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Abstract

Automatic pronunciation of unknown words (i.e., those not in the system dictionary) is a difficult
problem in text-to-speech (TTS) synthesis. Currently, many data-driven approaches have been
applied to the problem, as a backup strategy for those cases where dictionary matching fails.
The difficulty of the problem depends on the complexity of spelling-to-sound mappings according
to the particular writing system of the language. Hence, the degree of success achieved varies
widely across languages but also across dictionaries, even for the same language with the same
method. Further, the sizes of the training and test sets are an important consideration in data-
driven approaches. In this paper, we study the variation of letter-to-phoneme transcription accuracy
across 7 European languages with 12 different lexicons. We also study the relationship between
the size of dictionary and the accuracy obtained. The largest dictionaries of each language have
been partitioned into 10 approximately equal-size subsets and combined to give 10 different-sized
test sets. In view of its superior performance in previous work, the transcription method used is
pronunciation by analogy (PbA). Best results are obtained for Spanish, generally believed to have
a very regular (‘shallow’) orthography, and poorest results for English, a language whose irregular
spelling system is legendary. For those languages for which multiple dictionaries were available
(i.e., French and English), results were found to vary across dictionaries. For the relationship
between dictionary size and transcription accuracy, we find that as dictionary size grows, so
performance grows monotonically. However, the performance gain decelerates (tends to saturate)
as the dictionary increases in size; the relation can simply be described by a logarithmic regression,
one parameter of which («) can be taken as quantifying the depth of orthography of a language.
We find that « for a language is significantly correlated with transcription performance on a small
dictionary (~10,000 words) for that language, but less so for asymptotic performance. This may
be because our measure of asymptotic performance is unreliable, being extrapolated from the fitted
logarithmic regression.
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1 Introduction

Text-to-speech (TTS) synthesis is an emerging technology with many important ap-
plications in next-generation information systems (Klatt, 1987; Dutoit, 1997; Zue and
Glass, 2000; Holmes and Holmes, 2001). A crucial limitation for any TTS system is
the problem of automatically generating acceptable pronunciations from text input, i.e.,
transcribing letters to sound. The most obvious and effective approach is simply to
look up pronunciations of input words—or, perhaps, morphemes after morphological
decomposition—in a dictionary. This will work very well, but only provided the word
is actually in the dictionary. However, it is impractical (strictly, impossible) to store
all the words of the language, since this constitutes an open set. Thus, the dictionary
approach can not be a complete or sufficient solution to this problem; some ‘back-up’
procedure is needed for words not in the dictionary. The usual approach to is to employ
a set of phonological (letter-to-sound, or text-to-phoneme) rules written by a linguist or
phonetician, with expert knowledge of the target language, as a back-up or secondary
strategy to the primary strategy of dictionary look-up.

Clearly, this knowledge-based approach is highly language-specific, and has to be redone
at some expense for each new language (Sproat et al., 1998, p.75). We also expect the
difficulty of the task of writing appropriate rules to vary according to the complexity of
the relationship between pronunciation and orthography in each specific language. This
is generally taken to vary across a deep/shallow continuum (Coltheart, 1978; Liberman
et al., 1980; Katz and Feldman, 1981; Turvey et al., 1984; Sampson, 1985). For languages
like English or French whose writing system is generally agreed to be ‘deep’, there
is a supposedly complex relation between spelling and sound, lacking consistency and
transparency, unlike the ‘shallow’ orthographies of Finnish or Serbian, for example, where
the correspondence is mostly if not entirely consistent and transparent. (By ‘consistency’,
we mean that the same letter always corresponds to the same phoneme. By ‘transparency’,
we mean that a single letter corresponds to a single phoneme and vice versa.) Thus, we
expect that automatic pronunciation will be particularly difficult for English, and it will
be correspondingly difficult to write phonological rules for this language. However, it does
seem to be relatively easier to write consistent and transparent rules to convert spelling into
sound for languages such as Spanish and Italian.

Unfortunately, there is good evidence that manually-written letter-to-sound rules work
very poorly, certainly for English. Damper et al. (1999) compared the performance of rules
(those of Elovitz et al. 1976) with three alternative data-driven methods, which infer the
pronunciation of unknown words from a set of known spelling-pronunciation pairs. Data-
driven (or ‘machine learning’) methods can be usefully classified as eager or lazy (Aha,
1997; van den Bosch et al., 1997): the former attempt to compress the learning data into
a small set of regularities in a prior training phase, whereas the latter aim to retain the
training data in their entirety (as far as possible). The data-driven methods studied were
the eager approach of neural networks (McCulloch et al., 1987), and two more or less lazy
approaches: a decision-tree method IB1-IG (Daelemans et al., 1997; van den Bosch, 1997)
and pronunciation by analogy (PbA), with the latter being rather lazier than the former. It
was found that the data-driven methods outperformed rules by an enormous margin; these
techniques are increasingly seen as making rule-based transcription obsolete (Damper,



2001). A further potential advantage is that they are highly portable between different
languages, only provided a database (or lexicon) of words and their pronunciations is
available. All that is necessary is to change the lexicon that acts as the source of example
pronunciations. Retraining may or may not be necessary, depending upon how lazy the
learner is.

