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Abstract: Semantic Web Services [MSZ01] have been recognized as a promising 
technology that exhibits huge commercial potential, and attract significant attention 
from both industry and the research community. Despite expectations being high, the 
industrial take-up of Semantic Web Service technologies has been slower than 
expected.  One of the main reasons is that many systems have been developed without 
considering the potential of the web in integrating services and sharing resources. 
Without a systematic methodology and proper tool support, the migration from legacy 
systems to Semantic Web Service-based systems can be a very tedious and expensive 
process, which carries a definite risk of failure.  There is an urgent need to provide 
strategies which allow the migration of legacy systems to Semantic Web Services 
platforms, and also tools to support such a strategy.  In this paper we propose a 
methodology for transitioning these applications to Semantic Web Services by taking 
the advantage of rigorous mathematical methods. Our methodology allows users to 
migrate their applications to Semantic Web Services platform automatically or semi-
automatically.   

Introduction 

The recent uptake of automated services over the Internet and World Wide Web 
has pushed the boundaries of Distributed Systems, by facilitating the greater 
proliferation of disparate, sharable resources such as computer systems and 
software applications, and the pragmatic uptake of interconnectable services, 
provided by a variety of different service providers.  Software applications have 
evolved from monolithic, stove-pipe applications to loosely federated, interacting 
services that are dependent on networked resources to provide optimal 
functionality. This is largely due to a change in the perception of current software 
engineering practices, from using local functions and objects as software building 
blocks, to distributed, encapsulated, independent components. The emergence of 
Web Services, i.e. web-accessible programs that now proliferate the World Wide 
Web by providing user access to applications supporting tasks such as e-commerce, 
entertainment, etc, have greatly facilitated this migration for both enterprise and 
Grid-based applications due to the near ubiquitous World-Wide-Web infrastructure, 
cross-platform interoperability, and de-facto Web standards for syntax, addressing, 
and communication protocols. 
The Semantic Web [BLHL] is becoming increasingly popular because it proposes an 
evolution of the current Web from a web of documents to a distributed and 
decentralized, global knowledge-base. The realization of the Semantic Web has 
facilitated the markup and manipulation of complex taxonomic and logic relations 
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between entities published on the Web. A fundamental component of the Semantic 
Web will be the formal markup and subsequent discovery and machine-
comprehension of Web services.  By semantically annotating the relevant aspects 
of declarative Web Service descriptions in a machine-readable format that can 
facilitate logical reasoning, such service descriptions become interpretable based 
on their meanings, rather than simply on a symbolic representation.  The 
advantage of this is that many of the tasks involved in using Web Services can be 
(semi-) automated, for example: discovery, selection, composition, mediation, 
execution, monitoring, etc. Thus, Semantic Web Service Research [MSZ01] has been 
recognized as one of the most promising technologies to emerge, exhibiting huge 
commercial potential, and attracting significant attention from both industry and 
the research community.   
Despite its great prospect of success, the industrial take-up of Semantic Web 
Services technologies has been slower than expected. This was mainly due to the 
fact that many systems have been developed without considering the potential of 
the Web for integrating services and sharing resources. Without a systematic 
methodology and proper tool support, the migration from legacy systems to 
Semantic Web-Service based systems could be a very tedious and expensive 
process, which carries a definite risk of failure.  There is an urgent need to provide 
strategies which allow the migration of legacy systems to Semantic Web Services 
platforms and also tools to support such a strategy.  
In this paper we propose a methodology for automatcially/semi-automatically 
transitioning legacy applications to Semantic Web Services by adopting a formal 
approach. Such formal methods include mathematically rigorous techniques and 
tools for the specification, design and verification of software and hardware 
systems. A formal language has a well-defined syntax and semantics, which 
facilitate the use of automated processing. In addition, formal methods have 
associate calculation rules that can be used to analyze specifications in order to 
determine correctness and consistency. 
Our approach first utilizes reverse-engineering technologies to abstract a formal 
specification of a legacy system from its code implementation.  This formal 
specification gives the user a good understanding and a simple description of the 
system. The correctness of this specification can be verified by using various formal 
validation and verification tools. Then, we develop a set of rules and a tool to 
automatically generate domain ontologies and service descriptions used by 
Semantic Web Service systems from the formal specification. Finally, formal 
refinement techniques are applied to generate the new equivalent  Web service 
implementation. Our approach ensures that the functionalities of existing systems 
are correctly migrated and the transitioning process is carried out automatically or 
semi-automatically.  
The remainder of this paper is organized as follows. Section 2 briefly introduces the 
background material in the areas of formal methods and Semantic Web Services. 
Section 3 summarizes the major challenges for migrating a legacy system to 
Semantic Web Service platform. Section 4 concentrates on the different phases of 
our methodology. Section 5 evaluates our aproach. Section 6 concludes the paper 
and discusses possible future work. 
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Overview 

