
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

Computable Cyclic Functions

Ross Horne

May 18, 2005

Abstract

This dissertation concerns computable analysis where the idea of a
representations of a set is of central importance. The key ideas intro-
duced are those commenting on the computable relationship between
two newly constructed representations λ1

ϑ,ρ2 , a representation of inte-
grable cyclic functions, and

[
ϑ → ρ2

]
, the continuous cyclic function

representation. Also the computable relationship of an absolutely con-
vergent Fourier series representation, αρ2 , is considered. It is observed
that λ1

ϑ,ρ2 gives rise to a much larger set of computable functions than
obtained by

[
ϑ → ρ2

]
and that integration remains a computable op-

eration but that basic evaluation of the function is not computable.
Many other representations are acknowledged enhancing the picture
of the partial order structure on the space of representations of cyclic
functions. The paper can also be seen as a foundation for the study
of Fourier analysis in a computable universe and concludes with an
investigation into the computability of the Fourier transform.

Contents

1 Introduction 1

2 Fundamental concepts 3
2.1 Strings . 3
2.2 Type-2 theory of effectivity 4
2.3 Naming systems . 5
2.4 Equivalence of naming systems 5
2.5 Computable abstract functions 5
2.6 Further Concepts . 6
2.7 The continuity of computability 6
2.8 Philosophy behind TTE . 7

1

3 Representations of R 8

4 Representations of T 8
4.1 Effective topological spaces . 8
4.2 Admissible notations of N and Q 9
4.3 Admissible representations of T 10
4.4 The representations ϑ< and ϑ> 11
4.5 Relationship between ϑ<, ϑ> and ϑ 12
4.6 The Cauchy representation . 13
4.7 Some computable functions on T 15

5 Representations of C 18
5.1 Admissible representations of C 18

6 Representations of continuous functions 19
6.1 The notation of computable string functions 19
6.2 The standard representations of continuous string functions . . 20
6.3 The representation of continuous functions 21
6.4 The Curry theorem . 22

7 Representations of integrable functions 23
7.1 Complex sequence spaces . 23
7.2 Representations of L(T) . 25
7.3 Relationship between λ1

γ,δ and [γ → δ] 27

8 Fourier representations 29
8.1 Absolutely convergent Fourier series 29
8.2 Fourier transforms . 30

9 Conclusion 32
9.1 Where to next? . 35

2

1 Introduction

This paper aims to investigate the result of restricting the mathematical the-
ory of analysis to a computable world. This aim is further enhanced in two
ways. Firstly a non-trivial domain of analysis in which to perform the in-
vestigation is considered. The domain chosen will be Fourier analysis which
gives a huge scope to work over and has the added benefit of leaving a wide
and accessible open end for further development of the ideas. The investi-
gation will stem from the foundations and cover the basic building blocks of
the theory giving a thorough evaluation of the computability structure.

The second way in which the aim of the project will be enhanced is
through the choice of a non-trivial theory of computability with which to per-
form the investigation. The theory in question, Type-2 Theory of Effectivity
(TTE), is laid out elegantly in [1] by Klaus Weihrauch of the University of
Hagen in Germany and is the result of three decades of his own study and the
work of other mathematicians such as Hauck, Grezegorczyk and, of course,
Turing.

There are several reasons for selecting TTE from the huge range of theo-
ries available for studying computability in analysis. The first is the concept
of a representation which this project will focus on. Informally a represen-
tation is a way of interpreting the inputs and output of a computation in
an abstract mathematical universe so, depending upon the representation,
one computation can have several abstract mathematical meanings or sev-
eral computations can have the same abstract mathematical meaning. This
is not an alien concept but is side lined as being trivial in most computability
theories which is fair enough since for finite computations, which computer
science generally deals with, the theory gained by including representations
is trivial. However in computable analysis, where generally infinite inputs
and outputs will be dealt with, the theory of representations is far from triv-
ial. The second reason for selecting TTE is its relative youth leaving open
vast unsaturated areas of fresh theory to be investigated. The third but not
least temptation of TTE is its elegance, due mainly to work done in [1].
Simple uncluttered foundations, which in many ways mimic the foundations
of topology, give rise to a neat logical algebra which in turn facilitates neat
concise proofs. Theorem 8.2 is an example of a result which would most
likely take up several pages in other computability theories to convey the
same ideas.

Naturally the fundamental concepts of the theory will be conveyed in
sufficient detail for the needs of the paper. This will allow the construction
of the first building block which will be required for the study of Fourier
analysis — the one dimensional torus group, T. Although the real numbers

1

have already been developed in TTE and could be used to build the space of
cyclic functions through restriction of the domain or the function set itself,
neither are satisfactory solutions. On the other hand T provides a neat
way of conveying and indeed forcing all the required properties of the cyclic
functions which are to be considered. A variety of representations of T will be
considered and compared also giving some initial insight into the significance
of the theory itself.

The paper will continue by studying representations of functions of the
form f : T → C. For this, in addition to the representations of T, a vari-
ety representations of C will be required although less work is required here
since representations of C can be constructed logically from representations
of R and T. From representations of T and C various representations of
continuous computable functions will be constructed which will be a natural
initial choice for a set of functions to consider given the close relationship
between computability and topology which will feature throughout the pa-
per. Following a brief outline of the theory of sequence spaces under TTE,
representations of integrable functions will be considered and the investiga-
tion will conclude with consideration to a space of particularly well behaved
functions, namely those with absolutely convergent Fourier series. Relevant
examples of computable operations such as integration will be considered
in these represented function spaces at most stages including multiplication,
integration and the Fourier transform.

It is hoped that, for the reader, the paper itself will be palatable and the
significance of the results obtained in the paper will be appealing on three
levels. The first being on the purely mathematical level since many results are
interesting in themselves, with both an elegant computability theory and an
elegant mathematical theory being the subject of scrutiny. The second level
to consider would be the aesthetic appearance of the partial order structure
on the space of representations of cyclic functions under computable reduc-
tion although only a glimpse of this transfinite lattice will be experienced.
Finally there are the practical applications of these results which increase the
number of computable functions and provide the maximal space of functions
that one can operate in given that the operations, which are desired to be
performed computably, are known.

As a rough guide to the reader it is worth considering the distribution of
material. The beginning of the paper is largely a rephrasing and consolidation
of back ground material and will be most useful as a reference for specific
aspects of notation used. The first section of original material is the section
on T although some standard lemmas are incorporated. Around the middle
of the paper there is a section on standard string function representations
which is indeed a standard part of the theory although results and definition

2

are, where ever possible, generalised further. From that point onwards all
definitions are original so certainly all results are not only original but of
heightened interest.

2 Fundamental concepts

This section will build up the concept of strings and their abstraction func-
tions called naming systems. Strings are considered to be concrete objects
which by themselves have no meaning in abstract mathematics. However,
a naming system is a partial function which identifies strings with a unique
abstract object. Such abstraction functions will also give meaning to string
functions in particular those realised by TTE which will also be defined in
this section.

2.1 Strings

The following definitions regarding strings are included for completeness and
as an explanations of notation used in proofs later on. Here it is most im-
portant to note and consider the topologies chosen for the sets of strings.

Definition 2.1. A string is a list of characters from a fixed finite alphabet Σ.
The set of all finite strings is denoted Σ∗ and the set of all countably infinite
strings is denoted Σω. The topology on Σ∗ will be the discrete topology, τ∗,
and on Σω the Cantor topology, τC,

where τC := {AΣω|A ⊆ Σ∗}
where AΣω is the set of all infinite strings beginning with A.
The following notation will be useful for referring to strings and extracting

the information encoded in them.

1. Repeated concatenation is denoted ⊗n+1
i=1 ai := (⊗n

i=1ai)an with base case
⊗1

i=1ai := a1 where ai ∈ Σ. Note that the concatenation operator is
omitted for strings and simply denoted by juxtaposition which is in line
with how string are commonly presented. Also this idea can be extended
for infinite strings by taking limits of initial segments for example.

2. Let ι : Σ∗ → Σ∗ such that 0, 1 ∈ Σ and ι(⊕n
i=1ai) = 110 (⊕n

i=1ai0) 11
where ∀i, ai ∈ Σ. This will be used for wrapping up elements within a
longer string so they do not interfere with each other.

3. Let u ∈ Σ∗ and p ∈ Σa where a ∈ {∗, ω}. u v p iff u is an initial
segment of p, i.e. there exists q ∈ Σa such that uq = p.

3

4. Let u ∈ Σ∗ and p ∈ Σa where a ∈ {∗, ω}. u / p iff u is a contiguous
subword of p, i.e. there exists v ∈ Σ∗ and q ∈ Σa such that vuq = p.

5. Let 〈u,w〉 := ι(u)ι(w) where u,w ∈ Σ∗, 〈u, p〉 := ι(u)p where u ∈ Σ∗

and p ∈ Σω and 〈p, q〉 := ⊗∞
i=1piqi where p, q ∈ Σω and p = ⊗∞

i=1pi, q =
⊗∞

i=1qi. The pairings’ inverse projections are denoted 〈.〉1 and 〈.〉2.
N.B. Pairings can be extended to n dimensions by nesting and to infinite
dimensions by the Cantor pairing function.

Note that Σ = {0, 1} suffices for the purpose of representation since a
fixed number of characters can be encoded much like the ASCII notation but
would lead to bloated definitions and proofs. It is therefore reasonable to
assume that the alphabet used will be implicit from the situation. Also the
basic operations above will be assumed to be computable in the sense soon
to be established.

2.2 Type-2 theory of effectivity

The TTE model of computation can be used to model computers with infinite
inputs and outputs. A type-2 machine, M , is a Turing machine consisting
of input tapes labelled 1 to k, a finite number of work tapes and an output
tape. Operation is as with a normal Turing machine except all the Turing
machine can do on the input tape is read a character on the tape and move
along to the next symbol and similarly on the output tape can only write a
character and move along to the next space. In addition, M includes a type
specification (ai)

k
i=0, where ∀i, ai ∈ {∗, ω}, since only one of either infinite or

finite strings may be handled on an input/output tape.
Each type-2 machine realises a computable string partial function fM in

the following manner. Let (xi)
k
i=1 ∈

∏k
i=1 Σai and for i = 1 to k, place the

characters for xi on tape i starting at the head and extending to the right. If
ai = ∗ then complete the remaining tape with the character B. The first case
is a0 = ∗, in which case fM (xi)

k
i=1 := y ∈ Σ∗ iff M halts on input (xi)

k
i=1 with

y on the output tape. Otherwise, a0 = ω in which case fM (xi)
k
i=1 := y ∈ Σω

iff M writes each initial segment of y to the output tape in finite time on
input (xi)

k
i=1.

So, a string partial function f :
∏n

i=1 Σai → Σa0 is computable iff f = fM

for some type-2 machine M . Also a string p ∈ Σω is computable iff p = f(0)
for some computable string partial function f : Σ∗ → Σω. Note that every
u ∈ Σ∗ is computable under a similar definition.

Here we will assume that Church’s Thesis holds to a sufficient degree so
that careful algorithmic descriptions in English suffice.

4

2.3 Naming systems

There are two types of naming systems which can be conceived of under the
physical limitations of our own existence. The majority of results in this
paper will concern naming systems. They can be thought of as defining the
meanings of strings which machines can manipulate.

Definition 2.2. 1. A notation of an abstract mathematical object A is an
onto partial function ν : Σ∗ → A.

