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Abstract — This paper proposes a novel improvement of
forecasting approach based on using time-invariant fuzzy time series.
In contrast to traditional forecasting methods, fuzzy time series can
be also applied to problems, in which historical data are linguistic
values. It is shown that proposed time-invariant method improves the
performance of forecasting process. Further, the effect of using
different number of fuzzy sets is tested as well. As with the most of
cited papers, historical enrollment of the University of Alabama is
used in this study to illustrate the forecasting process. Subsequently,
the performance of the proposed method is compared with existing
fuzzy time series time-invariant models based on forecasting
accuracy. It reveals a certain performance superiority of the proposed
method over methods described in the literature.
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1. INTRODUCTION

ORECASTING plays a notable role in making both

crucial and day-to-day decisions about the future. Weather
prediction, staff scheduling, business and production planning
and multistage management decision analysis are among
distinctive examples of forecasting areas where people want to
foresee, within existing limits, as closely as possible.
Although, there are many well-known forecasting methods,
they cannot solve forecasting problems, in which the historical
data are available in linguistic form. Fuzzy time series allows
to overcome this drawback [4]. However, fuzzy time series are
not just limited to linguistic values, and can be used for the
prediction of numerical values too.

For the last decade the problem of forecasting based on
fuzzy time series has been studied by several authors [1]-[6].
Based on definitions [1], Song and Chissom introduced time-
invariant and time-variant models for forecasting with fuzzy
time series [2], [3]. Despite the fact that all necessary concepts
and definitions are provided later on in section II, we need to
clarify these two important notions. Fuzzy time series F(?)
with finite number of elements is called time-variant, if for
any moment of time ¢, F(z) = F(t — 1); otherwise it is called

a time-variant fuzzy time series [4]. In their studies Song and
Chissom used the University of Alabama enrollment data to
demonstrate the forecasting process based on model:

F(t)=F(t-1) R, (1)
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where F(t-1) is the enrollment of year r—1, F(t) is the

forecasted enrollment of year ¢ expressed by fuzzy sets, R is
a union of first-order fuzzy relations, i.e. relations that
represent the relationship between enrollments of two
consequent years (for more details see Section II), and, finally,
symbol o denotes max-min composition operator. As it was
shown in [2] and [3], the average error of time-invariant and
time-variant model turned out to be 3./8% and 4.37%,
correspondingly.

Subsequently, Chen proposed a new model to simplify the
computational complexity of forecasting process by means of
using simple arithmetic operations instead of max-min
composition operator on the same set of historical enrollment
data [4]. The average forecasting error of Chen’s model was
3.23% . Apart from the fact that the result obtained improves
a similar figure of Song-Chissom’s time-variant model [3], it
appears to be more efficient as compared to both time-
invariant and time-variant models of Song and Chissom in
respect to more simple computations.

This paper is devoted to the description of a new (modified)
time-invariant method to deal with forecasting problems.
Unlike Song-Chissom and Chen approaches, the proposed
method utilizes variations of the available historical data as
fuzzy time series instead of direct usage of raw numeric
values. Furthermore, the effect of changes in the number of
fuzzy sets in the model is investigated. Results obtained are
compared with those of Chen and Song-Chissom models for
the purpose of forecasting accuracy.

The rest of the paper is organized as follows. Section II
recalls those basic concepts and definitions [1]-[2] that are
directly relevant to fuzzy time series. Section III discusses the
proposed time-invariant method by the example of university
enrollment together with its advantages over existing models.
Finally, the concluding remarks are drawn in the Section IV.

II. Fuzzy TIME SERIES DEFINITIONS

This section briefly summarizes basic fuzzy time series
concepts [1], [2] needed for the subsequent text.

Definition 1. Assume Y(¢)c R (real line), t=...,0,1,2,..., to
be a universe of discourse defined by the fuzzy set f;(¢).
F(t) consisting of f;(t), i=12,.., is defined as a fuzzy
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time series on Y(7). At that, F(¢) can be understood as a
linguistic variable, whereas f;(t), i=12,.., are possible

linguistic values of F(t) .

