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Abstract. In this paper, we report on the design of a novel market-based approach for de-
centralised scheduling across multiple factories. Specifically, because of the limitations of
scheduling in a centralised manner – which requires a center to have complete and perfect
information for optimality and the truthful revelation of potentially commercially private
preferences to that center – we advocate an informationally decentralised approach that
is both agile and dynamic. In particular, this work adopts a market-based approach for
decentralised scheduling by considering the different stakeholders representing different
factories as self-interested, profit-motivated economic agents that trade resources for the
scheduling of jobs. The overall schedule of these jobs is then an emergent behaviour of
the strategic interaction of these trading agents bidding for resources in a market based on
limited information and their own preferences. Using a simple (zero-intelligence) bidding
strategy, we empirically demonstrate that our market-based approach achieves a lower
bound efficiency of 84%. This represents a trade-off between a reasonable level of effi-
ciency (compared to a centralised approach) and the desirable benefits of a decentralised
solution.

1 Introduction

Job-shop scheduling is an important and challenging problem that has long been the subject of
extensive research in Artificial Intelligence [2]. Specifically, it is the problem of allocating re-
sources for the completion of customers’ jobs within specific deadlines in a single or a number
of factories. Such a problem is usually solved optimally as a combinatorial optimisation prob-
lem (that maximises the utility of all stakeholders, i.e. both customers and factories) by a center
that has complete information of the system. However, this centralised approach can be prob-
lematic in a number of ways. First, a completely new solution often needs to be recomputed
from scratch with every change in the system (e.g. new stakeholders entering the system or
existing ones updating their job requirements). Second, stakeholders, which usually represent
competing organisations in the real world, are often reluctant to share their private and sensi-
tive information with a center that would then have complete knowledge of the whole system,
since this may shade their competitive edge. Finally, and perhaps most importantly, the solu-
tion quickly becomes intractable with increasing problem size, because of the combinatorial
nature of the task at hand.
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For these reasons, there is an increasing trend towards solving these scheduling problems
in a decentralised manner. Such approaches are inherently more robust because they don’t have
a single point of failure and they also do not require the divulging of commercially valuable
information to a third party. Moreover, the distributed nature of the computation also means
a more scaleable solution is possible, with the system being more dynamic in adapting to
changes in the system.

Against this background, this paper reports on the development of a market-based approach
for scheduling across multiple factories. Our work is principally motivated by the need for
more robust and scaleable solutions in the Aero Repair and Overhaul (AR&O) context where
customers (typically airlines) in the system require that their engines be scheduled for routine
maintenance in overhaul bases (OHBs). In addition, engines may require more urgent inspec-
tion due to some damage (e.g. through birdstrike or icing) or mechanical failure. These dis-
ruptions introduce uncertainties in the system which increase the complexity of the scheduling
process since it requires us to dynamically construct schedules capable of effectively coping
with such unforeseen events in real time. The challenge is to dynamically schedule repairs and
routine maintenance subject to these constraints. To date, the state of the art consists of a prag-
matic scheduling solution [8] that consists of a center that computes the engine repair schedules
based on the capacity and capability of the multiple factories and the engine repair severity.
However, this is a centralised solution that suffers from all the aforementioned problems.

In more detail, the AR&O scheduling problem, as described above, is an important class
of problems in its own right (being worth over $25B worldwide in 2008). It also has charac-
teristics that are found in many other applications as diverse as classic job-shop scheduling,
production planning and manufacturing scheduling [2, 6]. Thus, in addition to its immedi-
ate goals of addressing the AR&O problem, this research endeavour has further applications
within many adaptive decision processes where there is an extended and dynamic network of
interdependent customer and supplier business entities. As such, it has the potential to provide
utility to many other supply network settings where again traditional approaches have tended
to a static representation unable to respond quickly to the rate of change in the environment.

