Improvements to Hybrid Incremental
SAT Algorithms

Florian Letombe and Joao Marques-Silva

School of Electronics and Computer Science, University of Southampton, UK
{f1, jpms}@ecs.soton.ac.uk

Abstract. Boolean Satisfiability (SAT) solvers have been successfully
applied to a wide range of practical applications, including hardware
model checking, software model finding, equivalence checking, and plan-
ning, among many others. SAT solvers are also the building block of
more sophisticated decision procedures, including Satisfiability Modulo
Theory (SMT) solvers. The large number of applications of SAT yields
ever more challenging problem instances, and motivate the development
of more efficient algorithms. Recent work studied hybrid approaches for
SAT, which involves integrating incomplete and complete SAT solvers.
This paper proposes a number of improvements to hybrid SAT solvers.
Experimental results demonstrate that the proposed optimizations are
effective. The resulting algorithms in general perform better and, more
importantly, are significantly more robust.

1 Introduction

Motivated by significant improvements to Boolean Satisfiability (SAT) solvers
over the last decade, SAT has been applied to a large number of areas, including
model checking [2], model finding, planning, bioinformatics, and security, among
many others. The widespread use of SAT in so many areas generates a large
number of challenging problems instances, many of which modern SAT solvers
are not capable of solving. This in turn, motivates the development of ever
more effective SAT solvers. Nevertheless, recent years have seen a slowdown in
improvements made to SAT solvers. As a result, a number of alternatives has
been considered, one of which is the use of hybrid incremental SAT solvers [5],
that build on existing SAT algorithms that are effective in solving different
types of problems. The hybrid incremental SAT solver combines the power of
local search (LS) SAT solvers and of conflict-driven clause learning (CDCL)
SAT solvers. These more complex algorithms are expected to provide additional
performance improvements, in general not as the first choice SAT solver, but as
a reliable alternative SAT solver for more complex SAT instances, with the goal
of increased robustness in industrial settings.

This paper develops a number of optimizations to the original hybrid incre-
mental SAT algorithm. The proposed optimizations provide better performance
and, more importantly, significantly improve the robustness of SAT solvers. A
comprehensive experimental evaluation on industrial SAT problem instances pro-
vides evidence that the proposed optimized hybrid incremental SAT solver is
more robust than other existing SAT solvers.

H. Kleine Biining and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 168@ 2008.
© Springer-Verlag Berlin Heidelberg 2008

Improvements to Hybrid Incremental SAT Algorithms 169

The paper is organised as follows. The next section provides a necessarily
brief perspective on SAT solvers (CDCL and LS SAT solvers), as well as the
original hybrid incremental SAT solver [5]. Afterwards, section [presents several
optimizations to the basic hybrid incremental SAT algorithm. A comprehensive
experimental evaluation is summarized in section [Additional related work is
briefly surveyed in section Bl Finally, the paper concludes in section

2 Boolean Satisfiability Solvers

This section provides a quick overview of Boolean Satisfiability solvers, including
Conflict-Driven Clause Learning (CDCL) SAT solvers, Local Search (LS) SAT
solvers, and the recent generation of hybrid incremental SAT solvers. CDCL SAT
solvers are widely used for solving large industrial problem instances. LS SAT
solvers are used in less applied contexts, but have also been used for developing
branching heuristics for complete solvers.

Most propositional decision procedures assume the input problem to be in
conjunctive normal form (CNF). Moreover, the SAT problem is defined as fol-
lows. A formula Y in CNF is represented as a set of clauses, each clause is a set of
literals, and each literal is either a positive or negative propositional variable in
V. Moreover, a formula is interpreted as a conjunction of clauses, and a clause is
interpreted as a disjunction of literals. For example, (z1V —xeVrg)A(xsV—xs) is
represented as {{x1, 22,23}, {z4, x5} }. The SAT problem consists in finding
an assignment (also called a model) for a subset of V satisfying each clause in a
CNF formula or proving that no such assignment exists.