2. A representation of an abstract mathematical object A is an onto partial
function δ : Σω → A.

2.4 Equivalence of naming systems

Similarly to topological equivalence two naming systems, γ, γ′, are equivalent,
denoted γ ≡ γ′, iff there is a computable function translating both ways
between the two naming systems so one naming system can be computably
reduced to the other.

Definition 2.3. Let γ : Σa →M and γ′ : Σa′ →M ′ be naming systems.

1. γ ≤ γ′ iff there exists a computable function f : Σa → Σa′ such that
for each y ∈ dom(γ), f(y) ∈ dom(γ′) and γ(y) = γ′f(y). f is said to
translate γ to γ′.

2. γ ≡ γ′ ⇔ γ ≤ γ′ ∧ γ′ ≤ γ.

3. ≤t and ≡t are defined by replacing computable with continuous in the
above respective definitions.

2.5 Computable abstract functions

This key idea essentially allows computability of abstract functions to be
characterised by the computability of underlying string functions with re-
spect to specific naming systems. The relationship between concepts in the
definition for the case n = 1 is aided be the figure below.

Definition 2.4. Let (γi : Σai →Mi)
n
i=0 be naming systems of abstract math-

ematical objects (Mi)
n
i=0 respectively where ai ∈ {∗, ω}. An abstract partial

function f :
∏n

i=1Mi →M0 is ((γi)
n
i=1, γ0)-computable iff there exists a com-

putable partial string function g :
∏n

i=1 Σai → Σa0 such that γ0◦g = f◦(γi)
n
i=0.

5

For a definition of ((γi)
n
i=1, γ0)-continuous abstract functions simply re-

place computable with continuous in the definition above.

Σa1

γ1

��

g // Σa0

γ0

��
M1 f

// M0

2.6 Further Concepts

The computability of individual objects is of less importance in this paper
but is worth referring to when considering the motivation and consequences
of results.

Definition 2.5. Let γ : Σa →M be a naming system of M where a ∈ {∗, ω}.
An object y ∈M is γ-computable iff y = γ(p) where p ∈ Σa is computable.

Several computability and topological concepts on subsets of an abstract
object can be defined with respect to a naming system in a standard way.
Examples include whether a subset of M is γ − open or γ − r.e. and make
use of the fact that open and r.e. sets are well defined on the underlying sets
of strings. The following definition schema demonstrates how this is done in
its most general form.

Definition 2.6. For i = 1 to n let γi : Σai → Mi where ai ∈ {∗, ω} and
let Hi ⊆ Mi.

∏n
i=1Hi is (γi)

n
i=1-property iff

∏n
i=1 γ

−1
i (Hi) is property with

respect to
∏n

i=1 Σai.

2.7 The continuity of computability

The following result ties together the two fields of continuity and computabil-
ity. The result is well known in several computability models but is central
to the results in this paper and can be elegantly proven in TTE as shown
in a rephrasing from [1] and can be converted into a more useful form for
comparing naming systems as shown in the corollory.

Theorem 2.7. A computable partial function f :
∏n

i=1 Σai → Σa0 is contin-
uous where ai ∈ {∗, ω} and the product topology is as commonly defined.

Proof. Suppose that a0 = ω. Let w ∈ Σ∗ such that f(p) ∈ wΣω where
p ∈ dom(f). By the computability of f , there exists a machine M such that
f = fM which outputs w, an initial segment of f(p), in finitely many steps,
hence only using the finite initial segment, u ∈ (Σ∗)n, of p. Thus ∀p′ ∈

6

u(
∏n

i=1 Σai) ∩ dom(f), f(p′) ∈ wΣω so u(
∏n

i=1 Σai) ∩ dom(f) ⊆ f−1(wΣω).
Finally, {wΣω|w ∈ Σ∗} is a base for τC and so the above is sufficient to prove
the continuity of f .

Otherwise a0 = ∗. Let w ∈ Σ∗ such that f(p) = w where p ∈ dom(f). By
the computability of f , there exists a machine M such that f = fM which
outputs w in finitely many steps then halts, hence only using the finite initial
segment, u ∈ (Σ∗)n, of p. Thus ∀p′ ∈ u(

∏n
i=1 Σai) ∩ dom(f), f(p′) = w so

u(
∏n

i=1 Σai) ∩ dom(f) ⊆ f−1({w}). Finally, {{w}|w ∈ Σ∗} is a base for τ∗
and so the above is sufficient to prove the continuity of f .

Corollary 2.8. If γ, γ′ are naming systems and γ ≤ γ′, then γ ≤t γ
′.

Proof. Consider γ : Σa →M and γ : Σa′ →M ′ where a, a′ ∈ {∗, ω}. Suppose
that γ ≤ γ′ then there exists a computable string function f : Σa → Σa′ such
that for all p ∈ dom(γ), f(p) ∈ dom(γ′) and γ(p) = γ′(f(p)). By the above
theorem, f is also continuous, hence γ ≤t γ

′.

2.8 Philosophy behind TTE

As a brief aside note that this model is not only useful for studying com-
putability but also models the way in which the human being operates where
concrete objects are processed in the brain and abstract objects are those
which we are observing. Strings can be seen as those things we can store or
write down. Only a finite amount of information about an observation of the
world around us can ever be assimilated even if hypothetically there were an
infinite amount of information to assimilate. Infinite strings can be seen as a
sequence of recordings of observations. A naming system is the association
between what was recorded and observed. Those objects observed may be
mathematical and it is clear that in set theory alone there are more than
countably many objects. Since there are only countably many finite strings
it is clear that not all objects can be accessed by one notation or even count-
ably many representations. For instance, abstract sets could be represented
through strings which are logical deductions from the ZF axioms. However,
an application of the axiom of choice will not in general yield a unique object
so cannot be included in the representation. Such objects that cannot be
accessed without the axiom of choice are the non-computable sets under this
representation. Hence only countably many abstract sets can be specifically
accessed in this manner. This is the key motivation for this area of study
since both T and C have 2ω elements and CT has 22ω

elements hence “almost
all” their elements are non-computable.

7

3 Representations of R
The representations of R are of secondary importance and are covered ex-
tensively in [1] Chapter 4 so will not be covered here in detail. However a
few results will be useful to ease results on representations of T and C which
will be cited along the way.

For now regarding the partial order structure on the representations of
R it will be accepted that [1] defines a representation called ρ, which will be
referred to later, and several other representations, which for simplicity will
be restricted to two representations ρ⊥ and ρ> where ρ⊥ < ρ < ρ> i.e. there is
a computable reduction only in one direction between these representations.
Also, assume that there is a representation ρC ≡ ρ which is defined in a
similar manner to ϑC which appears in the following section.

It is interesting to note, at this stage to get an idea of the point in con-
sidering different representations, that the most widely spread and familiar
representation of the reals, i.e. an infinite sequence of digits in base n with a
place holder, does not have some nice properties which will be encountered
later and also leaves undesirable results for example multiplication by three
is not computable (or even continuous).

4 Representations of T
The one dimensional torus group or circle group T can be defined to be the
quotient group R/2πZ with group operator +. The natural topology on T,
say τT, can be formed by letting p : R → T such that p(x) := ẋ = x + 2πZ,
i.e. projecting x onto its coset, and letting V ∈ τT ⇔ V = p[U] where U is
open in R. See [6] 2.1.1 for more details on T.

There are many ways in which T can be represented, some naturally
yielding subtly but significantly different topologies. This section will name
a few and show how they relate computably.

4.1 Effective topological spaces

Effective topological spaces defined below give rise to equivalence classes of
naming systems. These admissible naming systems, defined below, preserve
the topological structure of the effective topological space, also defined below.

Definition 4.1. 1. An effective topological space is a triple S = (M,σ, ν)
where σ is a countable set of subsets of M such that

(∀x, y ∈M)x = y ⇐ {U ∈ σ|x ∈ U} = {U ∈ σ|y ∈ U}

8

and ν is a notation of σ.

2. τS is the topology on M with subbase σ.

3. A computable topological space is an effective topological space such that
{(u, v)|u, v ∈ dom(ν) ∧ ν(u) = ν(v)} is r.e..

4. A standard representation, δS, of an effective topological space, S =
(M,σ, ν) is defined such that

(p ∈ dom(δS) ∧ ι(w) / p) ⇒ w ∈ dom(ν)

δS(p) = x⇔ {A ∈ σ|x ∈ A} = {ν(w)|ι(w) / p}
where w ∈ Σ∗, x ∈M and p ∈ Σω.

Definition 4.2. A naming system, γ, is admissible with respect to τ iff
γ ≡t δS for some effective topological space S with τ = τS.

The significance of admissible naming systems comes through in the fol-
lowing “Main Theorem” from [1] 3.2.11 which essentially says that the conti-
nuity of an abstract functions is dependent on the continuity of the underlying
concrete string partial function when considered with respect to admissible
representations. It is interesting to note that continuity is also preserved in
some inadmissible representation hence admissibility is a sufficient but not
necessary condition as shown with the naive Cauchy representation on real
numbers in [3].

Theorem 4.3. Let (δi)
n
i=0 be admissible naming systems with respect to

topologies (τi)
n
i=0 on sets (Mi)

n
i=0 respectively. Then for any partial func-

tion f :
∏n

i=1Mi → M0, f is ((τi)
n
i=1, τ0)-continuous iff f is ((δi)

n
i=0, δ0)-

continuous.

4.2 Admissible notations of N and Q
To begin the construction of an admissible representation of T it is neces-
sary to consider first the basic underlying sets. However the specific con-
struction of the notations below are unimportant since not only has a lot
of work already been done on such notations but also the topological con-
cepts arising from notations are trivial as suggested by the theorem below
which shows that the notations defined in this section are trivially admis-
sible. None the less it is worth checking that they exist and developing a
notation for them. This highlights why naming systems have been side lined
in other computability theories since they would generally be concerned with
notations only, although in complexity theory they would have more of an
impact.

9

Definition 4.4. 1. Let νN be a notation of N such that dom(νN) = {0, 1}∗
and νN ((ai)

n
i=0) =

∑n
i=0 an−i · 2i.

2. Let νZ be a notation of Z such that νZ(w) = νN(w) and νZ(-w) =
−νZ(w) where w ∈ dom(νN).

3. Let νQ be a notation of Q such that νQ(w/u) = νZ(w)/νN(u) where
νN(u) 6= 0.

Theorem 4.5. A notation ν of M is admissible w.r.t. τ iff τ is the discrete
topology on M . See [1] 3.2.8.4.

4.3 Admissible representations of T
The topological concepts arising from representations are less trivial. Here
the key admissible representation of T is defined.

Definition 4.6. 1. Let ‖ẋ‖ := min {|x+ 2πn| : n ∈ Z}.

2. Let Cb := {B(a, r)|a ∈ Q, r ∈ Q, r > 0} where

B(a, r) := {y ∈ T : ‖y − ȧ‖ < r} .

3. Let I be a notation of Cb where

I(〈v, w〉) := B(νQ(v), νQ(w)).

Definition 4.7. Let S= := (T, Cb, I).

The following result is a slight tangent as the computability of an effective
topological is not used in any later results. It has been included since it is
an original result and may be of use in further study in this field.

Theorem 4.8. S= is a computable topological space.

