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Abstract

Unit propagation-based (UP) lower bounds are used in the
vast majority of current Max-SAT solvers. However, lower
bounds based on UP have seldom been applied in Pseudo-
Boolean Optimization (PBO) algorithms derived from the
DPLL procedure for Propositional Satisfiability (SAT). Ehi
paper enhances a DPLL-style PBO algorithm with an UP
lower bound, and establishes conditions that enable @nstr
learning and non-chronological backtracking in the presen
of conflicts involving constraints generated by the UP lower
bound. From a theorical point of view, the paper highlights
the relationship between the recent UP lower bound and the
well-known Maximum Independent Set (MIS) lower bound.
Finally, the paper provides preliminary results that shber t
effectiveness of the proposed approach for representaige

of instances.

Introduction

The algorithmic improvements made to Boolean Satisfia-
bility (SAT) solvers over the last decade (Marques-Silva &
Sakallah 1996; Moskewicet al. 2001; Eén & Sodrensson
2003) motivated research work in a number of extensions of
SAT, including Pseudo-Boolean Optimization (PBO) (Aloul
et al. 2002; Chai & Kuehlmann 2003; Sheini & Sakallah
2006; Eén & Sorensson 2006) and Max-SAT (Li, Manya, &
Planes 2005; Heras, Larrosa, & Oliveras 2007).

PBO solvers have improved significantly over the last few
years with the extensive use of the most effective SAT tech-
nigues, commonly used in modern SAT solvers (Marques-
Silva & Sakallah 1996; Moskewicet al. 2001; Eén &
Sorensson 2003). New practical applications are found for
PBO solvers every year and solvers are the subject of a reg-
ular evaluation (Manquinho & Roussel 2007). Somewhat
independently of the work in PBO, extensive research work
has been carried out in Max-SAT, with significant improve-
ments being reported in the last few years. Max-SAT solvers
also find a number of strategic applications, and they ace als
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subject to a regular evaluation (Argeliehal. 2007). Moti-

vated by the specificity of the problem, algorithms for Max-
SAT have evolved somewhat differently from algorithms
for SAT and PBO. Max-SAT algorithms are often based on
branch and bound search, and employ sophisticated tech-
niques for computing lower bounds. Despite the improve-
ments made in these two areas of research, techniques used
in PBO have seldom been used in Max-SAT, and vice-versa.

This paper is a first attempt at integrating techniques from
these two research areas. As a result, the paper proposes
to integrate Unit Propagation-based (UP) lower bounds, of-
ten used in Max-SAT (Li, Manya, & Planes 2005), with
constraint learning and non-chronological backtrackiwg,
techniques widely used in SAT and PBO (Marques-Silva &
Sakallah 1996). More concretely, the paper describes how to
augment SAT-based PBO algorithms with UP lower bound-
ing capabilities associated with information obtainedhfro
the Pseudo-Boolean (PB) constraints and from the cost func-
tion. Moreover, the paper establishes conditions for learn
ing new constraints from conflicts associated with the UP
lower bound. Finally, the paper shows that these new con-
straints can be used for performing non-chronological back
tracking. From a more theoretical point of view, the pa-
per studies the relationship between the UP lower bound
and the well-known Maximum Independent Set (MIS) lower
bound (Coudert 1996). Experimental results on several
sets of problem instances coming from the Pseudo-Boolean
Evaluation 2007 (Manquinho & Roussel 2007) illustrate the
effectiveness of the proposed techniques.

The paper is organized as follows. The next section intro-
duces the notation and definitions used throughout the paper
Afterwards, algorithms for PBO are briefly surveyed. Next,
the use of UP lower bounds in PBO is detailed, followed
by experimental results on representative problem ins&nc
Finally, the paper concludes and suggests directions fer fu
ther research work.