2.1 CDCL and LS SAT Solvers

CDCL SAT solvers follow the organization of the DPLL algorithm [3], but inte-
grate a number of effective techniques, including clause learning [I7], lazy data
structures [2I] and search restarts [I0]. CDCL SAT solvers have evolved from
the original solvers [I7], which essentially proposed clause learning for SAT, to
the more recent CDCL SAT solvers, that also integrate lazy data structures and
search restarts [21J9/4]. A number of these concepts, used in the following sec-
tions, are briefly reviewed below (see [I7I2TI9/4] for additional detail). A CDCL
SAT solver is usually organized into three main engines [I7214]: the decision
engine, used for branching; the deduction engine, used for unit propagation and
identification of unsatisfied clauses (or conflicts); and the diagnosis engine, used
for clause learning. A decision level is associated with each assigned variable.
Decision levels measure the depth of the search tree in terms of the number
of variables the SAT algorithm has branched on. Variables can be assigned a
Boolean value, either resulting from a decision (or branching step), or as the
result of unit propagation [3]. Variables assigned as the result of unit propaga-
tion are said to be implied. With each implied variable the SAT algorithm also
associates a reason or antecedent, representing the clause that explains why the
variable is implied. The set of assigned variables and associated reasons implic-
itly represent the implication graph [I7]. Finally, the process of clause learning

170 F. Letombe and J. Marques-Silva

consists of traversing the implication graph from a given unsatisfied clause using
the reasons of implied variable assignments, and recording unsatisfied literals as-
signed at decision levels less than the current one. The resulting set of recorded
literals is then used to create a new clause, which serves for backtracking non-
chronologically, and for preventing the same conflict from occurring again during
the search process.

Local search is a meta-heuristic for solving computationally hard optimization
problems. It can be used on problems that can be formulated as finding a solution
maximizing a criterion among a number of candidate solutions. Local search
algorithms move from solution to solution in the space of candidate solutions (the
search space) until a solution deemed optimal is found or a time bound is reached.
In SAT a candidate solution is a truth assignment, and the target is to maximize
the number of satisfied clauses by the assignment. In this case, the final solution
is of use only if it satisfies all clauses. Local search for solving SAT became
notorious with GSAT [25] and is often very effective at finding models of satisfiable
formulas [T3]. LS starts by assigning random values to all the variables. If the
assignment satisfies all clauses, the algorithm stops and returns it. Otherwise,
the value of a variable is changed, and the process is repeated. The variable to
change is the one that minimizes the number of unsatisfied clauses in the new
assignment. If no assignment satisfying all clauses has been found after a fixed
number of iterations (called cutoff or number of flips), the algorithm starts again
with a new random assignment. The algorithm terminates either when a model
of the formula has been found or when the number of restarts exceeds a fixed
number.

Selman et al. have also proposed improvements to GSAT, including WalkSAT,
whose main differences to GSAT are the addition of random noise, and the step
of selecting variables to be flipped from unsatisfied clauses [24]. Many other
new heuristics have been proposed, including among others HSAT [§], Novelty
and R-Novelty [19], Novelty+ and R-Novelty+, Adaptive Novelty+ [12], and
g2wsat (including adaptg2wsat+) [I5]. Local search SAT solvers are incomplete,
and so cannot prove unsatisfiability. It should be noted that recent work has
shown how to use local search for proving unsatisfiability [22], but then the
resulting algorithm can no longer prove satisfiability.

2.2 Hybrid Incremental SAT Solvers: The hbisat Algorithm

Recent work has addressed hybrid solutions for SAT, where both L.S and CDCL
SAT solvers cooperate to solve a target problem instance. This section overviews
hbisat (for HyBrid Incremental SAT solver) [5], given its promising experimen-
tal results. The motivation for the hbisat algorithm is to combine the power
of LS SAT solvers for finding solutions of satisfiable formulas and the power of
CDCL SAT solvers for proving formulas to be unsatisfiable. Albeit past work
focused on using assignments suggested by LS solvers to help CDCL solvers se-
lecting decision variables and assignments, hbisat proposed the opposite: partial
models computed by the CDCL solver serve to initialize the LS solver truth as-
signment. Clauses not satisfied by the LS solver are sent to the CDCL solver,

Improvements to Hybrid Incremental SAT Algorithms 171

trying to either identify an unsatisfiable sub-formula in the clauses sent to the
CDCL SAT solver, or satisfying the clauses in the LS solver. Preliminary exper-
imental results suggest this approach can be effective [5]. The hbisat procedure
is summarized in the not underlined part of algorithm [Tl Note that X is
initially empty, and « is first randomly initialized.