Proof. Let ẋ, ẏ ∈ T and suppose that assume X = Y , where

Y := {U ∈ Cb : ẏ ∈ U}

X := {U ∈ Cb : ẋ ∈ U}

and let n ∈ N. Since Q is dense in R, there exists an ∈ Q such that
‖ẋ− ȧn‖ < 1/(2n). Hence B(an, 1/(2n)) ∈ X ⇒ B(an, 1/(2n)) ∈ Y ⇒
‖ẏ − ȧn‖ < 1/(2n). Therefore ‖ẋ− ẏ‖ = ‖ẋ− ȧn + ȧn − ẏ‖ ≤ ‖ẋ− ȧn‖ +

10

‖ȧn − ẏ‖ < 1/n, by the triangle inequality. Therefore ‖ẋ− ẏ‖ = 0 so ẋ = ẏ.
So S= is an effective topological space since also I is a notation of Cb.

S= is computable since a suitable type-2 machine M which takes inputs
〈v1, w1〉, 〈v2, w2〉 ∈ dom(I) can be defined. Since each coset of a rational
number only contains one rational number which is conveniently the number
it is characterised by, it is sufficient for the machine to check that each vi and
wi is in dom(νQ) and that either νQ(v1) = νQ(v2) and νQ(w1) = νQ(w2) hold
or νQ(w1) > π and νQ(w2) > π hold at which point M halts in an accept
state if all checks hold and diverges otherwise.

Definition 4.9. Let ϑ be the standard representation of S=.

Lemma 4.10. ϑ is admissible w.r.t. τT.

Proof. It is sufficient to show that τT = τS= which follows from the observa-
tion that if B(a, r) ∈ Cb and D(a, r) := {x ∈ R : |x− a| < r} then B(a, r) =
p(D(a, r)), hence a base for τS= is contained in τT, so τS= ⊆ τT. Conversely,
for every positive real, R, there exists an increasing sequence of positive
rational numbers (ri)

∞
i=0 with limit R so

⋃∞
i=0B(a, ri) = p(

⋃∞
i=0D(a, ri)) =

p(D(a,R)). {D(a,R) : a,R ∈ R} is well known to be a basis for the topology
of R hence τT ⊆ τS= .

4.4 The representations ϑ< and ϑ>

There are other topologies which can be placed on T with their associated
admissible naming systems which give rise to different sets of computable
and continuous functions. Two of these are characterized by the computable
topological spaces listed below. The spaces are computable by similar argu-
ments to those on S= so will not be replicated here.

Definition 4.11. Let the following computable topological spaces be defined.

• S< := (T, σ<, ν<) where

N := max {n ∈ Z : 2πn ≤ νQ(w)}
ν<(w) := {ẋ : 2πN ≤ x < νQ(w)}
σ< = range(ν<).

• S> := (T, σ>, ν>) where

N := min {n ∈ Z : νQ(w) ≤ 2πn}
ν<(w) := {ẋ : νQ(w) < x ≤ 2πN}
σ< = range(ν>).

Also, let ϑ<, ϑ> be the standard representations of S<,S>.

11

4.5 Relationship between ϑ<, ϑ> and ϑ

The first two results here are examples of computability results obtained by
“cheating” and looking at continuity first. Combined with the other results
in this section a small section of the partial order structure on the represen-
tations of T is obtained including a neat way they are logically connected
through conjunction.

Lemma 4.12. If γ : Σa →M,γ′ : Σa′ →M are naming systems of M where
a, a′ ∈ {∗, ω}, U is γ-open and γ′ ≤t γ, then U is γ′-open.

Proof. Let U be γ-open. Since γ′ ≤t γ, there exists a continuous f : Σa → Σa′

such that γ′(p) = γ(f(p)) for all p ∈ dom(γ′). By definition γ−1[U] is open
in dom(γ) and, by continuity of f , (f−1 ◦ γ−1)[U] is open in dom(γ′) hence
U = ((γ◦f)◦(γ◦f)−1)[U] = (γ′◦(f−1◦γ−1))[U] ⇔ (γ′)−1[U] = (f−1◦γ−1)[U]
so U is γ′-open .

Lemma 4.13. Neither ϑ< ≤t ϑ, nor ϑ> ≤t ϑ, nor ϑ< ≤ ϑ, nor ϑ> ≤ ϑ hold.

Proof. Suppose that ϑ< ≤t ϑ, then p(−1, 1) is ϑ-open but is clearly not
ϑ<-open contradicting Lemma 4.12. Now, suppose that ϑ< ≤ ϑ, then by
corollary 2.8, ϑ< ≤t ϑ contradicting the first part of the proof. An identical
proof works for ϑ>.

Definition 4.14. If γ, γ′ are naming systems, then γ ∧ γ′ : 〈p, q〉 7→ x ⇔
γ(p) = γ′(q) = x is a naming system.

Lemma 4.15. If γ, γ1, γ2 are naming systems then γ ≤ γ1 ∧ γ ≤ γ2 ⇔ γ ≤
(γ1 ∧ γ2).

Proof. Suppose that γ ≤ γ1 ∧ γ ≤ γ2 so there exist computable functions
f1, f2 such that γ(p) = γ1(f1(p)) and γ(p) = γ1(f1(p)) where p ∈ dom(γ).
So γ1(f1(p)) = γ2(f2(p)) = γ(p), hence (γ1 ∧ γ2) 〈f1(p), f2(p)〉 = γ(p) and
p 7→ 〈f1(p), f2(p)〉 is clearly computable since composition preserves com-
putability. Therefore γ ≤ (γ1 ∧ γ2).

Conversely, if γ ≤ (γ1 ∧ γ2) then there exists a computable function f
such that (γ1 ∧ γ2)f(p) = γ(p) where p ∈ dom(γ). So f(p) = 〈p1, p2〉 and
γ1(p1) = γ2(p2) = γ(p) and also 〈f〉1 , 〈f〉2 are computable, since composition
preserves computability, hence γ ≤ γ1 ∧ γ ≤ γ2.

Theorem 4.16. ϑ ≤ ϑ<, ϑ ≤ ϑ> and (ϑ< ∧ ϑ>) ≡ ϑ.

Proof. Let p ∈ dom(ϑ). There exists a type-2 machine which takes each
ι(〈v, w〉) / p and outputs a list of all the resulting ι(u) where νQ(u) =

12

νQ(v) + νQ(w) hence ϑ ≤ ϑ<. Similarly, if νQ(v) + νQ(w) is replaced with
νQ(v) − νQ(w) in the above then ϑ ≤ ϑ> holds. Hence, by the above
lemma, ϑ ≤ ϑ< ∧ ϑ>. Conversely, if 〈p, q〉 ∈ dom(ϑ< ∧ ϑ>) then there
exists a type-2 machine, M , which considers each ι(vi) / p and ι(wi) / q,
where i ∈ N, under the computable function P : (v, w) 7→ ι(〈v′, w′〉) where
2νQ(v′) = νQ(w) + νQ(v) and 2νQ(w′) = νQ(w) − νQ(v). Clearly the list
r := ⊕∞

i=1

(
⊕i−1

j=1P (vi, wj)P (vj, wi)
)
P (vi, wi) can then be output byM . Fur-

thermore ϑ(r) = ϑ< ∧ ϑ> 〈p, q〉 hence ϑ ≤ (ϑ< ∧ ϑ>).

4.6 The Cauchy representation

Theorem 4.16 is a starting point for showing that the representation ϑ is
not unique as a representation of T admissible with respect to the standard
topology in fact there are infinitely many equivalent representations. The
Cauchy representation is one such representation itself having several equiv-
alent forms. It will also be more practical for showing the computability of
function with an argument represented by ϑ which can be done since equiv-
alent representations can be exchanged freely.

Definition 4.17. Let the naive Cauchy representation, ϑCn, of T be defined
such that ϑCn(p) = x iff p = ⊗∞

i=1ι(wi) where ∀i, wi ∈ dom(νQ), νQ(wi) = xi

and also x = limi→∞ ẋi.

Definition 4.18. Let the Cauchy representation, ϑC, be the same as the
naive Cauchy representations except that in addition

∀m,n > N, ‖ ˙xm − ẋn‖ < 2−N .

Theorem 4.19. ϑ ≡ ϑC

Proof. Consider the type-2 machineM which takes input⊕∞
i=1ι(wi) ∈ dom(ϑC)

and generates the output ⊕∞
〈i,j〉=1vi,j where ϑC (⊕∞

i=1ι(wi)) = ẋ and

vi,j =

{
uj if uj ∈ dom(I) and B (ν̇Q (wi) ; 2−i) ⊆ I(uj)

u⊥ otherwise

where uj is the jth string in a fixed enumeration of Σ∗ and u⊥ is such that
I(u⊥) = T.

Since ẋ ∈ I(uj) iff there exist an i such that B (ν̇Q (wi) ; 2−i) ⊆ I(uj),

every ball containing x will eventually be included so ϑ
(
⊕∞
〈i,j〉=1vi,j

)
= x

hence ϑC ≤ ϑ. Note that the decidability of B (ν̇Q (wi) ; 2−i) ⊆ I(uj) is a
consequence of Lemma 4.23.

13

Conversely, consider a type-2 machine, M ′, which takes input p ∈ dom(ϑ)
and works in stages. At stage 0 it simply searches for ι (〈w0, v0〉)/p such that
νQ(v0) < 1 and writes ι(w0) to the output tape. At stage i+1 it sequentially
considers each ι(u) / p until one is found such that I(u) ⊆ B (ν̇Q (wi) ; 2−i).
Consider u = 〈wi+1, v〉 and extend the output tape with ι(wi+1) before mov-
ing to stage i+ 2. Hence ϑC (fM ′ (p)) = ϑ(p) so ϑ ≤ ϑC .

It is interesting to note that for T more work has been done than necessary
since the set of cosets of natural numbers are dense in T so would be sufficient
as the elements of the sequence encapsulated by ϑC rather than the set of
cosets of Q. However this is not important since the representations would
be intertranslatable and hence equivalent; but is interesting to note that is
an element of neatness R does not posses.

The next results look at the relationship of the naive Cauchy representa-
tion compared to other the other representations thus far developed.

Definition 4.20. If γ1, γ2 are naming systems, then γ1 ∨ γ2 is defined such
that 01p 7→ γ1(p) and 001p 7→ γ2(p) is a naming system.

Lemma 4.21. If γ, γ1, γ2 are naming systems then γ1 ≤ γ ∧ γ2 ≤ γ ⇔
(γ1 ∨ γ2) ≤ γ.

Proof. Suppose that γ1 ≤ γ and γ2 ≤ γ so there exists computable functions
f1, f2 such that γ1(p1) = γ(f1(p1)) and γ2(p2) = γ(f1(p2)) where p1, p2 ∈
dom(γ1), dom(γ2) respectively. Let M be a type-2 machine which, on input
p ∈ dom(γ1 ∨ γ2) check whether it begins with 01, 001 upon which point
it executes f1, f2 respectively on the remainder of p. Hence fM translates
(γ1 ∨ γ2) to γ.

Conversely, if (γ1 ∨ γ2) ≤ γ, then there exists a computable function f
such that (γ1 ∧ γ2)(p) = γ(f(p)) where p ∈ dom(γ1 ∨ γ2). Both g1 : p 7→ 01p
and g2 : p 7→ 001 are clearly computable and when p ∈ dom(γ1) γ1(p) =
(γ ◦ f ◦ g1)(p) hence γ1 ≤ γ, since composition preserves computability.
Similarly γ2 ≤ γ.

Theorem 4.22. ϑ< ≤ ϑCn, ϑ> ≤ ϑCn.