Semantic Web & Semantic Web Services 

The Semantic Web is an extension of the current World Wide Web, which embeds 
knowledge in the form of semantic annotations within web pages. The inclusion of 
content with a well-defined meaning has meant that documents and resources 
published on the web can be more easily accessible by computer programs, thus 
better enabling computers and people to work in cooperation. HTML, the current 
Web data standard, is aimed at delivering information to the end user for human-
consumption (e.g. display this document). XML is aimed at delivering data to 
systems that can understand and interpret the information. XML is focused on the 
syntax (defined by the XML schema or DTD) of a document and it provides 
essentially a mechanism to declare and use simple data structures. However there 
is no way for a program to actually understand the knowledge contained in the XML 
documents. 
The Resource Description Framework (RDF) [LE99] is a foundation for processing 
metadata; it provides interoperability between applications that exchange 
machine-understandable information on the Web. RDF uses XML to exchange 
descriptions of Web resources and emphasizes facilities to enable automated 
processing. The RDF descriptions provide a simple ontology system to support the 
exchange of knowledge and semantic information on the Web. RDF Schema [D. 04] 
provides the basic vocabulary to describe RDF vocabularies, and can be used to 
define properties and types of the web resources. In this respect, RDF Schema 
plays a similar role to XML Schema; XML Schema gives specific constraints on the 
structure of an XML document, while RDF Schema provide information about the 
interpretation of the RDF statements.  
The Semantic Web, by its very nature, is highly distributed, and thus different 
parties may have different understandings of the same concept. Ideally, a program 
must have a way of discovering common meanings from different understandings. 
These common meanings are a key concept in Semantic Web systems ,and are 
known as Ontologies. Ontologies are an explicit, formal specification of a shared 
conceptualisation of a domain, and provide a machine-readable, and agreed-upon 
representation of the conceptual vocabulary used to represent a domain of 
discourse in applications. Though ontologies can be very expressive, the most 
typical kind of ontology found on the Web is normally epistemic or taxonomic, and 
typically includes a simple set of inference rules. The use of ontologies can 
enhance the functioning of the Web in many ways.  
 OWL [BvHH+04] is a recently standardized ontology language, developed by 
members of the World Wide Web Consortium1 and the Description Logic 
community. An OWL ontology consists of classes, properties and individuals. Classes 
are interpreted as sets of objects that represent the individuals in the domain of 
discourse. Properties are binary relations that link individuals, and are interpreted 
as sets of tuples, which are subsets of the cross product of the objects in the 
domain of discourse.  

                                         
1 http://www.w3.org 
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OWL classes fall into two main categories -- named classes and anonymous 
(unnamed) classes. Anonymous (unnamed) classes are formed from logical 
descriptions. They contain the individuals that satisfy the logical description. 
Anonymous classes may be sub-divided into restrictions and ‘logical class 
expressions’. Restrictions act along properties, describing sets of individuals in 
terms of the types of relationships that the individuals participate in. Logical 
classes are constructed from other classes using the boolean operators AND, OR and 
NOT. 
A fundamental aim of the Semantic Web will be the markup of Web services to 
make them computer-interpretable, use-apparent, and agent-ready. OWL-S 

is an OWL-based Web service ontology which supplies Web service 
providers with a core set of markup language constructs for describing the 
properties and capabilities of their Web services in unambiguous, computer-
intepretable form. OWL-S was expected to enable the automatic Web service 
discovery, invocation, and composition and interoperation, and to that end allows 
the definition of three essential types of knowledge about a service: the profile, 
the process model and the grounding. The profile describes what the service does, 
the process model describes how the service works, and the grounding describes 
how the service is to be used. The OWL-S process model is intended to provide a 
basis for specifying the behavior of a wide array of services, and enables planning, 
composition and agent/service inter-operation. There are two key components of 
an OWL-S process model: the process, and the process control model. The process 
describes a Web Service in terms of its input, output, precondition, effects, and 
where appropriate, its component subprocess. The process control model, which 
describes the control flow of a composite process and shows which of various inputs 
of the composite process are accepted by which of its subprocesses allows agents 
to monitor the execution of a service request. The constructs to specify the control 
flow within a process model includes Sequence, Split, Split+Join, If-Then-Else, 
Repeat-While and Repeat-Until. 