To address the challenge of developing an agile and decentralised scheduling system, a
number of researchers have advocated the use of economic metaphors by adopting a market-
based approach where customers and factories are self-interested agents1 that compete, through
offers to buy and sell resources, in order to maximise their utility. Markets are a particularly
suitable approach in this context, because of their ability to facilitate resource allocation of-
ten with public information exchange and their distributed nature with the resource allocation
emergent from the competition among buyers and sellers. Because of their distributed nature,
no single agent computes the resource allocation, markets are robust against failure and, fur-
thermore, markets have been shown to dynamically and efficiently react to changes in the
system [3]. Now, there has been previous work that adopted a market-based approach in this
domain. Specifically, Baker’s work looked at a market-driven contract net mechanism to sched-
ule a factory [1], and Rassenti et al. developed a sealed-bid combinatorial auction mechanism
for scheduling flight landing and take-off [7]. However, while these mechanisms reduce the
complexity of the particular problems they are tackling, they still need a center that collects all
offers (which are not made public) to match them for scheduling. In contrast, Wellman et al.

1 Self-interested agents are reluctant to share private information and are driven by the objective of
maximising their own profit.
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examine a number of auction mechanisms for decentralised scheduling [12], including multi-
ple simultaneous ascending auctions. Here, while the latter approach circumvents the need for
an auctioneer (as all offers are made public in the market), it considers only scheduling for a
single factory, and this solution does not easily generalise to the multi-factory case considered
here because they consider fundamentally different auction mechanisms, namely single-sided
ones where only buyers compete for resources.

As a consequence of the fundamental issues discussed above, the aforementioned market
mechanisms fail to solve our motivating problem for decentralised AR&O scheduling. Thus,
we address these issues by proposing a variant of one of today’s most prominent auction for-
mats, namely the Continuous Double Auction (CDA) [3], which allows multiple customers and
multiple factories to compete in a market. In so doing, we extend the single-factory job-shop
scheduling problem proposed by Wellman et al. to a more general one that allows multiple fac-
tories (OHBs in the AR&O context) to compete. Second, we design a variant of the traditional
CDA that also considers the time factor of the scheduling problem. Thus, in more detail, this
work extends the state of the art in the following ways:

– First, we develop a variant of the Continuous Double Auction for multi-factory scheduling.
Our market-based approach is novel in being the first auction mechanism that allows multi-
ple customers and multiple factories to compete in a market for scheduling jobs without the
need for a center and without the need to reveal private and often sensitive information to a
center.

– Second, we demonstrate the effectiveness of our approach by evaluating our market mech-
anism. Specifically, we provide a lower bound efficiency of 84%, with our market-based
approach sacrificing at most 16% for the added benefits of a more robust, dynamic and
transparent solution.

The remainder of this paper is structured as follows. We begin in Section 2 by formalising
the multi-factory scheduling problem. In Section 3, we describe our mechanism which we
empirically evaluate in Section 4. Section 5 concludes.

2 The Multi-Factory Scheduling Problem

In this section, we describe the general scheduling problem that this work focuses on. Although
motivated by our specific AR&O problem, we believe this applies to a broad class of domains.
We first extend Wellman et al.’s scheduling model to deal with the problem of multi-factory
scheduling, rather than the restrictive single-factory case that they consider. To this end, we
consider several factories, potentially owned by different organisations, with the same number
of one-hour unscheduled time-slots2, denoted as T = {Tstart, ..., Tend}. These time-slots can
be allocated for customers’ jobs, with each one having a limit price3 representing the minimum
price the factory will accept in exchange for that time-slot.
2 Our choice of one-hour time-slots is not crucial to this work and, indeed, can be changed to represent

time at arbitrary levels of granularities. In addition, there is no requirement that each factory has the
same number of time-slots. We simply make these choices to simplify the simulations that follow later.