Proof. Suppose ϑ<(p) = x. So there exists a type-2 machine, M , which
searches for the first ι(w0) / p such that w0 ∈ dom(νQ) and writes ι(w0) to
the output tape; there after at each stage, i, it considers wi which has most
recently been written to the output tape and considers each u/p until it finds
one such that Λ

(
0̇, ν̇Q(wi)

)
≥ Λ

(
0̇, ν̇Q(u)

)
which is computable by Lemma

4.23 since equality is easily checked for rationals and trivially ν̇Z ≤ ϑC .
A similar proof works for ϑ>.

14

Hence, by lemma 4.21, (ϑ< ∨ ϑ>) ≤ ϑCn However, unlike conjunction,
disjunction does not give rise to the inverse result i.e. (ϑ< ∨ ϑ>) ≥ ϑCn

since nothing about x = ϑCn(p) can be deduced from an initial segment of p.
Hence ϑCn induces the trivial topology on T so is only interesting as a top
element in the topological reduction hierarchy.

Here is the computable reduction partial order on T so far.

ϑCn

ϑ> ∨ ϑ<

OO

ϑ>

::vvvvvvvvv
ϑ<

ddHHHHHHHHH

ϑ

ddIIIIIIIIIII

::uuuuuuuuuuu

4.7 Some computable functions on T
Inequalities between elements of T are not expressible in the same way as
on real numbers hence positioning of elements must be compared by other
means. An abstract image of T which the representations give rise to can be a
circle which increases in one direction or the other, say anti-clockwise keeping
in line with a well known projection into C — the mapping ẋ 7→ exi. This
will be used in the following function which has an important precondition
i.e. that two identical elements are not being considered, a condition which is
computationally impossible to verify one of the critical reasons for considering
T rather than a restriction of R to [0, 2π).

Lemma 4.23. Λ : T2 → R, such that Λ(ẋ, ẏ) = the anti-clockwise distance
between ẋ and ẏ where ẋ 6= ẏ, is (ϑ, ϑ, ρ)-computable.

Proof. Let ϑC(p) = ẋ and ϑC(q) = ẏ. Let a type-2 machine, M , take inputs
p, q and work as follows: At stage i it searches for the (i + 2)th ι(u) / p
such that u ∈ dom(νQ) and the i + 2th ι(v) / q such that v ∈ dom(νQ). By
the definition of ϑC , ‖u − x‖ ≤ 2−(i+2) and ‖v − y‖ ≤ 2−(i+2) hence, by the
triangle inequality on ‖.‖,

‖(v − u)− (y − x)‖ ≤ ‖u− x‖+ ‖y − v‖ ≤ 2−(i+1)

. Also trivially, by classical computability theory (v, u) 7→ w := v − u is
(νQ, νQ, νQ)-computable.

15

By [Wei2000 Example 4.3.13.8] 2π is ρ′′C-computable i.e. can be compat-
ibly generated ⊕n

i=1ι($i) such that |νQ($i)− 2π| < 2−i.
Consider w:
If w = 0 then output nothing and begin M at stage i+ 1.
If w > 0 then work in stages beginning at 0 as follows: At stage j consider

mi := w − j$i+j+1 which is (νQ)-computable. If 0 ≤ mi < $i+j+1 + 2−(i+1)

then go to the next section, otherwise continue to stage j + 1.
If w < 0 then work in stages beginning at 0 as follows: At stage j consider

mi := w + j$i+j+1 which is (νQ)-computable. If 0 ≤ m < $i+j+1 + 2−(i+1)

then go to the next section, otherwise continue to stage j + 1.
Both above processes will terminate since

|(w ± j$i+j+1)− (w ± j2π)| = |j(2π −$i+j+1)|
= |j| |(2π −$i+j+1)|
≤ |j| 2−(i+j+1)

≤ 2−(i+1)

hence will pass within the specified termination range.
Now consider whether mi < 2−i or $i+2 − 2−i < mi. If so then write

nothing to the output tape and begin M to stage i + 1. Otherwise extend
the output with ι(m).

Suppose ẋ 6= ẏ. Since T is a Hausdorff space, there exists N such that
‖mi‖ ≥ 2−i for all i ≥ N so the first case above will occur only finitely many
times and it doesn’t matter that some steps may have output nothing in
the process since the proximity to Λ(ẋ, ẏ) will be at least within the desired
precision for the representation ρC . Note that ẋ = ẏ cannot be decided so it
can never be told in finite time whether Λ(ẋ, ẏ) will in fact converge to some
value within 2−i of 2π rather than of 0 if Λ(ẋ, ẏ) and 0 cannot be distinguish
between at stage i.

Since ϑC ≡ ϑ and ρC ≡ ρ the proposition holds.

Lemma 4.24. The set {(x, z, y) ⊆ T3 : z is anti-clockwise strictly between x
and y }, is (ϑ, ϑ, ϑ)-r.e..

Proof. Let f(x, y, z) = 1 ⇔ Λ(x, y) < Λ(x, z).

Also of use in this project for constructing the group characters for use
in the Fourier transform will be the multiplication of an element of T by
an integer. To establish the computability of multiplication first the com-
putability of addition on T must be considered. It is interesting to note
that the idea of extending multiplication to the product of two elements of

16

T ran into difficulties in particular because of the question of the existence
of such an operation. For instance, is ˙1/2 · 0̇ equal to 0̇ or π̇ or even say

˙4π2 + π, highlighting another major difference between R and T. This also
shows that what has been notated as a norm on T is not in fact a norm but
merely defines a metric since if it were a norm then the computability of
“multiplication” on T2 could be proven by pointwise rational multiplication
of the elements of the Cauchy sequence, but beginning four elements in to
the sequence, which contradicts the fact that a suitable multiplication does
not exist.

Theorem 4.25. (x, y) 7→ x+ y is (ϑ, ϑ, ϑ)-computable.

Proof. It is well known, by classical computability theory, that (x, y) 7→
x+ y is (νQ, νQ, νQ)-computable so there is a type-2 machine M which trans-
forms inputs p, q ∈ dom(ϑC) where p = ⊕∞

i=0ι(ui) and q = ⊕∞
i=0ι(vi) to

r = ⊕∞
i=0ι(wi) where νQ(wi) = νQ(ui+1) + νQ(vi+1). Now for all i

‖wi − (x+ y)‖ = ‖νQ(ui+1) + νQ(vi+1)− (x+ y)‖
≤ ‖νQ(ui+1)− x‖+ ‖νQ(ui+1)− x‖
≤ 2−i−1 + 2−i−1

≤ 2−i.

So r ∈ dom(ϑC) and ϑC(r) = x + y hence fM realises the (ϑC , ϑC , ϑC)-
computability of (x, y) 7→ x+ y hence by theorem 4.19 the result holds.

Theorem 4.26. (n, θ) 7→ n · θ is (νZ, ϑ, ϑ)-computable.

Proof. Firstly consider when n ≥ 0 and let H : N× T → T such that

H(0, θ) = θ

H(n+ 1, θ) = H(n, θ) + θ.

H is (νN, ϑ, ϑ)-computable by [1] 3.1.7.3 (iteration) since by Theorem 4.25 ad-
dition is (ϑ, ϑ, ϑ)-computable. However when n < 0 LetH(n, θ) = −H(−n, θ)
which is well defined since, given a type-2 machine, M , transforming rationals
in the Cauchy representation to their negative, fM is a (ϑC , ϑC)-realisation
of negation on T. The result follows by theorem 4.19 and the preservation of
computability through composition.

17

5 Representations of C
The representations of R and T can be used to construct a huge selection of
distinct representations of C simply by pairing naming systems together to
create a new one.

Definition 5.1. Let [γ1, γ2] be a naming system of M1 ×M2, where γ1, γ2

are naming systems of M1,M2 respectively, such that

[γ1, γ2] 〈p1, p2〉 := (γ1 (p1) , γ2 (p2)) .

Definition 5.2. Let [γ1, γ2] be the representation of C such that γ1, γ2 are
representations of R and (x, y) = [ρ1, ρ2] (p) ⇒ x+ iy = [ρ1, ρ2] (p).

Definition 5.3. Let [ρ1, ϑ2] be the representation of C such that ρ1 is a
representation of R, ϑ2 is a representation of T and (x, ẏ) = [ρ1, ϑ2] (p) ⇒
|x| eiy = [ρ1, ϑ2] (p).

5.1 Admissible representations of C
Admissibility on such naming systems can be derived from one result below
showing that [ρ, ρ], abbreviated to ρ2, is admissible since in [1] 4.1.3 ρ is
shown to be an admissible representation of the real numbers. Similarly
[ρ, ϑ] is admissible.

Lemma 5.4. Suppose that γ1, γ2 are admissible naming systems of M1,M2

with respect to τ1, τ2 respectively. Then [γ1, γ2] is admissible with respect to
the product topology τ1 ⊗ τ2.

Proof. For i = 1, 2, since γi is admissible with respect to τi, there exist
computable topological spaces Si = (Mi, σi, νi) such that τSi

= τi and γi ≡t

δSi
. Let S = (M1 × M2, σ, ν) where ν(01w) := ν1 × M2 and ν(001w) :=

M1 × ν2. Hence σ = range(ν) is a base for τ1 ⊗ τ2 so τ1 ⊗ τ2 = τS.
Now, let a type-2 machine, M , be defined such that given input 〈p1, p2〉 ∈

dom([δS1 , δS2]), at stage i, with qi on the output tape, it alternates between
p1, p2 looking for the next ι(u1) / p1, ι(u2) / p2 not yet observed then extend
the output tape to qiι(01u1)ι(001u2). Hence fM translates [δS1 , δS2] to δS.

Conversely assume type-2 machine M ′, with work tapes buffer 1 and
buffer 2, takes input p ∈ dom(δS) at stage i looks for the next ι(01w1),
ι(001w2) / p not yet observed and extends buffer 1 with ι(w1) and buffer 2
with ι(w2). Finally it extends the output tape by removing the first character
from buffer 1 and placing it on the output tape followed by the first of buffer
2. Hence fMtranslates δS to [δS1 , δS2].

Therefore δS ≡ [δS1 , δS2] ⇒ δS ≡t [δS1 , δS2] by Corollary 2.8.

18

Theorem 5.5. [ρ, ϑ] ≡ [ρ, ρ]

This is evident from establishing the (ϑ, ρ)-computability of sin and cos
which in turn would show the (ϑ, ρ2)-computability of exp. Conveniently,
exactly the same string function used to realise that sin and cos are (ρC , ρC)-
computable as provided in [1] Example 4.3.13 will realise their (ϑC , ρC)-
computability. This is because of the 2π periodicity of sin which means that
a rational number taken from a remote part of the real line can still produce
the required precision of proximity to the result.

6 Representations of continuous functions

Now that representations of both C and T have been obtained representations
of the functions of interest — f : T → C — can be built. To begin with,
notations for the set of computable string functions will be developed and
from those a class of representations of continuous string functions will be
obtained and used as a tool to represent the desired cyclic functions.

6.1 The notation of computable string functions

Definition 6.1. Let a, b, c ∈ {∗, ω}. Let Gab be a set of functions g : Σa → Σb

and let ζ : Σc → Gab be a naming system of Gab.
utm(ζ): There exists a computable partial function u : Σc×Σa → Σb such

that ζx(y) = u(x, y) for all x ∈ dom(ζ) and y ∈ Σa.
sm

n (ζ): For any computable partial function f : Σc×Σa → Σb there exists
a computable total function s : Σc → Σc such that f(x, y) = ζs(x)(y) for all
x ∈ Σc and y ∈ Σa.