Damper et al. (1999) found that the most successful by some margin of the three data-
driven methods they studied was PbA. This very pure form of lazy learning exploits the
phonological knowledge implicit in the system dictionary of known words to infer a pro-
nunciation for an unknown word as follows. It computes different ways of assembling the
input word from fragments of partially-matching letter substrings and their corresponding
partial pronunciations, and chooses between these candidate pronunciations according to
some objective criterion. To date, many variants of PbA have been proposed and evaluated,
mostly for English; however, the success of PbA for multilingual pronunciation generation
has not been seriously assessed. Hence, one goal for this paper is to study PbA performance
on multilingual transcription as a way of quantifying the variation of difficulty of the task
across languages, and gaining insight into manifestations of the deep/shallow continuum.
We select PbA for this study just because of its well-documented superior performance in
the Damper et al. (1999) evaluations.

Since PbA uses a dictionary of example spellings and pronunciations as its knowledge
base, an important question is that what size of dictionary we should employ in a text-to-
speech system. Intuitively, we might feel that the larger it is, the better. However, large
dictionaries are expensive to compile, lead to an increase in processing time, and may not
exist for all languages that we wish to synthesise, especially minority languages. Also,
there are inherent dangers in extrapolating from results on a small database or dictionary
to asymptotic performance on a very large dictionary. A few years ago, Baayen (2001,
p. xxi) wrote:

‘Word frequency distributions are characterized by very large numbers of rare words. This
property leads to strange phenomena such as mean frequencies that systematically keep changing
as the number of observations is increased, relative frequencies that even in large samples are not
fully reliable estimators of population probabilities, and model parameters that emerge as functions
of the text size’.

The problems that this phenomenon (called ‘large numbers of rare events, or LNRE)
can cause for speech synthesis have often gone unrecognised or underestimated (Mdbius,
2003). For instance, early developers of rule-based letter-to-sound systems tested on small
datasets and assumed that error rates would be independent of test set size, leading to
dramatic over-estimates of performance (Damper et al., 1999). With the increased interest
in data-driven approaches (Damper, 2001), an important issue becomes the sizes of the
training and test sets if, as Baayen says, model parameters are a function of corpus size. So
although it is likely, and some preliminary results from Damper et al. (1999, Fig. 1) suggest
it is the case, it is by no means certain that ‘bigger is better’. As Banko and Brill (2001,
p. 26) write in respect of data-driven natural language processing (NLP) tasks in general:
“one has to wonder what conclusions that have been drawn on small data sets may carry
over when ... learning methods are trained using much larger corpora”.
Given this background, our purposes for this paper are two-fold:
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1. To evaluate pronunciation by analogy on a range of different languages, so as to
quantify the variation of transcription difficulty across the deep/shallow continuum
of orthography.

2. Also, to explore the effect of lexicon size on performance for multilingual transcrip-
tion using PbA.

Specifically, we have investigated the performance of PbA applied to 7 European
languages—Dutch, English, French, Frisian, German, Norwegian, and Spanish—with
12 different lexicons. Also, we artificially varied the size of (some of) these lexicons by
evaluating transcription accuracy on different subsets of the complete dictionary.

The remainder of this paper is structured as follows. In the next section, the dictionaries
used in this work are detailed. In Section 3, we briefly describe the principles of
pronunciation by analogy. In Section 4, we set out the various evaluations of transcription
accuracy that have been performed. Results are detailed in Section 5. Discussion and
conclusions are presented in Section 6.

2 Lexical databases

The lexicons used in this work are all available for download at http://www.
pascal-network.org/Challenges/PRONALSYL/Datasets/. We have used
the automatically-aligned versions for seven European languages: Dutch, English, French,
Frisian, German, Norwegian, and Spanish. In total, twelve different dictionaries are used
in this work. For French, we have used Lexique, Brulex, and Novlex. For English, we
have used the British English Example Pronunciation (BEEP) dictionary, CMUDICT from
Carnegie-Mellon University, Webster’s, and Teachers” Word Book (TWB). The phoneme
sets used for these lexicons are different, even for the same language. For the other
five languages, there is only one lexicon per language. The letters and phonemes in all
dictionaries are automatically aligned using the algorithm of Damper et al. (2005a), except
in the case of Webster’s, used in NETtalk (Sejnowski and Rosenberg, 1987), and TWB,
used in NETspeak (McCulloch et al., 1987), which were manually aligned by the original
authors. Since most of these dictionaries do not include stress and/or syllable boundary
markers, these aspects of the transcription task have had to be ignored, in spite of their
obvious importance.

Table 1 details the number of letter, phoneme and word types in each dictionary. It can
be seen that there is wide variation in the phoneme inventory, not only between languages
but also between different dictionaries for the same language.