Z 

Z notation is a state-oriented formal specification language based on set 
theory and predicate logic. A Z specification typically includes a number of state 
and operation schema definitions. A state schema encapsulates variable 
declarations and related predicates (invariants). The system state is determined by 
values taken by variables subject to restrictions imposed by state invariants. An 
operation schema defines the relationship between the ‘before’ and ‘after’ states 
corresponding to one or more state schemas. Complex schema definitions can be 
composed from the simple ones by schema calculus. Z has been widely adopted to 
specify a range of software systems (see ). Various tools, i.e. editors, 
type/proof checkers and animators, have been developed for Z. 
Consider the Z model of a stack. Let the given type Item represent a set of items. 
The notation for this is: 
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The stack contains operations to pop items off and push items onto the stack. The 
total items in the stack cannot be more than max (say, a number larger than 100). 
The global constant max can be defined using the Z axiomatic definition as:  
 

 
The state, potential state change and initial state of the stack system can be 
specified in Z as:  
 

 
 
The operations to push items on, and pop items off of the stack can be modelled 
as: 
 

 
 
The contents of the upper half of a schema define the types of the variables used, 
and may include definitions from other schemas (e.g. the use of Stack in the 
definition of StackInit). The lower half of a schema defines the invariants that hold 
over the variables in the schema. The variable names in a operation schema are 
conventionally annotated with suffixes to indicate whether they refer to the state 
of the variable after the execution of the operation (e.g. items’), to an input 
variable (e.g. item?) or an output variable (e.g. item!).  
More complex operations can be constructed by using schema calculus, e.g., a new 
item which is pushed on and then popped off, say Transit, can be specified by using 
the sequential composition schema operator ‘;’ as: 
 

 
 
which is an (atomic) operation with the effect of a Push followed by a Pop. Other 
forms of schema calculus include schema conjunction ‘ ’, disjunction ‘ ’, 

implication‘
QuickTime™ and a
 decompressor

are needed to see this picture. ’, negation ‘¬’and pipe ‘>>’, which have been discussed in many Z 
text books [Spi89, WD96]. 

Major challenges 

The objective of our methodology is to guide the migration of a legacy system to a 
Semantic Web Service system. Without a systematic methodology and proper tool 
support, the migration process could be very tedious and expensive, which carries 
a definite risk of failure. The challenges of this migration come from several 
aspects.  
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• It is difficult to correctly recognize all the functionalities of existing system. 
Many legacy systems do not have precise design documentations; and even 
there exists some documentations, quite often you would find that they 
were different from the actual codes. Since much of the functionality of 
existing software has been achieved over a period of time and implemented 
by various developers, it has to be preserved for many reasons. After being 
deployed for a few years, legacy systems are sometimes described by system 
maintainers as “they have performed some useful tasks, but I really do not 
understand why and how that happened”. 

• Most legacy systems are implemented using either procedural or object-
oriented programming styles, which are different from the nature of the 
service-oriented paradigm adopted by Semantic Web Services. The service-
oriented paradigm defines the use of loosely coupled software services to 
support the requirements of business processes and software users. 
Independent services have defined interfaces that can be called to perform 
their tasks in a standard way, without the service having prior knowledge of 
the calling application, and without the application being aware of how the 
service actually performs its tasks. By contrast, most legacy systems were 
built following tightly coupled point-to-point integration principles. 
Decomposing the existing tightly coupled systems at both functional and 
implementation levels is not an easy task.  

• Designing a conceptualization (ontology) and markup of services for a 
particular domain is also not a trivial task. This is because: 

o The existing ontology and service markup languages are too low-level 
to be understood and used by domain experts. For example, we 
regard the underlying ontology languages, such as OWL, as an 
“assembly code” to be seen only by ontology experts. Domain experts 
should interact with “high level abstract languages”.  

o The current practice in ontology and service markup development is 
at a similar stage to software development two decades ago. It 
assumes that each ontology and service markup starts from scratch, 
and it approaches the development more as a craft than as a 
principled engineering discipline. This has lulled the ontology 
community into a false confidence and led to knowledge engineers 
building ontologies on behalf of domain experts rather than enabling 
domain experts to develop their own ontologies for themselves. The 
ontology and service markup developers have to concentrate on both 
domain issues and low level modeling details.  

o Since the Semantic Web and Semantic Web Service research in 
general are still evolving, tool support for ontology and service 
markup design (though rudimentary) is also improving. The Semantic 
Web community is currently focussing on developing automatic tools 
to check the logical satisfiability of an ontology [HM01, Hor98]. 
However, logically satisfiability does not necessarily imply the 
correctness of the ontology, and the field lacks tools to assist users in 
the validation and verification of knowledge models.  