Definition 2. If there exists a fuzzy relationship R(t,1—1),
such that F(t)=F(t—1)xR(t,t—1), where symbol x is an
operator, then F(¢) is said to be caused (or, induced) by
F(t—1). The existing relationship between F(¢) and
F(t—1) can be denoted by the expression F(t—1)—> F(t).

Definition 3. Denoting F(71—1) by A; and F(¢) by A4;, the
relationship between F(¢#—1) and F(¢) can be defined by a
logical relationship 4; —> 4.

Definition 4. Fuzzy logical relationships, which have the
same left-hand sides, can be grouped together into fuzzy
logical relationship groups. For example, for the identical left-
hand side 4; such grouping can be depicted as follows:

Ai —)Ajl

Ai_)Aj2 = Ai—)Ajl,Ajz,...

Definition 5. If F(¢) is a time-invariant fuzzy time series,
then the logical relationship F(¢—1)— F(t) is called a first-
order logical relationship.

III. FORECASTING ENROLLMENTS WITH A NEW METHOD OF
TIME-INVARIANT Fuzzy TIME SERIES

A. Forecasting

The aim of this study is to propose a method that is aimed
to attain better forecasting accuracy by using time-invariant
fuzzy time series. It should be emphasized that for forecast it
uses only historical data in the numerical form (number of
students) without any additional pieces of knowledge.

Based on actual historical data of enrollments of the
University of Alabama, Song and Chissom set up models, i.e.
relationships among values of interests at different moments
of time [1]-[3]. Method developed by Chen [4] also provides
for construction of fuzzy sets A; being values of the linguistic

variable (actual) enrollments. We propose modifications that
mainly deal with two key aspects; (a) usage of variations of
historical data instead of actual enrollment characteristics, and
(b) calculation of relationship R utilized for the prediction of
future enrollments. In addition, the method is tested on
different number of fuzzy sets for the purpose of examination
of forecasting accuracy.
Finally, step-by-step forecasting process looks as follows:

Step 1: Define the universe of discourse (universal set U )
starting from variations of the historical enrollment data,
Step 2: Partition U into equally length intervals,
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Step 3: Define fuzzy sets 4;,

Step 4: Fuzzify variations of the historical enrollment data,
Step 5: Determine fuzzy logical relationships 4; — 4,

Step 6: Group fuzzy logical relationships (see Step 5) having
the same left-hand side and calculate R; for each i-th fuzzy
logical relationship group,

Step 7: Forecast and deffuzify the forecasted outputs,

Step 8: Calculate the forecasted enrollments.

Hence, the approach that uses enrollments of the University
of Alabama can be represented more comprehensively in the
following way:

Step 1: In accordance with the problem domain, universal set
U is defined — on this occasion yearly variations of the
enrollments are used. Actual data and corresponding
variations are listed in Table I (minimum and maximum
variations are V,,;, =-955 and V,,, =129, respectively).

With the object of simplifying division of U into equally
length intervals, accept U as [V, =V, Viyax V2], where
V, and V, are positive numbers 45 and /09, accordingly.
Asaresult, U =/-1000,1400] .

TABLEI

ACTUAL ENROLLMENTS AND VARIATIONS OF HISTORICAL DATA

Years Actual Variations Years Actual Variations
enrollments enrollments

1971 13055 1982 15433 —955
1972 13563 +508 1983 15497 + 64
1973 13867 +304 1984 15145 —352
1974 14696 + 829 1985 15163 +18
1975 15460 + 764 1986 15984 + 82
1976 15311 — 149 1987 16859 + 875
1977 15603 +292 1988 18150 + 1291
1978 15861 +258 1989 18970 + 820
1979 16807 + 946 1990 19328 + 358
1980 16919 +112 1991 19337 +9
1981 16388 - 531 1992 18876 —461

Step 2: We use 6 (six) fuzzy sets, i.e. U is partitioned into six
equal intervals u;, i:],_6, namely: u; =/-1000,-600],
uy, =[-600, —200 ], ..., ug =[1000,1400] (the number of
fuzzy sets is not necessarily coincides with the number of
intervals),

Step 3: We assume that linguistic variable variations of
enrollments can take as fuzzy values: A; (big decrease), A,

(big
increase), Ag (too big increase), for example. Regardless of

(decrease), Az (no change), Ay (increase), As

the fact that six fuzzy sets are listed here, with the purpose of
comparison we also conducted extra experiments with
different number of fuzzy sets.