Definition 6.2. Let a, b ∈ {∗, ω}. Let ξab be a notation of the set of com-
putable partial functions f : Σa → Σb, say P ab, such that utm(ξab) and
sm

n (ξab) hold.

Lemma 6.3. Any notation for F ab satisfying utm and sm
n are equivalent.

Proof. Let δ, γ be naming systems of F ab satisfying utm and sm
n . By utm(δ),

there exists a computable partial function g : Σ∗ × Σa → Σb such that
g(x, y) = δx(y) and so, by sm

n (γ), there exists a computable partial function
s : Σ∗ → Σ∗ such that g(x, y) = γs(x)(y). Therefore s translates δ to γ, since
δx(y) = g(x, y) = γs(x)(y), and by symmetry of argument there exists an s′

translating γ to δ.

19

The above lemma verifies the validity of the above definition since it is
arbitrary which ξab is chosen, for a fixed a, b, and eliminates a lengthy defin-
ition of ξab classically constructed in this situation. As a slight tangent, but
a worth while one and one worthy of study in its own right, this definition
can be extended to higher orders of computability, say computable function
acting on sets of characters of size ω, 2ω, etc, by allowing the computable
string function be those notated by any non-deterministically chosen naming
system satisfying an extended version of the utm and sm

n properties. Essen-
tially this has been done here with sets of size ω in the following section but
any further generalisation is not required for this paper and is of a still more
abstract nature.

6.2 The standard representations of continuous string
functions

Here ξωb is used to construct a representation of continuous functions which
will be seen to be very natural. Lemma 6.5 proves the validity of the rep-
resentation. See [1] 2.3.11 for the full result although the case a = b = ω,
which will be used most in this paper since both T and C require infinite
strings to be represented, is outlined here.

Definition 6.4. 1. Let F ∗b be the set of partial functions f : Σ∗ → Σb.

Let F ω∗ be the set of partial functions f : Σω → Σ∗ which are continuous
and dom(f) is open.

Let F ωω be the set of partial functions f : Σω → Σω which are contin-
uous and dom(f) is a Gδ set.

A Gδ set is the intersection of a sequence of open sets.

2. The standard representation of F ab, ηab : Σω → F ab, is

ηab(〈x, p〉)(y) := ξωb
x 〈p, y〉

for all x ∈ Σ∗, p ∈ Σω and y ∈ Σa.

Lemma 6.5. ηab is a representation of F ab.

Proof. Case a = b = ω: Let f be in range(ηωω) i.e. Let x ∈ Σω and
p ∈ Σω and consider ηωω

〈x,p〉. For all q ∈ Σω, g(q) := 〈p, q〉 is computable hence

continuous and ηωω
〈x,p〉(q) = ξωω

x 〈p, q〉 = ξωω
x ◦ g(q). Since ξωω

x is computable
hence continuous and the composition of continuous functions is continuous,
f ∈ F .

20

Conversely, let f ∈ F so there exits an h : Σ∗ → Σ∗ such that f(y) =
sup {z ∈ Σ∗ : ∃n ∈ N s.t. h(y<n) = z} where y<n is the first n characters of
y. {〈y, z〉 : h(y) = z} can be listed as p ∈ Σω (p is essentially the infinite
program). Define a Type-2 Machine, M , which on input 〈p, q〉 at stage n
searches for a pair 〈y, z〉 in the string p such that y is an initial segment
of q and zn is an initial segment of z where zn is what was on the output
tape at the start of stage n. Before going into stage n + 1 it writes the
remaining characters in z to the output tape. So M realises fM and there
exists an x such that ξωω

x = fM . ηωω
〈x,p〉(p) = ξωω

x (〈p, q〉) = fM(〈p, q〉) = f(y),

so F ⊆ range(ηωω).

Lemma 6.6. utm(ηab) and sm
n (ηab) hold.

Proof. utm(ηab): By the utm(ξωb) there exists a computable partial function
v : Σ∗ × Σω → Σb such that v(x, y) = ξωb

x (y). Let u : Σω × Σa → Σb be de-
fined by u(〈x, p〉), y) := v(x, 〈p, y〉). So ηab

〈x,p〉(y) = ξωb
x 〈p, y〉 = v(x, 〈p, y〉) =

u(〈x, p〉 , y).
sm

n (ηab): Let v : Σω×Σa → Σb be computable. Then there is some x ∈ Σ∗

such that ξωb
x 〈p, y〉 = g(p, y). Let s : Σω → Σω be such that s(p) := 〈x, p〉

which is computable. So g(x, y) = ξωb
x 〈p, y〉 = ηab

〈x,p〉(y) = ηab
s(p)(y).

N.B. a similar argument holds for the equivalence lemma as in 6.3.

6.3 The representation of continuous functions

Finally ηab can be used to represent abstract functions. Without any further
work beyond the definition below a representation [ϑ→ ρ2] of the those cyclic
functions continuous on the standard topologies of T and C is obtained. It is
known that this is the case since ηωω represents the continuous string func-
tions and by admissibility of ϑ and ρ2 with respect to the standard topologies
and also in conjunction with Theorem 4.3 it is known that the resulting ab-
stract functions are also continuous with respect to the standard topologies.
Conveniently the computable functions are the computable elements of the
representation.

As a side effect many more representations of cyclic functions are created
each resulting in a different set of functions being represented derived from
the distinct representations of T and C.

Definition 6.7. Let δi be a naming system of Mi for i ∈ (n + 1) such that
δ0 : Σb →M0 and 〈si〉ni=1 ∈ Σa where a, b ∈ {∗, ω}.

Let [(δi)
n
i=1 → δ0] be the representation of ((δi)

n
i=1, δ0)-continuous func-

tions in M
Qn

i=1 Mi

0 defined by

[(δi)
n
i=1 → δ0](p) = f ⇔ f((δi(si))

n
i=1) = δ0 ◦ ηab

p 〈si〉ni=1

21

where ∀i, si ∈ dom(δi) and dom(f) =
∏n

i=1Mi.

The superscript on η will be omitted in general from now on since the
type can be deduced easily from the context and would clutter results. Here
is a useful result on the continuous function representation.

Lemma 6.8. (g, f) 7→ g ◦ f is ([ε→ δ] , [γ → ε] , [γ → δ])-computable.

Proof. Let [ε→ δ] (q) = g, [γ → ε] (p) = f and let r ∈ dom(γ). So, g ◦ f ◦
γ(r) = g ◦ ε ◦ ηq(r), by definition of [γ → ε], = δ ◦ ηq ◦ ηp(r), by definition
of [ε→ δ]. By utm(η) and sm

n (η) there exist computable functions a, b, c, d, e
such that ηq ◦ηp(r) = ηq ◦a(p, r) = b(q, a(p, r)) = c(d(q, p), r) = ηe(q,p)(r).

6.4 The Curry theorem

This theorem will be the most useful result from this point onwards and is
a generalisation of [1] 3.3.15 type conversion. It is essentially a neat way of
reasoning about the representation of continuous functions without having to
worry about the representation itself but instead concerning the computabil-
ity of the function represented.

Theorem 6.9. Let δi be a representation of Mi for i ∈ n + 1 and let Y :=∏n
i=2Mi. For any total function f : Y ×M1 → M0 there exists a transform

T such that T (f) : Y →MM0
1 where

T (f) ((yi)
n
i=2) (x) := f ((yi)

n
i=2 , x)

and also

f is ((δi)
n
i=2 , δ1, δ0) -computable ⇔ T (f) is ((δi)

n
i=2 , [δ1 → δ0]) -computable.

Proof. Let (si)
n
i=1 be such that si ∈ dom(δi). Let f : Y ×M1 → M0 and let

p ∈ Σω such that [(δi)
n
i=1 → δ0] (p) = f . Similarly, let g : Y → MM1

0 and let
q ∈ Σω such that [(δi)

n
i=2 → [δ1 → δ0]] (q) = g.

T ◦ f ((δi (si))
n
i=2 , δ2 (s2)) (δ1 (s1))

=T ◦ [(δi)
n
i=1 → δ0] (p) (δi (si))

n
i=2 (δ1 (s1)) , by definition of f,

= [((δi)
n
i=2 , δ1) → δ0] (p) ((δi (si))

n
i=1) , by the definition of T ,

=δ0 ◦ ηp 〈si〉ni=1 , by definition of the representation of continuous functions.

22

Also,

g ((δi (si))
n
i=2) (δ1 (s1))

= [(δi)
n
i=2 → [δ1 → δ0]] (q) (δi (si))

n
i=2 (δ1 (s1)) , by definition of g,

= ([δ1 → δ0] ηq 〈si〉ni=2) (δ1 (s1)) , by definition of →,

=
(
δ0 ◦ ηηq〈si〉ni=2

)
(s1) , again by definition of →.

Now, by utm(η) there exists a computable function A such that, ηp 〈si〉ni=1 =
A (〈p, 〈si〉ni=2〉 , s1) and, by sm

n (η), there exist computable functions B,C such
that A (〈p, 〈si〉ni=2〉 , s1) = ηB〈p,〈si〉ni=2〉 (s1) = ηηC(p)〈si〉ni=2

(s1). So C(p) = q,

hence all such f computably translates to a g as above where both functions
take on the same values for all possible sequences (si)

n−1
i=0 as above.

Conversely, by utm(η) there exist computable functions D,E such that
ηηq〈si〉ni=1

(s1) = ηD(q,〈si〉ni=2)(s1) = E(D(q, 〈si〉ni=2), s1). Since composition is
closed under computability, there exists a computable function F such that
E(D(q, 〈si〉ni=2), s1) = F (q, 〈si〉ni=1). Finally, by sm

n (η), there exists a com-
putable function G such that F (q, 〈si〉ni=1) = ηG(q) 〈si〉ni=1. So G(q) = p forms
the converse translation function between g and f such that g = T (f).

Corollary 6.10. Let δ be a representation of some subset, N , of MM2
1 , γi

be a representation of Mi and let apply(f, x) = f(x). apply is (δ, γ1, γ2)-
computable ⇔ δ ≤ [γ1 → γ2].

This immediate corollary of the Curry theorem says that the standard rep-
resentation of continuous functions is the weakest representation, i.e. gives
rise to the largest number of computable functions, such that apply is com-
putable. This observation will be useful in the next section for understanding
that, for most of the representation defined there, apply is not computable
which may appear to render the functions represented useless in a computable
world. This is not entirely true as will be seen.

7 Representations of integrable functions

7.1 Complex sequence spaces

Complex valued sequence spaces are used in the process of defining more
representations of cyclic functions. A sequence (zk)k∈Z of complex numbers
can be regarded as a function from Z to C so the representation, [νZ → ρ2],
which exist due to the work done in the previous section, appears to be a

23

suitable choice. The suitability of [νZ → ρ2] is backed up by the first result
below which shows that [νZ → ρ2] is admissible. The results here make good
use of results from the previous section which makes it worthwhile having
generalised the definition of η to include finite inputs and infinite outputs.

Lemma 7.1. If representation γ of X is admissible with respect to topol-
ogy τ on X then [νZ → γ] is admissible with respect to the product topology
generated by τ on XZ.

Proof. Since γ is admissible with respect to τ then there exists an effective
topological space S = (M,σ, ν). Define an new effective topological space
SZ =

(
MZ, σZ, νZ)

where σZ :=
{
J(Uk)|k|<N : Uk ∈ σ ∧N ∈ N

}
such that

J(Uk)|k|<N :=
{
(zk)k∈Z ∈MZ : zk ∈ Uk ∧ |k| < N

}
. Also let νZ 〈uk〉2N

k=0 =
J(ν(ut(k)))|k|<N where uk ∈ dom(ν) and

t(k) =

{
2k if k ≥ 0

−2k − 1 if k < 0.

