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Abstract: Semantic Web Services [MSZ01] have been recognized as a promising
technology that exhibits huge commercial potential, and attract significant attention
from both industry and the research community. Despite expectations being high, the
industrial take-up of Semantic Web Service technologies has been slower than
expected. One of the main reasons is that many systems have been developed without
considering the potential of the web in integrating services and sharing resources.
Without a systematic methodology and proper tool support, the migration from legacy
systems to Semantic Web Service-based systems can be a very tedious and expensive
process, which carries a definite risk of failure. There is an urgent need to provide
strategies which allow the migration of legacy systems to Semantic Web Services
platforms, and also tools to support such a strategy. In this paper we propose a
methodology for transitioning these applications to Semantic Web Services by taking
the advantage of rigorous mathematical methods. Our methodology allows users to
migrate their applications to Semantic Web Services platform automatically or semi-
automatically.

Introduction

The recent uptake of automated services over the Internet and World Wide Web
has pushed the boundaries of Distributed Systems, by facilitating the greater
proliferation of disparate, sharable resources such as computer systems and
software applications, and the pragmatic uptake of interconnectable services,
provided by a variety of different service providers. Software applications have
evolved from monolithic, stove-pipe applications to loosely federated, interacting
services that are dependent on networked resources to provide optimal
functionality. This is largely due to a change in the perception of current software
engineering practices, from using local functions and objects as software building
blocks, to distributed, encapsulated, independent components. The emergence of
Web Services, i.e. web-accessible programs that now proliferate the World Wide
Web by providing user access to applications supporting tasks such as e-commerce,
entertainment, etc, have greatly facilitated this migration for both enterprise and
Grid-based applications due to the near ubiquitous World-Wide-Web infrastructure,
cross-platform interoperability, and de-facto Web standards for syntax, addressing,
and communication protocols.

The Semantic Web [BLHL] is becoming increasingly popular because it proposes an
evolution of the current Web from a web of documents to a distributed and
decentralized, global knowledge-base. The realization of the Semantic Web has
facilitated the markup and manipulation of complex taxonomic and logic relations
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between entities published on the Web. A fundamental component of the Semantic
Web will be the formal markup and subsequent discovery and machine-
comprehension of Web services. By semantically annotating the relevant aspects
of declarative Web Service descriptions in a machine-readable format that can
facilitate logical reasoning, such service descriptions become interpretable based
on their meanings, rather than simply on a symbolic representation. The
advantage of this is that many of the tasks involved in using Web Services can be
(semi-) automated, for example: discovery, selection, composition, mediation,
execution, monitoring, etc. Thus, Semantic Web Service Research [MSZ01] has been
recognized as one of the most promising technologies to emerge, exhibiting huge
commercial potential, and attracting significant attention from both industry and
the research community.

Despite its great prospect of success, the industrial take-up of Semantic Web
Services technologies has been slower than expected. This was mainly due to the
fact that many systems have been developed without considering the potential of
the Web for integrating services and sharing resources. Without a systematic
methodology and proper tool support, the migration from legacy systems to
Semantic Web-Service based systems could be a very tedious and expensive
process, which carries a definite risk of failure. There is an urgent need to provide
strategies which allow the migration of legacy systems to Semantic Web Services
platforms and also tools to support such a strategy.

In this paper we propose a methodology for automatcially/semi-automatically
transitioning legacy applications to Semantic Web Services by adopting a formal
approach. Such formal methods include mathematically rigorous techniques and
tools for the specification, design and verification of software and hardware
systems. A formal language has a well-defined syntax and semantics, which
facilitate the use of automated processing. In addition, formal methods have
associate calculation rules that can be used to analyze specifications in order to
determine correctness and consistency.

Our approach first utilizes reverse-engineering technologies to abstract a formal
specification of a legacy system from its code implementation. This formal
specification gives the user a good understanding and a simple description of the
system. The correctness of this specification can be verified by using various formal
validation and verification tools. Then, we develop a set of rules and a tool to
automatically generate domain ontologies and service descriptions used by
Semantic Web Service systems from the formal specification. Finally, formal
refinement techniques are applied to generate the new equivalent Web service
implementation. Our approach ensures that the functionalities of existing systems
are correctly migrated and the transitioning process is carried out automatically or
semi-automatically.