Preliminaries

This section introduces the notations and definitions for
SAT, Max-SAT and PBO, used in the remainder of the paper.
A propositional formulap in Conjunctive Normal Form

(CNF) denotes a Boolean functigh: {0,1}" — {0,1}.
The formulay consists of a conjunction of propositional
clauses, where each clausés a disjunction of literals, and



a literall is either a variable:; or its complement;. If also have all literal coefficients;; equal to 1, bub; > 1.
a literal assumes value 1, then the clause is satisfied. If all All constraints other than propositional clauses or callin
literals of a clause assume value 0, the clause is unsatisfied ity constraints are classified as general pseudo-Boolaan co
Clauses with only one unassigned literal are referred to as straints.
unit. Finally, clauses with more than one unassigned litera  If every pseudo-Boolean (PB) constraint represents a
are said to be unresolved. In a search procedure, a conflict is propositional clause thef is an instance of th@inate
said to be identified when at least one clause is unsatisfied. Covering problen{BCP). Covering formulations and lower
In addition, observe that a clause= (I, +...+1x), k < n, bounds including thenaximum independent s¢dIS) have
can be interpreted as a linear inequalityt ... + I > 1, been the subject of thorough research work (Coudert 1996;
gnd the complement of a variahle, z;, can be represented  Liao & Devadas 1997; Manquinho & Marques-Silva 2004).
Yy 1— ZTj.

When a clause is unit aassignmentan be implied. The Algorithms for Pseudo-Boolean Optimization
variable associated with the only non-assigned literatinee
to be assigned in such a way that the clause is satisfied. The most effective PBO algorithms can be organized into
These logical implications correspond to the applicatibn o two main classes. The majority of PBO algorithms perform
the unit clause rule (Davis, Logemann, & Loveland 1962) alinear search on the values of the cost function, and at each

and the process of repeatedly applying this rule is calleid step solving a set of PB constraints (Barth 1995a; Akl

Propagation al. 2002; Chai & Kuehlmann 2003; Sheini & Sakallah 2006;
Given a propositional formula in CNF, the goal of the Eén & Sorensson 2006). Another alternative approach is

Propositional Satisfiability ProblentSAT) is to find an as-  to perform a branch and bound search, while integrating

signment for all the variables such that all clauses are sat- the most effective SAT techniques (Manquinho & Marques-
isfied or show that there is none. The SAT probleriR- Silva 2004). In this approachpper boundsn the value of
Complete(e.g. (Papadimitriou 1994)). It should be noted the cost function are identified for each solution to the con-
that throughout the remainder of this paper some famijiarit ~ straints, andower boundson the value of the cost function
with backtrack search SAT algorithms is assumed includ- are estimated considering the current set of variable assig

ing Unit Propagationnon-chronological backtrackingnd ments. The search can be safely pruned whenever the lower

learningtechniques (Marques-Silva & Sakallah 1996). bound estimate is higher than or equal to the most recently
An optimization version of the SAT problem is known as  computed upper bound. This paper addresses branch and

Maximum SatisfiabilitfMax-SAJ. Given a CNF formula, ~ bound algorithms for PBO, focusing on techniques for com-

the Max-SAT problem consists of finding an assignment for puting tight lower bounds.

all the variables such that the number of satisfied clauses is Several lower bound estimation procedures for PBO have
maximized. The Max-SAT problem NP-Hard (e.g. (Pa- been presented in the recent literature such as the ones
padimitriou 1994)). Current backtracking Max-SAT search based on linear-programming relaxations, Lagrangiaxfela
algorithms apply intensively Unit Propagation to prune the ations, or the Log approximation approach (Manquinho &

search space as will be shown later. Marques-Silva 2004). Nevertheless, the approximation of a
An instanceP of thePseudo-Boolean Optimizatigmob- maximum independent set of clauses (Coudert 1996) is often
lem (Barth 1995a) can be defined as follows: used, because it represents a good trade-off between accu-
S racy of the lower bound and computational effort. Observe
minimize .Z Cj - Tj that the tightness of the lower bounding procedure is ctucia
subject to -7%[& Y for the algorithms efficiency, because with higher _estimate
i Wiy = En (1) of the lower bound, the search can be pruned earlier.
d:j € {0,1},ai,b; € Ni i€ M With respect to the application of SAT to Boolean Opti-
N={1,....,n}, M={1,...,m} mization, P. Barth (Barth 1995a) first proposed a SAT-based