• Implementing all the desired functionalities of systems in the Semantic Web 
Services platform requires much effort from experienced software engineers 
and programmers. When compared with many legacy software 
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environments, the Web is highly open and distributed. This brings to light 
new issues like software security, the interaction and integration of 
different software components, and so on. Furthermore, Web/Semantic Web 
application have lots of their own APIs, tools and protocols. Programmers 
have to learn these these new techniques.  

The approach 

In this section we propose a methodology of transitioning legacy applications to 
Semantic Web Service systems by applying formal methods. Using formal methods, 
we aim, as far as possible, to automate mechanical tasks during the transitioning 
process. In terms of the transitioning process, a legacy system migration can be 
divided into several major phases. Each phase consists of a number of individual 
migration activities. Figure 1 shows the main steps of our methodology. 

Web Engineering Formal Engineering

legacy

codes
e.g., COBOL

Reverse Engineering

unified

codes 

e.g UNIFROM 

Schema

Sanitizing 

codes

Extracting 

formal models

raw 

formal 

models
e.g. Z

Redesigning

formal models
clean 

formal 

models

Generating 

ontologies

Generating 

Semantic Makups 

for services

domain 

ontoogies
e.g OWL, Frames

service 

markups
e.g. WSMO, OWL-S

Refining

new 

implementation 

codes

Deploying 

services

Validating and 

verifying 

formal models

Figure 1: The framework 

Phase 1: Abstraction of formal specification from program code. 

As mentioned in the previous section, one of the major challenges of transitioning 
legacy applications to the Semantic Web Services platform is that we often don't 
know what to do with existing software, even when we are sure that it performs a 
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useful job. In this phase, we use the reverse engineering techniques to extract a 
precise and abstract requirements model from the implementation code.   
Reverse engineering (RE) is the process of discovering the technological principles 
of a system through analysis of its structure, function and operation [CC90]. 
Integrating formal methods in reversing engineering is a popular research area; 
there have been several investigations focusing on the use of rigorous 
mathematical methods for extracting formal specifications from existing code 
[GC93]. Some notable works include that by using category and monad theory, Lano 
developed a framework for abstracting high level specification[LB90]. [LW90] 
proposed an approach to identifying objects in procedural codes, where the 
characterization of candidate objects is based on recognizing common routines, 
operations, data types, and data items through the examination of global data and 
major data types. Haughton also investigated the identification of objects in 
procedural code as well as specification [HL91]. Figure 2 shows an example of 
extracting a fragment of Pascal code to a Z model. The code implements a function 
mts which checks if a stack is full. Details of this example, the respective formal 
model, and the extracting process can be found in [GC93].  

 

 

 

 
 
                       (A) Pascal code                                               (B) Formal model 

                         Figure 2: An example of extracting formal model from Pascal code.  
 

As mentioned before, there are a number of different approaches/tools for 
extracting formal models from code implementation. Users can choose the most 
suitable one for their needs. Depending on the source code of the legacy system, 
the target formal notation and the different support tool, the activities within this 
phase may vary. In this paper, we use the method proposed by the REDO project 
[BBL91] as an example to illustrate the possible activities that may take place 
during this phase. 
REDO is a large collaborative ESPRIT project concentrating on reverse engineering, 
on the principle that applications are usually unmaintainable in the form in which 
they are presented for maintenance, and work has to be done in order to 
rediscover the required documentation and design information. The tool developed 
by REDO can assistant users to automatically or semi-automatically extract Z++ (a 
variety of Z) model from a variety of legacy code (e.g., COBOL, FORTRAN, C). This 
can be done in several steps. As shown in Figure 1, initially the legacy program 
(e.g., COBOL) is automatically analyzed and translated to UNIFORM code, and 
redundant control structures are eliminated. UNIFORM was developed by the REDO 
project as a kind of formal universal intermediate language, which abstracts 
features of programing languages, such as COBOL, FORTRAN and C. During this 
process, certain details of the implementation may be lost, such as whether 

