combinational circuit contains a floating-mode sen-
sitizable path of delay no less than A, for atest T, if and only if under the p-propagation model

suchtest T sets aprimary output to p-T.

Proof: For circuit delay computation in timing analysis, the effect of delay information must
be considered. Hence the proof hinges on the conditions required for a primary output node stabi-
lizing with delay no lessthan A.

(If part) Let us assume that under T a primary output z stabilizes with propagation delay
Ac 2 A Let y be the fanin node of z such that z stabilizes as a direct consequence of y stabilizing.
By definition of the p-propagation model, then if y is p-T then z must also be p-T, since B(2) does
not hold and P(2) holds. Otherwise, the propagation delay to zwould be less than A. We can create
a path P by traversing from z to a primary input s such that each node w; in the path defines the
propagation delay to fanout node w4 aso in the path. For each such node B(w;i,4) cannot hold,
since again the propagation delay to w;,; would not be extensible to a propagation delay no less
than A. Primary input sis eventually visited. It must be assigned and thus be set to p-T be defini-

tion of the p-propagation model. Consequently all nodesin P are set to p-T, which also includes z.
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(Only if part) Just observe that by definition a primary output z can only become p-T if its
delay estimateis no less than A. Since delay estimation DTo captures floating mode operation (see
page 210), then a floating-mode sensitizable path is defined whenever a primary output z is set to
p-T under atest T. [ |

Corollary B.2. (Corollary 6.1 on page 214) A sound and complete search algorithm, based on the
p-propagation model, computes atest T that sensitizes a path with delay no less than A if and only

if such test exists.

Proof: Since from Theorem B.2 atest T sensitizes a path of delay no less than A if and only
if under the p-propagation model T sets at least one primary output to p-T, a sound and complete
search algorithm eventually enumerates T and so a solution isfound if and only if a solution exists.

|
B.3 Soundness and Completeness

The soundness of the search agorithm for path sensitization follows from the results of
the previous sections for each application. If a solution isfound, then it isindeed a solution to the
path sensitization problem.

We argue that the search algorithm is complete using the results of Appendix A, where it
is proved that every clause derived from conflict diagnosis is an implicate of the logical consis-
tency function. In Appendix A this fact is key to prove that the search algorithm for SAT is com-
plete.

For path sensitization the same reasoning applies. Every clause (p-clause) derived with
conflict diagnosisis an implicate of the logical (propagation) consistency function & (&) and so it
is an implicate of the path sensitization consistency function §pg We note that every p-clause is
derived from a known conflict and identifies sufficient conditions for that conflict to be identified.
Whenever a p-clause is unsatisfied, then propagation of a perturbation to a primary output
becomes blocked and a propagation conflict is detected. Consequently, every p-clause derived with

Propagat i on_Di agnose() is necessarily and implicate of &, which guarantees correct com-
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puted backtracking decision levels. It can thus be concluded that the search algorithm for path sen-

sitization is complete.
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APPENDIX C

CARRY-SKIP ADDERS

The purpose of this appendix is to describe the organization and delay properties of carry-
skip adders (CSAS) that were used in Chapter VII to evaluate TA-LEAP. The basic structure of a
carry-skip adder is shown in Figure C.1, and it follows the organization of CSAs described in [91].
The number of bitsis B, the (constant) number of bits per block is K and the number of blocksis M
(i.e. B =K [OM). For al gates a unit delay is assumed. If M > 1, the longest topological path is
defined by,

LTP

[B+(K=1)x2] +(Kx2+2)x(M-1)
KxMx2+Mx2+1 (C21)
2xB+2xM+1

Otherwise it is defined by,
LTP = 3+2[K (C2

In both cases, the first block contributes with delay 3 + 2 [{K — 1), due to propagation from inputs
a; or by. In addition, the delay contribution of each block is defined by the delay from the input
carry lineto the output carry line of the block added to the delay of the multiplexer.

The longest sensitizable path cannot involve propagation along a sequence of carry bits
larger than K-1. Hence each carry bit ¢; propagates to ¢,k only along the bypass logic, which cor-
responds to a delay of 2 time units. In such a situation, the longest sensitizable path delay is
defined by propagation from ag to ¢k (for example), then across the bypass logic of M-2 modules
and finally from cy-1)x to thelast sum bit of the last module, i.e. syx. If M > 1, the circuit delay

A for the carry-skip adder is given by:
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Figure C.1: Description of acarry-skip adder (all gates with unit delay)

Ac

otherwiseit is given by,

[B+K@]+(M=-2)[R+[Kx2-2+1]

2x[2xK+M-=1]

Ac = 3+2[K
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