Six Principles of Software Design to Empower Scientists

David De Rourg University of Southampton
Carole Goble The University of Manchester

Scientific research is increasingly digital. Some dvities, like data analysis, search and
simulation, can be accelerated by enabling scientss to write workflows and scripts that

automate routine activities. These capture pieced gcientific method that can be shared with
others. The Taverna Workbench, a widely deployed sntific workflow management system,
together with the myExperiment social web site fothe sharing of scientific experiments, have
been devised according to six principles of desigii software for adoption by scientists and six
principles of user engagement.

Science is becoming increasingly digital, and tbeerdist’'s tools are not just the experimental
apparatus of the laboratory but also the softwppagatus which they use to conduct their research —
to analyse data, to search databases, to run siomgaand to record their scientific process. New
experimental methods — from DNA microarrays to sensetworks in the environment — are
generating volumes of data that, without softwasistance, just wouldn’t get processed.

Watch a researcher at work and we see lots ofigcav the computer, using applications, services
and data that might be local to the laboratory,ehrprise, or out on the Web. These new research
tools and methods are evident across a very brgaettresm of disciplines. Some, like
bioinformaticians working with protein sequencesgim conduct some of their research entinaly
silico. Meanwhile, chemists in the laboratory are lookipgprocedures, designing their experiments,
conducting and recording their work, and runningigations, searches and analyses. Climate change
researchers are capturing the latest data fronr liatkeges and sensor networks, and running and
testing their models. Musicologists are extractiegtures from recorded music as part of musical
analysis. Archaeologists are exploring 3D visuélise of their digs.

Some of the processing is highly repetitive — réipggprocesses with new data, varying parameters,
and making small changes to the process. It cldalps speed things up and makes them more
repeatable if some of this scientific activity &etcomputer can be automated. This in turn lets
scientists concentrate on the science rather ti@nepetitive handling of data through multiplelsoo
and applications. So, increasingly, we see thegentdftc activities at the computer being
‘programmed’. Some disciplines have created sagpsolutions, perhaps adopting their favourite
scripting languages and creating libraries to hanléir discipline-specific data, while others adop
workflow systems which automate the processingaté through a series of processing stages.

Taverna is one of many scientific workflow managameystems (se&Vorkflow Management
System®n page 2) and supports what we might describapadication-level workflows’, as opposed
to some other systems which focus on schedulingstasross computing resources [1]. Emerging
from the UK’s e-Science programme, Taverna is @séensively by scientists across a range of Life
Science problems: gene and protein annotationepnaics, phylogeny and phenotypical studies;
analysis of microarray data and medical imaged) tiigoughput screening of chemical compounds
and clinical statistical analysis. Increasinglisibeing adopted in other disciplines too.

Workflows are leading to new scientific outcomesr lexample, Paul Fisher and colleagues have
reported on the benefits of being able to “systerally analyse any results we obtain without the
need to prematurely filter the data for human coiemce” [2] — which enabled them to identify a
candidate gene that had previously been missedkfibiass are systematic and unbiased, and they
capture data analysis methodologies explicitly. Topularity of Taverna and other workflow
environments is changing not only how scientistegpam their experiments, using high level
operators in terms of the problem and steps ingesfrithe scientific operations, but also how their
experimental methods are propagated and commudittateugh, and between, communities.

Scientific Workflow Management Systems

For an overview seeWorkflows for e-Scienc&cientific Workflows for Grid$aylor, 1.J.; Deelman
E.; Gannon, D.B.; Shields, M. (Eds.) 2007

Taverna Tavernais an open-source workflow tool which pdes a workflow language and graphical
interface to facilitate the easy building, runniagd editing of workflows over distributed
computer resources. The Taverna Workbench allovessug construct complex analysis
workflows from components located on both remote kExxal machines, run these workflows
on their own data and visualise the resultserna.sourceforge.neandwww.mygrid.org.uk