St = record  

      t:integer;  

      e:array[1..maxlength] of elementtype  

   end; 

...  

function mts(S:st):boolean; 

   begin  

       if S.t>maxlength then  

          mts :=true  

      else  mts := false 

   end; 

 

... 

proc mts: St →¬ boolean 
in(s:St)  
out(mts:boolean) 
{pre:domain(S) }  

{post:  (((S.t>maxlength) ∧  

             (mts = true)) ∨  

           (¬ (S.t > maxlength) ∧ 

             (mts = false))) ∧ 

          demain(S)} 
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integers were stored as 16 or 32 bits, but all the essential functionality for 
operating and understanding the system is retained. The formal model (Z model) is 
then extracted from the UNIFORM code by first abstracting the UNIFORM code to a 
first order functional language, in which details of the algorithms used are lost in 
favor of implicit representation of functionality, and then transforming the 
functional language to a representation in Z with the users' assistance, during 
which more implementation details are lost [BBL93b].  
By using a reverse enginerring approach, extracting formal specifications from 
legacy code can be beneficial to the Semantic Web Services transitioning process in 
several ways:  

• Since the requirements model is derived directly from implementation code, 
it is able to show the latest information about all the system’s 
functionalities.  

• The system requirements model is specified by a formal notation, which 
allows users to understand the functionalities of the existing system more 
easily and precisely, without any ambiguity.  

• The resulting requirements formal model focuses on the system's core 
functionalities at a high level, which means that many implementation 
details are ignored. Therefore, the model is more loosely coupled compared 
to the implementation code and can be more easily decomposed to services.  

Phase 2: Redesigning system, Verification and Validation of formal 

model 

Migrating an application onto a Semantic Web Services platform requires revisiting 
some functionalities of the existing system and also adding new features, such as 
the management of security, communication with other web service agents etc. 
Even after the system has been successfully deployed as a Semantic Web Service, it 
may still need to evolve from time to time. We must ensure that the redesigned 
system is robust and correct. Furthermore, it is highly desirable to make it easier, 
safer and traceable to update and maintain the system with this evolving process. 
The use of formal technology has been shown to be effective in aiding software 
maintenance [BBL93a]. The developers should redesign the system in an iterative 
and incremental way. Depending on the usage, new functions can be identified. 
The new design piece is formalized and integrated into existing formal model; a 
Verification and Validation step is then always performed. 
Verification and Validation (V&V) is the process of checking that a software system 
meets its specifications, and that it fulfills its intended purpose. Validation checks 
that the software satisfies or fits the intended usage — i.e., you built the right 
product, while verification is the act of proving or disproving the correctness of a 
system with respect to a certain mathematical specification or property. Being one 
of the most important research areas for formal methods communities during the 
last two decades, model verification and validation has led to the development of 
many mature formal reasoning tools, from type checkers and animators, to provers 
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etc2. In this phase of the transitioning process, users will use those tools to validate 
and verify the formal models resulted from the abstraction phase.  
Designing and implementing the changes to systems by changing the formal 
specifications, and using formal tools to ensure the correctness of the formal 
model, can be beneficial to the Semantic Web Services transitioning process in a 
number of ways:  

• The old system may contain errors. Formally reasoning and checking the 
model can expose them, and so avoid propagating the old flaws to the new 
system.  

• It can ensure that all the added components can be cleanly integrated to the 
whole system without interfering with existing system features.  

• Since the migration and evolving process have been formally documented, it 
can be easily maintained and traced.  

Phase 3: Generation of domain ontology and semantic Web service 

markup from specifications  

The difficulty of designing and developing a high level domain ontology and 
semantic markup for services is a major obstacle for SW Services deployment. It 
requires the developers to have both domain knowledge and good skills in ontology 
engineering. In this phase, we will present a set of translation rules and a tool 
which can generate a domain ontology automatically and semantic service markup 
from the formal Z model. 

Generation of domain ontology from specifications.  