A proof that hbisat algorithm is sound and complete can be found in [5].
Clearly, if the LS procedure LSSOLVE can find a truth assignment, then the ini-
tial formula is satisfiable. Otherwise, some clauses, chosen from those unsatisfied
(or broken) during local search, are sent to the CDCL solver. Besides these, a
few additional clauses can also be sent to the CDCL solver, subject to a number
of criteria outlined below. In the algorithm description, the clauses sent to the
CDCL solver are denoted X{""¢"@ and computed with GETCLAUSESTOSEND
procedure. If the CDCLSOLVE procedure concludes that the sub-formula is un-
satisfiable, then the original problem instance is also unsatisfiable, and the algo-
rithm terminates. Alternatively, if the CDCLSOLVE procedure concludes that
the sub-formula is satisfiable, the computed assignment, obtained with proce-
dure GETMODEL, serves to initialize the next iteration of the LS solver. In the
hbisat algorithm the following criteria are used to decide which clauses are sent
to the CDCL solver [5].

1. Unsatisfied clauses, i.e. clauses that the LS solver was not able to satisfy;

2. Clauses containing the most flipped variable during local search;

3. Clauses with two or more of its literals having opposite polarities to literals
in broken clauses.

Note that the last two criteria are empirically only applied after the first four
calls to function ISSATISFIABLE. Moreover, all remaining clauses are sent to the
CDCL solver if one of the two following additional criteria is satisfied [@]:

1. Less than 1% or less than 50 clauses remain to be sent to the CDCL solver;
2. The number of learnt clauses in the CDCL solver is greater than 20% of the
total number of clauses.

For each execution of hbisat algorithm, the operation Xp «— Xp U E/(f”te”“
denotes that the clauses identified by the above criteria and added to the clauses
in the CDCL SAT solver. Finally, the algorithm allows for three hundred itera-
tions, i.e. recursive calls to procedure ISSATISFIABLE. Afterwards, all remaining
clauses are sent to the CDCL SAT solver to solve the problem.

The hbisat algorithm is illustrated in figure[(top). A set of clauses is asso-
ciated with each solver, and the solid black squared portions represent clauses
identified by the above criteria. These are the clauses sent to the CDCL solver.

3 New Hybrid Incremental SAT Algorithms

This section proposes several optimizations to the hbisat algorithm. All opti-
mizations are included in a new hybrid incremental SAT solver, hinotoﬂ, that
can be configured to also implement the original hbisat algorithm.

! hinotos denotes Hybrid Incremental SAT for NOTOS, a LTL model checker.

172 F. Letombe and J. Marques-Silva

/////////////////

Yy .
.

LS SAT Solver CDCL SAT Solver

\

a
Criteria
Zh

B
T B

= -

|
/////////////

LS SAT Solver CDCL SAT Solver

a lifted

Fig. 1. Solver interaction in hbisat (top) and in hinotos (bottom)

3.1 Variable Lifting and Blocking Clauses

Modern SAT solvers identify complete assignments. The main reason for this is
motivated by the use of lazy data structures, which prevent having knowledge of
clause state [2I]. Most often, a reasonable number of branching decision made
by SAT solvers are irrelevant for satisfying all clauses of a problem instance.
Variable lifting is the process of removing literals or, equivalently, variables from
a satisfying assignment such that for each valuation of the lifted variables, the
formula is still satisfied [23].

Ezample 1 (Variable lifting). Define V = {x1,x9, 23, x4, 25,26} and the follow-
ing propositional formula X' over V:

(.731 \/"1‘2\/1‘6)/\(1‘1 \/".732\/—\334)/\(331\/—\332 \/334)/\(333\/.734 \/335)/\(331 \/.732\/.736).

Whereas the lifted assignment {1, 23} is enough to satisfy the formula, a CDCL
solver will identify a complete assignment, e.g. {x1, —@a, x5, 2y, x5, 26}. X is
satisfied, independently of assignments to the other variables {xo, 24, x5, 26}

In hbisat complete assignments are sent from the CDCL SAT solver to the
LS SAT solver at each step. This can be ineffective, since the LS solver will be
unable to identify the assignments that are relevant from the ones that are not
relevant. As a result, variable lifting can be used effectively in hybrid incremental
algorithms as shown in the next section. For the experimental results presented in
this paper, the variable lifting procedure consists of simply scanning the watched
literals in every clause and selecting one of the watched literals as the one that
satisfies the clause. As a result, variables not used for satisfying clauses can be
lifted.