Triana An open-source problem solving environment devedogteCardiff University that combines an
intuitive visual interface with powerful data ansity tools. Already used by scientists for a
range of tasks, such as signal, text and imageepsitg, Triana includes a large library of pre-
written analysis tools and the ability for users éasily integrate their own tools.
www.trianacode.org

Kepler The Kepler project's overall goal is to produceopgen-source scientific workflow system that
allows scientists to design scientific workflowsdaexecute them efficiently using emerging
Grid-based approaches to distributed computati@plét is based on the Ptolemy Il system for
heterogeneous, concurrent modelling and degigmer-project.org

Pegasus Pegasus (Planning for Execution in Grids) is a Wlovk mapping engine developed and used as
part of several NSF projects. Pegasus bridges thentfic domain and the execution
environment by automatically mapping the high-lewarkflow descriptions onto distributeld
infrastructures such as the TeraGrid, the Opem8ei&rid, and othergegasus.isi.edu

Social Experiments

These workflows and scripts are particularly valaabecause they are descriptions of pieces of
scientific process. Providing a workflow along withe results of an experiment enables the
provenance of the results to be understood and sndi@se results more reusable. Publishing a
workflow enables work to be reproduced or at leastectly interpreted. Along with this value comes

a cost — writing scripts and workflows is not alwagasy. So it's handy to share scripts and worldlow

with colleagues so that they don’t have to creatmt from scratch. But actually the sharing of

scientific method through scripts and workflows mpises to be more powerful than that, because it
means a scientist in one domain can borrow a mefttomd another. There is real evidence of this

happening — seRecycle, Reuse, Repurpasepage 4.

Tirarnd Wbensn 3.8

Taverna

Workflow
Workbench

“ Taverna

Enactor

mexperiment "

Users || Groups Files || Blags | Forums

" wechie_arect e
o
e e

e = \=m

Warkllaw % [G0]

Most Recont | Last Updated Mast Viewed | Ioat Downlosded

Uplsader: } BiolID_DiseaseDissovary view

Creds: 3 Weca Fioe) AD
Licanme: Crostre
e

Mascs
Foas

SCUFL Workflow

Figure 1. The scientist discovers

shonas 1 | Whowest: 55 e | Bowndoadedt 207 e

a workflow in myExperiment, o e
runs and edits it in Taverna, and . »)
uploads back to myExperiment. myExperiment Virtual Research Environment

All these benefits of sharing workflows and scripistivated our creation of the myExperiment social
web site. Using myExperiment, researchers can shase ‘experiments’ whatever their workflow
system — Figure 1 depicts the cycle of workflowcdigery in myExperiment and editing in Taverna
(for example). Although sometimes described aseébaok for Scientists’, myExperiment is different
to sites for sharing pictures, slides etc, becé@utmuses on the special requirements of scientist
such as the need to describe the attribution okwawntrol visibility and sharing in groups, handle
licensing, and work with distributed collections afata. myExperiment couples decoupled
communities and brings community intelligence takflow systems.

Take workflow reliability for instance: the succesfsa workflow depends on all the services being
available and working as expected, which is adliffichallenge. Many of the services linked togethe

as steps in workflows are third party, autonomaug] changeable — so workflows tend to decay.
Workflows can call many different services, poteltyi invoked hundreds of times. By sharing

workflows within a community we can achieve comntymécommendations and maintenance of the
workflows, and simply by keeping track of their uee Web site itself can provide recommendations
of workflows and services. It also enables us tcharge scripts and workflows for multiple tools,

broadening the scientist’s toolkit.

The Software — Superclients and the Web

Taverna is distinctive for being a ‘superclient’ iath anyone can download and run on their desktop
or laptop PC, without needing anything extra ifethbn servers nor any system administration. Any
services you can get at from your PC, whether teey the enterprise or in the Web, can be plumbed

3

together by running a Taverna workflow. The ideahiat it should be like downloading a Web
Browser, except it runs workflows instead of digplg Web pages. There are three main parts to
Taverna:

» The Taverna Enactor. This is the engine that takes a Taverna workfoa executes it using the
data provided by the user, over the services de=tnvithin the workflow. In its early form the
enactor did simple data staging from service twisey it has evolved to support streaming,
runtime determination of services from service gguand numerous extension points for
developers.