The remainder of this paper is organized as follows. Section 2 briefly introduces the
background material in the areas of formal methods and Semantic Web Services.
Section 3 summarizes the major challenges for migrating a legacy system to
Semantic Web Service platform. Section 4 concentrates on the different phases of
our methodology. Section 5 evaluates our aproach. Section 6 concludes the paper
and discusses possible future work.
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Overview

Semantic Web & Semantic Web Services

The Semantic Web is an extension of the current World Wide Web, which embeds
knowledge in the form of semantic annotations within web pages. The inclusion of
content with a well-defined meaning has meant that documents and resources
published on the web can be more easily accessible by computer programs, thus
better enabling computers and people to work in cooperation. HTML, the current
Web data standard, is aimed at delivering information to the end user for human-
consumption (e.g. display this document). XML is aimed at delivering data to
systems that can understand and interpret the information. XML is focused on the
syntax (defined by the XML schema or DTD) of a document and it provides
essentially a mechanism to declare and use simple data structures. However there
is no way for a program to actually understand the knowledge contained in the XML
documents.

The Resource Description Framework (RDF) [LE99] is a foundation for processing
metadata; it provides interoperability between applications that exchange
machine-understandable information on the Web. RDF uses XML to exchange
descriptions of Web resources and emphasizes facilities to enable automated
processing. The RDF descriptions provide a simple ontology system to support the
exchange of knowledge and semantic information on the Web. RDF Schema [D. 04]
provides the basic vocabulary to describe RDF vocabularies, and can be used to
define properties and types of the web resources. In this respect, RDF Schema
plays a similar role to XML Schema; XML Schema gives specific constraints on the
structure of an XML document, while RDF Schema provide information about the
interpretation of the RDF statements.

The Semantic Web, by its very nature, is highly distributed, and thus different
parties may have different understandings of the same concept. Ideally, a program
must have a way of discovering common meanings from different understandings.
These common meanings are a key concept in Semantic Web systems ,and are
known as Ontologies. Ontologies are an explicit, formal specification of a shared
conceptualisation of a domain, and provide a machine-readable, and agreed-upon
representation of the conceptual vocabulary used to represent a domain of
discourse in applications. Though ontologies can be very expressive, the most
typical kind of ontology found on the Web is normally epistemic or taxonomic, and
typically includes a simple set of inference rules. The use of ontologies can
enhance the functioning of the Web in many ways.

OWL [BvHH+04] is a recently standardized ontology language, developed by
members of the World Wide Web Consortium' and the Description Logic
community. An OWL ontology consists of classes, properties and individuals. Classes
are interpreted as sets of objects that represent the individuals in the domain of
discourse. Properties are binary relations that link individuals, and are interpreted
as sets of tuples, which are subsets of the cross product of the objects in the
domain of discourse.

" http://www.w3.0rg
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OWL classes fall into two main categories -- named classes and anonymous
(unnamed) classes. Anonymous (unnamed) classes are formed from logical
descriptions. They contain the individuals that satisfy the logical description.
Anonymous classes may be sub-divided into restrictions and ‘logical class
expressions’. Restrictions act along properties, describing sets of individuals in
terms of the types of relationships that the individuals participate in. Logical
classes are constructed from other classes using the boolean operators AND, OR and
NOT.
A fundamental aim of the Semantic Web will be the markup of Web services to
make them computer-interpretable, use-apparent, and agent-ready. OWL-S
is an OWL-based Web service ontology which supplies Web service
providers with a core set of markup language constructs for describing the
properties and capabilities of their Web services in unambiguous, computer-
intepretable form. OWL-S was expected to enable the automatic Web service
discovery, invocation, and composition and interoperation, and to that end allows
the definition of three essential types of knowledge about a service: the profile,
the process model and the grounding. The profile describes what the service does,
the process model describes how the service works, and the grounding describes
how the service is to be used. The OWL-S process model is intended to provide a
basis for specifying the behavior of a wide array of services, and enables planning,
composition and agent/service inter-operation. There are two key components of
an OWL-S process model: the process, and the process control model. The process
describes a Web Service in terms of its input, output, precondition, effects, and
where appropriate, its component subprocess. The process control model, which
describes the control flow of a composite process and shows which of various inputs
of the composite process are accepted by which of its subprocesses allows agents
to monitor the execution of a service request. The constructs to specify the control
flow within a process model includes Sequence, Split, Split+Join, If-Then-Else,
Repeat-While and Repeat-Until.