Another effective technique used in model checking is the use of blocking
clauses [20] for quantification (or equivalently for model enumeration). Blocking
clauses prevent previously computed satisfying partial assignments from being
recomputed again during the search, and are created after variable lifting is

Improvements to Hybrid Incremental SAT Algorithms 173

applied. In hybrid incremental SAT algorithms, the use of blocking clauses guar-
antees that no part of the search tree is visited more than once.

3.2 Optimized Interaction between the LS and CDCL Solvers

A detailed analysis of the original hbisat algorithm reveals that in several sit-
uations the same search space can be re-visited, and that the number of times
this can happen can be arbitrarily large, up to the limit imposed by the number
of times the LS solver is called. The LS solver can repeatedly re-visit the same
complete assignments, independently of the information provided by the CDCL
solver. In contrast, the CDCL solver may have to redo parts of the search space,
motivated by the fact that the LS solver may force the CDCL solver to reconsider
branching decisions already made. These are the main sources of inefficiency in
the hbisat algorithm.

One optimization that addresses these two problems is to guarantee that the
clauses in the two solvers are distinct. Each clause sent by the LS solver to the
CDCL solver is removed from the LS solver. Hence, at any stage, the original
clauses are divided into two sets, one associated with the LS solver and the other
with the CDCL solver, and these two sets form a partition of the original set
of clauses. As a result, the overhead of the LS solver is effectively reduced at
each iteration of the algorithm due to the reduced number of clauses. Moreover,
assignments communicated by the CDCL solver must be respected by the LS
solver. As a result, variables assigned by the CDCL solver are said to be tabu
to the LS solver, and will be untouched by the LS solver. Clearly, this idea can
be effective only if variable lifting is applied; otherwise the CDCL solver would
assign all variables, and the LS solver would be unable to flip any variable.

Figure [(bottom) illustrates how hinotos implements the interaction be-
tween the LS and the CDCL solvers. The clauses sent to the CDCL solver, and
removed from the LS solver, are shown in solid black squares.

3.3 Additional Criteria for Moving Clauses

Besides the optimizations outlined in the previous sections, two additional cri-
teria are used for moving clauses to the CDCL SAT solver. The first criterion
ensures that a minimal amount of clauses is sent into the CDCL solver. In the
original algorithm [5], at least one clause, picked randomly, was ensured to be
sent at each step of the algorithm. Since 1% of clauses (or 50 clauses) are con-
sidered to be “simple” enough for the CDCL solver, this same amount of clauses
is also considered each time clauses are moved to the CDCL solver. As a result,
instead of the 300 iterations proposed in the original hbisat algorithm, the new
criterion implies that at most 100 iterations are executed. The second criterion
for moving clauses (from the LS solver to the CDCL solver) is a natural con-
sequence of the organization of the hinotos algorithms. If all variables become
tabu in the LS solver, then the LS solver becomes irrelevant, and all clauses are
sent to the CDCL solver.

174 F. Letombe and J. Marques-Silva

Algorithm 1.1. hbisat and hinotos

function ISSATISFIABLE
Input: ¥4 and X two CNF formulas, with X = X4, U X and X4 N X = (;
o an assignment.
Output: True if X' is satisfiable, False otherwise.
begin
TABU(X4, a); /* New tabu variables to LS solver */
if LSSOLVE(X4, a) = SAT then return True; /* Solution found with LS */
y§riterie GETCLAUSESTOSEND(X4);
EI" - EF U E/C"riteria;
X — X~ Xqriterias /% Sent clauses removed from LS solver database */
if CDCLSOLVE(Xr) = SAT then
if X = X then return True;
/* CDCL solver has found a model to be used by LS solver */
o < GETLIFTEDMODEL(X'1);
return ISSATISFIABLE (X4, X1, a);
else return False; /* CDCL solver proved sub-formula to be unsatisfiable */

end

3.4 The hinotos Algorithm

The hinotos algorithm implements the original hbisat algorithm (shown in Al-
gorithm [T without the underlined parts) as well as the optimizations proposed
in the previous sections, and is shown in Algorithm [[LJl Again, X'y is initially
empty, and « is first randomly initialized. The proposed optimizations do not
affect soundness or completeness. The soundness and completeness of hbisat [5]
allow establishing the following result.