* The Taverna Workbench This provides a graphical editor for workflowst lalso, significantly,
the means for users to choose services — andtliteisavailability of services for a particular
domain that makes Taverna easy to use in that dombiis easy to add new services. The
workbench provides additional tools; for examptecaptures the execution logs of services in
order to record the provenance of the results.

* The Taverna Language This is a simple dataflow language called SCUSImple Conceptual
Unified Language)vith implicit iteration constructs, manifest gragdlly in the Taverna editor
and encoded in XML. It is actually a declarativagaage with its semantic roots in functional
programming. It is quite different to languagestsas WS-BPEL that support a control flow
paradigm.

Meanwhile myExperiment is a quite different pie¢saftware — it's a web based application built on
the Ruby on Rails (RoR) platform, following the rasrof modern Web 2.0 look and feel, social
features and lean APIs. It's not just a single, ditee Facebook, YouTube etc; it's also a software
package that can be installed independently anaratgby in a laboratory, and supports the exchange
of content between other Web applications and wdiffe installations of myExperiment. It's also
designed to be extensible, so that it deals netdrkflows or scripts per se but in scientific olifec
This allows sharing of documents, presentationwjc® descriptions, notes, ontologies, plans and so
forth. More generally, myExperiment deals in expemts, and can be used to glue together
heterogenous collections like distributed experitakedata or, for example, packs of workflows —
these collections are what we daticapsulated myExperiment Objects

Software for Science

Taverna has achieved extensive adoption, toppin@0@6downloads from Sourceforge to date and
averaging in excess of 40 a day since 2006. mykixpet went from conception to open beta in nine
months, with the codebase delivered by a core t&anvo developers. Now at twelve months it has
over 600 users, despite the limited advertisinguife a specialist tool.

So we can proudly say that this software has ba#waced by scientists. This is not always the case
— we have developed systems in the past that vieeeekamples of well-designed software but

disdained or neglected by their intended userserfisis have challenging and changeable
applications that they really understand but canhbed to communicate or stabilise. They are
concerned with getting scientific results rapidiyorder to compete with their peers and develojp the

reputation.

Scientists do want reliability and confidence ieithsoftware but, paradoxically, are less concerned
with generic solutions that can be replicated amsbiigeir community and evolved systematically.

4

Software engineers, on the other hand, are motMatghese very things. They want to build the best
solution and get that adopted by many other udmis,are not the specialists that will use the
software. Sometimes we have computer scientisiseinmix too, and they also need to compete with
their academic peers — by exploring interestingrietogies and innovative methods which may well
be at odds with the needs of the scientists artd/até engineers.

Our Six Principles of Design for Adoption

Scientists, to be successful, must be fundamergalfish — Mike Ashburner, a Cambridge geneticist,
once said that “Scientists would rather share ttogithbrush than their data”. Adoption is based on
what the software will do for them. To gain adoptimeans recognising this. What counts the most?
It's not clever software or innovative technologiest rather content and relevance. During the
development of Taverna we established a set ofdgwinciples and a working practice with our
scientists, further evolved by myExperiment [3]:

1. Fit in, don’t Force Change We made no obligation on service providers tangeatheir services

to fit into Taverna. So we rapidly assembled contemore than 3500 service operations covering all
the major service providers in the community (theare over 900 databases routinely used in
Bioinformatics [4]). Our early users were prepatedtolerate less-than-perfect interfaces because
their favourite servicavas available. The user does not have to makelaayges in order to use the
system — they simply download Taverna and usddly tan use workflows immediately, and they
view their data with the same applications as leeftis functionality sits comfortably with their
existing environment and practice, and barriersadoption are kept low at the expense of, for

Recycle, Reuse, Repurpose
Workflows and Know-how

Paul writes workflows for identifying biological pathways
implicated in resistance to Trypanosomiasis (caused by the
parasites Trypanosoma congolense and Trypanosoma vivax)
in cattle (see [2])

Paul meets Jo. Jo is investigating Trichuris muris, another
parasite but this time in mouse. She is using the same kind
of applications and services, and some different data sets

Jo reuses one of Paul’s workflows without change.