For 6 intervals given u,-,i:I,_6, the fact that each u;
belongs to a particular 4, j :1,_6, is expressed by the real

value from the range [0,1]:

© 2005 WASET.ORG



PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 1 JANUARY 2005 ISSN 1307-6884

Ay ={1/u;, 05/uy, 0/uz, 0/uy, 0/us, 0/ug}
A, ={05/u;, 1/uy, 0.5/ uz, 0/uy, 0/us, 0/ug}
A3 ={0/u;, 0.5/ uy, 1/u3,0.5/uy, 0/us, 0/ ug}
Ay ={0/u;, 0/uy, 0.5/uz, 1/uy, 0.5/us, 0/ug}
As ={0/u;, 0/uy, 0/usz, 0.5/ uy, 1/us, 0.5/ ug}
As ={0/u;, 0/uy, 0/uz, 0/uy, 0.5/ us, 1/ug}

where u; cU are elements of the universal set, and the
number that precedes slash symbol “/” is the membership
degree u(u;) torespective A;, j =16.

Step 4: Find a proper fuzzy set for each year’s variation. In
other words, if the variation of the year ¢ is p € u;, and there
is a value represented by a fuzzy set 4; with the maximum
membership value falling on u;, then p is fuzzified as 4;.

Fuzzification results are summarized in Table II.

Step 5: Determine first-order relations, i.e. obtain a set of
logical relationship between two consequent variations as
shown in Table III. Following [2], we assume that
D =B — C, or using product operator x defined on two 1-

vectors, D=[d;; ] = BiT xC ;. Fuzzy relationship (element of

matrix D ) is calculated as d;; =min(B;,C; ), where B; and

C; are the i and j’h, i,j:I,_n, elements of vectors B

and C, respectively.
Step 6: Combine fuzzy relationships (FR) into FR groups
starting from identical left-hand sides (Table IV). After that

calculate R;, i=1,6, as a union of logical relationships in

i’

each group (we operate with six fuzzy sets). Thus,
R, = AT x 44
R, =AY x4, 0A4F x 44
Ry =Al x4y udl x4, 04l x 45
Ry =AY xA; 04 x4, 04l x 45
Rs =dAl xA; 04l xa, 04 x a5 04T x 44
Rs = AL x 45
where U is a union operator.

Step 7: Determine fuzzy logical relationship group based upon
known variation 4;_; of the previous year as follows

If 4; ;=A;, then R, =R;, j=16.

As a result, R; obtained is used in the definition of

1
forecasting compositional model

A;=4;_1°R;, (2)

where A; is a forecasted variation of year i in terms of fuzzy

set.
For example, consider forecasting of variation for the year
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1973 (University of Alabama data) in the presence of known
variation of 1972. Data of the Table II makes it clear that
R; =R,. From (2) it follows that F(1973)=A R4, or

F(1973)=[0 0.5 1 1 I 0.5].

fuzzy outputs are calculated in a similar manner (third column
of the Table V).

Remaining  forecasted

TABLEII
FUZZIFIED HISTORICAL ENROLLMENTS BASED ON VARIATIONS
Years  Variations T UZ_Ziﬁed Years Variations F ugziﬁed
variations variations
1971 1982 - 955 A
1972 +508 Ay 1983 +64 Az
1973 +304 Ay 1984 -352 A,
1974 + 829 As 1985 +18 As
1975 +764 As 1986 +82 As
1976 - 149 As 1987  +875 As
1977 +292 Ay 1988 +1291 Ag
1978  +258 Ay 1989 + 820 As
1979 + 946 As 1990 +358 Ay
1980 +112 As 1991 +9 As
1981 - 531 A, 1992  —46l A,
TABLE III
VARIATIONS FUZZY LOGICAL RELATIONSHIPS
Ay —> Ay A — Az
Ay — As Ay — Aj
As > As A3 —> As
As; = Aj As —> Ag
A3 > Ay Ag — A5
A; > 4, As > Ay
A, > A Ay — Az
TABLE IV
VARIATIONS FUZZY LOGICAL RELATIONSHIPS GROUPS
A; — A3
Ay > Aj, Az
A3 > Ay, Ay, A5
Ay —> A3, 44, A5
As — A3, 44, A5, Ag
Ag — As