Z

Z notation is a state-oriented formal specification language based on set
theory and predicate logic. A Z specification typically includes a number of state
and operation schema definitions. A state schema encapsulates variable
declarations and related predicates (invariants). The system state is determined by
values taken by variables subject to restrictions imposed by state invariants. An
operation schema defines the relationship between the ‘before’ and ‘after’ states
corresponding to one or more state schemas. Complex schema definitions can be
composed from the simple ones by schema calculus. Z has been widely adopted to
specify a range of software systems (see ). Various tools, i.e. editors,
type/proof checkers and animators, have been developed for Z.

Consider the Z model of a stack. Let the given type Item represent a set of items.
The notation for this is:

[Ttem] [item type]
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The stack contains operations to pop items off and push items onto the stack. The
total items in the stack cannot be more than max (say, a number larger than 100).
The global constant max can be defined using the Z axiomatic definition as:

| mar

| maz = 100
The state, potential state change and initial state of the stack system can be
specified in Z as:

Stack StackInit
items @ seq ltem Stack

#items < mar items = { )

The operations to push items on, and pop items off of the stack can be modelled
as:

_ Push _ Pop
AStack Astack
item?: tem atem! : Ttem
. 1] - (e . N Y
items = (item?} " items wtems # ()
#ilems < max items = (item!)  items

The contents of the upper half of a schema define the types of the variables used,
and may include definitions from other schemas (e.g. the use of Stack in the
definition of Stacklinit). The lower half of a schema defines the invariants that hold
over the variables in the schema. The variable names in a operation schema are
conventionally annotated with suffixes to indicate whether they refer to the state
of the variable after the execution of the operation (e.g. items’), to an input
variable (e.g. item?) or an output variable (e.g. item!).

More complex operations can be constructed by using schema calculus, e.g., a new
item which is pushed on and then popped off, say Transit, can be specified by using
the sequential composition schema operator ¢;’ as:

Transit = Push§ Pop

which is an (atomic) operation with the effect of a Push followed by a Pop. Other
forms of schema calculus include schema conjunction ‘# ’, disjunction ‘¥,
implication‘= ’, negation ‘=’and pipe ‘>>’, which have been discussed in many Z
text books [Spi89, WD96].

Major challenges

The objective of our methodology is to guide the migration of a legacy system to a
Semantic Web Service system. Without a systematic methodology and proper tool
support, the migration process could be very tedious and expensive, which carries
a definite risk of failure. The challenges of this migration come from several
aspects.
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It is difficult to correctly recognize all the functionalities of existing system.
Many legacy systems do not have precise design documentations; and even
there exists some documentations, quite often you would find that they
were different from the actual codes. Since much of the functionality of
existing software has been achieved over a period of time and implemented
by various developers, it has to be preserved for many reasons. After being
deployed for a few years, legacy systems are sometimes described by system
maintainers as “they have performed some useful tasks, but | really do not
understand why and how that happened”.

Most legacy systems are implemented using either procedural or object-
oriented programming styles, which are different from the nature of the
service-oriented paradigm adopted by Semantic Web Services. The service-
oriented paradigm defines the use of loosely coupled software services to
support the requirements of business processes and software users.
Independent services have defined interfaces that can be called to perform
their tasks in a standard way, without the service having prior knowledge of
the calling application, and without the application being aware of how the
service actually performs its tasks. By contrast, most legacy systems were
built following tightly coupled point-to-point integration principles.
Decomposing the existing tightly coupled systems at both functional and
implementation levels is not an easy task.

Designing a conceptualization (ontology) and markup of services for a
particular domain is also not a trivial task. This is because:

o The existing ontology and service markup languages are too low-level
to be understood and used by domain experts. For example, we
regard the underlying ontology languages, such as OWL, as an
“assembly code” to be seen only by ontology experts. Domain experts
should interact with “high level abstract languages”.

o The current practice in ontology and service markup development is
at a similar stage to software development two decades ago. It
assumes that each ontology and service markup starts from scratch,
and it approaches the development more as a craft than as a
principled engineering discipline. This has lulled the ontology
community into a false confidence and led to knowledge engineers
building ontologies on behalf of domain experts rather than enabling
domain experts to develop their own ontologies for themselves. The
ontology and service markup developers have to concentrate on both
domain issues and low level modeling details.

o Since the Semantic Web and Semantic Web Service research in
general are still evolving, tool support for ontology and service
markup design (though rudimentary) is also improving. The Semantic
Web community is currently focussing on developing automatic tools
to check the logical satisfiability of an ontology [HMO1, Hor98].
However, logically satisfiability does not necessarily imply the
correctness of the ontology, and the field lacks tools to assist users in
the validation and verification of knowledge models.