Analysis of the resulting data by Jo identifies some biological
pathways involved in sex dependence in the mouse model,
believed to be involved in the ability of mice to expel the
parasite. It takes two days for the analysis.

Previously a manual two year study by Jo had failed to do
this.

With thanks to Paul Fisher and Joanne Pennock,
The University of Manchester, UK.

example, elegant type systems.

In myExperiment our motto isring myExperiment to the usgther than forcing the user to come to
myExperiment. So for scientists who are alreadpgisieb sites and Wikis in their work, we make it
easy to bring myExperiment functionality througleithexisting interfaces. For those who don't, the
Web interface is made as familiar as possible alaghted to their needs.

2. Jam Today and more Jam Tomorrow This is about incentives. Incremental developnaerd
incremental content give an immediate return fa time and effort invested by a scientist. The
activation energyrequired by users to adopt a feature must be radtbly the reward gained. It's
important to get some core capability and quicksadit promptly. We built our community as we
built the software: our scientists and developesvelled on the journey together. Telling our
scientists to commit time and effort to somethihgttthey wouldn't get any benefit from along the
way was pointless; by the time we would have getalthey would have another problem or would
have found an alternative solution. Once serviewiders see that their resources would get greater
use if they made them more amenable to Taverna,ttiey will put in the effort.

Taverna has immediate benefit through automationepétitive and time consuming tasks, and a
promise of greater value in the future as more flonks become available and as the user, if they
wish, become creators of workflows. myExperimentegi an immediate return by providing
examples of workflow others have written and thengise of more workflows and community help.

3. Just in Time and Just EnoughThis is about delivery. Coupled with the previgasnt, we learnt
not to try to be too smart (always a temptationdomputer scientists!) Beetter not perfectThis
enables us to respond to users’ immediate neellerrétian going away and building a complete
solution — which would be more resource-intensivg, an our experience, quite possibly wrong. It is
better to solve the problems users already know kiave, than to make them wait for solutions to
problems they don’t yet know they have and pertmapgr will.

For example, in Taverna we worked on fancy knowdeblgsed descriptive techniques for services so
that workflows would be composed automaticallyuthed out that this wasn't what the users wanted
at all. They wanted quick ways of finding a releivaarvice and then they wanted help for them to
build workflows themselves. Building software tow®r a web site is different to building workflow
system software — for one thing, we found it eatiebe incremental, to involve a distributed and
disparate community of users in the design prod¢essgpture their input and be agile in response.

4. Act Local, think Global. Instead of setting out to build a universal wif system or a universal
social networking site, we targeted a communitykmnew really well. Moreover, we picked a few
close ‘friends and family’ — local pioneers who atereotypical examples of a class of scientisth wi
a class of problems — and just built it for theme Worked really closely with them, and a few key
service providers. It turns out that if they ar@yg then so are the scientists who are strangars.t
So, Taverna is delivered with sets of services lwhigeet the specific needs of target user
communities, and is easy to extend to others. Mgdtical needs encourages adoption; making it
extensible broadens that. Our experience suggattuktomisation outvotes genericity, extensibility
outvotes comprehensivity, and scruffy and flexilirotes smart but rigid.

In myExperiment, we took as a principle never tckenassumptions about what users want. That we
were limited to a core team of two developers madssential to impose a very simple mantian’t
do anything unless a user has asked forGuwr failures occurred when we tried to second-gaess

6

solution for which there was no clear user problatement. As Don Wells said, “Don’t Solve a
Problem Before You Get to It” [5].