approach for solving pseudo-Boolean optimization. This ap
wherec; is a non-negative integer cost associated with vari- proach consists of performing a linear search on the possi-
ablez;,j € N anda;; denote the coefficients of the lit-  ble values of the cost function, starting from the highest,
eralsi; in the set ofm linear constraints. Every pseudo- at each step requiring the next computed solution to have
Boolean formulation can be rewritten such that all coef- a cost lower than the most recently computed upper bound.
ficients a;; and right-hand sidé; are non-negative. Ob- Whenever a new solution is found which satisfies all the con-
serve that a linear pseudo-Boolean optimization problemca straints, the value of the cost function is recorded as the cu
also be viewed as a special case of integer linear program- rent lowest computed upper bound. If the resulting instance
ming. The integer linear programming formulation for the of SAT is not satisfiable, then the optimum value is given
constraints can be obtained if each literalis replaced by by the last recorded solution. More recent PBO solvers in-

1—z;. tegrate the most effective SAT techniques, including daus
Pseudo-Boolean constraints can be classifiegragosi- learning and non-chronological backtracking (Alail al.
tional clauses cardinality constraintsor general pseudo- ~ 2002; Chai & Kuehlmann 2003; Sheini & Sakallah 2006;

Boolean constraints A constraint where all literal coeffi- Eén & Sorensson 2006).
cientsa,; are 1 and the right-hand sidgis also 1 is said to This paper focuses on tlesoLo branch and bound al-

be a propositional clause. In a cardinality constraint,care gorithm presented in (Manquinho & Marques-Silva 2000).



Here, a different algorithmic organization is describemh-c
sisting in the integration of several features from SAT algo
rithms in a branch-and-bound procedure to solve PBO in-
stances. Th&soLo algorithm incorporates the most sig-
nificant features from both approaches, namely the use of
lower bounding from branch and bound algorithms, and
the search pruning techniques from SAT algorithms, includ-
ing a non-chronological backtracking search strategy and
conflict-driven clause learning (Marques-Silva & Sakallah
1996). Mainly due to an effective conflict analysis proce-
dure which allows non-chronological backtracking steps to
be identified, it performs better than other branch-andablou
algorithms in several classes of instances (Manquinho &
Marques-Silva 2000).

The main steps of thesoLo algorithm can be described
as follows:

1. Initialize the upper bound to the highest possible value
(le.ub=3""_, ¢ +1).

Start by checking whether the current state yields a con-
flict. This is done by applying unit propagation and, in
case a conflict is reached, by invoking the conflict analysis
procedure, learning clauses and performing backtracking
if necessary.

. If a solution to the constraints has been identified, ugpdat
the upper bound accordingtd = 377, ¢; - z;.

2.

. Estimate a lower bound given the current variable assign-
ments. If this value is higher than or equal to the current
upper bound, &ound conflicarises and the conflict anal-
ysis procedure is invoked to determine to which part of
the search tree the algorithm has to backtrack to. Con-
tinue from step 2.

Two types of conflicts can be found in the algorithm de-
scribed above:logical conflictsthat occur when at least
one of the problem instance constraints becomes unsatis-
fied, andbound conflictshat occur when the lower bound is
higher than or equal to the upper bound. When logical con-
flicts occur, the unsatisfied PB constraint is given twoa-
flict analysis procedurédMarques-Silva & Sakallah 1996;
Manquinho & Marques-Silva 2004) whickearns a new
clauseand determines to which point of the search proce-
dure should backtrack to. Observe that it is also possible
to learn a new PB constraint, as in (Chai & Kuehlmann
2003). In SAT and PBO, this procedure is often extremely
effective, allowingnon-chronological backtracking Fur-
thermore, learned clauses may avoid visiting useless parts
of the search tree later during the search process. Siyilarl
whenever a bound conflict is identified, a new clause ex-
plaining the bound conflict should be provided to the conflict
analysis procedure so that it can determine to which level of
the search tree the algorithm can safely backtrack to. The
approach for learning a new clause in the presence of bound
conflicts is outlined in the next section.