3 Principles of pronunciation by analogy

Pronunciation by analogy is a data-driven technique for converting spelling to sound
that is attracting increasing attention as an automatic pronunciation method for text-to-
speech (TTS) synthesis (e.g., Dedina and Nusbaum, 1991; Sullivan and Damper, 1993;
Federici et al., 1995; Damper and Eastmond, 1997; Yvon, 1996a,b; Bagshaw, 1998;
Marchand and Damper, 2000; Sullivan, 2001; Damper and Marchand, 2006). This has
been driven by accumulating evidence that PbA easily outperforms traditional linguistic



Table 1. Numbers of letter, phoneme and word types in each dictionary.

f...
Language/Lexicon Number o

Letters Phonemes Words

Dutch 43 44 116,252

Frisian 39 85 61,976

German 31 59 49,421

Norwegian 29 47 41,713

Spanish 33 26 31,491

French: Lexique 40 39 36,460
Brulex 40 39 27,473

Novlex 38 40 9,447

English: BEEP 26 43 198,632
CMUDICT 26 39 112,091

‘Webster’s 26 51 20,008

TWB 26 51 16,280

rewrite rules as used extensively in earlier TTS systems plus a variety of other data-driven
methods for spelling-to-sound conversion (Damper et al., 1999).

PbA exploits the phonological knowledge inherent in a dictionary of words and their
corresponding pronunciations. The underlying idea is that a pronunciation for an unknown
word is derived by matching substrings of the input to substrings of known words in
a lexicon, hypothesising a partial pronunciation for each matched substring from the
phonological knowledge, and assembling the partial pronunciations to form a final output.
A seminal and still typical PbA program is PRONOUNCE by Dedina and Nusbaum
(1991), hereafter D&N, which forms the basis for our own PbA algorithm. Since we have
previously given a full description of PRONOUNCE and our modifications to it elsewhere
in this journal (Marchand and Damper, 2007), an abbreviated specification follows.

PRONOUNCE consists of four components: the lexical database, the pattern matcher
which compares the target input to all the words in the database, the pronunciation lattice
(a data structure representing possible pronunciations), and the decision function, which
selects the best pronunciation among the set of possible ones.

An input word is matched in turn against all orthographic entries in the lexicon. For a
given dictionary entry, the process starts in the D&N formulation with the input string 7
and the dictionary entry D left-aligned. Substrings sharing contiguous, common letters in
matching positions in the two strings are then found. Information about these matching
letter substrings—and their corresponding phoneme substrings in the dictionary entry
under consideration—is entered into the pronunciation lattice as detailed immediately
below. Note that this requires the letters and phonemes of each word in the lexicon to have
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been previously aligned in one-to-one fashion so that one or more partial pronunciations
can be attributed to each matching substring. The shorter of the two strings is then
shifted right by one letter and the matching process repeated. This continues until (in the
D&N formulation) the two strings, Z and D, are right-aligned.

Matched substrings, with their corresponding phonemic mappings, are used to build
the pronunciation lattice. A node of the lattice represents a matched letter, L;, at some
position, i, in the input. The node is labelled with its position index i and with the
phoneme which corresponds to L; in the matched substring, P;;, say, for the mth matched
substring. Two nodes, Start and End have special status; they represent the implicit spaces
preceding and following the word. An arc is placed from node i to node j if there
is a matched substring starting with L; and ending with L; and is labelled with the
phonemes intermediate between P, and Pj,. in the matched substring. Additionally, arcs
are labelled with a frequency count that is incremented each time that substring with that
pronunciation is matched.

A possible pronunciation for the input string then corresponds to a complete path
through its lattice, from Start to End, with the output string assembled by concatenating the
phoneme labels on the nodes/arcs in the order that they are traversed. The different paths
are then scored according to two heuristics in the original PRONOUNCE:

Heuristic 1: If there is a unique shortest path, then the pronunciation corresponding to
this path is taken as the output.

Heuristic 2: If there is more than one shortest path, then the pronunciation corresponding
to the best scoring of these is taken as the output.

In D&N’s original work, the score used in Heuristic 2 is the sum of arc frequencies.
The scoring heuristics are one obvious dimension on which different versions of PbA can
vary. In our work to date, we have followed D&N in giving primacy to Heuristic 1. The
set of shortest paths (i.e., the candidate pronunciations) is found by a simple breadth-first
search. Various possibilities exist for Heuristic 2. D&N took the sum of the arc frequencies
along the path but Damper and Eastmond (1997) showed that the product of the arc
frequencies worked better, and taking the sum of products over the multiple paths for
identical pronunciations improved performance even more. Our current version of PbA
(Marchand and Damper, 2000) features several amendments to the D&N formulation,
which have a generally beneficial impact on performance.

First, we use full pattern matching between input letter string and dictionary entries,
as opposed to D&N’s partial matching. This considers all possible overlaps in finding
matching substrings. Thus, rather than starting with the two strings left-aligned, we start
with the initial letter of the input string Z aligned with the end letter of the dictionary
entry D. The matching process terminates not when the two strings are right-aligned, but
when the end letter of Z aligns with the initial letter of D.