5. Enable Users to Add Value This is about empowerment. Extensibility and cossation are
crucial to adoption. The users have the best utatetimg of the visualisation tools they want to use
or the services they want to incorporate. Many sisge capable developers, or have developers
working with them. Taverna enables users and dpeetoto enhance the system through creating
content, integrating services and developing so&w# is extensible through new services and
through plugins, and these extensions can be skar#tht the value accumulates. The Taverna team
does not need to do the extensions, but ratheoviges the support and training for others toalo s

The small team associated with myExperiment me&as rhaximal reuse and reusabilitis a
necessity. We aimed to make as much use as pos$ithed party code and services, and to make
our services available through a simple (RESTfuBI Aublished as early as possible, since this
enables others to start development and to burdtionality mashups. Within hours of releasing the
APl we had more people developing outside the tdan within it. By providing a network of
cooperating data services with simple interfaceglvimake it easy to work with content, we are both
providing and reusing services — we support lightgiveprogramming models for ease of integration
in loosely coupled systems.

6. Design for Network Effects This is about community. Our users are not jhst heroic e-
Scientists harnessing computing resources to tankier scientific breakthroughs, but also the large
number of scientists conducting the routine proeess science on a daily basis, the service provide
who supply the resources they use, and the comynahivorkflow developers willing to share their
know-how. Harnessing this long tail builds a netkveffect of adoption.

For myExperiment, it must be easy to find workfloarsd also useful and straightforward to share
workflows and add workflows and other scientificeis to the pool. The usage of workflows and
services implicitly enables recommendations, ad aglthe more explicit mechanisms of reviewing
and “favouriting”.

These principles are interconnected, of course,aaagredicated on well-designed, loosely coupled
modular software. Principles 2 and 3 led to ourpéido of a perpetual beta software development
methodology. Taverna uses a plugin and code manzgjeyd Raven which manages extensions
supplied by third parties and provides some le¥@utomatic updates. The myExperiment codebase
is developed and tested continuously, with weeplgates to the live service. Both projects aregsst
much — or perhaps even more — about content agaeft We were reminded of this when we went
open beta with myExperiment and the first bug refpleat came in was about a spelling error in a
user-provided workflow description. Users comehe site for workflows, and — as with Taverna —
we have been careful to bootstrap the system sasthies have ‘jam today’.

Building Trust between Users and Developers

All these principles depend upon a good relatigng@tween users and developers. It is clear from
these principles that Taverna and myExperimentvarg user-focused. Taverna started out as an e-
Science pilot project in 2001 and one third of tleam that built the first prototypes were

bioinformaticians. Now the software is delivered asupported by a software engineering team (of

Coalface Patrons

users
Skeptic
Champions P_(eep your
Friends Close Friends and Family
Fitin
Favours will
Favour you Jam Today Embed
Jam Tomorrow Act Local
Think Global
End Users
Developers Just Enough Design for o
Know Justin Time Network Effects Anticipate
Service your Change

Providers Users
Enable Users

System to Add Value
Administrators

Keep Sight of the
Bigger Picture

Figure 2. Qur principles of
software design for adoption
(inner circle) and user
engagement (outer circle).

six) and a user outreach team (of three bioinfoiizats), part of the Open Middleware Infrastructure
Institute UK (OMII-UK) and in close collaboration it its user communities. Throughout
myExperiment we have operated with two core dewwwand a larger team around them providing
occasional support, including part-time liaisorffdia specific research communities.

We have achieved this through our six principless#r engagement, which are also show in relation
to our design principles for adoption in figure 2.

1. Keep your Friends Closeln addition to community development with locameers and external
early adopters, OMII-UK operates a scheme of ettets and ‘Product/Area Liaisons’ (PALs), who
are not directly working for OMII-UK but are the ey and ears in the communities they work in.
Taverna has three very active PALS, who are clitwadentifying user needs and to developing the
community. By choosing these individuals we recsgrtheir worth both to OMII-UK and to their
community. In myExperiment, user advocacy was both the management plan. User workshops
(dubbed ‘parties’) are combined witbommunity championsOur ‘friends and family’ users
(including sceptics!) and the broader communitiesiavolved at all times — through everyday use of
the Web site, through consultations with mockupepdgsigns, and through facilitated user evaluation
sessions.