Lower Bounds

algorithm similar to the one described in the previous sec-
tion. Accordingly, this section also establishes condgio
for learning new propositional clauses from the bound con-
flicts so that the search procedure can benefit from non-
chronological backtracking. Finally, it outlines intetiag
relations between both lower bounds.

Maximum Independent Set Lower Bound

The maximum independent sef constraints (MIS) is a
method to estimate a lower bound on the value of the cost
function based on an independent set of constraints. Since
maximizing the cost of MIS is an NP-hard problem, a greedy
computation is commonly used. The greedy procedure con-
sists of finding a set dlisjoint constraintsi.e. constraints
with no literals in common among them.

The MIS lower bound was initially proposed to a spe-
cial case of PBO (Coudert 1996) where all constraints are
propositional clauses. In that approach, one would choose
to include in MIS the clauses that maximize the ratio be-
tween their weight (defined by the minimum cost to satisfy
the clause) and the number of literals. The minimum cost
for satisfying the independent set of constraints is a lower
bound on the optimal solution and can be defined as:

Cost(M1S) = Z Weight(w) (2)
weMIS

whereW eight(w) is the minimum cost to satisfy constraint
w. If all constraints were to be propositional clauses, we
could define it asVeight(w) = ming e, c;. However,

the minimum cost to satisfy a general pseudo-Boolean con-
straintw is given by:

minimize )" ¢; - x;
| jee (3)
subjectto w

whereC denotes the set of indexes of literalsinObserve
that (3) is a special case of a PBO problem knowhreeg-
sack 0-1problem. Nevertheless, it is still an NP-Complete
problem (Karp 1972). Therefore, we use an approximation
algorithm for the problem of finding the minimum cost of
satisfying a pseudo-Boolean constraint by using a greedy al
gorithm. First, we determine the minimum number of liter-
als that need to be true in order to satisfpy reducing it to
a cardinality constraint (Barth 1995b).

Suppose that,’ denotes the cardinality constraint ob-
tained by the cardinality reduction algorithm applied.to

w = Z x; >k (4)
jec
a lower bound on the minimum cost to satisfys given by
accumulating the cost of the firatliterals in a sorted set of

literal coefficients in the problem cost function, startwi¢h
the lowest;.

Unit Propagation Lower Bound

This section describes two different ways of computing Given a PBO instance, dnconsistent subset of constraints
lower bounds for Pseudo-Boolean Optimization (PBO) and (or simply aninconsistent subsgis a subset of constraints
shows how they can be integrated in a branch and bound such that at least one of the constraints is always unsdtisfie



by any assignment to the problem variables. Most of the  Next we focus on bound conflicts due to the value of
lower bounds in the Max-SAT literature are based on detect- the Unit Propagation lower bound estimation procedure and
ing inconsistent subsets of propositional clauses. A géner show thatin these situations non-chronological backirark
method to detect inconsistent subsets by intensively using in the search tree is possible. To achieve this goal, it is nec
Unit Propagation was already proposed for Max-SAT lower essary to identify a set of literals associated with the ldoun
bounding (Li, Manya, & Planes 2005). Later, this technique conflict such that if one of those literals is assigned value 1
was generalized for thé/eighted Max-SAproblem (Heras, then the bound conflicting condition is changed and may no
Larrosa, & Oliveras 2007) where each clause has an asso-longer hold.
ciated cost, and the objective is to maximize the sum of the  Clearly, the value ofP.path is independent of which
costs of the satisfied clauses. In what follows, the Unit Prop lower bound method is being used. Its value solely depends
agation lower bound for Max-SAT is extended for PBO. on the assignments of value 1 to variables with positive co-
To compute the Unit Propagation lower bound in PBO, we efficients in the objective function. Therefore, in order fo
use a structuré P that contains pairs of subsets of incon-  P.path to decrease, at least one literalsuip, must have
sistent constraints and their associated costs. The puoged  value 1, wherev,, is defined as follows:
works as follows:

