Towards Real-Time Information Processing of Sensor Network Data
using Computationally Efficient Multi-output Gaussian Processes

M. A. Osborne and S. J. Roberts
Department of Engineering Science
University of Oxford
Oxford, OX1 3PJ, UK.

{mosb, sjrob}erobots.ox.ac.uk

Abstract

In this paper, we describe a novel, computationally effi-
cient algorithm that facilitates the autonomous acquisition
of readings from sensor networks (deciding when and which
sensor to acquire readings from at any time), and which
can, with minimal domain knowledge, perform a range of
information processing tasks including modelling the accu-
racy of the sensor readings, predicting the value of missing
sensor readings, and predicting how the monitored environ-
mental variables will evolve into the future. Our motivating
scenario is the need to provide situational awareness sup-
port to first responders at the scene of a large scale incident,
and to this end, we describe a novel iterative formulation
of a multi-output Gaussian process that can build and ex-
ploit a probabilistic model of the environmental variables
being measured (including the correlations and delays that
exist between them). We validate our approach using data
collected from a network of weather sensors located on the
south coast of England.

1 Introduction

Sensor networks have recently generated a great deal of re-
search interest within the computer and physical sciences,
and their use for the scientific monitoring of remote and
hostile environments is increasingly common-place. While
early sensor networks were a simple evolution of existing
automated data loggers, that collected data for later off-line
scientific analysis, more recent sensor networks typically
make current data available through the internet, and thus,
are increasingly being used for the real-time monitoring of
environmental events such as floods or storm events (see [7]
for a review of such environmental sensor networks).

Such real-time access to sensor data is also a feature of
pervasive sensor systems in which sensors owned by mul-

A. Rogers, S. D. Ramchurn and N. R. Jennings

School of Electronics and Computer Science
University of Southampton
Southampton, SO17 1BJ, UK.

{acr, sdr,nrj}eecs.soton.ac.uk

tiple stakeholders (e.g. private individuals, building own-
ers, and local authorities) are ubiquitously deployed within
urban environments and make their information available
to multiple users directly through standard web interfaces
(see the CitySense project of Harvard University [13] and
Microsoft’s SenseWeb project [1]). Such networks have
many applications, including traffic or pollution monitor-
ing, and within the ALADDIN project (http://www.
aladdinproject.org), we are seeking to use such net-
works to provide situational awareness support to first re-
sponders at the scene of a large scale incident. We envisage
providing these first responders with a mobile computer or
personal digital assistant (PDA) that is capable of collect-
ing information from local sensors, compiling a coherent
world view, and then assisting in decision making. An ex-
ample application would be to provide fire fighters with lo-
cal weather information, and to predict future wind changes
through observations of nearby sensors. Other applications
include tracking the movement of dangerous gas, chemical
or smoke plumes, and monitoring the structural integrity of

buildings after an earthquake.
Using real-time sensor data in this manner presents many

novel challenges; not least the need for self-describing data
formats, and standard protocols such that sensors can ad-
vertise their existence and capabilities to potential users.
However, more significantly for us, many of the information
processing tasks that would previously have been performed
off-line by the owner or single user of an environmental sen-
sor network (such as detecting faulty sensors, fusing noisy
measurements from several sensors, and deciding how fre-
quently readings should be taken), must now be performed
in real-time on the mobile computers and PDAs carried by
the multiple different users of the system (who may have
different goals and may be using sensor readings for very
different tasks). Furthermore, to support decision making,
it may also be necessary to use the trends and correlations
observed in previous data to predict the value of environ-
mental parameters into the future, or to predict the reading

of a sensor that is temporarily unavailable (e.g. due to net-
work outages). Finally, we note that the open nature of the
network (in which additional sensors may be deployed, and
existing sensors may be removed, repositioned or updated at
any time) means that these tasks may have to be performed
with only limited knowledge of the precise location, relia-
bility, and accuracy of each sensor.

Now, many of the information processing tasks de-
scribed above have previously been tackled by applying
principled Bayesian methodologies from the academic liter-
ature of geospatial statistics and machine learning: specif-
ically, kriging [4] and Gaussian processes [18]. However,
due to the computational complexity of these approaches,
to date they have largely been used off-line in order to anal-
yse and re-design existing sensor networks (e.g. to reduce
maintenance costs by removing the least informative sen-
sors from an existing sensor network [6], or to find the op-
timum placement of a small number of sensors, after a trial
deployment of a larger number has collected data indicating
their spatial correlation [10]). Thus, there is a clear need for
more computationally efficient algorithms, that can be de-
ployed on the mobile computers and PDAs carried by our
first responders, in order to perform this information pro-
cessing in real-time.

Against this background, this paper describes our work
developing just such an algorithm. More specifically, we
present a novel iterative formulation of a Gaussian process
(GP) that uses a computationally efficient implementation
of Bayesian Monte Carlo to marginalise hyperparameters,
efficiently re-uses previous computations by following an
online update procedure as new data sequentially arrives,
and uses a principled ‘windowing’ of data in order to main-
tain a reasonably sized data set. We use this GP to build
a probabilistic model of the environmental variables being
measured by sensors within the network (including the cor-
relations and delays that exist between them). This model
allows us to then perform information processing tasks in-
cluding: modelling the accuracy of the sensor readings, pre-
dicting the value of missing sensor readings, predicting how
the monitored environmental variables will evolve in the
near future, and performing active sampling by deciding
when and from which sensor to acquire readings. We val-
idate our multi-output Gaussian process formulation using
data from a network of weather sensors on the south coast
of England, and we demonstrate its effectiveness by bench-
marking it against conventional single-output Gaussian pro-
cesses that model each sensor independently. Our results
on this data set are promising, and represent a step towards
the deployment of real-time algorithms that use principled
machine learning techniques to autonomously acquire and
process data from sensor networks.