Implementing all the desired functionalities of systems in the Semantic Web
Services platform requires much effort from experienced software engineers
and programmers. When compared with many legacy software
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environments, the Web is highly open and distributed. This brings to light
new issues like software security, the interaction and integration of
different software components, and so on. Furthermore, Web/Semantic Web
application have lots of their own APIs, tools and protocols. Programmers
have to learn these these new techniques.

The approach

In this section we propose a methodology of transitioning legacy applications to
Semantic Web Service systems by applying formal methods. Using formal methods,
we aim, as far as possible, to automate mechanical tasks during the transitioning
process. In terms of the transitioning process, a legacy system migration can be
divided into several major phases. Each phase consists of a number of individual
migration activities. Figure 1 shows the main steps of our methodology.

Reverse Engineering
legacy unified raw D\
codes Sanitizing codes Extracting formal
.¢ UNIFROM
e COBOL codes 8 formal models models
Schema
eg.Z
Web Engineering r Formal Engineering
domain u\ Generating ( )
— | ontoogies ¢ ontologies Redesigning
e.g OWL, Frames L
= clean formal models
U f G ti > formal \ ~
service \\ enera lllg models *
—  markups <4 Semantic Makups
- { 3
o8 WSMO, OWL-S | for services Validating and
verifying
_ new I formal models
—— implementation | | |<—— \ /
codes Refining
Deploying
services

Figure 1: The framework

Phase 1: Abstraction of formal specification from program code.

As mentioned in the previous section, one of the major challenges of transitioning
legacy applications to the Semantic Web Services platform is that we often don't
know what to do with existing software, even when we are sure that it performs a
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useful job. In this phase, we use the reverse engineering techniques to extract a
precise and abstract requirements model from the implementation code.

Reverse engineering (RE) is the process of discovering the technological principles
of a system through analysis of its structure, function and operation [CC90].
Integrating formal methods in reversing engineering is a popular research area;
there have been several investigations focusing on the use of rigorous
mathematical methods for extracting formal specifications from existing code
[GC93]. Some notable works include that by using category and monad theory, Lano
developed a framework for abstracting high level specification[LB90]. [LW90]
proposed an approach to identifying objects in procedural codes, where the
characterization of candidate objects is based on recognizing common routines,
operations, data types, and data items through the examination of global data and
major data types. Haughton also investigated the identification of objects in
procedural code as well as specification [HL91]. Figure 2 shows an example of
extracting a fragment of Pascal code to a Z model. The code implements a function
mts which checks if a stack is full. Details of this example, the respective formal
model, and the extracting process can be found in [GC93].

St =record .
t:integer; proc mts: St —— boolean
e:array[ 1..maxlength] of elementtype in(s:St)
end; out(mts:boolean)
{pre:domain(S) }
functi'on mts(S:st):boolean; {post: (((S.t>maxlength) A
begin (mts = true)) v
if S.t>maxlength then (= (5.t > maxlength) A
1mts ¢t=truef | (mts = false))) A
else mts := false ;
end: demain(S)}
(A) Pascal code (B) Formal model

Figure 2: An example of extracting formal model from Pascal code.

As mentioned before, there are a number of different approaches/tools for
extracting formal models from code implementation. Users can choose the most
suitable one for their needs. Depending on the source code of the legacy system,
the target formal notation and the different support tool, the activities within this
phase may vary. In this paper, we use the method proposed by the REDO project
[BBL91] as an example to illustrate the possible activities that may take place
during this phase.