Step 8: Results (fuzzy forecasted variations) of the previous
step are summarized to obtain crisp integer value (forecasted
enrollment) for each year under consideration. This process is
known as defuzzification. In this paper, the defuzzification
approach as it is proposed by Song and Chissom [2]-[3] is
used — its essential principles can be brought to the following:
(a) If all membership values of the output are 0 (zeros), then
the forecasted variation is 0 too,

© 2005 WASET.ORG



PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 1 JANUARY 2005 ISSN 1307-6884

(b) If the membership of output has exactly one maximum,
then midpoint of interval, on which this value is reached, is
the forecasted variation,

(c) If the membership of output has two or more consecutive
maximums, the midpoint of corresponding conjunct intervals
is taken for the forecasted variation,

(d) Otherwise, standardize the fuzzy output and use the
midpoint of each interval to apply centroid method for
calculation of defuzzified forecasted variation.

When the fuzzy variation is obtained, it is summed up with
actual enrollment of the last (previous) year. For instance, if
the calculated forecasted variation (year 1979) is 400, and the
actual enrollment (year 1978) is 15861, then the forecasted
enrollment (year 1979) is 15861+400=16261. The results
for the University of Alabama are shown in Table V.

TABLE V

FORECASTED OUTPUTS AND ENROLLMENTS FROM 1973 TO 1993
Y mens 022y Outputs covliments
1973 13867 00511105 13963
1974 14696 00511105 14267
1975 15460 0051111 15296
1976 15311 0051111 16060
1977 15603 051051105 15530
1988 18150 0051111 17459
1989 18970 00005105 18950
1990 19328 0051111 19570
1991 19337 00511105 19728
1992 18876 051051105 19556
1993 10510500 18663

B. Discussion

The proposed time-invariant method achieved better results
in comparison with Song-Chissom and Chen’s models. The
average forecasting errors and the forecasted enrollments of
these methods based on using six fuzzy sets are given in Table
VI/Figure 1, respectively.

TABLE VI
AVERAGE FORECASTING ERRORS OF TIME-INVARIANT METHODS

Song and

. Chen’s Proposed
Chissom Lo . L .
. . . time-1nvariant time-1nvariant
time-1nvariant model method
model
Average 3.18% 3.23% 2.42%

forecasting errors

| act.enrollment - forecast. enrollment |

Actual forecasting error = x 100

act. enrollment

Furthermore, it is worth mentioning that the number of
fuzzy sets (Npg) used in the model affects the average

forecasting error. Table VII shows it clearly that forecasting
accuracy increases with the growth of N g . In particular, the
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increase of Npg value from 5 to 9 results in decrease of

average forecasting error by more than 25% in relative units.

TABLE VII
AVERAGE FORECASTING ERRORS FOR DIFFERENT NFS

Proposed

378

L . 5 fuzzy 6 fuzzy 7 fuzzy 8 fuzzy 9 fuzzy
time-1nvariant
sets sets sets sets sets
method
Average
forecasting ~ 2.75% 2.42% 2.50% 2.02% 2.02%
€Irors
w10
ol A
hetnal Frrollwerts /& =
191 77 Forevasted Eviolmerts by Proposed Method i
= 50 &
Foecaxted Exuollments by Chen
18} --o- _
Forerasted Ervolbments b w5 ong and Clissom
1.7+
16
151
141+
1 3 1 1 1 1 1
1970 1975 15980 1985 1950 1955

Figure 1. Forecasted enrollments of different models with actual enrollments

IV. CONCLUSION

In this paper, we presented a novel time-invariant fuzzy
time series method for forecasting university enrollments. To
illustrate the forecasting process, historical data of the
University of Alabama were used as they are summarized in
[2]-[4] and [6]. The advantage of the proposed modification
lies in utilization of automated forecasting method that
operates on sorely available historical data (variations). To
study the performance of the method, which significantly
improves forecasting accuracy as against [2] and [4], we
conducted experiments with different number of linguistic
terms (7 £ 2 information span of immediate human memory).
As appears from Table VII, the method described turns down
average forecasting error below 3% for all cases examined.
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