The remainder of this paper is organised as follows: Sec-
tion 2 describes the information processing problem that

we face. Section 3 presents our Gaussian process formu-
lation, and section 4 describes the sensor network used to
validate this formulation. In section 5 we present experi-
mental results using data from this network, and in section
6 we present results on the computational cost of our algo-
rithm. Finally, related work is discussed in section 7, and
we conclude in section 8.

2 The Information Processing Problem

As discussed above, we require that our algorithm be able
to autonomously perform data acquisition and information
processing despite having only limited specific knowledge
of each of the sensors in its local neighbourhood (e.g. their
precise location, reliability, and accuracy). To this end, we
require that it explicitly represents:

1. The uncertainty in the estimated values of environmen-
tal variables being measured, noting that sensor read-
ings will always incorporate some degree of measure-
ment noise.

2. The correlations or delays that exist between sensor
readings; sensors that are close to one another, or in
similar environments, will tend to make similar read-
ings, while many physical processes involving moving
fields (such as the movement of weather fronts) will
induce delays between sensors.

We then require that it uses this representation in order to:

1. Perform regression and prediction of environmental
variables; that is, interpolate between sensor readings
to predict variables at missing sensors (i.e. sensors that
have failed or are unavailable through network out-
ages), and perform short term prediction in order to
support decision making.

2. Perform efficient active sampling by selecting when to
take a reading, and which sensor to read from, such
that the minimum number of sensor readings are used
to maintain the estimated uncertainty in environmen-
tal variables below a specified threshold (or similarly,
to minimise uncertainty given a constrained number
of sensor readings). Such constraints may reflect the
computational limitations of the mobile device or PDA
on which the algorithm is running, or alternatively,
where the algorithm is actually controlling the net-
work, it may reflect the constrained power consump-
tion of the sensors themselves.

More specifically, the problem that we face can be cast as
a multivariate regression and decision problem in which
we have [= 1...L environmental variables z; €
R of interest (such as air temperature, wind speed or

direction specified at different sensor locations). We
assume a set of N potentially noisy sensor readings,
{ [[l1,t1],y1] ey HlN,tN],yN] }, in which we, for exam-
ple, observe the value y; for the llm variable at time ¢,
whose true unknown value is x;. Note that we do not re-
quire that all the variables are observed at the same time,
nor do we impose any discretisation of our observations
into regularly spaced time steps. We define our vector of
observations as ¥, = [y1, ..., yn] of variables labelled by
Ip = [l1,...,ly] at times tp = [t1,...,ty]. Given this
data, we are interested in inferring the vector of values x,
for any other vector of variables labelled by 1, at times ..

3 Gaussian Processes

Multivariate regression problems of the form described
above have often been addressed using multi-layer neural
networks. However, Gaussian processes (GPs) are increas-
ingly being applied in this area. They represent a power-
ful way to perform Bayesian inference about functions; we
consider our environmental variables as just such a function
[18]. This function takes as inputs the variable label and
time pair [/, ¢] and produces as output the variable’s value
x. In this work, we will assume that our inputs are always
known (e.g. our data is time-stamped), and will incorpo-
rate them into our background knowledge /. A GP is then
a generalised multivariate Gaussian prior distribution over
the (potentially infinite number of) outputs of this function:

p(x|p, K, I) 2 N(z; p, K)

£ \/ﬁ exp (—%(m—H)TK_l (QJ—IL)) ey

It is specified by prior mean and covariance functions,
which generate ;o and K. The multivariate Gaussian dis-
tribution is qualified for this role due to the fact that both
its marginal probabilities and conditional probabilities are
themselves Gaussian. This allows us to produce analytic
posterior distributions for outputs of interest, conditioned
on whatever sensor readings have been observed. Further-
more, this posterior distribution will have both a predictive
mean and a variance to explicitly represent our uncertainty.
While the fundamental theory of GPs is well established
(see [18] for example), there is much scope for the devel-
opment of computationally efficient implementations. To
this end, in this work we present a novel on-line formal-
ism of a multi-dimensional GP that allows us to model the
correlations between sensor readings, and to update this
model on-line as new observations are sequentially avail-
able. Space precludes a full description of this algorithm
(see [15] for the full details), however, in the next sections
we describe the covariance functions that we use to repre-
sent correlations and delays between sensor readings, the
Bayesian Monte Carlo method that we use to marginalise
the hyperparameters of these covariance functions, and how

we efficiently update the model as new data is received, by
reusing the results of previous computations, and applying
a principled ‘windowing’ of our data series.

3.1 Covariance Functions

The prior mean of a GP represents whatever we expect for
our function before seeing any data. We take this as a func-
tion constant in time, such that p([l,¢]) = p;. The covari-
ance function of a GP specifies the correlation between any
pair of outputs. This can then be used to generate a covari-
ance matrix over our set of observations and predictants.
Fortunately, there exist a wide variety of functions that can
serve in this purpose [2, 20], which can then be combined
and modified in a further multitude of ways. This gives us a
great deal of flexibility in our modelling of functions, with
covariance functions available to model periodicity, delay,
noise and long-term drifts.

As an example, consider a covariance given by the
Hadamard product of a covariance function over time alone
and a covariance function over environmental variable la-
bels alone, such that:

K([lv t}v [llv t/]) = Klabel(lv l/) Klime(t - dl; t/ - dl/) (2)

where d allows us to express the delays between environ-
mental variables. We use the completely general spherical
parameterisation, s, such that:

Kl (1,1) £ diag(g) sTs diag(g) (3)

where g gives an intuitive length scale for each environmen-
tal variable, and s”'s is the correlation matrix [16]. This
allows us to represent any possible degree of correlation be-
tween our variables.

Similarly, we can represent correlations over time with a
wide variety of covariance functions, permitting the incor-
poration of what domain knowledge we have. For example,
we use the additive combination of a periodic term and a
non-periodic disturbance term where we expect our variable
to be well-represented by the superposition of an oscillatory
and a non-oscillatory component. We represent both terms
using the Matérn class [18] (with v = 5/2), given by:

2
Kiime(t, 1) = h? (1 +V5r + 5;) exp (_\/57“) (4)

!
where r = |4
w

for non-periodic terms, and r =

/ . . ’
sinm ’%’ for periodic ones. The Matérn class allows us

to empirically select a degree of smoothness, given by the
choice of v, appropriate for the functions we are trying to
track. Finally, to represent measurement noise, we further
extend the covariance function to:

V(L8 [, ¢) & K([L,1),[I',t']) + o> S([Le] =1, ¢) 5

where 6(—) is the Kronecker delta and o represents the
variance of additive Gaussian noise.