3 The limit price corresponds to the production cost within that time-slot. A factory would allow usage
of its time-slot only if a customer pays more than the associated production cost such that it does not
make a loss.
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Next, we assume that each customer i, requires a single job of a certain length qi (i.e. a
number of time-slots), value `i (i.e the utility for all the qi time-slots required) and deadline
tideadline (i.e. completion is no later than a time-slot at tideadline) scheduled in a single factory
to follow up from Wellman et al.’s model. The customer is willing to spend no more than its
value to have its job scheduled within its deadline. Furthermore, we assume that the customer
has an inelastic demand4. That is, its utility is 0 if it cannot acquire sufficient time-slots to
complete its job within its deadline.

The problem at hand is then to allocate a set of jobs in the available time-slots of a set of fac-
tories, subject to the length, value and deadline constraints of the jobs and the limit price con-
straint of the time-slots. In this context, given a set Scus of customers and a set Sfac of facto-
ries, we have the demand, demandi ∀i ∈ Scus and the supply, supplyj,a ∀j ∈ Sfac, ∀a ∈ Aj ,
where Aj groups time-slots with same limit prices given by:

demand i = (id i
cus , `

i , q i , t ideadline) ∀i ∈ Scus , t ideadline ∈ T (1)

supply j ,a = (id j
fac , c

j ,a , f j ,a
Tstart

, ..., f j ,a
Tend

) (2)

where

f j,a
t ∈ {0, 1} ∀a ∈ Aj , ∀j ∈ Sfac, cj

t =
∑
a∈Aj

cj,af j,a
t

and idcus and idfac are unique identifiers for customers and factories respectively,
∑

a∈Aj f j,a
t

defines if time-slot t in factory j is allocated or not, cj,a is the limit price for a group of time-
slots and cj

t is the limit price of a time-slot t in factory j. Note that Aj can be defined over
the space between a single set with all time-slots having the same limit prices and |T | sets of
single-time-slots in the case of different limit prices for all the time-slots of the factory5.

We can now formalise the scheduling problem as a maximisation of profits of all stake-
holders (to conform to the literature on the classic job-shop scheduling). We first define the
following terms:

– A(i, j) ∈ {0, 1} ∀j ∈ Sfac, i ∈ Scus specifies which customer is allocated to which factory.
– T S(i, j, t) ∈ {0, 1} ∀j ∈ Sfac, i ∈ Scus specifies which factory’s time-slot is allocated to

which customer.

The system is optimally scheduled when the following objective (profits of all stakeholders)
is maximised, as we assume that stakeholders are self-interested, profit-motivated economic
agents in the system. To this end, we must find:

max
∑

j∈Sfac

∑
i∈Scus

[
A(i, j)`i −

∑
t∈T

(T S(i, j, t)cj
t)

]
(3)

subject to the following constraints:

4 Note that the assumption of inelastic demand does not constrain our work. A customer with elastic
demand would simply split its job into a set of qi single-time-slot jobs.

5 Here,
∑

a∈Aj

∑
t∈T

f j,a
t = |T | and

∑
a∈Aj f j,a

t ≤ 1 ∀t ∈ T, ∀j ∈ Sfac. See Figure 1 for an
example, with |A1| = 2, |A2| = 4 and |A3| = 2).
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1. Job deadline constraint (i.e. jobs are allocated within their deadline):

∑
j∈Sfac

ti
deadline∑

t=Tstart

T S(i, j, t) =
∑

j∈Sfac

A(i, j)qi, ∀i ∈ Scus

2. Factory’s limit price constraint (i.e. all accepted jobs have value equal to at least the limit price for
all time-slots):