Second, although we retain D&N’s Heuristic 1 unaltered, we replace Heuristic 2 such
that multiple (five) heuristics are used to score candidate pronunciations. These rank order
the candidates according to:

1. the maximum product of the arc frequencies along the shortest path;
2. the minimum standard deviation of the arc lengths along the shortest path;



3. the maximum frequency of the same pronunciation within the shortest paths;

4. the minimum number of different symbols between a pronunciation and the other
candidates;

5. the maximum weak link value, where the weak link is the minimum of the arc
frequencies.

These are used to rank order the candidates, and a fixed number of points is distributed
among the candidates according to their rank position. Individual points are then multiplied
together to produce a final overall score and the best-scoring pronunciation is selected. In
recent work, Damper and Marchand (2006) showed that this rank fusion approach gives
statistically significant performance improvements over simpler versions of PbA and over
the several other fusion schemes that were tried.

4 Evaluations of transcription accuracy

At the outset, to obtain an initial view of the difficulty of transcription and the way this
varies across the 12 dictionaries and 7 languages, we ran a very simple, naive or ‘baseline’
algorithm. This just took the default letter-to-phoneme mapping (i.e., the phoneme that
most often aligned with a specific letter) across the whole dictionary. Hence, the test words
were not strictly ‘unseen’, as ought to be the case in any careful evaluation. However, our
purpose at this stage was simply to gain an impression of the magnitude of the transcription
problem and its different manifestation across the different languages and dictionaries.

Results of this baseline evaluation are shown in Table 2. As can be seen, the performance
is very low indeed for most languages, generally less than 10% words correct, indicating
that letter-to-phoneme transcription is a real problem calling for a more sophisticated
solution. The clear exception to this generalisation is Spanish, for which the naive approach
achieves approximately 56% words correct. Although this is far above the corresponding
figure for the other languages, showing that Spanish spelling-to-sound correspondence
is indeed exceedingly shallow, it is nonetheless still inadequate for serious applications.
Regarding the other languages, it is difficult to say very much at this point, not least because
the variation of accuracy across different dictionaries for the same language is relatively
high, compared to the variation across languages. For instance, the values for English vary
from 1.8% words correct for BEEP to 4.0% for TWB.

Subsequently, in line with the two goals previously stated, the following evaluations
were conducted.

1. Transcription performance was evaluated on the complete dictionary for each of the
12 dictionaries covering the 7 languages. The purpose here was to quantify the vari-
ation of transcription difficulty across the deep/shallow continuum of orthography
represented by these languages.

2. For each of the seven languages, transcription performance was evaluated as a
function of dictionary size. The purpose here was to explore the effect of lexicon
size on performance for multilingual transcription using PbA.

Regarding 2., where there are multiple dictionaries for a language (i.e., French and En-
glish), we selected the largest available dictionary (i.e., Lexique and BEEP, respectively).
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Table 2. Results of applying naive baseline transcription algorithm to 12 dictionaries.

% accuracy

Language/Lexicon
Word Phoneme
Dutch 1.35 63.58
Frisian 6.44 68.48
German 3.24 67.78
Norwegian 9.94 74.40
Spanish 56.45 92.14
French Lexique 9.82 67.60
Brulex 8.32 64.13
Novlex 6.66 65.27
English BEEP 1.82 60.08
CMUDICT 2.35 65.13
Webster’s 3.66 61.90
TWB 4.02 59.37

Dictionary size was then varied artificially by randomly dividing the dictionary for
language [ into 10 approximately equal size partitions, or ‘folds’, P!, Pé, ...73{0. Ten
different-sized subsets were then formed as P}, (P} UPh), ..., (PlUPLU...UP},).
Because the size of each of the seven dictionaries is not the same, it follows that, in general,
|P{"| # P}, m # n. Because the dictionary sizes for each language are not necessarily
exactly divisible by 10, in general, the tenth partition for a language is smaller in size than
the other nine partitions:

Pl < P = Phl=-- =P}

5 Transcription Results

In this section, we present the results of applying PbA to the lexicons described in the
previous section. These are reported in terms of words and phonemes correct. Words
correct reflects the number of words in which all phonemes of the output exactly match
those of the corresponding word in the lexicon. Phonemes correct reflects the number of
letters that are correctly converted to their corresponding phoneme.

Transcription accuracy was evaluated using both a leave-one-out strategy and 10-fold
cross validation (Cherkassky and Mulier, 1998, p. 78). In the case of leave-one-out, each
word was removed in turn from the dictionary and a pronunciation derived from the
remaining words, as previously described. In the case of 10-fold cross validation, each
of the 12 dictionaries was divided into 10 partitions (folds), as described in the previous
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section. Each fold was removed in turn and used as a test set; the remaining nine folds
acting as the dictionary for inferring pronunciations. It should be obvious that leave-one-
out is also a form of k-fold cross-validation where & is equal to the number of entries
in the dictionary.