Our advocates are all the day-to-day users of aftware — mostly postdoc scientists and
postgraduates. In academia, the way to spread aefttake-up is through these groups of users, not
by targeting the great and the good. However, tatggr (and community) support they need to be
sheltered by sympathetic patrons — their profesandslaboratory managers. A more controversial

viewpoint is to pick good scientists who are ongbkeond rung, not the very best. Those who want to
overtake their peers will look to new tools to h#dpm and will be more willing to try them out.

2. Embed. We embed developers with users and users withlgeues, getting them to sit side by
side for long periods. No amount of requirementsudeentation or design meetings can really
compensate for day to day contact. We started mgiixient by embedding the developers in an end-
user laboratory, for first-hand experience of therkwenvironment particularly with respect to shgrin
and communication, and understanding non-functiceglirements.

3. Keep Sight of the Bigger PictureA tendency of developers, and computer researclsets get
hung up on some point that a user doesn’t worryialmothe overall scheme of things. Our software
is not the only software our users use, and theyaly using it to do the science they really want
do. They daily use complex tools they are famidiad comfortable with using metaphors that seem
peculiar to someone outside their discipline batsaandard within it. Mimic these tools and linktwi
them. The software tools are part of the overaticpss — we can accelerate science not just by
accelerating experiments but also by reducingithe to get to an experiment.

4. Favours will be in your Favour. Building trust is a two-way activity, requiringpmpromise and
favours.In the early days of Taverna we often ended ugingrispecific code to help our pioneering
scientists get their scientific results. For eveigneer, we ‘sacrificed’ one developer in supp®his
could have been argued as wasted effort: of comirseas not. The developers learnt about the
problem and the users felt we were on their side developers got ‘jam tomorrow’ too, with the
patient and added attention of the scientists wheame to evaluating prototypes and designs. By
enabling users to add value they also gain owngighihe software; another plus for adoption. Today
we still have three outreach workers and we stilledop, or help partners develop, bespoke code that
leads to a general release (Principle 4). In myERrRpEnt we prioritise tasks and allocate development
effort based on the return in adoption.

5. Know your Users Rarely is there one kind of user. For example, dor software we have
bioinformaticians and biologists (two distinct usgnoups); domain expert developers producing
applications, service developers, service providarsl system administrators. All have different
needs and fears. Taverna is designed for expemftwmaticians, not biologists. Also know the
background and experiences of your users. Taverpaopagated by those who do bioinformatics —
that is young postdocs and postgraduates. Thejaardiar with online gaming, instant messaging,
file sharing, social networking and internet shogpisites. Hence it was natural to base
myExperiment on this experience and others: seagcfur workflows should be like shopping on
Amazon or searching like Google; creating workingups should be like creating groups on
Facebook. Familiar interfaces mean no training.

6. Expect and Anticipate Change User needs will change. Success will mean that sfitepractice

will change, as will expectations. Scientists wherevhappy with a slow response or minimal data
management support now need production level dséabapport and reliable rapid delivery. The
choice of pioneering friends will need to changel aew classes of user will emerge. When we
started out, we replicated current scientific pcactThe focus was on interoperating services, ngaki
services accessible and workflow creation [6]. Tyears later we were inventing new practice:
workflows had to integrate data not just link seed; discovery had become an issue with so many
services; and workflow editing and reuse was asoiapt as creation from scratch. The software

changes the science which changes the software.cfiidenge for developers is predicting and
anticipating these trends, within the six designgples. That's the hard part.

Reflections

Our principles are based on several years of expegi in e-Science, observing both success and
failure. In this article we have looked at the dasof two quite different pieces of software — the
superclient and the Web application. Although taey both in the workflows domain we believe the
principles to be more broadly applicable. They artually about social aspects of software design,
which is significant in the collaborative contexXtesScience, and they may extend to systems-level
science which “integrates not only different didicips but also, typically, software systems, data,
computing resources, and people” [7]. Broader appillity is exemplified by our chemistry
colleagues who are ‘blogging the lab’ and havernak&ery sympathetic design approach [8].