Z 
constructors 

Z examples OWL 
Constructors 

transformed to 

OWL examples 

Given Type [T] OWL Class Class(T);  

Axiomatic 
Relation  

Property  
 

Property(R 
     domain(B)  
      range(C));  

Subset  

 

OWL Individual Class(M);  if N is a class 
SubClass(M, N); 
OR 
ObjectProperty(M);if N is a property 
SubProperty(M, N); 

Constant 

 

OWL Individual Individual(x, type(Y)); 

State Schema OWL Class 
OWL Property 

Class(S); 
FunctionalProperty(S_x, 
     domain(S) range(T1)); 
Property(S_y, 
   domain(S), range(T2)); 

 
Figure 3: Generation of OWL from Z Model 

 

                                         
2 http://vl.zuser.org/#tools 
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The domain ontology used by an application can be generated from the static part 
of its specification. Figure 3 summaries some of the transformation rules.  
Given types of the Z model are directly translated into OWL classes. Also, a 
relation defined in Z is translated into either an OWL property or OWL 
FunctionalProperty, depending on the functionality of the relation. Furthermore, 
the domain and range types of the relation are mapped to OWL domain and range 
axioms. The subset relation in Z is mapped to OWL subClass or subProperty axioms 
as appropriat, and Z constants are transformed to OWL individuals. A Z state 
schema can be translated into an OWL class: its attributes are translated into OWL 
properties with the schema name as domain OWL class, and the Z type declaration 
as range OWL class. In order to resolve the name conflict between same attribute 
names used in different schemas, we use the schema name appended to the 
attribute name as the ID for the OWL property.  
For example, the following Z model defines a schema Trip which has two attributes 
origin and destinations. A trip can only have one origin place and several 
destination places (Place is a Z given type). It also defines tripInnVen as one 
concrete trip from Innsbruck to Southampton and Manchester, where Innsbruck, 
Southampton and Manchester are constants with type Place.  
 

 
 
An OWL ontology can be automatically generated from the above Z model. To save 
space, we choose to use DL syntax to represent the OWL ontology.  
Class( ...)

ObjectProperty( domain( )

 range( ))

FunctionalProperty( domain( )

 range( ))

Individual(tripInnVen type( )

 value( Innsbruck)

 value( Manchester)

 value( Southampton))

Due to the limited space, we only present a portion of the translation rules. The 
translation between Z and OWL is not trivial. Rigorous study has been made to 
avoid the conflict between the differing semantics of OWL and Z. For example, the 
schema inclusion and class inheritance do not correspond to OWL’s subclass 
relationship, even though it initially appears to be so. The reason is that, based on 
Z semantics, a schema and its extended schema (via schema inclusion) are a 
disjoint data type set. 
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This is totally different from the OWL schema extending relationship, where all the 
instances for an OWL subclass are also instances of its super class.  
Currently, there has been much debate on the most suitable ontology definition 
languages for Web applications. Description logic-based ontology languages, such as 
OWL, are one major genre and frame-based ontology languages are another genre. 
Each of them has their advantages and disadvantages and can be found more 
applicable for certain use cases. In this paper, we only present a set of 
transformation rules from a Z model to an OWL ontology. However, the final 
version of the tool would allow users to import different sets of rules for their 
usages, such as translating a Z model to a frame ontology (adopted by WSMO).  

Generation of Semantic Web service markup from specifications.  

In the previous step we showed that the domain ontology used by an application 
can be automatically generated from the static part of a Z specification. Now we 
demonstrate how the semantic markup of Web services can be extracted from the 
dynamic aspects of a Z specification. We will use OWL-S as an example to illustrate 
the translation process. The transformation to other Semantic Web service 
standards, such as WSMO and SAWSDL can be defined as well. Figure 4 presents 
some of the translation rules.  
 

Z 
constructors 

Z 
examples 

OWL-S 
Constructors 

transformed to 

OWL-S examples 

Simple  
Operation 
Schema 

 

 

Atomic Process define atomic process OP 
(...); 

Operation 
Inputs and 
Outputs 

 

 

Process inputs 
and outputs 

define atomic process OP 
     (inputs: (Op_i - T1), 
      (outputs: (Op_o - T2), ... );  

Operation 
Preconditions 
and 
Postconditions 

 

 

Process 
preconditions and 
effects 

define atomic process OP 
     (precondition: Pro(Op),  
      result: (Effect(op), ...) ... ); 

Complex 
Operation 
Schema 

 Composite 
Process 

define composite process OP 
(...){...}; 

Schema 
Composition 

 Sequence process define composite process OP(...)  
     {perform Op1(...) ;   
       perform Op2(...) }; 

Schema 
Disjunction 

 Choice Process define composite process OP(...)  
     {perform Op1(...) ;?   
       perform Op2(...) }; 

Schema 
Conjunction 

 Split Process define composite process OP(...)  
     {perform Op1(...) ||<   
       perform Op2(...) }; 



IBIS – Interoperability in Business Information Systems 

 