.
Firstly A :

(
(zk)k∈Z , n

)
7→ zn is (δSZ , νZ, γ)-computable since there exists

a type-2 machine M which takes inputs p ∈ dom(δSZ) and n ∈ range(νZ)
which searches for ι(u) / p. If u = 〈wi〉Ni=0 such that N > 2n then write
ι(wt(i)) to the output tape. So, by the Curry theorem, (TA)

(
(zk)k∈Z

)
(n) =

A
(
(zk)k∈Z , n

)
= zn is (δSZ , [νZ → γ])-computable hence δSZ ≤ [νZ → γ].

Conversely, define a type-2 machine, M ′, which acts upon inputs p ∈
dom ([νZ → δS]). [νZ → δS] (p) = f ⇔ f(νZ(s)) = δS ◦ η∗ωp (s) hence the

machine can work in stages where at stage n it takes each ν−1
Z (k) where

|k| < n and evaluates q := η∗ωp (ν−1
Z (k)) until the first n ι(wk,j) / q have been

produced. Finally it extends the output tape with every string of the form

ι
(〈
wt−1(k),jk

〉2m

k=0

)
where m ≤ n and (∀k)0 < jk ≤ n. Hence fM ′ translates

[νZ → δS] to δSZ . Hence, by admissability of γ, [νZ → γ] ≤ δSZ .

Lemma 7.2.
(zi)

n
i=0 7→ z := lim

i→∞
zi

where ‖zi − z‖∞ ≤ 2−i is ([νN → ρ2] , ρ2)-computable.

This is a simple consequence of the result for convergence of real numbers
[1] theorem 4.3.7 since real and imaginary parts can be considered separately.

Lemma 7.3.
S :

(
(zi)i∈Z , e

)
7→

∑
i∈Z

zi

24

(
(zi)i∈Z , e

)
∈ dom(S) ⇔ (∀m > n ≥ e(N))

∣∣∣∣∣∣
∑

n+1<|i|<m

zi

∣∣∣∣∣∣ < 2−N

is ([νZ → ρ2] , [νN → νN] , ρ2)-computable.

Proof. It is clear that apply
(
(zk)z∈Z , n

)
7→ zn is ([νZ → ρ2] , νZ)-computable

by Corollary 6.10, similarly for e(n), and multiplication is (ρ2, ρ2, ρ2)-computable
so primitive recursively define h

(
(zk)k∈Z , 0

)
= z0 and h

(
(zk)k∈Z , n+ 1

)
:=

h
(
(zk)k∈Z , n

)
+ zn+1 + z−n−1 which preserves computability by [1] Theo-

rem 3.1.7 hence is ([νZ → ρ2] , νN, ρ
2)-computable. So, by the Curry the-

orem and computable composition, (Tg)
(
(zk)k∈Z

)
=

(∑
|k|≤e(n) zk

)
n∈N

is

([νZ → ρ2] , [νN → ρ2])-computable, where g
(
(zk)k∈Z , n

)
= h

(
(zk)k∈Z , e(n)

)
.

Finally, by an application of Lemma 7.2, which can be done since (∀m > n ≥
e(N))2−N >

∣∣∣∑n+1<|i|<m zi

∣∣∣ so 2−N ≥
∣∣∣∑e(N)+1<|i| zi

∣∣∣ =
∣∣∣∑i∈Z zi −

∑
|i|≤e(N)

∣∣∣,
the result holds.

7.2 Representations of L(T)

In this section a representation of the integrable functions such that integra-
tion itself is computable is constructed. A method similar to that in [4] used
for constructing the set of Lebesgue integrable functions will be adopted as a
model for this construction. Firstly a representation, λstep

γ,δ , of complex valued
step functions on T is formulated. This is then used to produce a represen-
tation, λinc

γ,δ , of integrable functions which can be represented by a sequence
of step functions which are increasing in their real and imaginary parts and
whose sequence of integrals a within a controlled distance of the final integral
- Linc(T). Finally the representation, λ1

γ,δ, is created from λinc
γ,δ by considering

the difference of Linc(T) functions. The computability of integration itself is
verified in the process.

Definition 7.4. Let γ be a representation of T and δ a representation of C.

λstep
γ,δ

(
ι
(
ν−1

N (k)
)
〈ui〉ki=1

)
= f ⇔ (∀i)ui = 〈li, hi, ri〉

where li, ri ∈ dom(γ), hi ∈ dom(δ) and γ(li) 6= γ(ri) and also

f(ẋ) =
k∑

i=1

s(hi)

where s(hi) =

{
δ(hi) if ẋ is strictly between li and ri anti-clockwise

0 otherwise.

25

Theorem 7.5. I : f 7→
∫
f is (λstep

ϑ,ρ2 , ρ
2)-computable.

Proof. For all i, each projection from f = λstep
ϑ,ρ2(ι(ν

−1
N (k)) 〈ui〉ki=1), where

ui = 〈li, hi, ri〉, to each of ϑ(li), ϑ(ri), ρ
2(hi), is (λstep

ϑ,ρ2 , νN, ϑ)-computable,

(λstep
ϑ,ρ2 , νN, ϑ)-computable, (λstep

ϑ,ρ2 , νN, rho
2)-computable respectively. Since (xi :=

ϑ(li)) 6= (yi := ϑ(ri)), Λ(xi, yi) is (ϑ, ϑ, ρ)-computable. Also multiplica-
tion is (ρ2, ρ2, ρ2)-computable and ρ ≤ ρ2 hence, since composition preserves
computability, (xi, zi, yi) 7→ ziΛ (xi, yi), where zi = ρ2(hi), is (ϑ, ρ2, ϑ, ρ2)-
computable. Finally, since (a, b) 7→ a + b is (ρ2, ρ2, ρ2)-computable, by k-
fold application and preservation of computability through composition the
proposition holds.

Definition 7.6. Let λinc
γ,δ(〈pi〉∞i=1) = f where ∀i, pi ∈ dom(λstep

γ,δ) if and only
if the following are satisfied:

f = lim
i→∞

λstep
γ,δ (pi)

∀i,
∣∣∣∣∫ (

f − λstep
γ,δ (pi)

)∣∣∣∣ < 2−i

∀i,< ◦ λstep
γ,δ (pi) ≤ < ◦ λstep

γ,δ (pi+1)

∀i,= ◦ λstep
γ,δ (pi) ≤ = ◦ λstep

γ,δ (pi+1).

Theorem 7.7. I : f 7→
∫
f is (λinc

ϑ,ρ2 , ρ2)-computable.

Proof. The projection (f, i) 7→ φi where f = limi→∞ φi and
∣∣∫ (φi − f)

∣∣ <
2−i is (λinc

ϑ,ρ2 , νN, λ
step
ϑ,ρ2)-computable. In addition, by Theorem 7.5 and preser-

vation of computability under composition, (f, i) 7→
∫
φi is (λinc

ϑ,ρ2 , νN, ρ
2)-

computable. By the Curry theorem, f 7→
(∫

φi

)∞
i=1

is (λinc
ϑ,ρ2 , [νN → ρ2])-

computable. Since
∣∣∫ f − ∫

φi

∣∣ =
∣∣∫ (f − φi)

∣∣ < 2−i, by Theorem 7.2 and
computable composition, f 7→ limi→∞

(∫
φi

)
=

∫
f is (λinc

ϑ,ρ2 , ρ2)-computable.

Definition 7.8. Let λ1
γ,δ(〈p, q〉) = f ⇔ f = λinc

γ,δ(p)− λinc
γ,δ(q).

Theorem 7.9. I : f 7→
∫
f is (λ1

ϑ,ρ2 , ρ2)-computable.

Proof. The two projections (λ1
ϑ,ρ2(〈p, q〉)) 7→ λinc

ϑ,ρ2(p), λinc
ϑ,ρ2(q) are (λ1

ϑ,ρ2 , λinc
ϑ,ρ2)-

computable. Since subtraction is (ρ2, ρ2, ρ2)-computable, by Theorem 7.7 and
computable composition, the proposition holds.

26

7.3 Relationship between λ1
γ,δ and [γ → δ]

Several new representations of some subset of the cyclic functions have been
obtained with thus far one computable function defined i.e. integration.
It is obvious that λstep

ϑ,ρ2 ≤ λinc
ϑ,ρ2 ≤ λ1

ϑ,ρ2 . The following results show that
the continuous function representations tie in through computable reduction
to λinc

ϑ,ρ2 . This shows that integration is also computable on [ϑ→ ρ2] by

converting the function to the λinc
ϑ,ρ2 representation first. However apply is

not computable in any of these new representations by Corollary 6.10.
One of the most interesting aspects of this paper is that compactness of

T is used to ensure that the reduction is successful hence it is unlikely that
there is an analogous reduction had this paper been concerned with functions
with domain R for example.

Lemma 7.10. An arbitrary choice function of multi-valued function (f, n) 7→
ψn such that ‖ψn − f‖∞ < 2−n is

(
[ϑ→ ρ2] , νN, λ

step
ϑ,ρ2

)
-computable.

Proof. Since ρ2 ≡ ρ2
C and ϑ ≡ ϑC , by Theorem 4.22, [ϑ→ ρ2] ≡ [ϑC → ρ2

C].
Let [ϑC → ρ2

C] (p) = f . Let N be the type-2 machine behind utm(ηωω) in
Lemma 6.6.

Let a type-2 machine, M , systematically work through each v ∈ L where
L :=

{
⊕k

i=1ι(ui) : ⊕k
i=1ι(ui) v q ∈ dom (ϑC)

}
which is recursive since the con-

ditions ui ∈ dom(νQ) and ∀m,m′ > i, ‖ν̇Q(um)− ν̇Q(um′)‖ < 2−i can be
checked for finite initial segments as a consequence of Lemma 4.23.

At each stage, M simulates N on input (p, v) until N requests an input
beyond v upon which point it considers the output so far generated, say w,
for which it is known that there exists q1, q2 ∈ dom(ρC) such that w v 〈q1, q2〉
of which say w1 v q1 and w2 v q2 can be determined and from that the last
ι(h1)/w1 and ι(h2)/w2 can be found as well as checking that there are at least
n distinct ι(h∗)’s before each of ι(h1) and ι(h2). If that final check fails then
move onto the next v′ ∈ L and start again. Otherwise let z = νQ(h1)+iνQ(h2)

and consider v = ⊕k
i=1(ui) and B :=

⋂k
i=1B (ν̇Q (ui) , 2

−i) and finds the end
points l, r ∈ Q. The end point r can be computed by initializing it to
νQ(u1)−2−1 and considering at stage i = 1 to k whether ν̇Q(ui)− ˙2−i is anti-
clockwise between ṙ and ν̇Q(ui), which is decidable for rationals by Lemma
4.23, if so updating r to νQ(ui). Similarly for l.

Now, f [B] = f ◦ ϑC(vΣω) ⊆ ρ2
C ◦ ηp[vΣ

ω] ⊆ ρ2
C [wΣω] ⊆ B(z, 2−n) hence a

single step within the required proximity to f along its entire length, i.e. the
step of height z starting at l̇ and going anti-clockwise round T to ṙ, has been
found. Furthermore this information can be recorded on the “storage tape”
in finite space since it is notated by a finite set of elements of dom(νQ).