5.1 Results on the 12 different dictionaries

Table 3(a) summarises results on all 12 dictionaries using the leave-one-out method, and
for the case where all five scoring strategies described in Section 3 were used in resolving
tied shortest paths. The corresponding results obtained by averaging across the 10 folds
are shown in Table 3(b). Table 4 summarises results on the same basis, but for the best
combination of scoring strategies (rather than all). These results are very similar (typically
only a small fraction of one percentage point better). In both cases (Tables 3 and 4), there
is also very little difference between the leave-one out and 10-fold cross validation results,
although the latter are consistently lower. Note that in Table 4(a), the binary coding in
the final column indicates which combination of PbA heuristic scoring strategies gave
best word transcription accuracy. A 1 in position p of the binary code indicates that the
pth scoring strategy listed in Section 3 was included in the rank-fusion combination; a 0
indicates that it was not.

From this point, we consider only the results obtained for the best combination of scoring
strategy. The reader should appreciate that, in a practical system, the best combination
would need to be decided by validation on a held-out portion of the corpus. This is not
done here for simplicity, because this is an empirical research study rather than a report
on a practical system, and because simply reverting to using all strategies would produce
not-dissimilar results.

Broadly in line with expectations based on our initial intuitions about the relative
difficulty of letter-to-phoneme conversion in different languages, the best results are
achieved for Spanish at > 99% word accuracy and the lowest performance is obtained
for English. Performance for the other languages (Dutch, French, German, Norwegian) was
generally at > 90% words correct, whereas for Frisian the result was ~ 85% words correct.
There are few data in the literature on the problem of multilingual letter-to-phoneme
conversion with which to compare our results. One exception is the work of Damper et al.
(2005b), who used the entropy of the alignment matrix used to align letters and phonemes
(Damper et al., 2005a) as a measure of orthographic depth of English, Frisian, French and
German. Another is van den Bosch et al. (1994) who attempt to measure the complexity
of the French, Dutch and English writing systems based on the two measures of success at
letter-phoneme alignment and accuracy of letter-to-phoneme conversion. Generally, they
find that French is easier to transcribe from spelling to pronunciation than Dutch which in
turn is easier than English. Our results are somewhat different in that the relative difficulty
of French and Dutch are reversed in our data. Obviously, some differences are to be
expected in light of the use of different dictionaries and different methods for automatic
alignment and transcription.

Recently, Jiampojamarn et al. (2007) have evaluated a competitor method for letter-to-
phoneme transcription on a subset of the multilingual dictionaries used in this work. Space
precludes a detailed description of their methodology here; it features a many-to-many
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Table 3. Results of applying PbA to 12 dictionaries. Accuracies for 10-fold cross-validation
in (b) are averages across the 10 folds with standard deviations in brackets. In all cases,
all scoring strategies were applied to resolve ties (i.e., ‘11111’ combination).

(a) Leave-one-out

% accuracy

Language / Lexicon
Word Phoneme
Dutch 94.43 99.20
Frisian 84.95 97.54
German 92.78 98.93
Norwegian 94.61 99.04
Spanish 99.39 99.80
French Lexique 91.14 98.17
Brulex 91.87 98.33
Novlex 86.92 96.46
English: BEEP 85.99 98.29
CMUDICT 72.13 95.56
Webster’s 65.46 92.42
TWB 71.76 94.36
(b) 10-fold cross validation
Language / Lexicon % accuracy
Word Phoneme
Dutch 94.34 (0.184) 99.18 (0.033)
Frisian 84.36 (0.353) 97.43 (0.067)
German 92.59 (0.451) 98.90 (0.066)
Norwegian 94.49 (0.367) 99.01 (0.089)
Spanish 99.35 (0.165) 99.78 (0.087)
French: Lexique 90.83 (0.441) 98.07 (0.091)
Brulex 91.72 (0.513) 98.29 (0.134)
Novlex 86.53 (1.666) 96.34 (0.747)
English: BEEP 85.87 (0.183) 98.27 (0.030)
CMUDICT 71.09 (0.431) 95.46 (0.095)
Webster’s 64.49 (1.544) 92.19 (0.325)
TWB 70.47 (1.044) 94.08 (0.338)
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Table 4. Results of applying PbA to 12 dictionaries. Accuracies for 10-fold cross-validation
in (b) are averages across the 10 folds with standard deviations in brackets. Results
are the best obtained for all possible combinations of scoring strategy. Many different
combinations gave the same best value for Spanish with 10-fold cross validation.