Theorem 1. hinotos is complete and sound for the satisfiability problem.

4 Experimental Evaluation

4.1 Methodology

The empirical results presented in this section were obtained on servers run-
ning Red Hat Enterprise Linux WS release 4, with Intel Xeon 5160 Dual Core
3GHz processors and 4GB of RAM. For all experiments, the CPU time limit per
instance was set to 1500 seconds.

hinotos is implemented in C++ and can be configured to implement or
not the optimizations proposed in Section [Bl Hence, one possible configura-
tion for hinotos corresponds to the actual hbisat algorithm [5]. However, the
LS and the CDCL solvers used in hinotos are more efficient than the ones
used in hbisat [5]. In hinotos the LS solver is adaptg2wsat+ [I5] and the
CDCL solver is Minisat2, whereas in the original hbisat the LS solver is

2 hinotos complete documentation and binaries are publicly available on
http://satstore.ecs.soton.ac.uk/software/hinotos!

http://satstore.ecs.soton.ac.uk/software/hinotos

Improvements to Hybrid Incremental SAT Algorithms 175

WalkSAT2004.11.15 [24] and the CDCL solver is Minisat1.14 []). Observe

that other alternative CDCL and LS solvers could be considered for hinotos.
Moreover, hinotos can be configured to run the following configurations (the

representative letter for each option is highlighted with parenthesis):

(i)nverse order pure incremental: Represents a purely incremental (and not
hybrid) SAT solver. No LS solver is used in this version. Clauses are always
sent in the same order, inverse from the order of appearance in the formula,
according to the first criterion described in section 3.3}

(h)bisat implementation: Represents the original hbisat algorithm as de-
scribed in [5] and presented in section 2.2

(m)inimum amount hbisat-like: Implements option h, and in addition inte-
grates the criterion for moving clauses described in section B.3}

hi(n)otos method: Implements option h and integrates the optimizations pro-
posed in section 3.2}

(r)emoving+minimum amount hinotos-like: Corresponds to the combina-
tion of the two previous options (i.e. m and n).

These five configurations for the hinotos solver were compared against Minisat
versions 1.14 and 2. The main purpose of the first configuration was to evalu-
ate the usefulness of the LS SAT solver for identifying sets of clauses to move
to the CDCL SAT solvers. The second configuration allowed benchmarking the
implementation of hbisat in hinotos, thus confirming similar performance on
instances for which results for hbisat are known. Finally, the last three config-
urations evaluate whether the proposed optimizations are effective in practice.

4.2 Benchmarks

With the objective of conducting a comprehensive evaluation of the different
algorithms, a total of 602 problem instances were selected from the following
classes of instances:

IBM Formal Verification Benchmarks. Problem instances from Bounded
Model Checking considering different numbers of computation steps [29];

Pimag Problem instances from pipelined-machine-verification problems [I6].
All Pimag instances are unsatisfiable;

Formal Verification of Processors (fvp). Formal verification of buggy vari-
ants of an out-of-order super-scalar processor [27].

Calysto (csv). Benchmarks generated by the Calysto static checker [I] for
software verification.

The results presented in this section extend and complete the preliminary
experimental evaluation of [5], by considering 602 instances instead of the 24
studied in [5]. In order to reduce bias from too many instances from any of the
classes considered, for classes ibm and csv only a subset of the available instances
was considered, which was chosen arbitrarily. Nevertheless, for each of these
classes a large number of instances was evaluated (respectively 198 and 152).

176 F. Letombe and J. Marques-Silva

Table 1. Number of solved instances (and approximate average CPU time in seconds)
for each configuration. CPU timeout is fixed to 1500 seconds.