27

Now consider all such triples recorded so far on the storage tape. Take
for instance (l′, h′, r′): If both l′, r′ are anti-clockwise between l, r then delete
(l′, h′, r′) from the storage tape. If only l′ is then include (l′,−h′, r) on the
storage tape and if only r′ is then include (l,−h′, r′). Hence any overlaps
with previously determined steps will not distort the step calculated at the
current stage of the computation.

Finally, each anti-clockwise interval (li, ri) recorded is open and T ⊆⋃∞
i=1(li, ri) but T is compact hence there exists I ∈ N such that T ⊆⋃I
i=1(li, ri). Hence, if at the end of each stage M checks the predicate

P ∼= T ⊆
⋃
{(l, r) : (l, h, r) is on the storage tape} then it will eventu-

ally hold upon which point the number of triples on the storage tape are
counted, say k, and the tuples, say (li, hi, ri)

k
i=1 are wrapped up in the form

p∗ := ν−1
N (k)

〈
ϑ−1(li), (ρ

2)
−1

(hi), ϑ
−1(ri)

〉k

i=1
∈ λstep

ϑ,ρ2 .

Note that P is decidable since any l0 can be chosen. The machine can
then work in stages where at stage (j + 1) each potential lj+1 is considered
until one is found such that such that ˙lj+1 is anti-clockwise between l̇j and
ṙj and also ˙rj+1 is anti-clockwise between ṙj and ˙lj+1. M then continues to
the next stage unless either no such lj+1 is found, in which case it rejects
the predicate, or ˙rj+1 is anti-clockwise between l̇0 and ˙lj+1 in which case it
accepts P .

Theorem 7.11. [ϑ→ ρ2] ≤ λinc
ϑ,ρ2

Proof. Let [ϑ→ ρ2] (p) = f . By Lemma 6.8 f − (1 + i)2−i−1 is [ϑ→ ρ2]-
computable, since −(1+ i)2−i−1 is ρ2-computable and addition is (ρ2, ρ2, ρ2)-
computable. By Lemma 7.10 and composition, the mapping (f, i) 7→ ψi is(
[ϑ→ ρ2] , νN, λ

step
ϑ,ρ2

)
-computable such that ψi ∈ dom(λstep

ϑ,ρ2) and ‖ψi − (f −
(1 + i)2−i−1)‖∞ < 2−(i+3) ⇒ ‖ψi − f‖∞ < 2−i which ensures that the step
functions are increasing with i and also converge to f at infinity.

Finally f is both continuous and has a compact domain hence is inte-
grable so

∫
f exists. So |

∫
f −

∫
ψi+3| = |

∫
(f − ψi+3) | ≤

∫
‖f − ψi+3‖∞ ≤

2−i−32π ≤ 2−i. Hence q =

〈(
λstep

ϑ,ρ2

)−1

(ψi)

〉∞

i=4

∈ dom
(
λinc

ϑ,ρ2

)
can clearly be

output by a type-2 machine and λinc
ϑ,ρ2(q) = f .

Theorem 7.12. ¬
(
λinc

ϑ,ρ2 ≤t [ϑ→ ρ2]
)

Proof. This is a consequence of appealing to topology again through Lemma
4.12 since for example p

(
χ(−1,1)

)
is in Linc(T) but not in C(T).

28

8 Fourier representations

8.1 Absolutely convergent Fourier series

To wrap up this paper the focus on cyclic functions will be taken advantage of
to construct a representation which is based on absolutely convergent Fourier
series. Absolute convergence is probably the neatest condition which can be
put on sequences of complex numbers to ensure the pointwise convergence of
Fourier series hence will be encapsulated in the representation.

Definition 8.1. Let the absolutely convergent Fourier series representation,
αγ, be such that αγ (〈q, 〈pi〉∞i=0〉) = f ⇔ f =

∑
k∈Z ckek and

∀m,n,m > n > r(N) ⇒
∑

n<|k|<m

|ci| < 2−N

where r = [νN → νN] (q) and ∀i, ci = γ(pi).

Theorem 8.2. αρ2 ≤ [ϑ→ ρ2]

Proof. (n, x) 7→ en(x) is (νZ, ϑ, ρ
2)-computable since composition preserves

computability and by the following ingredients: multiplication is (νZ, ϑ, ϑ)-
computable by Theorem 4.26 and θ 7→ exp(iθ) is (ϑ, ρ2)-computable as dis-
cussed in the aftermath of Lemma 5.5.

Where f =
∑

k∈Z cnen where r : N → N such that ∀m > n > r(N),∑
n<|k|<m |ck| < 2−N it is clear that the sequences of strings in its αρ2 repre-

sentation can be unfolded such that projections, (f, k) 7→ ck, is (αρ2 , νZ, ρ
2)-

computable and (f, k) 7→ r is (αρ2 , νZ, [νN → νN])-computable.
Since, by [1] 4.3.9, multiplication is (ρ2, ρ2, ρ2)-computable there exists

a G : (f, k) 7→ ckek(x) is (αρ2 , νZ, ρ
2)-computable, since composition pre-

serves computability. By the Curry theorem T (G) (f, x) (n) = G (f, x, n) is
(f, [νZ → ρ2])-computable. By Lemma 7.3, since whenever n > m > r(N),

2−N >
∑

m<|k|<n |ck| =
∑

m<|k|<n |ckek| >
∣∣∣∑m<|k|<n ckek

∣∣∣, and by com-

putable composition, H(f, x) := S
((
T (G) (f, x)k∈Z

)
, r

)
=

∑
k∈Z ckek(x) is

(αρ2 , ϑ, ρ2)-computable.
A further application of the Curry theorem completes the proof since

(U ◦H)(f)(x) = H(f, x) so (U ◦H)(f) = f .

Here it is interesting to note that the specification for the representation
of αρ2 cannot greatly be improved by removing part relating to the modulus
function N → N which was not required in the analogous part of ρC , ϑC , etc.
This is because by uniqueness of the function generated by a Fourier series

29

(see [6] 2.4) the modulus function cannot be fixed without restricting the set
of functions represented. Also the modulus cannot be determined from the
sequence therefore omitted entirely as shown below.

Lemma 8.3. There is no ([νZ → ρ2] , [νZ → ρ2])-computable choice function
such that (ck)k∈Z 7→ r where ∀m > n > r(N),

∑
n<|k|<m |ck| < 2−N .

Proof. It is sufficient to show there is no such continuous function.
Suppose F is ([νZ → ρ2] , [νZ → ρ2])-continuous such that F : (ck)k∈Z 7→ r

where (∀m > n > r(N))
∑

n<|k|<m |ck| < 2−N .

It is clear that Gc : C → `1(C) such that Gc(a) = ac where c ∈
`1(C) is continuous for all such c hence, by Theorem 4.3 and 7.1, Gc is
(ρ2, [νZ → ρ2])-continuous. Hence, since composition preserves continuity,
H : a 7→ F (Gc (a)) (0) is (ρ2, νN)-continuous.

By Theorem 4.3, standard topological concepts can be used. Let N0 be
such that H(a0) = N0 where a0 ∈ C so, since N has the discrete topology to
allow admissibility, {N0} and Z − {N0} are open so U1 := H−1({N0}) and
U2 := H−1(N − {N0}) are open in C and also cover C since H is total so
U2 = C−U1. But C is connected and a0 ∈ U1 so U1 = C. Hence H(a) = N0.

Hence, by definition of H, ∀a ∈ C (∀m > n > N0)
∑

n<|k|<m |ack| < 2−0 =

1 which can only hold for finite sequences, since |a| can be made arbitrarily
large, yielding a contradiction. Hence F does not exist in general.

8.2 Fourier transforms

An appropriate final note for a paper on computable cyclic functions is to
consider the computability of the Fourier transform. This result has signif-
icant note in terms of the themes of this paper in that again functions are
being manipulated in a computable manner without considering or even be-
ing able to consider the values which the function takes. This demonstrates
part of the computable world which has been opened up as a result of the
work in this paper.

Lemma 8.4.

(ψ, φ) 7→ ψ + φ and (ψ, φ) 7→ ψ · φ are both
(
λstep

ϑ,ρ2 , λ
step
ϑ,ρ2 , λ

step
ϑ,ρ2

)
-computable.

Proof. Trivially, addition can be realised by a type-2 machine which outputs
a step function which consists of the steps every step in ψ and every step in
φ.

Multiplication can be realised by a type-2 machine which outputs a step
function which consists of the steps produced by multiplying every step in ψ
by every step in φ. Multiplication of steps can be performed by multiplying

30

the complex numbers which the steps take and finding the anti-clockwise
start and end points where the steps intersect on T.

Theorem 8.5. The mapping f 7→ f̂ is
(
λ1

ϑ,ρ2 , [νN → ρ2]
)
-computable.

Proof. Since en is [ϑ→ ρ2]-computable as shown in the proof of theorem 8.2
and [ϑ→ ρ2] ≤ λinc

ϑ,ρ2 , en is λinc
ϑ,ρ2-computable.

Following from the definitions of the λ representations, consider a function
f ∈ L1(T) such that λ1

ϑ,ρ2(〈p, q〉) = f = g − h where g = λinc
ϑ,ρ2(p) and

h = λinc
ϑ,ρ2(q). Also let λinc

ϑ,ρ2(〈si〉∞i=1) = g where ∀i, si ∈ dom(λstep
ϑ,ρ2) and ψi =

λstep
ϑ,ρ2(si) and similarly let λinc

ϑ,ρ2(〈ti〉∞i=1) = h where ∀i, ti ∈ dom(λstep
ϑ,ρ2) and

φi = λstep
ϑ,ρ2(ti).

Considering real and imaginary parts of f separately and symmetrically
as follows with consideration to the increasing properties of the step functions
and the proximity of the integrals of the step function to the final integral.

‖<f − (<ψi+1 −<φi+1)‖1 =

∫
|(<g −<h)− (<ψi+1 −<φi+1)|

=

∫
|(<h−<ψi+1)− (<g −<φi+1)|

≤
∫
|(<h−<ψi+1)| −

∫
|(<g −<φi+1)|

=

(∫
<g −

∫
<ψi+1

)
−

(∫
<h−

∫
<φi+1

)
≤ 2

√
2
−1

2−i−1

=
√

2
−1

2−i

Hence ∀i, ‖f − (ψi+1 − φi+1)‖1 ≤ 2−i.

Since integration is
(
λ1

ϑ,ρ2 , ρ2
)
-computable a type-2 machine can compute

an m ∈ N s.t. ‖ψi − φi‖1 =
∫
|ψi − φi| ≤ 2m.

Again following from the λinc
ϑ,ρ2 representation let λinc

ϑ,ρ2(〈ui〉∞i=1) = en where

∀i, ui ∈ dom(λstep
ϑ,ρ2) and θi = λstep

ϑ,ρ2(ui). By the linearity of integrals, the
triangle inequality and the estimation theorem (see [5]) and also the above

31

observations the following can be deduced∣∣∣∣∫ fen −
∫

(ψi+2 − φi+2) θi+m+1

∣∣∣∣
=

∣∣∣∣∫ (f − (ψi+2 − φi+2)) en +

∫
(ψi+2 − φi+2) (en − θi+m+1)

∣∣∣∣
≤

∣∣∣∣∫ (f − (ψi+2 − φi+2)) en

∣∣∣∣ +

∣∣∣∣∫ (ψi+2 − φi+2) (en − θi+m+1)

∣∣∣∣
≤ ‖f − (ψi+2 − φi+2)‖+ ‖en − θi+m+1‖∞ ‖(ψi+2 − φi+2)‖1

≤ 2−i−1 + 2−i−m−12m

= 2−i.