 

  
 © IBIS – Issue 3 (1), 2008 

IBIS – Issue 1 (3), 2008 

 
 

Figure 4: Generation of OWL-S from Z model 

Operations in Z specify both the computation and interaction behaviors. From a 
dynamic view, the state of an object is subject to change from time to time 
according to its interaction behavior, which is defined by operation definitions. At 
the same time, the service process allows one to effect some action or change in 
the world. The connection between operations in Z and a service process in 
Semantic Web services is obvious. Each simple operation in Z is modeled as an 
atomic process in OWL-S. An input appearing in a Z operation schema definition is 
modelled as an input in the respective service process. Similarly, an output 
appearing in a Z operation schema definition is modelled as an output in the 
respective service process. A precondition appearing in a operation schema 
definition is modeled as a precondition in the respective service process, and a 
postcondition appearing in a operation schema definition is modelled as an effect 
in the respective service process. There exist algorithms and tools to calculate the 
preconditions and postconditions of an operation from the predicates. An operation 
defined by a Z schema operation is modeled as different type of composite process. 
For example, a Z schema composition is translated to an OWL-S sequence process. 

 

The following Z model defines an operation for adding one destination place to a 
trip and the destination should not be too far away from the origin place. 
NotTooFar is defined to abstract the distance relationship between two places.  

 

From this specification we can generate the following OWL-S ontology, where 
Place, Trip, NotTooFar, and Trip_desinations ect. are OWL classes and properties 
extracted from the Z model based on the rules defined in previous steps.  
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Figure 5: Transformation tool design 

Automatic transformation tool 

In this subsection, we show the design of a tool which generates domain ontologies 
and Semantic Web Service markup from a formal Z model (encoded in ZML format 
[SDLW01]). This tool is realized by XSL technology. ZML is an international standard 
XML markup for Z specifications. It encodes the Z family documents in XML format 
so that the formal model can be easily browsed by any Web browser (e.g. Internet 
Explorer). The eXtensible Stylesheet Language (XSL) [w3c] is a stylesheet language 
to describe rules for matching and translating XML documents. In our case, we 
translate the ZML to OWL and OWL-S. Users can also import different set of rules to 
extract different ontology and service markup formats. The main process and 
techniques for the translation are depicted by Figure 5.                 

Phase 4: Refinement of implementation code from formal 

specification. 

The formal model resulted from phase 1 and 2 give a good understanding and a 
simple description of the legacy application. The tool developed in phase 3 allows 
us to build domain ontologies and service markup more easily. However, the 
specification may also be used in such a way that can lead towards a suitable Web 
service implementation. Generation of code from formal specification is a popular 
research area which has had a considerable amount work, and in which significant 
amount of tools and systems already exist [WD96, SCW98, AN96, RC92]. However, 
the refinement from formal models to Web Service-specific implementation is a 
relatively new research area. The details of the refinement calculus are beyond the 
scope of this paper and will be addressed in a separate paper. 
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To summarize, Section 3 presented the major challenges for migrating a legacy 
system to a Semantic Web Service platform. The methodology we have just 
presented tackles these difficulties. Firstly, since the software requirements model 
is derived directly from implementation code, and is represented in a rigorous way, 
it precisely shows the latest information about all the system functionalities and 
developers can understand them easily. Secondly, as the resulting requirements 
formal model focuses on the system's core functionalities at a high level, many 
implementation details are ignored. Therefore, the model is more loosely coupled 
compared to the implementation code, and can be more easily decomposed to 
services. Furthermore, by using the tool we developed, domain ontologies and 
service ontologies will be automatically generated. The quality of the generated 
ontologies can be ensured by formally validating and verifying the requirements 
models before ontology generation. Many existing tools can assist this V&V process. 
Finally, it is possible to get the final implementation automatically by refining the 
formal requirement model.  

Evaluation 

The current evaluation is mainly focused on the second and third phases of the 
methodology. DSO National Laboratories (DSO) tried to migrate some of their 
existing military plan applications to Semantic Web. To evaluate our approach, 
firstly, an ontology about military plan has been developed directly from the 
existing documents and applications, mainly manually, but assisted with an 
information extraction (IE) engine developed by DSO [Lee02]. The ontology defines 
concepts in the military domain, including military organizations, specialities, 
geographic features, etc. For example, the class MilitaryTask, a sub 
class of MilitaryProcess, is defined as follows. 
 