#Solved(Avg Time)
Minisat hinotos

CNF 1.14 2 si sh sm sn ST #s/##t

¢t 95(135) 98(164) 98(194) 97(189) 98(202) 96(188) 96(155) 102/126
£ 20(158) 21(298) 19(231) 18(161) 20(255) 21(293) 19(232) 21/42
g 42(139) 41(144) 41(120) 38(150) 42(186) 41(199) 41(144) 42/42
pmg 157(139) 160(177) 158(179) 153(176) 160(205) 158(205) 156(161) 165/210
fvps 11(157) 12(120) 10(83) 12(136) 12(150) 10(135) 11(203) 14/20
fvpu 19(98) 18(39) 19(83) 18(75) 19(100) 18(44) 18(88) 20/22
fvp 30(119) 30(72) 29(83) 30(100) 31(119) 28(76) 29(131) 34/42
ibms 81(150) 84(192) 87(185) 78(234) 85(198) 83(222) 86(252) 93/93
ibmu 86(97) 85(109) 87(112) 83(176) 88(138) 85(164) 88(170) 88/88
ibm 167(97) 169(108) 174(112) 161(176) 173(137) 168(164) 174(169) 182/1983
csvs 92(142) 95(127) 98(144) 117(197) 99(133) 121(134) 116(201) 129/129
csvu 8(85) 8(101) 8(87) 8(116) 8(115) 7(31) 9(267) 9/9
csv 100(138) 103(125) 106(140) 125(192) 107(132) 128(128) 125(206) 138/152
Alls 184(146) 191(155) 195(159) 207(207) 196(162) 214(168) 213(222) 237/242
Allu 270(105) 271(118) 272(125) 262(150) 275(155) 268(158) 271(136) 282/329
Al 454(122) 462(133) 467(139) 469(175) 471(158) 482(163) 484(174) 519/602

—_

PN N

4.3 Results

Table [l summarizes the results obtained by all configurations of hinotos and
the two versions of Minisat. Each configuration of hinotos is denoted by sX,
where X is one of the possible configurations: i, h, m, n, and r. The first column
contains the name of the class CNF formulas, where rows c¢*, f*, g* are problems
in the Pimag category, rows fvps and fvpu (respectively ibms and ibmu, csvs and
csvu) show the results on satisfiable and unsatisfiable instances of fvp (respec-
tively ibm, csv) categories. The last column shows for each class of instances
the total number of solved instances (by any solver) and the total number of
instances. For each combination of tool configuration and instance category, the
results shown are the number of solved instances followed (in parenthesis) by
the average running time on solved instances. Analysis of table [Il allows con-
cluding that no configuration, for either hinotos or Minisat, seems to give the
best performance in terms of average run time for solved instances. Compared to
Minisat, the performance improvements of hbisat are not clear, particularly for
the first three classes of instances. For all classes of instances, the implementa-
tion of hbisat solves 7 more instances than Minisat2. Regarding the optimiza-
tions proposed in this paper, there are reasonable gains in terms of robustness,
i.e. the number of instances solved. Indeed, configurations sn and sr solve sig-
nificantly more instances than any other configuration, either for Minisat or
for hinotos. A more detailed analysis for each class of problem instances indi-
cates that Minisat and configuration sm perform better for the Pimag and fvp

Improvements to Hybrid Incremental SAT Algorithms 177

10° <~ = 10° i X _‘_:
o
. L] o’ o o, | i . -
102 o PX) el 102 . e ?_’ o Ak
o * o & " . o ® o 3- .2
R % 1.f . L ¢ k2 f L
1 XN e . 1 A oy
= 10 RS g 10 CATIRL - o1
z LR Y . z o oy
AN
o100 *le = e
L] o
107! . 107" 1
1072 102
1072 1070 10 100 10*° 10° 1072 1070 10 100 10*° 10°
MS114 MS2

Fig. 2. Scatter plot: hinotos-sh vs. Minisat1.14 (left hand side) and Minisat2 (right
hand side)

10* O 10° m—
q

XA

10° HLEIY addlE 107 * gkl
A
4

10" 10"

HINsh

o
10° . /. - 10° . P

10"

HINsh

1072 1072

1072 1070 10 100 10*° 10° 1072 1070 10 100 10*° 10°
HINsm HINsn

Fig. 3. Scatter plot: hinotos-sh vs. hinotos-sm (left hand side) and hinotos-sn (right
hand side)

instances, whereas configurations sn and sr perform significantly better for the
ibm and csv instances.