So, a type-2 machine, M , which when input a representation of an integer,
n, and with the concrete string representing f under the representation λ1

ϑ,ρ2

can find the bound m as above demonstrated above and at stage i can find
the strings for the strings for the step functions ψi+3, φi+3, θi+m+2 by the
definition of the λ representations. It can then calculate (ψi+3 − φi+3) θi+m+2

by lemma 8.4 and
∫

(ψi+3 − φi+3) θi+m+2 by theorem 7.5 from which can be
extracted through, translation between Cauchy representations, a rational
within 2−i−1 precision to the result. Hence can be output eventually in an
initial segment of an element of dom(ρ2

C) hence of dom(ρ2).

So fM realises a function (f, n) 7→
∫
fen which is

(
λ1

ϑ,ρ2 , νZ, ρ
2
)
-computable

hence by one final application of the Curry theorem 6.9 the Fourier transform

is
(
λ1

ϑ,ρ2 , [νZ → ρ2]
)
-computable.

9 Conclusion

Over the course of this paper several representations of cyclic functions have
been defined and the tools for building many more have been created. How-
ever it would be nice to be able to draw them together in some reasonable
manner involving the comparison of the representations through computable
reduction forming a picture of how they relate in a partial order. It has
become clear that this partial order is on a transfinite set of distinct classes
of representations and that it is not linear and moreover it is a lattice by
Lemmas 4.15 and 4.21. However, given the time available for the completion
of this paper, not all of them could be considered.

Klaus Weihrauch had already given part of the partial order on the rep-
resentation of the reals from which a hierarchy could be deduced for the
complex numbers and use similar techniques to obtain a hierarchy on T. On

32

T it was shown that ϑ had a number of equivalent inter translatable represen-
tations such as ϑC as shown in Theorem 4.19. Also the other representations
considered sat above ϑ in the partial order hence had more computable ob-
jects but lacked the property of admissibility with respect to the standard
topology on T, a property which was seen to retain topological concepts in
the representation.

So a point to begin considering the cyclic function representations needed
to be chosen. It was known that only a subset size 2ω could be considered
and also that the space of continuous functions was both equinumerous to Σω

and occurred frequently in analysis. It was also observed that computability
and continuity were closely related concepts. Given the nice relationship be-
tween topological continuity and continuity in the Cantor space which arose
when a representation had the admissible property (see 4.3) and also given
that the standard representation of continuous functions covered the space
of continuous cantor functions, the representation [ϑ→ ρ2] was a natural
choice since the aforementioned observations meant that the space of contin-
uous cyclic functions were being represented. However effectively an infinite
class of representations were being considered already since the representa-
tion ξωω was defined implicitly, rather than classical constructive methods,
not to mention those representations obtained be replacing ϑ and ρ2 with
equivalent representations such as ϑC or ϑ< ∨ ϑ>.

A small selection of distinct classes of representations which, through the
course of the investigation, were found to relate to [ϑ→ ρ2] by computable
reduction, and hence which reside in the uncountable lattice of representa-
tions of cyclic functions, are shown in the diagram below. If there is a path
upward to a representation, then more cyclic functions are computable in
the higher representation since computable elements of the lower representa-
tion can be computably translated to the higher one therefore retaining the
computability of the element but the converse does not hold. Also, if some op-
eration is computable for one representation then it will remain computable
for anything below it in the representation hierarchy. In corollary 6.10 the
upper bounds for apply were established and in the closing sections the upper
bounds for integration were considered.

33

λ1
ϑ,ρ2 [ϑ→ ρ2

>]

λinc
ϑ,ρ2

OO

[ϑ→ [ρ, ρ>]]

OO

[ϑ→ [ρ>, ρ]]

ggPPPPPPPPPPPPP

λstep
ϑ,ρ2

OO

[ϑ→ ρ2]

eeKKKKKKKKKKK

OO 77ooooooooooooo

αρ2

99rrrrrrrrrrr
[ϑ< → ρ2]

OO

[ϑ> → ρ2]

ggPPPPPPPPPPPP

[ϑCn → ρ2]

OO 66nnnnnnnnnnnn
[ϑ→ ρ2

⊥]

``AAAAAAAAAAAAAAAAAAAAA

[ϑCn → ρ2
⊥]

OO 66nnnnnnnnnnnn

Note that this is nowhere near the end of representations which have
been either explicitly or implicitly constructed in this paper; for example
αρ2 ∧ [ϑCn → ρ2

⊥] which is a lower bound for the representations shown in the
diagram above or

[
ϑ→ ν2

Q
]

which is the set of continuous functions taking
complex rational values (which is the set of constant functions taking rational
complex value by [1] Corollary 3.2.13) and satisfies

[
ϑ→ ν2

Q
]
< [ϑ→ ρ2] or

even the absolute bottom element the empty representation where nothing
is represented let alone computable. However this hierarchy can be extended
arbitrarily further upwards for instance consider υ := λ1

ϑ,ρ2∨[ϑ→ ρ2
>] which is

a representation which defines more functions than any of the representations
shown above so, from Lemma 4.21 the largest set of function so far in this
paper have become computable. Why not consider representation υ+ = υ∨ ε
where ε has the domain containing only the string 0ω which maps to f where
f is a unique cyclic function which is not in the range of υ so υ < υ+.
The set of computable functions could be extended in this contrived manner
indefinitely but the point is that useful functions such as integration cease to
be computable so there is little to be gained by considering them unlike with
the representations focused on by this paper which have sought to maximise
the set of computable functions while retaining utility in computable analysis.

Finally, the choice of model has paid off as it challenges ideas in other
computability theories. For example computable implies continuous is not
necessarily preserved when considering the abstract meaning of a computa-
tion as confirmed by the λ representation or it has been possible to compare

34

say the ϑ, ϑ< and ϑCn representations which would often be indistinguishable.
More poignantly, in [7], the following claim is made:

We show that a function f may be computable yet have a Fourier
transform f̂ which is not computable; and conversely f̂ may be
computable yet f not be computable.

This statement however conflicts with Theorem 8.5 since any λ1
ϑ,ρ2-computable

function can be transformed computably hence has a [νZ → ρ2]-computable
Fourier transform. This apparent contradiction lies in the inability to change
the representation in the axiomatic approach to computable analysis in [8]
upon which [7] is based.

9.1 Where to next?

This paper has only touched upon the possible investigation paths opened
up by considering Fourier analysis in the TTE model. Indeed in a sense the
theory has not even been touched since all that has been done is to establish
a solid foundation for the study of cyclic functions in a computable universe.
In addition to the obvious route of incorporating more and more results in
Fourier analysis into the theory several other question have arisen about the
material covered. To conclude with some brief comments on some of these
questions are noted.

• Can the admissibility of a quotient space representation which is ob-
tained from two admissible representations be generalised to cover more
than just T? This would replace the chapter on T with a general the-
ory and an acknowledgement that results on R and Z had already been
established.

• Is λ1 the weakest representation such that integration is computable or
can we go weaker still? It would appear that having an extra two values
for each step stating the value at it’s end point instead of setting them
to 0 every time would increase the number of computable functions
but would only have cluttered the theory. It is likely that no weaker
representation preserves the computability of integration.

• Vasko Brattka [2] observes that in modifying the representation ρ< such
that it contains an integer bound at the beginning of the numbers al-
lows a computable version of the uniform boundedness theorem which
would normally be considered to be non-computable. This could then
be adapted to cyclic functions which would allow more sequence space

35

representations to be tied in which could be used to solve certain prob-
lems particularly those dependent on the uniform boundedness theorem
and its corollaries.

• A non trivial representation of T and C, say ϑ̌ and ρ̌2, be defined such
that λ1

ϑ̌,ρ̌2 ≡
[
ϑ̌→ ρ̌2

]
? This would be interesting to be able to en-

code integrable functions in a continuous manner and use apply. This
may be possible using representations with given primitive recursive
convergence rates and allowing the use of recursive functions in eval-
uation since at discontinuous points the value can be drawn towards
some predetermined point if convergence is not clear.

• The partial order structure is an endless source of investigation. What
about αρ⊥ or λ1

ϑ<,ρ2
>
? How do they tie in to other functions? Or perhaps

how does [ρ>, ϑCn] compare to [ρ>, ρ>]?

• What additional conditions are needed on a sequence of integrable func-
tions to obtain a computable version of the monotone/dominated con-
vergence theorem for λ1

ϑ,ρ2?

• Can λ1
ϑ,ρ2 be restricted to representing L2(T) and obtain a computable

reduction either way between itself and a representation of square sum-
mable sequence of complex numbers i.e. bringing the theory of Hilbert
spaces into this computable world?

• While ϑCn was shown to induce the trivial topology on T can the repre-
sentations of T be balanced by a representation with a coarser induced
topology. Intuitively it should come from the Cantor topology and
would be such that only one string maps to an element of T or perhaps
it would be such that no two distinct strings which share an initial seg-
ment can map to the same element. A weaker question would simply
ask for any representation of T, ϑ⊥ such that ϑ⊥ < ϑ.

• What are the complexities of the underlying algorithms and can they
be improved upon? This has not been an issue since only the exis-
tence of an algorithm has been required. Of particular interest would
be the algorithm in Lemma 7.10 since termination occurs after an ar-
bitrary period of time due to the reliance on the compactness of T for
termination.

• How can Weihrauch’s model be formalised further and constructed in
the theory of Hoare triple specification statements program refinement
and data refinement under development in Oxford? Loop invariants

36

can be used to ensure properties hold and would be a neat way of
reasoning about epsilon style arguments in a computable environment.
Can these theories deal with infinite inputs and outputs and infinite
representations? The representations would appear to fit in nicely in
the form of coupling invariants and data type invariants.

• What are the consequences of scrutinising the partial order of repre-
sentations of cyclic function using domain theory? It has already been
noted that the partial order is a lattice and has a bottom element but
no top element. Is it for instance a complete partial order?

Finally, it would be of particular interest to follow through with the idea
pointed out in response to Theorem 6.3 where generalised utm and sm

n proper-
ties are used to non-deterministically obtain notations of computable string
functions, a model which would appear to be extendable to deal with the
mind bending idea of computations with uncountable strings as inputs and
outputs. Perhaps a “representation” of all the cyclic functions can be ob-
tained after all.

References

[1] Weihrauch, Klaus: Computable Analysis, Springer ISBN:3-540-66817-9
(2000).

[2] Brattka, Vasco: Computable versions of the uniform boundedness theo-
rem, unpublished.

[3] Brattka, Vasco / Hertling, Peter: Topological properties of real num-
ber representations, Theoretical Computer Science, Volume 284, Issue 2
(July 2002).

[4] Priestley, Hilary A: Introduction to Integration, OUP ISBN:0-19-850123-
4 (1997).

[5] Priestley, Hilary A: Introduction to Complex Analysis, OUP ISBN:0-19-
853428-0 (1989).

[6] Edwards, Robert E: Fourier Series A Modern Introduction Volume 1
Springer-Verlag ISBN:0-387-90412-3 (1967).

[7] Plymble, L / Sanders, J.W: Computability, Quadrature and the Fourier
Transform New South Wales Institute of Technology (1981).

37

[8] Pour-El, Marian B. / Richards J. Ian Computability in Analysis and
Physics Springer-Verlag ISBN:0-387-50035-9 (1989).

[9] Roscoe, A.W Notes on Domain Theory Oxford University Computing
Laboratory.

38