This choice of covariance is intended to model correlated
periodic variables subject to local disturbances which may
themselves be correlated amongst variables. This general
model describes many environmental variables that are sub-
ject to some daily cycle (e.g. the 12 hour cycle of the tide,
or the 24 hour cycle seen in most temperature readings),
but we reiterate that, given different domain knowledge, a
variety of other covariance functions can be chosen. For ex-
ample, a more suitable covariance for air temperature was
found to include an additional additive covariance term over
time. This allows for the possibility of both long-term drifts
in temperature occurring over the course of a week, as well
as more high-frequency, hourly changes.

The flexibility of our model comes at the cost of the in-
troduction of a number of hyperparameters, which we col-
lectively denote as ¢. These include correlation hyperpa-
rameters (i.e. g, s and d), along with others such as the pe-
riods and amplitudes of each covariance term (i.e. w and
h) and the noise deviation o. The constant prior means
W1, ...,y are also included as additional hyperparame-
ters. Taking these hyperparameters as given and using the
properties of the Gaussian distribution, we are able to write
our predictive equations as:

p($*|yD, 9, I) = N(m*;m*,C*) (6)

where, collecting our inputs as z, = [l,,t,] and zp =
[lp,tp], we have:

m. = py(z.) + Ko(2+,20)Ve(20,20) " (yp — Hy(2D))
C, = K¢(Z*,Z*) - Kq},(z*,ZD)V¢(ZD,ZD)71K¢(ZD,Z*)
@)

3.2 Marginalisation

Of course, it is rare that we can be certain a priori about the
values of our hyperparameters. Rather than equation (6),
the quantity of our interest is actually:
I p(zlyp, ¢, 1) p(ypld, 1) p(4| 1) dé
p(x|yp,I) = (3
(el) [p(plo. 1) p(0] 1) db
in which we have marginalised ¢. Unfortunately, both our
likelihood p(y | ¢, I) and predictions p(x,|yp, ¢,) ex-
hibit non-trivial dependence upon ¢ and so our integrals are
non-analytic. As such, we resort to quadrature, which in-
evitably involves evaluating the two quantities:

Q(d)) ép($*|yD, ¢v I)
r(¢) £ p(yplé, I)

€))

at a set of sample points ¢g = [¢;, ..., ¢y, giving gg =
q(¢g) and rs = 7(¢pg). Of course, this evaluation is a

computationally expensive operation. Clearly, we can’t af-
ford to evaluate the functions ¢ and r for all possible ¢.
However, we can view this sparse sampling as a form of un-
certainty about the functions ¢ and r, which we can again
address using Bayesian probability theory.

To this end, we apply Bayesian Monte Carlo, and thus,
assign a second GP prior to these functions [17]. We can
then use our computed samples g g in order to perform re-
gression about the value of ¢(¢,) for any other ¢, of inter-
est, and similarly for . To each of our hyperparameters we
assign a Gaussian prior distribution (or if our hyperparam-
eter is restricted to the positive reals, we instead assign a
Gaussian distribution to its log) given by:

p(o| 1) £ N(g;v,AT)) (10)

We then assign a squared exponential covariance function
for the GP over both ¢ and r given by:

K(¢,¢') £N(¢;¢', w'w) (11)

Finally, using the further definition for ¢, j € Zg, that:

NN o1 [v] NA+wTw ATA
mS(Zvj)_N(|:¢j:|7|:V:|a|:)\T)\)\T)\+WTW
(12)
it can be shown that:

K(¢s:¢s) " NsK(¢ps: ¢s5) ' 7s

15,1 K(¢g, ¢5) ' Ns K(pg, ps) ' 7s

13)
where 1g is a vector containing only ones of dimen-
sions equal to gg. Note that equation (13) can be viewed
as a linear combination of the elements of gg. With a
GP on p(xy|®, I), each q; = p(x«|yp, ¢, 1) will be
a slightly different Gaussian. Hence we effectively ap-
proximate p(@.|yp,I) as a Gaussian (process) mixture;
Bayesian Monte Carlo returns a weighted sum of our pre-
dictions evaluated at a sample set of hyperparameters. Un-
like traditional Monte Carlo, these weights are informed not
only by our function values gg and r g, but also by their ar-
guments ¢ . Bayesian Monte Carlo makes the best use of
all pertinent information [14]. As such, it avoids the risk
of overfitting that occurs when applying a less principled
technique such as likelihood maximisation [12].

p(xilyp,) ~ g5

3.3 Efficient Implementation

The most stable implementation of equation (7) in-
volves the wuse of the Cholesky decomposition,
R(zp,zp), of V(zp,zp), such that V(zp,zp) =
R(zp,zp)T R(zp,zp). Performing this Cholesky de-
composition represents the most computationally expensive
operation we must perform; its cost scaling as O(N?)
in the number of data points N. However, as discussed
earlier, we do not intend to use our GP with a fixed set of

data, but rather, within an on-line algorithm that receives
new observations over time. As such, we must be able
to iteratively update our predictions in as little time as
possible. Fortunately, we can do so by exploiting the
special structure of our problem. When we receive new
data, our V matrix is changed only in the addition of
a few new rows and columns. Hence most of the work
that went into computing its Cholesky decomposition
at the last iteration can be recycled to produce the new
Cholesky decomposition (see Appendix A.1 for details of
this operation). As such, we are able to reduce the overall
cost of an update from O(N?) to O(N?).