Figures 2 to @ show scatter plots comparing different tool configurations.
The names used are MS114, MS2, HINsh, HINsm, HINsn and HINsr, respec-
tively for Minisatl.14, Minisat2, hinotos-sh, hinotos-sm, hinotos-sn and
hinotos-sr. All run times are in seconds. Given the large number of config-
urations, only a subset of possible scatter plots is shown. Figure [2 evaluates
hinotos-sh against Minisat versions 1.14 and 2. Albeit hinotos-sh aborts
fewer instances than either version of Minisat, the plots indicate that this con-
figuration is slower than either version of Minisat for most problem instances.
Figure [shows the results for hinotos-sh against hinotos-sm and hinotos-
-sn. As can be concluded, for most instances, the run times for hinotos-sm and
hinotos-sn are smaller than for hinotos-sh. This indicates that the optimiza-
tions proposed in this paper are in general effective, allowing smaller run times,
besides being more robust. Finally, figure] shows scatter plots of hinotos-sr
against hinotos-sn and Minisat2. As can be concluded, hinotos-sr in gen-
eral has smaller run times than hinotos-sn (which has smaller run times than
hinotos-sh), besides being more robust. The scatter plot on the right shows that

178 F. Letombe and J. Marques-Silva

3 3 ry
10 e, 10 T
. NN
. LS oo ; . ®
10 = 10° e
o .,
8 Y ! &
) 3
5 10 3 5 10' IR Y, A
Z Z S B .
=} 0 =} .
ST i R PO e
= T
.
107" oy 107! fe
" .
1072 1072
1072 1070 10° 100 10* 10° 1072 1070 10° 10" 10* 10°
HINsn MS2

Fig. 4. Scatter plot: hinotos-sr vs. hinotos-sn (left hand side) and Minisat2 (right
hand side)

for most instances Minisat2 has smaller run times than hinotos-sr. However,
for a significant number of instances hinotos-sr has smaller run times than
Minisat2. The plot also shows that several instances that Minisat2 aborts, are
solved by hinotos-sr in run times that do not exceed 100 seconds.

4.4 Analysis

The experimental results allow drawing a few conclusions. Existing versions of
Minisat are less robust than most of the available configurations of hinotos.
Out of 602 instances, the best version of Minisat (i.e. version 2) solves 462
instances. The more robust algorithm of hinotos solves 484 instances (almost
5% more instances solved than Minisat2). This result is quite significant in
an industrial setting, and suggests that some of the configurations of hinotos
should be considered for some classes of instances. On the other hand, a detailed
analysis of the run times also suggests that for most instances, Minisat2 has
the smallest run time, and so should be the preferred solver. As a result, the
experimental results given in this section suggest that an effective approach
would be the following:

— Run Minisat2 with a small CPU time limit, e.g. 100 seconds.

— If Minisat?2 does not solve the instance in the allowed CPU time limit, run
one of the hinotos configurations (e.g. hinotos-sr) with a larger CPU time
limit (e.g. 900 seconds).

The proposed configuration will be as robust as hinotos-sr and, for easier
instances, run as effectively as Minisat2.

Moreover, from the results one might consider running the two solvers in
parallel, without interaction between them. We conducted this experiment, and
the results indicate that the LS solver is hardly ever useful. Moreover, the results
show that running the two solvers in parallel is essentially equivalent to the
original CDCL SAT solver. Finally, one should note that the algorithms proposed
in hinotos complement the original SAT solvers, Minisat2 and Minisat1.14.
Together, Minisat2, Minisatl.14 and hinotos can solve a significantly larger

Improvements to Hybrid Incremental SAT Algorithms 179

number of instances than any solver alone: 519 for all solvers compared with
484 for the best standalone solver, hinotos with configuration sr. These results
suggest using a portfolio of SAT solvers similar to SATzilla [28] in industrial
problems instances.

5 Related Work

Besides hbisat [5], other hybrid approaches have been proposed for SAT. A
few are analyzed next. First, Mazure at al. [I§] propose an approach essen-
tially opposite to the one used in hbisat and hinotos. In this approach, a LS
SAT solver is used to help a CDCL solver select the next decision variable. The
motivation is that the use of LS SAT solver to guide the branching strategy
can provide significant improvements. However, existing results are not promis-
ing [7]. Exploiting variable dependencies has been shown useful in local search
algorithms for SAT. The approach of [I1] proposes to extend the use of such
dependencies by hybridizing WalkSAT, and the DPLL procedure Satz. At each
node reached in the DPLL search tree to a fixed depth, the literal implication
graph is constructed. Its strongly connected components are viewed as equiva-
lency classes. Each one is substituted by a unique representative literal to reduce
the constructed graph and the input formula. Finally, the implication dependen-
cies are closed under transitivity. The resulting implications and equivalencies
are exploited by WalkSAT at each node of the DPLL tree. The resulting algo-
rithm [I1I] is an incomplete LS procedure that helps another LS SAT solver
WalkSAT making better variable selections. Again, the approach, albeit efficient
for some classes of satisfiable problem instances, is fundamentally different from
hbisat and hinotos and unusable for unsatisfiable instances. Finally, Lardeux
at al. [T4] propose the GASAT algorithm, based on evolutionary algorithms and
tabu search for SAT. The GASAT algorithm consists of a recombination stage
based on a specific crossover and a tabu search stage. GASAT includes a crossover
operator which relies on the structure of the clauses and a tabu search with spe-
cific mechanisms. The resulting algorithm is incomplete, and so not applicable
to unsatisfiable problem instances.