The realisation of our principles in engineeringgtice brings tradeoffs. For example, our use of
RoR in myExperiment imposed something of a strelga which made it difficult for us to ‘act
locally’ with multiple user interface models whilthinking globally’ in the back end. However it has
been hugely effective that we have a programmingehthat enables us to spend more time with
users and less time writing code. We anticipaterestve use of Web 2.0 ‘functionality mashups’ for
scientists, and we note that there is considerabiesistency between our design and engagement
principles and Web 2.0 design patterns.

We have focused here on our principles rather tieir implementation. Our management of

myExperiment has much in common with Extreme Prognang (XP), implemented here in a core

team across two sites with one week iterationssitencustomers at both and continuous integration.
While XP for scientific research has been discudssfdre [8], we have explored a rather different
scenario — decoupled communities of independent am®nomous scientists doing everyday

research. We have found it very natural to be agilresponsive with a Web application.

We are both delivering software to scientists amg@wvering scientists (and their computing experts)
to participate in the creation of softwareseftware is the power behind the scientists, and
scientists are the power behind the softwareWe believe this empowerment is essential. Being
prescriptive will not work — scientists must becasnfortable using their software apparatus as they
are any other scientific tools. It's not so muclowatirolling out software as rolling in users, ahdan
only happen if the software designers are williagtoss the line and take a user-centric view ef th
software design process.

Acknowledgments

The Taverna team, past and present, is extengeeiad thanks goes to the lead architect, Tom Oinn,
and to Hannah Tipney, our first bio-pioneer. Spettianks to all our developers, PALs, advocates
and all our myExperiment ‘friends and family’ inding: Jiten Bhagat, Andy Brass, Simon Coles,
Don Cruickshank, Paul Fisher, Jeremy Frey, Antoodd&eis, Duncan Hull, Douglas Kell, Matt Lee,
Bertram Ludascher, Danius Michaelides, Stian SdildRobert Stevens, lan Taylor, David Withers
and Katy Wolstencroft.

10

References

1.

Oinn T et al. Taverna: Lessons in creating a workflow environméort the life sciences
Concurrency and Computation: Practice and Expegid®¢10) pp. 1067-1100, Aug 2006.

Fisher P et alA systematic strategy for large-scale analysiserfalype—phenotype correlations:
identification of candidate genes involved in AdrictrypanosomiasjsNucleic Acids Research,
2007, pp. 1-9.

De Roure D, Goble CA and Stevens Resigning the myExperiment Virtual Research
Environment for the Social Sharing of WorkflowsScience 2007 — Third IEEE International
Conference on e-Science and Grid Computing, 2087g8lore, India, 10-13 December 2007. pp.
603-610.

Galperin MY.The Molecular Biology Database Collection: 2007 afad Nucl Acids Res. 2007
January 12, 2007;35 (suppl_1):D3-4.

Anton Al and Wells D.Point/Counterpoint: Don't Solve a Problem BeforeuY®et to It /
Successful Software Projects Need Requirement®iRGAEEE Software 20(3), 2003. pp 44-47.

Stevens R, Tipney HJ et aExploring Williams-Beuren Syndrome Using myGrid in.
Bioinformatics20:i1303-310. Proc of 12th Intelligent Systems inl&tular Biology (ISMB), 31st
Jul-4th Aug 2004, Glasgow, UK.

Foster |, Kesselman Gcaling System-Level Science: Scientific Explonadiad IT Implications.
IEEE Computer Volume 39 (11), Nov. 2006, pp. 31-39.

Neylon C, Workshop on Blog Based Notebooks. AbingddK, 28-29 February 2008. See
Science in the Open — An openwetware blog on thkeciges of open and connected science
http://blog.openwetware.org/scienceintheopen/20G024)

Wood W. A. and Kleb W. LExploring XP for Scientific ResearciEEE Software 20(3), 2003,
pp. 30-36.

11