REDO is a large collaborative ESPRIT project concentrating on reverse engineering,
on the principle that applications are usually unmaintainable in the form in which
they are presented for maintenance, and work has to be done in order to
rediscover the required documentation and design information. The tool developed
by REDO can assistant users to automatically or semi-automatically extract Z++ (a
variety of Z) model from a variety of legacy code (e.g., COBOL, FORTRAN, C). This
can be done in several steps. As shown in Figure 1, initially the legacy program
(e.g., COBOL) is automatically analyzed and translated to UNIFORM code, and
redundant control structures are eliminated. UNIFORM was developed by the REDO
project as a kind of formal universal intermediate language, which abstracts
features of programing languages, such as COBOL, FORTRAN and C. During this
process, certain details of the implementation may be lost, such as whether
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integers were stored as 16 or 32 bits, but all the essential functionality for
operating and understanding the system is retained. The formal model (Z model) is
then extracted from the UNIFORM code by first abstracting the UNIFORM code to a
first order functional language, in which details of the algorithms used are lost in
favor of implicit representation of functionality, and then transforming the
functional language to a representation in Z with the users' assistance, during
which more implementation details are lost [BBL93b].

By using a reverse enginerring approach, extracting formal specifications from
legacy code can be beneficial to the Semantic Web Services transitioning process in
several ways:

¢ Since the requirements model is derived directly from implementation code,
it is able to show the latest information about all the system’s
functionalities.

e The system requirements model is specified by a formal notation, which
allows users to understand the functionalities of the existing system more
easily and precisely, without any ambiguity.

e The resulting requirements formal model focuses on the system's core
functionalities at a high level, which means that many implementation
details are ignored. Therefore, the model is more loosely coupled compared
to the implementation code and can be more easily decomposed to services.

Phase 2: Redesigning system, Verification and Validation of formal

model

Migrating an application onto a Semantic Web Services platform requires revisiting
some functionalities of the existing system and also adding new features, such as
the management of security, communication with other web service agents etc.
Even after the system has been successfully deployed as a Semantic Web Service, it
may still need to evolve from time to time. We must ensure that the redesigned
system is robust and correct. Furthermore, it is highly desirable to make it easier,
safer and traceable to update and maintain the system with this evolving process.
The use of formal technology has been shown to be effective in aiding software
maintenance [BBL93a]. The developers should redesign the system in an iterative
and incremental way. Depending on the usage, new functions can be identified.
The new design piece is formalized and integrated into existing formal model; a
Verification and Validation step is then always performed.

Verification and Validation (V&V) is the process of checking that a software system
meets its specifications, and that it fulfills its intended purpose. Validation checks
that the software satisfies or fits the intended usage — i.e., you built the right
product, while verification is the act of proving or disproving the correctness of a
system with respect to a certain mathematical specification or property. Being one
of the most important research areas for formal methods communities during the
last two decades, model verification and validation has led to the development of
many mature formal reasoning tools, from type checkers and animators, to provers
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etc’. In this phase of the transitioning process, users will use those tools to validate
and verify the formal models resulted from the abstraction phase.

Designing and implementing the changes to systems by changing the formal
specifications, and using formal tools to ensure the correctness of the formal
model, can be beneficial to the Semantic Web Services transitioning process in a
number of ways:

e The old system may contain errors. Formally reasoning and checking the
model can expose them, and so avoid propagating the old flaws to the new
system.

e |t can ensure that all the added components can be cleanly integrated to the
whole system without interfering with existing system features.

e Since the migration and evolving process have been formally documented, it
can be easily maintained and traced.

Phase 3: Generation of domain ontology and semantic Web service

markup from specifications

The difficulty of designing and developing a high level domain ontology and
semantic markup for services is a major obstacle for SW Services deployment. It
requires the developers to have both domain knowledge and good skills in ontology
engineering. In this phase, we will present a set of translation rules and a tool
which can generate a domain ontology automatically and semantic service markup
from the formal Z model.

Generation of domain ontology from specifications.

Z Z examples OWL OWL examples
constructors Constructors
transformed to

Given Type [T] OWL Class Class(T);
Axiomatic BB = (—=)C Property Property(R
Relation domain(B)

range(C));
Subset OWL Individual Class(M); if Nis a class

M:PN SubClass(M, N);

— OR
ObjectProperty(M);if N is a property

SubProperty(M, N);

Constant Y OWL Individual Individual(x, type(Y));
State Schema | —°————— OWL Class Closs(S; p
.l yib L3 unctionatFroperty(s_x,
OwL Property domain(S) range(T;));
Property(S_y,

domain(S), range(T,));

Figure 3: Generation of OWL from Z Model

2 http://vl.zuser.org/#tools
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The domain ontology used by an application can be generated from the static part
of its specification. Figure 3 summaries some of the transformation rules.