However, we can further increase the efficiency of our
updates by making a judicious assumption. In particular,
experience shows that our GP requires only a very small
number of recent observations in order to produce good es-
timates. Indeed, most covariance functions have very light
tails such that only points within a few multiples of the time
scale are at all relevant to the point of interest. Hence we
seek sensible ways of discarding information once it has
been rendered ‘stale’, to reduce both memory usage and
computational requirements.

One pre-eminently reasonable measure of the value of
data is the uncertainty we still possess after learning it. In
particular, we are interested in how uncertain we are about
x,; as given by the covariance of our Gaussian mixture
equation (13). Our approach is thus to drop our oldest data
points (those which our covariance deems least relevant to
the current predictant) until this uncertainty exceeds some
predetermined threshold.

Just as we were able to efficiently update our Cholesky
factor upon the receipt of new data, so we can downdate to
remove data (see Appendix A.2 for the details of this op-
eration). This allows us to rapidly remove unwanted data,
compute our uncertainty about x,, and then repeat as re-
quired; the GP will retain only as much data as necessary
to achieve a pre-specified degree of accuracy. This allows a
principled way of ‘windowing’ our data series.

Finally, we turn to the implementation of our marginali-
sation procedure. Essentially, our approach is to maintain a
number of GPs, one for each hyperparameter sample, run-
ning in parallel, each of which we update and downdate ac-
cording to the proposals above. Their predictions are then
weighted and combined according to equation (13). Note
that the only computations whose computational cost grows
at greater than a quadratic rate in the number of samples, 7,
are the Cholesky decomposition and multiplication of co-
variance matrices in equation (13), and these scale rather
poorly as O(n®). To address this problem, we take our
Gaussian priors for each different hyperparameter ¢,y € ¢
as independent. We further take a covariance structure given
by the product of terms over each hyperparameter, the com-

mon product correlation rule (e.g. [19]):
K(¢, ¢') = [[Ke(o(e)> ¢e)) (14)

If we additionally consider a simple grid of samples, such
that ¢ is the tensor product of a set of samples ¢, g over
each hyperparameter, then the problematic term in equation
(13) reduces to the Kronecker product of the equivalent term
over each individual hyperparameter:

K(¢37 ¢S)71 Ns K(gs, ¢s)71 =

K(¢(1),Sa ¢(1),S)71m5(¢(1),s’ ¢(1),S)K(¢(1),Sa ¢(1),s)71
®K(@(2) s ¢(2),s)71m5(¢(2),57 ?2).5) K@) s ¢(2),s)71
®... (15)

This means that we only have to perform the Cholesky
factorisation and multiplication with matrices whose size
equals the number of samples for each hyperparameter. For
example, if we use, say, 100 samples for each of our 20 hy-
perparameters, we only ever need to perform our expensive
O(n®) operations on matrices of size 100, rather than on the
full matrix of size 1002°. Thus, this represents an effective
way to avoid the ‘curse of dimensionality’.

Applied together, these features provide us with an effi-
cient on-line algorithm that can be applied in real-time as
data is sequentially collected from the sensor network.

3.4 Active Data Selection

Finally, in addition to the regression and prediction problem
described in section 2, we are able to use the same algorithm
to perform active data selection. This is a decision problem
concerning which observations should be taken. In this, we
once again take a utility that is a function of the uncertainty
in our predictions. We specify a utility of negative infinity
if our uncertainty about any variable is greater than a pre-
specified threshold, and a fixed negative utility is assigned
as the cost of an observation (in general, this cost could be
different for different sensors). Note that the uncertainty
increases monotonically in the absence of new data, and
shrinks in the presence of an observation. Hence our al-
gorithm is simply induced to make a reading whenever the
uncertainty grows beyond a pre-specified threshold.

Our algorithm can also decide which observation to
make at this time, by determining which sensor will allow
it the longest period of grace until it would be forced to ob-
serve again. This clearly minimises the number of costly
observations. Note that this is possible due to the fact that
the uncertainty of a single GP, as given by C, in equation
(7), is actually dependent only on the location of a observa-
tion, not its actual value. Hence the uncertainty we imagine
remaining after taking an observation from a sensor can be
quickly determined without having to speculate about what

<sit:Location rdf:about="&sit;bramblemet"
rdfs:label="Bramble Bank"
geo:lat="50.79472"
geo:1lng="-1.2875"
sit:altitude="1">

</sit:Location>

<sit:Sensor rdf:about="&sit;bramblemet/windspeed"
rdfs:label="Wind speed">
<sit:sensorType rdf:resource="&sit;windspeed"/>
<sit:location rdf:resource="&sit;bramblemet"/>
</sit:Sensor>

<sit:SensorType rdf:about="&sit;windspeed"
rdfs:label="Wind speed">
</sit:SensorType>

<sit:Unit rdf:about="&sit;knots"
rdfs:label="Knots"
sit:unitAbbr="kn">

</sit:Unit>

<sit:Reading
rdf :about="&sit;bramblemet/windspeed/reading/1234"
rdfs:value="9.3"
sit:datetime="2007-10-25T21:55:00">
<sit:sensor rdf:resource="&sit;bramblemet/windspeed"/>
<sit:unit rdf:resource="&sit;knots"/>

</sit:Reading>

Figure 1: Example RDF data from the Bramblemet sensor.

data we might possibly collect. Hence we are guaranteed to
maintain our uncertainty below a specified threshold, while
taking as few observations as possible.

4 Trial Implementation

In order to empirically evaluate the information process-
ing algorithm described in the previous section, we have
used a network of weather sensors located on the south
coast of England'. This network consists of four sensors
(named Bramblemet, Sotonmet, Cambermet and Chimet),
each of which measures a range of environmental vari-
ables (including wind speed and direction, air tempera-
ture, sea temperature, and tide height) and makes up-to-
date sensor measurements available through separate web
pages (see http://www.bramblemet.co.uk). The use
of such weather sensors is attractive since they have im-
mediate application within our motivating disaster response
scenario, they exhibit challenging correlations and delays
whose physical processes are well understood, and they are
subject to network outages that generate instances of miss-
ing sensor readings on which we can evaluate our informa-
tion processing algorithms.