ti
deadline∑

t=Tstart

T S(i, j, t)cj
t ≤ A(i, j)`i, ∀i ∈ Scus, ∀j ∈ Sfac

3. Factory’s time-slot scheduled to a single customer (i.e. no time-slots can be shared for more than
one job): ∑

i∈Scus

T S(i, j, t) ≤ 1, ∀t ∈ T, ∀j ∈ Sfac

4. Job scheduled to a single factory (i.e. factories cannot share jobs6):∑
j∈Sfac

A(i, j) ≤ 1, ∀i ∈ Scus

5. Customer’s inelastic demand (i.e. jobs cannot be partially allocated):∑
j∈Sfac

∑
t∈T

T S(i, j, t) =
∑

j∈Sfac

A(i, j)qi, ∀i ∈ Scus

Given complete and perfect information (with all agents truthfully revealing their prefer-
ences to a center), the center can optimally compute the solution to this problem (e.g. using
the ILOG CPLEX optimisation tool). To this end, Figure 1 gives the demand and supply in
the system along with the optimal solution (i.e. the allocated customers in each factory) to an
example of such a scheduling problem with 3 factories and 8 customers. In particular, Cus-
tomers 2, 6 and 8 are scheduled in Factory 1, Customers 4 and 5 in Factory 2 and Customer 1
in Factory 3.

Having formally described the problem, we now reconsider the original contex context of
AR&O scheduling discussed earlier on, and note that within this domain, Stranjak et al. have
previously provided a greedy, non-optimal solution to a similar scheduling problem across
multiple factories [8]. As with the ILOG CPLEX solution described above, their solution is
centralised in nature and, thus, its computationally complexity increasing exponentially, mak-
ing the solution intractable for large problems. In the next section, we propose a market-based
approach to solving such a problem in a decentralised manner with a linearly increasing com-
putational complexity. We evaluate the efficiency of such a mechanism as the ratio of profit
of all stakeholders extracted in the mechanism to the profit extracted in the optimal allocation
given in Equation 3.
6 Note that this is certainly the case within the AR&O domain since engines are always serviced solely

at one overhaul base. However, this might not generally be true, and depending on the specific setting,
it is possible to relax this constraint.
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Fig. 1. Multi-factory Scheduling Problem with 8 customers (with their limit price `i, length qi and
deadline ti

deadline ∀i ∈ Scus = {1, ..., 8}) and 3 factories (with their limit prices cj
t ∀t ∈ T =

{9, .., 16}, ∀j ∈ Sfac = {1, ..., 3} for each time-slot) with the optimal solution (allocated customer
for each time-slot). The maximum profit extracted here is $35.

3 The Market-Based Solution

We now detail our market-based solution to the multi-factory scheduling problem detailed in
Section 2. Specifically, in this section, we describe our approach; an auction mechanism that
allows self-interested, profit-motivated buyers (bidding for customers) and sellers (bidding for
factories) to compete for time-slots. The scheduling is then determined by transactions (when
a set of bids match with a set of asks) among the buyers and sellers which allocate time-slots
to jobs subject to the constraints outlined in Section 2 (and specifically those described by
Equation 3). We now describe our market protocol that determines how the agents strategically
interact in the market.

3.1 The Market Protocol

The protocol we have developed is a variant of the CDA [9, 3], designed to maximise profits
in the system. In particular, trading agents are allowed to submit multi-unit bids and asks
(i.e. offers to buy and sell a number of time-slots respectively) which are queued in a bid
orderbook (see Figure 2(a)) and an ask orderbook (see Figure 2(b)) respectively. These offers
indicate a commitment from the buyers and sellers and cannot be withdrawn. The multi-unit
bids allows allow the customers to express the number of time-slots required, and the order
books effectively provide the mechanism by which any matching bids and asks are cleared. In
more detail, the protocol proceeds as follows:

1. Bid: Buyer i submits a multi-unit bid, bidi = (idi
cus, p

i
total, q

i, tideadline), tideadline ∈ T
to buy exactly q time-slots (given the inelastic demand) within its deadline tdeadline for no
more than a total price of p.
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2. Ask: Seller j submits different multi-unit asks, aska
j = (idj

fac, p
j,a
unit, f j,a

Tstart
, ..., f j,a

Tend
),

∀t ∈ T, a ∈ Aj
offered ⊂ Aj for (not necessarily all) the unscheduled time-slots in its

factory, with Aj
offered defining the set of multi-unit asks. Note that the ask is defined over

all the different time-slots to allow multi-unit asks in the market, rather than single-unit
asks over single unscheduled time-slots. This is to simplify the bidding process by group-
ing similar asks.