1. Initially UP = {}_" _ _ It is also necessary to define a set of litera)g that ex-

2. For each unassigned variablgwith ¢; > 0, add a new plains the value oP.lower when using the Unit Propagation
unit clausez; that we call virtual clauses with an associ-  lower bounding procedure. In this case, literals assigned
ated cost ot;. value 0 in constraints of each subset of inconsistent con-

(a) Apply Boolean propagation until a conflict is found, StraintsS; are the ones that justiff’.lower. If these literals
that is, a constraint becomes unsatisfied. It is well- Were to have a different value, the Unit Propagation lower
known that one can retrieve a set of the constrafjts ~ bound value might decrease. Hence, the set of litevgls
involved in the conflict by inspection of the implication ~ ¢an be defined as follows:

wpp:{:ij::vjzl/\cj>0}

graph (Marques-Silva & Sakallah 1996). L&t be a wp={l:1=0Al €wAwe S;A<Si,m; > UP}

subset ofS; that contains only the virtual clauses$f . . . o . .
andm; is the minimum cost of the coefficients associ- __Finally, given these sets of literals, it is possible to bail
ated to the clauses if{. Formally, new propositional clause,, that justifies the bound conflict

where
m; = _ min ¢ Whe = Wpp U W
By €w A wES; Observe thaty,. is unsatisfied at the current node of the
(b) UP=UP U{< S;,m; >}. search tree. This new clause can then be used for performing

conflict analysis, learning a new clause, and possibly back-

(c) Subtractn; to all the coefficients associated to the vir- _ :
tracking non-chronologically.

tual clauses itp;. Remove all virtual clauses iff, with
coefficient 0.

(d) Repeat steps from (&) to (c) until no more inconsistent
subsets are found.

Relating MIS and UP Lower Bounds

This section briefly presents some properties relating the

) ~ MIS and Unit Propagation (UP) lower bounds. The follow-
The necessary lower bound value estimated by the Unit ing propositions state that MIS lower bound can always be

Propagation lower bound in order to satisfy the PBO in- simulatedusing the UP lower bound, but the converse is not

stance is given by: true.
Cost(UP) = Z m; Proposition1 Let M = {wy,...,w,} be a maximum in-

dependent set of constraints of a formylaound by any
greedy execution of the MIS lower bound. It always exists
Bound Conflicts with Unit Propagation Lower some execution of the UP lower bound able to obtain the
Bound MIS estimation.

During the search process, a bound conflict arises whenever Pro0f-Sketch 1 Each constrainty; selected by MIS lower
the lower bound value higher than or equal to the upper Poundisin} since it exists a given number of literalsin
bound. In this case, it is guaranteed that the current par- with coeﬁlment:_j - Othatmust.bg assigned value 1 in order
tial assignment cannot be extended such that a better solu-0f wi 10 be satisfied. Hence, it is enough to propagate the
tion can be found. For a given instanBeof PBO, a bound virtual clauses with literals; associated with coefficients
conflict occurs wherP.path + P.lower > P.upper, where with c; > 01in the same way they appear sequentially in
P.path is the cost of the assignments made from the root Constraints{ws,...,wn}.

node to the current node of the search trdpwer is a Proposition 2 Letl = {I3,...,I,} be a set of inconsistent
lower bound estimate on the cost of satisfying the condgsain  subsets of constraints of a formulafound by any greedy
not yet satisfied (as given for example by MIS or Unit Propa- execution of the UP lower bound. There may not exist an
gation lower bound), an®.upper is the best solution found execution of the MIS lower bound able to obtain the same
so far. estimation.

<Si,m;>€UP



Proof-Sketch 2 Suppose; = ¢ = 1 andcz = 0 are the
objective coefficients of variablas, x5 and x5. Consider
that the problem contains the constraints+ xs > 1 and

T3 + xo > 1. In this case, the MIS lower bound estimation
procedure returns 0 since the minimum cost to satisfy each
constraint is 0. However, the UP lower bound procedure
would return 1 since it would be able to find an inconsistent
set with virtual clauseg; andzs.

The next propositions state that the estimation obtained
with UP cannot be improved further by applying the MIS
lower bound after the UP lower bound. However, in some
cases, the MIS lower bound can be improved by later apply-
ing the UP lower bound procedure.