To facilitate the autonomous collection of sensor data
by our information processing algorithm, we have sup-
plemented each sensor web page with machine readable
RDF data (see figure 1 for an example of this format —
current sensor data in this format is available at http:
//www.bramblemet .co.uk/bra.rdf). This format is

The network is maintained by the Bramblemet/Chimet Support Group
and funded by organisations including the Royal National Lifeboat Institu-
tion, Solent Cruising and Racing Association and Associated British Ports.

Airtemperature (C)

1200 1600 2000 0000 0400 0800 1200 1900 2000 0000 0400 0800 1200

Figure 2: Java implementation of our information process-
ing algorithm.

attractive as it represents a fundamental element of the se-
mantic web, and there exist a number of software tools
to parse, store and query it. More importantly, it allows
the sensor data to be precisely defined through standard
ontologies [11, 21]. For example, linking the predicate
geo:lat to the ontology available at http://www.w3 .org/
2003/01/geo/wgs84 pos# precisely defines the value
“50.79472” as representing a latitude in the WGS84 geode-
tic reference datum. While ontologies for sensor data have
yet to be standardised, a number of candidates exist (see the
Microsoft SenseWeb project [1], for an example ontology
that defines a hierarchy of sensor types).

Finally, in order to visualise the sensor data and the pre-
dictions of our information processing algorithm, we have
implemented a Java prototype of the software that will run
on the mobile computer or PDA carried by our first respon-
ders to provide situational awareness support (see figure 2).

5 Empirical Evaluation

In this section we empirically evaluate our information pro-
cessing algorithm on real weather data collected from the
sensor network described above. We compare our multi-
output GP formalism against conventional independent GPs
in which each environmental variable is modelled sepa-
rately (i.e. correlations between these parameters are ig-
nored). In this comparison, we present results for three dif-
ferent sensor types: tide height, air temperature and wind
speed. Tide height was chosen since it demonstrates the
ability of the GP to learn and predict periodic behaviour, and
more importantly, because this particular data set contains
an interesting period in which extreme weather conditions
(a Northerly gale) cause both an unexpectedly low tide and
a failure of the wireless connection between several of the
sensor and the shore that prevents our algorithm acquiring

Bramblemet — Independent GP

Tide Height (m)
w ~

o)

2 2.5 3

1.5
Time (days)

Chimet — Independent GP
5 ; T :

Tide Height (m)
w ~

o)

! 1.5 2 2.5 3
Time (days)

(a)

Bramblemet — Multi—output GP

Tide Height (m)
v &

[3%)

1.5 2 2.5 3
Time (days)

Chimet — Multi—output GP
5 ; T :

-

Tide Height (m)
(98]

3%

! 1.5 2 2.5 3
Time (days)

(b)

Figure 3: Prediction and regression of tide height data for (a) independent and (b) multi-output Gaussian processes.

sensor readings. Air temperature and wind speed were cho-
sen since they exhibit a very different noise and correlation
structure to the tide height measurements, and thus demon-
strate that the generic approach describe here is still able to
perform reliable regression and prediction.

5.1 Regression and Prediction

Figures 3 and 4 illustrate the efficacy of our GP formalism
in this scenario. We plot the sensor readings acquired by
our algorithm (shown as markers), the mean and standard
deviation of the GP prediction (shown as a solid line with
plus or minus a single standard deviation shown as shading),
and the true fine-grained sensor readings (shown as bold)
that were downloaded directly from the sensor (rather than
through the web site) after the event. Note that we present
just two sensors for reasons of space, but we use readings
from all four sensors in order to perform inference. At time
t, these figures depict the posterior distribution of the GP,
conditioned on all observations prior to ¢.

We first consider figure 3 showing the tide predictions,
and specifically, we note the performance of our multi-
output GP formalism when the Bramblemet sensor drops
out at t = 1.45 days. In this case, the independent GP quite
reasonably predicts that the tide will repeat the same peri-
odic signal it has observed in the past. However, the GP
can achieve better results if it is allowed to benefit from the
knowledge of the other sensors’ readings during this inter-
val of missing data. Thus, in the case of the multi-output
GP, by ¢t = 1.45 days, the GP has successfully determined

that the sensors are all very strongly correlated. Hence,
when it sees an unexpected low tide in the Chimet sensor
data (caused by the strong Northerly wind), these correla-
tions lead it to infer a similarly low tide in the Bramblemet
reading. Hence, the multi-output GP produces significantly
more accurate predictions during the missing data interval,
with associated smaller error bars.

Exactly the same effect is seen in the later predictions
of the Chimet tide height, where the multi-output GP pre-
dictions use observations from the other sensors to better
predict the high tide height at ¢ = 2.45 days. Furthermore,
figure 4 shows the air temperature sensor readings where
a similar effect is observed. Again, the multi-output GP is
able to better predict the missing air temperature readings
from the Chimet sensor having learnt the correlation with
other sensors, despite the fact that the data set is much nois-
ier and the correlations between sensors are much weaker.

5.2 Active Data Selection

We now demonstrate our active data selection algorithm.
Using the fine-grained data (downloaded directly from the
sensors), we can simulate how our GP would have chosen
its observations had it been in control. Results from the ac-
tive selection of observations from all the four tide sensors
are displayed in figure 5, and for three wind speed sensors in
figure 6. Again, these plots depict dynamic choices; at time
t, the GP must decide when next to observe, and from which
sensor, given knowledge only of the observations recorded

Bramblemet — Independent GP

Air Temperature (C)
S

8.5 i 1.‘5 i 215 é 35
Time (days)
Chimet — Independent GP

15 i T .

Air Temperature (C)
S

8.5 1 1.5 2 2.5 3 35
Time (days)

(a)

Bramblemet — Multi—output GP
15 i ; . .

101 1

Air Temperature (C)

8. 5 1 1.5 2 25 3 35
Time (days)

Chimet — Multi—output GP
15 i T .