Given types of the Z model are directly translated into OWL classes. Also, a
relation defined in Z is translated into either an OWL property or OWL
FunctionalProperty, depending on the functionality of the relation. Furthermore,
the domain and range types of the relation are mapped to OWL domain and range
axioms. The subset relation in Z is mapped to OWL subClass or subProperty axioms
as appropriat, and Z constants are transformed to OWL individuals. A Z state
schema can be translated into an OWL class: its attributes are translated into OWL
properties with the schema name as domain OWL class, and the Z type declaration
as range OWL class. In order to resolve the name conflict between same attribute
names used in different schemas, we use the schema name appended to the
attribute name as the ID for the OWL property.

For example, the following Z model defines a schema Trip which has two attributes
origin and destinations. A trip can only have one origin place and several
destination places (Place is a Z given type). It also defines tripInnVen as one
concrete trip from Innsbruck to Southampton and Manchester, where Innsbruck,
Southampton and Manchester are constants with type Place.

— Trip

origin © Place
destinations | P Place

tripinnVen : Trip

triplnn Ven. origin =
Innsbhruck
tripinnVen. destinations =
{ Manchester, Southampton }

An OWL ontology can be automatically generated from the above Z model. To save

space, we choose to use DL syntax to represent the OWL ontology.
Class ( c.L)

ObjectProperty ( domain ( )
range ( ))
FunctionalProperty ( domain ( )
range ( ))
Individual (tripInnVen type ( )
value ( Innsbruck)
value ( Manchester)
value ( Southampton))

Due to the limited space, we only present a portion of the translation rules. The
translation between Z and OWL is not trivial. Rigorous study has been made to
avoid the conflict between the differing semantics of OWL and Z. For example, the
schema inclusion and class inheritance do not correspond to OWL’s subclass
relationship, even though it initially appears to be so. The reason is that, based on
Z semantics, a schema and its extended schema (via schema inclusion) are a
disjoint data type set.

W 51,501 Schema e 5 extendad s) = s2M s =&
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This is totally different from the OWL schema extending relationship, where all the
instances for an OWL subclass are also instances of its super class.

Currently, there has been much debate on the most suitable ontology definition
languages for Web applications. Description logic-based ontology languages, such as
OWL, are one major genre and frame-based ontology languages are another genre.
Each of them has their advantages and disadvantages and can be found more
applicable for certain use cases. In this paper, we only present a set of
transformation rules from a Z model to an OWL ontology. However, the final
version of the tool would allow users to import different sets of rules for their
usages, such as translating a Z model to a frame ontology (adopted by WSMO).

Generation of Semantic Web service markup from specifications.

In the previous step we showed that the domain ontology used by an application
can be automatically generated from the static part of a Z specification. Now we
demonstrate how the semantic markup of Web services can be extracted from the
dynamic aspects of a Z specification. We will use OWL-S as an example to illustrate
the translation process. The transformation to other Semantic Web service
standards, such as WSMO and SAWSDL can be defined as well. Figure 4 presents
some of the translation rules.

V4 V4 OWL-S OWL-S examples
constructors | examples Constructors
transformed to
Simple op Atomic Process 791‘ j{’e atomic process OP
g)Cphe errantalo n _&.S tate
Operation o Process  inputs | def ;'76’ aftom;g pr 966’%‘)”
_C inputs: (Op_i - ,

g‘pLIts and AState and OUtPUtS (outputs: (Op_o-T2), ... );

utputs
Operat]‘on Process define atomiF process OP
Preconditions | " preconditions and |  F/ecerrion roOP)
and N Pre(0p) effects
Postconditions Pre(Op)
Complex Op= ... Composite define c?mposite process OP
Operation Process (oo
Schema
Schema O :;I Opm Sequence process define composite process OP(...)
Composition {perform Op1(...) ;

p perform Op2(...) };

Schema Op1 vV Op | Choice Process def ;ne C;mpogft; ffO)CG?SS OP(...)