(a) Leave-one-out

% accuracy

Language / Lexicon Best combination
Word Phoneme
Dutch 94.43 99.20 11111
Frisian 85.18 97.58 10101
German 92.94 98.94 10101
Norwegian 95.05 99.09 10100
Spanish 99.43 99.80 11011/11101
French Lexique 91.31 98.18 11100
Brulex 91.95 98.34 10101
Novlex 86.94 96.47 11100
English: BEEP 87.50 98.43 10100
CMUDICT 72.13 95.56 11111
Webster’s 65.46 92.42 11111
TWB 71.98 94.36 11100
(b) 10-fold cross validation
Language / Lexicon % accuracy Best combination
Word Phoneme
Dutch 94.34 (0.184) 99.18 (0.033) 11111
Frisian 84.60 (0.434) 97.47 (0.080) 10101
German 92.74 (0.464) 98.91 (0.070) 10101
Norwegian 94.94 (0.243) 99.06 (0.068) 10100
Spanish 99.38 (0.161/0.161) 99.78 (0.090) various
French: Lexique 91.02 (0.339/0.399) 98.10 (0.076/0.075) 11100/11101
Brulex 91.78 (0.487) 98.29 (0.130) 10101
Novlex 86.53 (1.666) 96.34 (0.747) 11111
English: BEEP 87.31 (0.257) 98.41 (0.034) 10100
CMUDICT 71.99 (0.485) 95.53 (0.110) 10101
Webster’s 64.52 (1.512) 92.16 (0.325) 10111
TWB 70.77 (1.121) 94.08 (0.332) 11100
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Table 5. Comparison of multilingual results of PbA with those of Jiampojamarn et al. using
10-fold cross-validation. Figures are averages across the 10 folds with standard deviations
in brackets. The same folds were used in both cases. The t-statistic is for unpaired samples;
significance tests are one-tailed with df = 9.

Language / Lexicon % word accuracy t-statistic P
Our PbA results Jiampojamarn et al.

Dutch 94.34 (0.184) 91.4 (0.24) 30.74 << 0.00001
German 92.74 (0.464) 89.8 (0.59) 12.39 << 0.00001
French Brulex 91.78 (0.487) 90.9 (0.45) 4.20 < 0.001

English CMUDICT 71.99 (0.485) 65.6 (0.72) 23.28 << 0.00001

alignment (as opposed to our one-to-one alignment) and then uses a hidden Markov model
for transcription. Table 5 shows a comparison of our best results for 10-fold cross validation
with those of Jiampojamarn et al. (taken from their Table 3, p.378). As can be seen, the
pattern of results across languages is similar but with PbA yielding superior performance. It
was not possible to perform a paired-samples ¢-test comparison of the two methods because
we do not have access to Jiampojamarn et al.’s raw data. However, on the basis of unpaired
t-tests, the word accuracy of PbA is very highly significantly better than Jiampojamarn
et al.’s method for all languages. We take this superiority as a partial vindication of our
choice of PbA as the best-performing transcription method currently known.

5.2 Variation of results across dictionaries for French and English

For French and English, the results vary across the dictionaries; the variation is especially
wide for English. Factors accounting for this variation are likely to include:

o the different sizes of the dictionaries;
o the different sizes of the phoneme inventories;
o differing transcription standards employed by the dictionary compilers.

Figure 1 shows the variation of word accuracy with dictionary size for English. There is
a reasonably strong positive correlation (R? = 0.797) between accuracy and size, showing
that this factor seems to have a real effect. We speculate that larger dictionaries have lower
complexity in that the extra words are likely to be morphologically related to other entries,
and this lower complexity is reflected in higher transcription accuracy.

Looking back at the performance of the baseline algorithm for these four dictionaries
(Table 2), it appears that baseline performance has almost an inverse relationship to
performance using PbA. This is probably an effect of dictionary size. For a small
dictionary, it seems the default phoneme is more likely to be correct than is the case for a
large dictionary, presumably because there is greater variability in the large dictionary.
On the other hand, PbA seems to work better with a large dictionary, maybe because
there is a greater chance of finding useful analogical patterns. This observation reinforces
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Fig. 1. Variation of word accuracy with dictionary size for English letter-to-phoneme transcription,
showing best fit regression line.
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Fig. 2. Variation of word accuracy with size of dictionary phoneme inventory for English
letter-to-phoneme transcription, showing best fit regression line.

the cautionary message in the Introduction, citing Baayen (2001), against simplistic
assumptions about how things will vary with dictionary size.

Figure 2 shows the variation of word accuracy with the size of phoneme inventory
employed by the dictionary, again for English. Here, there is a relatively much weaker
negative correlation (R? = 0.225) between accuracy and size of the phoneme set. Some
such negative correlation is only to be expected; the lower the size of the phoneme
inventory, the broader is the transcription standard being used, and so the less potential
there is for phoneme substitution errors.

We have not attempted any similar analysis of the results for French because of the
fewer number of dictionaries employed (three rather than four, with two being very similar
in size), and because the variation in transcription performance and in size of phoneme
inventory is much less than for English.
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Fig. 3. Variation of word accuracy with different sizes of dictionaries for 7 European languages.
The regression T = « In S + B has been fitted to the data points for each language.

5.3 Results as a function of dictionary size

The data points in Figure 3 show the variation of word transcription accuracy in the
7 languages as a function of dictionary size, with different-size dictionaries constructed
as described in Section 4. The results shown here were obtained using leave-one-out and
the best combination as tabulated in Table 4(a).