The ontology also includes a set of instances, such as: 

• military operations and tasks, defining their types, phases and their logical 
order 

• military units, which are the participants of the military operations and tasks 

• geographic locations, where the operations take place  

• time points, for constraining the timing of the operations 
At the same time, a Z model was developed on this military plan domain and 
Z/EVES [Saa97] applied to check the model and verify some desired properties. 
Z/EVES was developed at ORA Canada. It is an interactive system for composing, 
checking, and analyzing Z specifications. It supports the analysis of Z specifications 
in a number of ways: syntax and type checking, schema expansion, precondition 
calculation, domain checking, general theorem proving, etc.  
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After the verification, the automatic transformation tool is used to generate OWL 
and OWL-S ontologies from the Z model. Those ontologies generated from formal 
models have high quality in general compared with the manually developed 
ontologies.  
We consider one of the manually developed instance ontologies: planE.owl. After 
being carefully studied by domain experts, at least 31 errors were identified. A 
brief statistics of this ontology can be found in Table 1. Of the 31 errors, 22 of 
them are relatively simple, and can be detected by the existing OWL reasoners 
[HM01]. There are 9 other errors which cannot be spotted by OWL reasoners. This is 
mainly because that OWL, being only a small fragment of FOL, has very limited 
expressive power. Many more complex properties within an application domain can 
not be captured by OWL, therefore such errors can not be detected by OWL 
reasoners. For example, one property we want to ensure is that for a given military 
task, its start time is less than its end time, and it is not a sub task of itself. Among 
the 9 such hidden errors, 2 are caused by military tasks having start time greater 
than end time; 4 are caused by military tasks that do not have an end time 
defined, and 3 are caused by a military unit being assigned to different tasks 
simultaneously. By contrast, because the formal model has been formally verified 
before the translation, the automatically generated ontologies using our 
methodology do not contain such errors. The following Z/EVES theorem tests that 
for a given military task, its start time is less than or equal to its end time and it is 
not a sub task of itself. 
 

 

We are also planning to evaluate our complete methodology in some more 
complicated systems.  
 

Items Numbers 

Resources 138 

Operations, tasks, phases 56 

Units 47 

Geographic areas 35 

Statements (in RDF) 592 

Simple errors 22 

Hidden errors 9 
Table 1: Statistics of the ontology planE.owl 

Related work and conclusion 

A key requirement of transitioning applications to Semantic Web Services has 
promoted the urgent need of systematic methodologies and tools to assist the 
migration process. In this paper, we have proposed a methodology that takes 
advantage of rigorous mathematical methods. Formal methods have been 
demonstrated to be beneficial in the development and maintenance of software. 
The automation of the process of abstracting a formal specification from program 
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code is aresearch goal, but unfortunately not completely realizable yet. However, 
by applying the tools that support the reverse engineering of software, a much 
clearer formal model can be learned which describes the functionalities of legacy 
systems. This precise and abstract specification, complemented with informal 
information, can facilitate understanding and re-implementation of systems. 
Furthermore, the well-defined syntax and semantics allows us to develop rules and 
tools to extract the markup information needed for a SW service, and provides an 
opportunity to automatically or semi-atuotmatically develop a high quality SW 
service implementation. The proposed methodology makes use of several tools, and 
in our subsequent work we intend to better integrate those tools together and 
develop a system which can provide a one stop solution to the problem of 
transitioning applications to Semantic Web Services.  
Previous work on Semantic Web Services migration is scant. There are a number of 
MDA tools (such as ArcStyler3, Borland Together4) which try to assist general 
application transformation by using certain reverse engineering technologies. They 
are all based on UML. UML provides a graphical notation which allows users to 
design and understand software systems more easily. However, one problem of 
using UML is that the semantics for some kinds of UML diagrams have not yet been 
completely formal defined, and we cannot guarantee the consistency between 
various diagrams which model different aspects of one system. Furthermore, 
because of the lack of precise semantics, the verification tools for UML are also 
limited. By using the formal methods and formal tools, as demonstrated in the 
paper, in our methodology can discover and correct some errors at early stage of 
the Semantic Web service transitioning process. Therefore, the quality of the 
resulting service can be ensured and the cost of the migration can be reduced as 
well.  
Finally, from a complete different direction, researchers have also recently 
investigated how Semantic Web and Semantic Web services can be used to build a 
flexible environment for supporting, extending and integrating various formal 
specification languages [DSW02]. One additional benefit is that OWL and RDF query 
techniques can facilitate formal specification comprehension. 
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