Proposition 3 Let! = {I4,...,I,} be a set of inconsistent
subsets of constraints of a formufafound by any greedy
execution of the UP lower bound. Afterwards, no greedy
execution of MIS lower bound can improve the previous es-
timation.

Proof-Sketch 3 After applying the UP lower bound, it does
not exist any constraint such that its minimum cost to satisf
is greater than 0 and is disjoint from all constraints In
Otherwise, the UP lower bound procedure would be able
to find another inconsistent set. Hence, MIS lower bound
applied to the remaining constraints does not improve the
UP lower bound estimation.

Proposition 4 LetM = {wy,...,w,} be a maximum inde-
pendent set of clauses of a formylagfound by any greedy
execution of the MIS lower bound. Afterwards, a greedy
execution of UP lower bound may improve the previous es-
timation.

Proof-Sketch 4 Suppose that; = ¢; = 1 andes = 0 are

the objective coefficients of variables, 2 andx3. Con-
sider that the problem contains the constrain{s+ x3 > 1
andzs + z2 > 1 and thatx; andz, do not appear in any
constraint inM. Then, in this case, the application of the
UP lower bound would increase the lower bound estimation
provided byM IS.

Since MIS and UP lower bounds are greedy algorithms
we cannot compare them directly. Nevertheless, from the
last proposition, we can conclude that a good strategy would
be to execute first the MIS lower bound, and later improve
its estimation with the UP lower bound.

Experimental Results

This section evaluates the techniques described in the pa-
per and compares them with other state of the art Pseudo-
Boolean Optimization solvers. The experimental results
were conducted on representative instances of the optimiza
tion of digital filters (Aksoyet al. 2007; Manquinho &
Roussel 2007) and are shown in Table 1. The first column
identifies each problem instance. The second column gives
the optimum value (if unknown, then it is replaced with -).
The rest of columns present the CPU time for each solver in
seconds. The CPU times were obtained on a 3 GHz Xeon
5160 server with 4 GB of RAM running RHE Linux. If
the time limit of 1800 seconds was reached, the table pro-
vides an indication of which was the best upper bound (ub)

value found when the search was stopped (for example, ub10
means that the best solution found was 10).

The Unit Propagation lower bound was implemented in
theBsoLo solver and compared with other Pseudo-Boolean
solvers, namelyINISAT+ (Eén & Sorensson 2006) and
PUEBLO (Sheini & Sakallah 2006). Moreover, we also
present results fomINIMAXSAT (Heras, Larrosa, & Oliv-
eras 2007) a Max-SAT solver that uses a Max-SAT Unit
Propagation lower bound procedure and can also handle
Pseudo-Boolean optimization instances. BeoLOwe pro-
vide results when using both MIS and the UP lower bound-
ing procedure.

Results in Table 1 show that Pseudo-Boolean solvers are
more effective thamMINIMAXSAT . Moreover, results also
show the performance improvementssfoL o by using the
proposed lower bound procedure. We can observe that the
use of MIS is not effective in these instances, but UP lower
bound is able to provide tighter lower bound values, allow-
ing the solver to prune the search earlier. As a result, not
only there are more instances that can be solved, but better
upper bounds can be found when the solver was stopped at
the time limit. For these instancessoLo with UP lower
bound is able to perform much better than the other state of
the art PBO solvers.

Conclusions

The paper describes the integration of the Max-SAT UP
lower bound technique in SAT-based algorithms for Pseudo-
Boolean Optimization, and outlines conditions for perferm
ing constraint learning and non-chronological backtragki
based on computed lower bounds. These conditions pro-
vide novel mechanisms for extending the most effective SAT
techniques to the use of the UP lower bound in PBO. Pre-
liminary experimental results indicate that the utilipatiof

the UP lower bound can be effective for instances of op-
timization of digital filters. Moreover, for the most well-
known PBO solvers that do not integrate lower bounding
techniques, the experimental results indicate that ateura
lower bounding can be essential for representative ins&nc
of pseudo-Boolean optimization.
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