3. Bid orderbook: Bids are queued in a bid orderbook, ordered by the highest price per unit7

(see Figure 2(a)). Bids cannot be retracted once queued in the order book. This is to ensure
consistency in the orderbook such that a seller may accept a bid without the risk of that bid
being retracted. Thus, a bid may only be replaced by improving the bid (i.e. submitting a
higher price) which would allow buyers to compete by shading their bids.

4. Ask orderbook: Asks are queued in an ask orderbook, ordered first by the lowest unit price
and second (given the same unit price) by the earliest time-slot (see Figure 2(b)). When
we have asks with similar prices, our protocol prioritises the clearing of the earlier ones.
This is because the later time-slots have a higher probability of clearing future bids and,
hence, a higher expected profit in the future than the earlier ones. Thus, our mechanism
clears earlier asks with the same price first to maximise profit. As with buyers, sellers are
not allowed to retract asks, but are allowed to improve on them by submitting a lower ask
price.

5. Clearing a new bid: Whenever a new bid is added in the bid orderbook, the market at-
tempts to clear by matching the new bid8 with the ask orderbook. Our mechanism searches
the ask orderbook for the set of lowest asks, Aj

matched ⊂ Aj from each seller j that would
completely clear the bid. The market then clears the matched asks Aj∗

matched from the seller
j∗, if any, with the lowest total price against the new bid. If the market clears, the newly
matched bid is removed from the bid orderbook while the parameters of the matched asks,
f j∗

t ∀t ∈ T , are updated. If
∑

t∈T f j∗,a
t = 0, where a ∈ Aj∗

matched, aska
j∗ is removed

from the ask orderbook (because the ask has been completely cleared and all time-slots
have been scheduled).

6. Clearing a new ask: When a new ask is received, the market attempts to match the seller
(with now a better set of asks queued in the ask orderbook) which submitted that ask with
the bid orderbook. In particular, the mechanism runs down the bid orderbook to find the
highest bids that would be completely cleared by the seller’s set of asks (stopping when all
the asks from that seller are cleared or at the end of the bid orderbook). The market then
clears these highest bids, if any, against the matched asks from the seller. All the cleared
bids are then removed from the bid orderbook, while the cleared asks are updated and re-

7 Highest unit-price ordering is necessary because a job’s value is defined for the whole job, rather than
over the different time-slots required.

8 Our mechanism attempts to clear only the new bid (ask) because we are continuously clearing the
market which ensures that any queued bid (ask) cannot be cleared by the current ask (bid) orderbook.
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BID ORDERBOOK

ID Total Price Quantity Deadline

Buyer8 $12 3 16

Buyer1 $14.5 4 12

Buyer3 $9.5 3 11

... ... ... ...

ASK ORDERBOOK

ID Unit Price Free Time Slots (9:00 to 16:00)

Seller1 $4.25 [1, 1, 1, 1, 0, 0, 0, 0]

Seller2 $4.5 [1, 1, 0, 0, 0, 0, 0, 0]

Seller1 $5.25 [0, 0, 0, 0, 1, 1, 1, 1]

Seller3 $6 [1, 1, 1, 1, 0, 0, 0, 0]

Seller3 $6 [0, 0, 0, 0, 1, 1, 1, 1]

Seller2 $6.25 [0, 0, 0, 0, 0, 0, 1, 1]

Seller2 $6.75 [0, 0, 1, 1, 1, 1, 0, 0]

... ... ...

(a) (b)

Fig. 2. (a) Orderbook with uncleared asks, first ordered by lowest bid price per unit and, second, by
the earliest time-slots for similar prices. (b) Uncleared bids are queued in an orderbook, ordered by the
highest bid price per unit.

moved from the orderbook if completely allocated (as seen with the clearing of a new bid).

Given the structure of our market mechanism, we now consider its behaviour. In particular, we
use a simple bidding strategy for such a market protocol in order to provide a lower bound
benchmark on the efficiency of the market mechanism.