Air Temperature (C)
S

8.5 1 1.5 2 2.5 3 35
Time (days)

(b)

Figure 4: Prediction and regression of air temperature data for (a) independent and (b) multi-output Gaussian processes.

prior to ¢, in an attempt to maintain the uncertainty in tide
height below 10cm.

Consider first the case shown in figure 5(a), in which
separate independent GPs are used to represent each sensor.
Note that a large number of observations are taken initially
as the dynamics of the sensor readings are learnt, followed
by a low but constant rate of observation.

In contrast, for the multi-output case shown in figure
5(b), the GP is allowed to explicitly represent correlations
and delays between the sensors. This data set is notable for
the slight delay of the tide heights at the Chimet and Cam-
bermet sensors relative to the Sotonmet and Bramblemet
sensors, due to the nature of tidal flows in the area. Note that
after an initial learning phase as the dynamics, correlations,
and delays are inferred, the GP chooses to sample predom-
inantly from the undelayed Sotonmet and Bramblemet sen-
sors”. Despite no observations of the Chimet sensor being
made within the time span plotted, the resulting predictions
remain remarkably accurate. Consequently only 119 obser-
vations are required to keep the uncertainty below the spec-
ified tolerance, whereas 358 observations were required in
the independent case. This represents another clear demon-
stration of how our prediction is able to benefit from the
readings of multiple sensors.

Figure 6 shows similar results for the wind speed mea-

2The dynamics of the tide height at the Sotonmet sensor are more com-
plex than the other sensors due to the existence of a ‘young flood stand’
and a ‘double high tide’ in Southampton. For this reason, the GP selects
Sotonmet as the most informative sensor and samples it most often.

surements from three of the four sensors (the Cambermet
sensor being faulty during this period) where the goal was
to maintain the uncertainty in wind speed below 1.5 knots.
In this case, for purposes of clarity, the fine-grained data is
not shown on the plot. Note that the measurement noise
is much greater in this case, and this is reflected in the
uncertainty in the GP predictions. Furthermore, note that
while the Sotonmet and Chimet sensors exhibit a notice-
able correlation, Bramblemet appears to be relatively un-
correlated with both. This observation is reflected in the
sampling that the GP performs. The independent GPs sam-
ple the Bramblemet, Sotonmet and Chimet sensors 126, 120
and 121 times respectively, while over the same period, our
multi-output GP samples the same sensors 115, 88 and 81
times. Our multi-output GP learns on-line that the wind
speed measurements of the Sotonmet and Chimet sensors
are correlated, and then exploits this correlation in order to
reduce the number of times that these sensors are sampled
(inferring the wind speed at one location from observations
of another). However, there is little or no correlation be-
tween the Bramblemet sensor and the other sensors, and
thus, our multi-output GP samples Bramblemet almost as
often as the independent GPs.

6 Computation Time

As described earlier, a key requirement of our algorithm is
computational efficiency, in order that it can be used to rep-
resent multiple correlated sensors, and hence, used for real-

Bramblemet — Independent GP

Y

S}

Tide Height (m)
%8

2 2.5 3

o
o
n

1.5
Time (days)
Sotonmet — Independent GP

W

I

Tide Height (m)
%8

2
1 ‘ ‘ ‘ ‘
0 0.5 1 1.5 2 2.5 3
Time (days)
Chimet — Independent GP
5 ; T .
4

Tide Height (m)
o8]

2,
b os 1 15 2 25 3
Time (days)
Cambermet — Independent GP
5 ; T :
4

Tide Height (m)
[1)

—
(=}

0.5 1 1.5 2 2.5 3
Time (days)

(a)

Bramblemet — Multi—output GP

S W
T

Tide Height (m)
D W

2 2.5 3

(=]

0.5 1.5
Time (days)

Sotonmet — Multi—output GP

n

5

Tide Height (m)
(98]

2
]0 0.5 1 1.5 2 25 3
Time (days)
Chimet — Multi—output GP
5 ; T .
4

Tide Height (m)
(98]

2
1 ‘ ‘ ‘ ‘ ‘
0 0.5 1 1.5 2 2.5 3
Time (days)
Cambermet — Multi—output GP
5 T T T T
4

Tide Height (m)
[\°] 1

—
(=}

0.5 1 1.5 2 2.5 3
Time (days)

(b)

Figure 5: Comparison of active sampling of tide data using (a) independent and (b) multi-output Gaussian processes.

time information processing. Here we consider the compu-
tation times involved in producing the results presented in
the previous section. To this end, table 1 tabulates the com-
putation times required in order to update the algorithm as a
new observation is received. This computation time repre-
sents the cost of updating the weights of equation (13) and
the Cholesky factor of V' (as described in section 3.3). Once
this calculation has been performed, making predictions at
any point in time is extremely fast (it is simply a matter of
adding another element in z,).

Note that we expect the cost of computation to grow
as O(N?) in the number of stored data points. Our pro-
posed algorithm will automatically determine the quantity
of data to store in order to achieve the desired level of ac-
curacy. In the problems we have studied, a few hundred
points were typically sufficient (the largest number we re-
quired was 750, for the multi-output wind speed data), al-
though of course this will depend critically on the nature of

the variables under consideration. Note also that the cost
of computing equation (15) will grow in the cube of the
number of samples in each hyperparameter. However, we
consider only a fixed set of samples in each hyperparame-
ter, and thus, equation (15) need only be computed once,
off-line. In this case, our on-line costs are limited by the
multiplication of that term by the likelihoods rg to give
the weights of equation (13), and this only grows as O(n?).
Furthermore, note that this cost is independent of how the
samples are distributed amongst the hyperparameters.