. . . perform Op1(...) ;?
Disjunction perform Op2(...) };
Schema Op; A Om Sp[it Process define composite process OP(...)
Coni ti {perform Op1(...) | | <

onjunction perform Op2(...) };
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Figure 4: Generation of OWL-S from Z model

Operations in Z specify both the computation and interaction behaviors. From a
dynamic view, the state of an object is subject to change from time to time
according to its interaction behavior, which is defined by operation definitions. At
the same time, the service process allows one to effect some action or change in
the world. The connection between operations in Z and a service process in
Semantic Web services is obvious. Each simple operation in Z is modeled as an
atomic process in OWL-S. An input appearing in a Z operation schema definition is
modelled as an input in the respective service process. Similarly, an output
appearing in a Z operation schema definition is modelled as an output in the
respective service process. A precondition appearing in a operation schema
definition is modeled as a precondition in the respective service process, and a
postcondition appearing in a operation schema definition is modelled as an effect
in the respective service process. There exist algorithms and tools to calculate the
preconditions and postconditions of an operation from the predicates. An operation
defined by a Z schema operation is modeled as different type of composite process.
For example, a Z schema composition is translated to an OWL-S sequence process.

The following Z model defines an operation for adding one destination place to a
trip and the destination should not be too far away from the origin place.
NotTooFar is defined to abstract the distance relationship between two places.

| Not TooFar : Plare % Place

__ AddCloseDestination
ATrip
newDestination? : Place

(newDestination?, origin) € Not TooFar
oy o o
destinations’ = desination U{newDestination?}
Ly ..
OTIGI. = OTLgIn

From this specification we can generate the following OWL-S ontology, where
Place, Trip, NotTooFar, and Trip_desinations ect. are OWL classes and properties
extracted from the Z model based on the rules defined in previous steps.
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Figure 5: Transformation tool design

Automatic transformation tool

In this subsection, we show the design of a tool which generates domain ontologies
and Semantic Web Service markup from a formal Z model (encoded in ZML format
[SDLWO1]). This tool is realized by XSL technology. ZML is an international standard
XML markup for Z specifications. It encodes the Z family documents in XML format
so that the formal model can be easily browsed by any Web browser (e.g. Internet
Explorer). The eXtensible Stylesheet Language (XSL) [w3c] is a stylesheet language
to describe rules for matching and translating XML documents. In our case, we
translate the ZML to OWL and OWL-S. Users can also import different set of rules to
extract different ontology and service markup formats. The main process and
techniques for the translation are depicted by Figure 5.

Phase 4: Refinement of implementation code from formal

specification.

The formal model resulted from phase 1 and 2 give a good understanding and a
simple description of the legacy application. The tool developed in phase 3 allows
us to build domain ontologies and service markup more easily. However, the
specification may also be used in such a way that can lead towards a suitable Web
service implementation. Generation of code from formal specification is a popular
research area which has had a considerable amount work, and in which significant
amount of tools and systems already exist [WD96, SCW98, AN96, RC92]. However,
the refinement from formal models to Web Service-specific implementation is a
relatively new research area. The details of the refinement calculus are beyond the
scope of this paper and will be addressed in a separate paper.
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To summarize, Section 3 presented the major challenges for migrating a legacy
system to a Semantic Web Service platform. The methodology we have just
presented tackles these difficulties. Firstly, since the software requirements model
is derived directly from implementation code, and is represented in a rigorous way,
it precisely shows the latest information about all the system functionalities and
developers can understand them easily. Secondly, as the resulting requirements
formal model focuses on the system’'s core functionalities at a high level, many
implementation details are ignored. Therefore, the model is more loosely coupled
compared to the implementation code, and can be more easily decomposed to
services. Furthermore, by using the tool we developed, domain ontologies and
service ontologies will be automatically generated. The quality of the generated
ontologies can be ensured by formally validating and verifying the requirements
models before ontology generation. Many existing tools can assist this V&V process.
Finally, it is possible to get the final implementation automatically by refining the
formal requirement model.

Evaluation

The current evaluation is mainly focused on the second and third phases of the
methodology. DSO National Laboratories (DSO) tried to migrate some of their
existing military plan applications to Semantic Web. To evaluate our approach,
firstly, an ontology about military plan has been developed directly from the
existing documents and applications, mainly manually, but assisted with an
information extraction (IE) engine developed by DSO [Lee02]. The ontology defines
concepts in the military domain, including military organizations, specialities,
geographic features, etc. For example, the class MilitaryTask, a sub

class of MilitaryProcess, is defined as follows.