3.2 The Bidding Strategy

One of the principal concerns in developing a market mechanism is to ensure that it is efficient
and that the system does not break down even with comparatively simple bidding behaviour
on behalf of the buyers and sellers. This is important because as designers, we cannot dictate
the specific strategies of the buyers and sellers and, so, we want to ensure that the market
performs well for whatever strategies are adopted. The underlying intuition here is that by
considering this simple behaviour, we are able to establish a lower bound on the efficiency
credited principally to the market structure rather than the behaviour (assuming that agents are
motivated by profits and not malicious, e.g. sellers bidding less and buyers more than their limit
price to break down the market). This approach has been advocated a number of researchers,
most notably by Gode and Sunder [5], and thus, to this end, we adopt Gode and Sunder’s Zero-
Intelligence (ZI) bidding strategy in our work because it simply submits a random bid or ask
based solely on its limit price, ignoring the state of the market or past market information [4].
The Zero-Intelligence strategy works as follows9:

1. For buyer i ∈ Scus,

pi ∼ U(0, `i)

bidi = (idi
cus, p

i, qi, ti
deadline)

9 X ∼ U(a, b) is a discrete uniform distribution between a and b with steps of 0.01.
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2. For seller j ∈ Sfac,

pj,a ∼ U(ca
i , pmax)

aska
j = (idj

fac, p
j,a, f j,a

Tstart
, ..., f j,a

Tend
) ∀a ∈ Aj

Thus, the buyer submits a multi-unit bid based on its limit price at random times. Con-
versely, the seller j submits a set of multi-unit asks, Aj , over all the unscheduled time-slots in
its factory also at random times. Given our market protocol and the Zero-Intelligence strategy,
we now empirically evaluate our market-based scheduling mechanism.

4 Empirical Analysis

In this section, we empirically compare the market-based solution (see Section 3) against the
optimal solution (see Section 2). In our experimental setup, for every combination of buyers
and sellers, we consider 50 different sets of demand and supply (see Equations 1 and 2). For
each set of demand and supply, we consider a statistically significant number of runs10, namely
100, and average the performance over these different runs and sets of demand and supply.
Based on standard experimental setup of the CDA [9], we induce the demand and supply by
drawing buyer i’s and seller j’s endowment (of time-slots) from random distributions11 as
follows:

Tstart = 9

Tend = 16

qi ∼ UI(1, 4),

ti
deadline ∼ UI(qi − 1, (Tend − Tstart)) + Tstart,

`i ∼ U(1.5, 4.5)× ti
deadline

cj,a ∼ U(1.5, 4.5), ∀a ∈ Aj

where Aj is a randomly generated set of sets grouping similar limit prices. Furthermore, be-
cause of the informationally decentralised nature of the mechanism, it is not possible to deter-
mine when the market reaches completion12. Thus, we impose a deadline to limit the duration
of the auction13. In our experiments, we set this deadline to 5000 rounds.

The mean and variance of the efficiency (defined in Section 2) of the market-based solution
over different problem sizes is given in Figures 3(a) and 3(b) respectively. As we can observe,
the market efficiency averages 84% (ranging between 81% and 87%) with efficiencies con-
verging to 84% as the number of factories and consumers increases. We also observe that the
10 We validated our results at the 95%-confidence interval by running the non-parametric Wilcoxon rank-

sum test.
11 X ∼ UI(a, b) is a uniform distribution of integers between a and b.
12 A market reaches completion when there can be no more transactions. This information is unknown

unless all private information is available.
13 If we consider an environment where agents are allowed to enter or leave the system or can renew their

endowment, we do not impose a deadline in our auction which possibly never runs out of transactions.
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(a) Efficiency Mean (b) Efficiency Variance

Fig. 3. The efficiency of the market mechanism for different numbers of buyers and sellers in the market.
Efficiency converges to an efficiency of 84%as the number of buyers and sellers increases, while the
variance decreases.

variances of the efficiency decreases rapidly as the size of the scheduling problem increases.
Thus, our mechanism becomes more effective in finding profitable allocations as the number
of factories increases while its efficiency is unaffected by increasing demand.