There is a clear and obvious tendency for transcription performance to grow mono-
tonically with dictionary size. This goes some way to explaining why the 10-fold cross
validation results in Table 4(b) are consistently very slightly smaller than the leave-one-out
results in Table 4(a), because the size of dictionary used for inference is smaller than with
leave-one-out. It is %ths the size of the complete dictionary.

Apart from the case of Spanish, which is a clear outlier in terms of the ease of letter-
to-phoneme transcription, there is no very consistent relation between these results and
those of the simple baseline algorithm in Table 2. In the latter, the poorest performance
(1.35% words correct) was obtained for Dutch, yet here the performance using PbA for
Dutch is intermediate between the extremes of Spanish and English. It seems that the
baseline performance figures are unduly affected by dictionary size.

For each language, the data are well-modelled by a function of the form:

) T=alnS+p

where T is percentage word transcription accuracy, S is lexicon size, and « and B are
language-dependent regression parameters, tabulated in Table 6. As can be seen from the
final column of the table, the fit to the mathematical model of equation (1) is excellent,
with R? > 0.9 in all cases.

In spite of the high R? correlation coefficients obtained, there is one obvious sense
in which this model is deficient: The logarithmic function does not saturate (although it
does decelerate) as S increases, whereas the actual transcription accuracy obtained cannot
exceed 100%. This deficiency in the model is clearly seen in the curve for Norwegian
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Table 6. Best-fit parameters for the regression model T = oInS + .

Language o B R?

Spanish 1.12 88.1 0.9184
Norwegian 7.99 11.2 0.9850
German 6.10 27.6 0.9752
French 497 39.7 0.9759
Dutch 4.81 39.0 0.9746
Frisian 7.02 8.22 0.9893
English 9.52 —28.23 0.9984

in Fig. 3, where the extrapolated best-fit curve appears to be tending to a value well
above 100%. The situation bears similarities to the mathematical modelling of lexicon
coverage in our earlier work (Damper et al., 1999, Appendix A). In this case, consideration
of Zipf’s law (Zipf 1949; Schroeder 1991, p.35) led to a logarithmic model like (1) that
was limited by setting a parameter (effectively o) according to the total number of words
in the language. This concept of “the total number of words in the language” is, of course,
problematic from a theoretical point of view. The words of a language can be listed in
lexicographic order, and then put in one-to-one correspondence with the natural numbers,
so the set of all words is countably infinite (Partee et al., 1993, p.59) and has no upper
limit. In the present situation, the growth of transcription accuracy 7 can be similarly
limited by appropriate setting of « and 8, assuming that S can never exceed some upper
bound. Although we readily concede that this artificial device is rather unsatisfactory, we
find it interesting that very similar modelling considerations arise in the two cases.

In equation (1), o controls the rate of growth of transcription accuracy whereas
B controls the vertical placement of the growth curve. From this perspective, we would
expect a language possessing shallow orthography to display a high value of g, probably
in conjunction with a low value of o (since high transcription accuracy will already be
achieved for a relatively small lexicon). This is precisely the pattern seen for Spanish
(Table 6). On the other hand, a language with deep orthography should show a low value
of B; it is less clear how this would couple with the value of @. One might expect that
o would be low (i.e., low growth) because transcription is ‘difficult’; alternatively, one
might predict that o« would be relatively large because growth is from a lower value for
S ~ afew thousand words.

To explore this issue, we plot 8 versus « in Figure 4, whereupon we find a clear linear
trend between the two parameters of the form:

2) B = —13.069x + 104.05

with R? = 0.9701. There was no particular reason that we can see to expect any such
relation a priori, since (as outlined above) we interpreted one parameter to control growth
rate and the other to control vertical placement. With hindsight, however, it makes sense for
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Fig. 4. Relation between 8 and « for 7 European languages.

there to be a dependence between the two, with larger growth to the 100% asymptote for a
language with a deep orthography, starting from a relatively low transcription accuracy for
a small dictionary.

Substituting (2) into (1) eliminates 8, giving the model:

1
3) T~100—a(13+ln§>

This is an interesting form, indicating that transcription accuracy is limited to 100% for
S < e'3 (approximately 450,000) independent of the value of .

The reader is warned against interpreting (3) as meaning that we only require a one-
parameter model to fit the data of Fig. 3. Rather (assuming the constant of ~100 is playing
the role of setting asymptotic performance), we should view the constant of 13 in (3) as
another ‘parameter’ which turns out empirically to be the same across all 7 languages
studied here. Further work is required to determine how general this is across a wider
range of languages.

The question then arises: how good a measure is the language-dependent parameter «
of the depth of orthography (or the difficulty of letter-to-phoneme transcription) for that
language? Table 7 shows the seven languages and ranks assigned to the value of o obtained
by regression (Rank) and to the difficulty of transcription, Rankysymp assigned according
to the ordering of asymptotic performance in Fig. 3. For «, ranking is in ascending order;
For transcription accuracy, it is in descending order. Note that we have ranked Spanish
as easier to transcribe than Norwegian (in spite of a slower rate of deceleration of its
T-S curve) as the regression for the latter language looks suspect, and we have considered
French and German to tie as it is difficult to separate the performance for these two
languages. Let the null hypothesis be that there is no relation between the asymptotic
difficulty of transcription and «. By the Spearman rank correlation test (Siegel, 1956,
pp.202-213), we obtain ry = 0.5225 according to which there is no reason to reject the
null hypothesis.