The ontology also includes a set of instances, such as:

e military operations and tasks, defining their types, phases and their logical

order

e military units, which are the participants of the military operations and tasks

e geographic locations, where the operations take place

e time points, for constraining the timing of the operations
At the same time, a Z model was developed on this military plan domain and
Z/EVES [Saa97] applied to check the model and verify some desired properties.
Z/EVES was developed at ORA Canada. It is an interactive system for composing,
checking, and analyzing Z specifications. It supports the analysis of Z specifications
in a number of ways: syntax and type checking, schema expansion, precondition
calculation, domain checking, general theorem proving, etc.
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After the verification, the automatic transformation tool is used to generate OWL
and OWL-S ontologies from the Z model. Those ontologies generated from formal
models have high quality in general compared with the manually developed
ontologies.

We consider one of the manually developed instance ontologies: planE.owl. After
being carefully studied by domain experts, at least 31 errors were identified. A
brief statistics of this ontology can be found in Table 1. Of the 31 errors, 22 of
them are relatively simple, and can be detected by the existing OWL reasoners
[HMO1]. There are 9 other errors which cannot be spotted by OWL reasoners. This is
mainly because that OWL, being only a small fragment of FOL, has very limited
expressive power. Many more complex properties within an application domain can
not be captured by OWL, therefore such errors can not be detected by OWL
reasoners. For example, one property we want to ensure is that for a given military
task, its start time is less than its end time, and it is not a sub task of itself. Among
the 9 such hidden errors, 2 are caused by military tasks having start time greater
than end time; 4 are caused by military tasks that do not have an end time
defined, and 3 are caused by a military unit being assigned to different tasks
simultaneously. By contrast, because the formal model has been formally verified
before the translation, the automatically generated ontologies using our
methodology do not contain such errors. The following Z/EVES theorem tests that
for a given military task, its start time is less than or equal to its end time and it is
not a sub task of itself.

theorem MilitaryTaskTimeSubTaskTest
At instances| Military Task) »
start(r) < end(r) A
x & (sub_val(sub TaskOFf)) (| {=} )

We are also planning to evaluate our complete methodology in some more
complicated systems.

Items Numbers
Resources 138
Operations, tasks, phases 56

Units 47
Geographic areas 35
Statements (in RDF) 592

Simple errors 22

Hidden errors 9

Table 1: Statistics of the ontology planE.owl

Related work and conclusion

A key requirement of transitioning applications to Semantic Web Services has
promoted the urgent need of systematic methodologies and tools to assist the
migration process. In this paper, we have proposed a methodology that takes
advantage of rigorous mathematical methods. Formal methods have been
demonstrated to be beneficial in the development and maintenance of software.
The automation of the process of abstracting a formal specification from program
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code is aresearch goal, but unfortunately not completely realizable yet. However,
by applying the tools that support the reverse engineering of software, a much
clearer formal model can be learned which describes the functionalities of legacy
systems. This precise and abstract specification, complemented with informal
information, can facilitate understanding and re-implementation of systems.
Furthermore, the well-defined syntax and semantics allows us to develop rules and
tools to extract the markup information needed for a SW service, and provides an
opportunity to automatically or semi-atuotmatically develop a high quality SW
service implementation. The proposed methodology makes use of several tools, and
in our subsequent work we intend to better integrate those tools together and
develop a system which can provide a one stop solution to the problem of
transitioning applications to Semantic Web Services.

Previous work on Semantic Web Services migration is scant. There are a number of
MDA tools (such as ArcStyler®, Borland Together*) which try to assist general
application transformation by using certain reverse engineering technologies. They
are all based on UML. UML provides a graphical notation which allows users to
design and understand software systems more easily. However, one problem of
using UML is that the semantics for some kinds of UML diagrams have not yet been
completely formal defined, and we cannot guarantee the consistency between
various diagrams which model different aspects of one system. Furthermore,
because of the lack of precise semantics, the verification tools for UML are also
limited. By using the formal methods and formal tools, as demonstrated in the
paper, in our methodology can discover and correct some errors at early stage of
the Semantic Web service transitioning process. Therefore, the quality of the
resulting service can be ensured and the cost of the migration can be reduced as
well.

Finally, from a complete different direction, researchers have also recently
investigated how Semantic Web and Semantic Web services can be used to build a
flexible environment for supporting, extending and integrating various formal
specification languages [DSW02]. One additional benefit is that OWL and RDF query
techniques can facilitate formal specification comprehension.
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