Now, because we impose a deadline (as it is unknown as to when no more resources can
be cleared in the market), it is insightful to analyse if we are closing the market too early or
too late. To this effect, in an example of a large problem with 15 factories and 15 customers14,
we consider how the efficiency and the volume of allocation of time-slots vary over the rounds
(see Figure 4). In particular, we observe that the bulk of the allocations are made within the
first few hundreds rounds (with 85% allocated within the first 500 rounds) even though the
market reaches completion after 3000 rounds. This validates our choice for a deadline at 5000
rounds as we effectively limit the duration of the auction without compromising on efficiency.
Furthermore, because time-slots are gradually allocated, we can consider our market-based
mechanism as an any-time approach (which can be halted at any time for a solution). This
contrasts with the centralised approach where time-slots are only allocated once a solution is
computed. An any-time solution would indeed be very useful in a problems with hard dead-
lines.

Furthermore, to examine the tractability of our market-based solution, we compare the
computational time of our market mechanism against that of a centralised, optimal solution
computed using ILOG CPLEX (as highlighted in Section 2). While the computational time
of the centralised, optimal solution increases exponentially, that of the decentralised market-
based approach increases linearly. This is because the computational complexity of the latter
approach is due principally to the clearing process, with the size of the orderbooks to be cleared
also increasing linearly. Thus, our market-based approach is indeed tractable as one of the
desirable properties for a decentralised mechanism in the motivating AR&O setting.
14 Similar trends were observed for other numbers of factories and customers.
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Fig. 4. For a problem of 15 factories and 15 customers, the market closes after 3000 rounds at an efficiency
of 84%. Note that 84% of the volume of transactions are completed within the first 500 rounds and 97%
within 1000 rounds. The efficiency after 500 rounds is within 7% of its maximum and within 0.9% after
1000 rounds.

(a) Computational time for optimal solution (log-
scale)

(b) Computational time for market-based so-
lution

Fig. 5. Computational times of the centralised (a) and decentralised (b) approaches. Note that the former
increases exponentially while the latter scales linearly. For a problem with 15 factories and 15 customers,
the computational time for the optimal solution is around 5400ms compared to 320ms for the market-
based one.

5 Conclusions and Future Work

In this paper, we proposed a novel decentralised mechanism for multi-factory scheduling based
on a variant of the Continuous Double Auction, that does not require the revelation of private
preferences to a third-party agent. We empirically demonstrated a lower bound efficiency of
84% in our auction mechanism using a Zero-Intelligence bidding strategy. We thus showed
that we sacrifice a reasonably small level of efficiency for the benefits of a decentralised and
transparent approach (through its public orderbooks and the fact that there is no center) and
scaleability (given the linearly increasing complexity of our market-based solution).
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Our future work in this area focuses on taking the solution that we have developed here and
applying it within a fine grained industrial simulation of the Aero Repair and Overhaul domain
(before ultimately deploying it within the operational system). As we envisage increasingly
larger scheduling problems in this context, the need for robust and scaleable solutions of the
kind that we have presented here, will become highly desirable and indeed essential in the
future. To further improve the performance of our scheduling approach we would also like to
explore more intelligent bidding strategies that can strategise effectively on the additional time
factor that we have in this domain. In this respect, we believe that a considerably higher effi-
ciency can be achieved, and this belief is supported by the observation that within the standard
CDA, state of the art strategies can led to an improvement in efficiency from 97% (achieved
with the Zero-Intelligence bidding strategy) to 99.9% [11, 10]. In addition, we intend to anal-
yse the efficiency of our system when agents enter and leave the system at any time. This is
an important issue within the Aero Repair and Overhaul domain, since damaged engines must
often be added to an existing schedule at short notice, and thus, we must evaluate how well our
auction-based mechanism reacts to sudden change in the demand and supply.
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