The results in table 1 indicate that real-time information
processing is clearly feasible for the problem sizes that we
have considered. In general, limiting the number of hy-
perparameter samples is of critical importance to achieving
practical computation. As such, we should exploit any and
all prior information that we possess about the system to
limit the volume of hyperparameter space that our GP is re-
quired to explore online. For example, an informative prior

Bramblemet — Independent GP

[\]
(=)

—
W

Wind Speed (knots)
v, 3

Time (days)
Sotonmet — Independent GP

Wind Speed (knots)

Time (days)
Chimet — Independent GP

Wind Speed (knots)

Time (days)

(a)

expressing that the tidal period is likely to be around half a
day will greatly reduce the number of samples required for
this hyperparameter. Similarly, an offline analysis of any
available training data will return sharply peaked posteriors
over our hyperparameters that will further restrict the re-
quired volume to be searched over on-line. For example, we
represent the tidal period hyperparameter with only a single
sample on-line, so certain does training data make us of its
value. Finally, a simpler and less flexible covariance model,
with fewer hyperparameters, could be chosen if computa-
tional limitations become particularly severe. Note that the
use of the completely general spherical parameterisation re-
quires a correlation hyperparameter for each pair of vari-
ables, an approach which is clearly only feasible for mod-
erate numbers of variables. A simple alternative, of course,
would be to assume a covariance over variable label which
is a function of the spatial separation between the sensors
reading them - sensors that are physically close are likely
to be strongly correlated - in which case we would require
only enough hyperparameters to define this measure of sep-
aration. While a more complicated model will return better
predictions, a simple one or two hyperparameter covariance
may supply accuracy sufficient for our needs.

10

Bramblemet — Multi—output GP

s}
S

*

—
n

Wind Speed (knots)
S

Time (days)
Sotonmet — Multi—output GP

Wind Speed (knots)

Time (days)
Chimet — Multi—output GP

Wind Speed (knots)

Time (days)
(b)

Figure 6: Comparison of active sampling of wind speed using (a) independent and (b) multi-output Gaussian processes.

7 Related Work

Gaussian process regression has a long history of use within
geophysics and geospatial statistics (where the process is
known as kriging [4]), but has only recently been applied
within sensor networks. Examples here include the use of
GPs to represent spatial correlations between sensors in or-
der that they may be positioned to maximise mutual infor-
mation [10], and the use of multi-variate Gaussians to repre-
sent correlations between different sensors and sensor types
for energy efficient querying of a sensor network [5].

Our work differs in that we use GPs to represent tem-
poral correlations, and represent correlations and delays be-
tween sensors with additional hyperparameters. It is thus
closely related to other work using GPs to perform regres-
sion over multiple responses [3, 22]. However, our focus
is to derive a computationally efficient algorithm, and thus,
we use a number of novel computational techniques to allow
the re-use of previous calculations as new sensor observa-
tions are made. Furthermore, we use Bayesian Monte Carlo
techniques to marginalise the hyperparameters that describe
the correlations and delays between sensors, and finally, we
use the variance of the GP’s predictions in order to perform

Data Points (N)
10 100 500
1] <0.01]|<0.01]| 004
Hyperparameter 10 0.02 0.02 | 0.20
Samples (7) 100 0.14 022 | 228
1000 1.42 2.22 | 29.73

Table 1: Required computation time (seconds) per update,
over N the number of stored data points and 7 the number
of hyperparameter samples. Experiments performed using
MATLAB on a 3.00GHz processor with 2GB of RAM.

active data selection.

Our approach has several advantages relative to sequen-
tial state-space models [8, 9], Firstly, these models require
the discretisation of the time input, representing a discard-
ing of potentially valuable information. Secondly, their se-
quential nature means they must necessarily perform diffi-
cult iterations in order to manage missing or late data, or to
produce long-range forecasts. In our GP approach, what ob-
servations we have are readily managed, regardless of when
they were made. Equally, the computation cost of all our
predictions is identical, irrespective of the time or place we
wish to make them about. Finally, a sequential framework
requires an explicit specification of a transition model. In
our approach, we are able to learn a model from data even
if our prior knowledge is negligible.

8 Conclusions

In this paper we addressed the need for algorithms capable
of performing real-time information processing of sensor
network data, and we presented a novel computationally ef-
ficient formalism of a multi-output Gaussian process. Using
weather data collected from a sensor network on the south
coast of the UK, we demonstrated that this formalism could
effectively predict missing sensor readings caused by net-
work outages, and could perform active sampling to main-
tain estimation uncertainty below a pre-specified threshold.
Our future work in this area consists of three areas. First,
as a potential replacement to the fixed hyperparameter sam-
ples used in this work, we would like to investigate the
use of a moving set of hyperparameter samples. In such a
scheme, both the weights and positions of samples would be
adjusted according to data received, and as the posterior dis-
tributions of these hyperparameters become more sharply
peaked, we would reduce the number of samples to further
increase the computational efficiency of our algorithm.
Second, we intend to investigate the use of correlations
between different sensor types (rather than between differ-
ent sensors of the same type as presented here) to perform
regression and prediction within our weather sensor net-
work. In addition, we would like to use our probabilistic

11

Figure 7: Prototype deployment of an information process-
ing algorithm on a PDA, and a stand-alone weather sensor
with which it can directly communicate through Wi-Fi.

model to automatically detect failed or unreliable sensors
within the network.

Finally, in order to investigate the practical issues of de-
ploying our information processing algorithm on mobile
computers or PDAs that will communicate directly with the
sensors constituting a pervasive network, we are developing
prototype stand-alone weather sensors that will be deployed
at the University of Southampton (see figure 7). These sen-
sors incorporate Wi-Fi web servers and make their readings
available in the same RDF format described in Section 4.

Acknowledgments

This research was undertaken as part of the ALADDIN
(Autonomous Learning Agents for Decentralised Data
and Information Networks) project and is jointly funded
by a BAE Systems and EPSRC strategic partnership
(EP/C548051/1). We would like to thank B. Blaydes of the
Bramblemet/Chimet Support Group, and W. Heaps of As-
sociated British Ports (ABP) for allowing us access to the
weather sensor network, hosting our RDF data on the sen-
sor web sites, and for providing raw sensor data as required.

References

[1] Microsoft SenseWeb project. See http://research.
microsoft.com/nec/senseweb/.