However, the asymptotic performance in Fig. 3 is possibly unreliable, being based on
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Table 7. Rankings of a values, asymptotic transcription accuracy and ‘low’ transcription
accuracy on a small dictionary.

Language o Rank, Ranksymp Rankqy H,jign (bits)
Spanish 1.12 1 1 1

Norwegian 7.99 6 2 3.5 5.061
German 6.10 4 3.5 3.5 5.406
French 4.97 3 3.5 3.5 5.504
Dutch 4.81 2 5 3.5 5.399
Frisian 7.02 5 6 6 5.659
English 9.52 7 7 7 5.801

extrapolation from a model fitted to empirical data. An alternative, preferable measure of
the degree of transcription difficulty might be the ‘low’ measure obtained on a dictionary
of about 10,000 words, Rank;,y, where at least we have actual data. Since it turns out to be
rather difficult to separate Norwegian, French, German and Dutch at S = 10, 000 in Fig. 3,
we have treated these as tied on Rankqy,. This yields ry = 0.8078, allowing us to reject the
null hypothesis at the 5% level of significance. Hence, « for a language appears to be a
good predictor of performance on a small dictionary of that language.

6 Discussion and Conclusions
At the outset, our purposes for this paper were:

1. To evaluate pronunciation by analogy on a range of seven European languages
(Spanish, Norwegian, German, French, Dutch, Frisian, English), with the intention
of quantifying the variation of transcription difficulty across the deep/shallow
continuum of orthography.

2. To explore the effect of lexicon size on performance for multilingual transcription
using PbA.

Considering 2. first, the size of the phoneme set used by the dictionary compilers can
have an effect, as shown in the results of Section 5.1 , but when this is controlled for
by constructing different-sized lexicons as unions of 10 folds of the same dictionary
(Section 4), we find in Section 5.3 that transcription accuracy increases monotonically
with the size of the lexicon used for analogical inferencing.

Although this simple result might be thought unsurprising, and it parallels results from
other researchers starting to use very large training corpora on other NLP tasks (e.g., Banko
and Brill 2001 working on word confusion-set disambiguation), there are good reasons
for treating it as something other than vacuous. The LNRE phenomenon (Baayen, 2001;
Mbobius, 2003) means that simple-minded assumptions about how parameters of a language
model grow with corpus size are dangerous. Further, it is one thing to assume a relationship
and quite another to demonstrate that it holds empirically. Finally, test and training dataset
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sizes can have a profound effect on results of data-driven approaches to language learning.
This is most obviously the case in eager learning methodologies, like neural networks,
where overfitting to the training data is an ever-present danger. It seems that yet another
advantage of lazy learning is the avoidance of the over-regularisation which can result from
a prior training phase (Daelemans et al., 1999).

Turning to 1., we believe this is one of only very few attempts to quantify depth
of orthography computationally (rather than by reaction time experiments with human
readers). In line with general beliefs in the field, we find that Spanish is at one extreme
of the deep/shallow continuum for the languages tested, whereas English is at the other.
English is notorious for the lack of regularity in its spelling-to-sound correspondence,
which largely reflects the many complex historical influences on the spelling system
(Venezky, 1965; Scragg, 1975; Carney, 1994). Indeed, Abercrombie (1981, p.209) de-
scribes English orthography as “one of the least successful applications of the Roman
alphabet.” This is reflected in a very large value for the language-dependent parameter o
in equation (3) of 9.52, whereas for Spanish we have o = 1.12. The case of Norwegian
appears somewhat anomalous, having a high value for « (7.99, the second-highest found
in this work) but seeming to be about as easy to transcribe as French, German and Dutch
according to the results displayed in Fig. 3. It is also noticeable (as already remarked)
that its rate of deceleration towards asymptotic performance seems to slow, leading to an
apparent overshoot above the limiting value of 100% transcription accuracy. Whether the
apparently anomalous value of « is a genuine feature of the language or an artifact of some
idiosyncrasy of the particular dictionary used is open to question. Further work is needed
on this point.

Although (the case of Norwegian notwithstanding) o seems to be a reasonably good
predictor of transcription performance on a dictionary of ~10,000 words, it is less good at
quantifying the asymptotic performance. This may be because the measure of asymptotic
performance used here is unreliable, being based on extrapolation from the fitted regression
model, quite distant from supporting data points.

The principal findings of this work are (1) word transcription accuracy using pronuncia-
tion by analogy increases monotonically with the size of the dictionary used for analogical
inferencing for all languages studied, and (2) broadly, the deeper the orthography for a
particular language, the larger is the dictionary size needed to reach a particular level of
transcription accuracy. However, it is not an easy matter to quantify the concept of “depth
of orthography”.
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