P. Abrahamsen. A review of Gaussian random fields and cor-
relation functions. Technical Report 917, Norwegian Com-
puting Center, Box 114, Blindern, N-0314 Oslo, Norway,
1997. 2nd edition.

P. Boyle and M. Frean. Dependent Gaussian processes.
In Advances in Neural Information Processing Systems 17,
pages 217-224. The MIT Press, 2005.

N. A. C. Cressie. Statistics for spatial data. John Wiley &
Sons, 1991.

A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and
W. Hong. Model-driven data acquisition in sensor networks.

(2]

(3]

(4]

(5]

In Proceedings of the Thirtieth International Conference on
Very Large Data Bases (VLDB 2004), pages 588-599, 2004.
[6] M. Fuentes, A. Chaudhuri, and D. H. Holland. Bayesian en-
tropy for spatial sampling design of environmental data. En-
vironmental and Ecological Statistics, (14):323-340, 2007.

[7] J. K. Hart and K. Martinez. Environmental Sensor Net-

works: A revolution in the earth system science? Earth-

Science Reviews, 78:177-191, 2006.

A. Girard, C. Rasmussen, J. Candela, and R. Murray-Smith.

Gaussian process priors with uncertain inputs — application

to multiple-step ahead time series forecasting. In Advances

in Neural Information Processing Systems 16. MIT Press,

Cambridge, MA, 2003.

A. Jazwinski. Stochastic processes and filtering theory. Aca-

demic Press New York, 1970.

[10] A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg. Near-
optimal sensor placements: Maximizing information while
minimizing communication cost. In Proceedings of the Fifth
International Conference on Information Processing in Sen-
sor Networks (IPSN ’06), pages 2—10, Nashville, Tennessee,
USA, 2006.

[11] O. Lassila and R. R. Swick. Resource descrip-
tion framework (rdf) model and syntax specification,
1999. Available at http://www.w3.0rg/TR/1999/
REC-rdf-syntax-19990222/.

[12] D.J. C. MacKay. Information Theory, Inference & Learning
Algorithms. Cambridge University Press, 2002.

[13] R. Murty, A. Gosain, M. Tierney, A. Brody, A. Fahad,
J. Bers, and M. Welsh. Citysense: A vision for an urban-
scale wireless networking testbed. Technical Report TR-13-
07, Harvard University, September 2007.

[14] A. O’Hagan. Monte Carlo is fundamentally unsound. The
Statistician, 36:247-249, 1987.

[15] M.A. Osborne and S. J. Roberts. Gaussian pro-
cesses for prediction. Technical Report PARG-07-
01. Available at www.robots.ox.ac.uk/~parg/
publications.html, University of Oxford, September
2007.

[16] J. Pinheiro and D. Bates. Unconstrained parameterizations
for variance-covariance matrices. Statistics and Computing,
6:289-296, 1996.

[17] C. E. Rasmussen and Z. Ghahramani. Bayesian Monte
Carlo. In Advances in Neural Information Processing Sys-
tems 15, pages 489-496. The MIT Press, 2003.

[18] C.E.Rasmussen and C. K. I. Williams. Gaussian Processes
for Machine Learning. MIT Press, 2006.

[19] M. Sasena. Flexibility and Efficiency Enhancements for
Constrained Global Design Optimization with Kriging Ap-
proximations. PhD thesis, University of Michigan, 2002.

[20] M. Stein. Space-Time Covariance Functions. Journal of the
American Statistical Association, 100(469):310-322, 2005.

[21] B. Szekely and E. Torres. A semantic data collec-
tion model for sensor network applications. Avail-
able at http://www.klinewoods.com/papers/
semanticdcn.pdf.

[22] Y. W. Teh, M. Seeger, and M. L. Jordan. Semiparametric
latent factor models. In Proceedings of the Conference on
Artificial Intelligence and Statistics, pages 333-340, 2005.

[23] The MathWorks. MATLAB R2007a, 2007. Natick, MA.

[8

—

[9

—

A Appendix

A.1 Cholesky Factor Update

We have a positive definite matrix, represented in block
(Vii Vi Ri R1,3:|
_‘GTS ‘/3,3 0 R373 ’
Given a new positive definite matrix, which differs from
the old only in the insertion of some new rows and
Vii Vip Vigs
columns, VEQ Voo Vo3|, we wish to efficiently determine
_V1T3 Vols Vags
S11 Sz Sis
its Cholesky factor, | O Ss2 Sa23|. For A triangular, we
0 0 Ss3
define x = A\ b as the solution to the equations A & = b as found
by the use of backwards or forwards substitution. The following
rules are readily obtained:

form as and its Cholesky factor,

Si1,1=Ri (16)
Si2=Ri1\ Vi a7
S13=Ri3 (18)
S22 = chol(Va,2 — 51551 2) (19)
Sa,3 = SzT,z \ (Va3 — 5?,251,3) (20)
S3,3 = chol(R3 s R33 — S3.552,3) @21

By setting the appropriate row and column dimensions (to zero
if necessary), this allows us to efficiently determine the Cholesky
factor given the insertion of rows and columns in any position.

A.2 Cholesky Factor Downdate

We have a positive definite matrix, represented in block
Vian Vig Vigs

form as Vfg Voo Va3 and its Cholesky factor,
Viis Vas Vag

Si1 Si2 Sis
0 Sao Sos Given a new positive definite ma-

0 0 S33
trix, which differs from the old only in the deletion of some

Vii Vigs
T
Vis Vss

determine its Cholesky factor R Baig
0 R3,3

new rows and columns, {], we wish to efficiently

} . The following rules

are readily obtained:

Rii1 =511 (22)
Ri3= 513 (23)
Ra,3 = chol(S3 585,34+ S5.553.3) (24)

Note that the special structure of equation (24) can be exploited for
the efficient resolution of the required Cholesky operation, as, for
example, in the MATLAB function cholupdate [23]. By setting
the appropriate row and column dimensions (to zero if necessary),
this allows us to efficiently determine the Cholesky factor given
the deletion of rows and columns in any position.