6 Conclusions and Future Work

Hybrid incremental SAT solvers have recently been proposed as a possible ap-
proach for improving performance of CDCL SAT solvers [5]. Unfortunately, when
an extended set of problem instances is considered, our experience is that the
original hbisat algorithm is not effective when compared with different versions
of Minisat. From the results, the conclusion is that for hbisat the CPU times
increase, and the reduction in the number of aborted instances is negligible.
Motivated by these less positive results, this paper outlines a number of key
optimizations to the original hybrid incremental SAT solver, hbisat. The exper-
imental results, obtained on a wide range of problem instances, indicate that the
proposed optimizations provide relevant performance improvements in terms of

180 F. Letombe and J. Marques-Silva

problem instances that can be solved, either with respect to Minisat (version 2)
or hbisat. In terms of aborted instances, the best configuration of hinotos
is significantly more effective than either version of Minisat, solving 5% more
instances. In an industrial setting this is significant.

Despite the promising results, the experimental evaluation also suggests that
no solver is the best option individually, and that three of the hinotos config-
urations should be considered as an alternative to Minisat?2 for some classes of
problem instances. The analysis of the results also indicates that Minisat2 usu-
ally performs better when a solution can be found in a reasonably small amount
of time (e.g. 100 seconds). Hence, one strategy would be to consider running
Minisat?2 as the first option and, in case no solution is found, considering one of
the hinotos configurations. Given the experimental results, the most promising
configurations are hinotos-sr, hinotos-sn, and hinotos-sm, all of which in-
clude improvements proposed in this paper. A fairly orthogonal approach, that
for some classes of instances yields promising results and so should be considered,
is the hinotos-si configuration, which is also proposed in this paper.

Future work will address portfolios of configurations, based on the ideas used
in SATzilla for different SAT algorithms [28]. Moreover, further tuning of the
algorithm’s components should be considered, e.g. improve variable lifting pro-
cedure. Finally, it might be interesting to compare results with different CDCL
solvers and different LS algorithms (e.g. based on dynamic clause weighting like
SAPS, PAWS or DLM [26]). Another line of work is to automatically select some
of the heuristic numbers used by the hinotos algorithm.

Acknowledgement. This work is partially supported by EU grants IST /033709
and ICT/217069, and by EPSRC grant EP/E012973/1. The reviewers provided
insightful comments to an earlier version of the paper.

References

1. Babié¢, D., Hu, A.J.: Structural Abstraction of Software Verification Conditions.
Computer-Aided Verification, 371-383 (2007)

2. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs.
Tools and Algorithms for the Construction and Analysis of Systems, 193-207 (1999)

3. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of the ACM 7, 201-215 (1960)

4. Een, N., Sorensson, N.: An extensible SAT solver. In: International Conference on
Theory and Applications of Satisfiability Testing, pp. 502-518 (2003)

5. Fang, L., Hsiao, M.S.: A new hybrid solution to boost SAT solver performance. In:
Design, Automation and Testing in Europe Conference, pp. 1307-1313 (2007)

6. Fang, L., Hsiao, M.S.: Private communications (2007)

7. Ferris, B., Froehlich, J.: WalkSAT as an Informed Heuristic to DPLL in SAT
Solving. Technical report, CSE 573: Artificial Intelligence (2004)

8. Gent, [.P., Walsh, T.: Towards an understanding of hill-climbing procedures for
SAT. In: National Conference on Artificial Intelligence, pp. 28-33 (1993)

9. Goldberg, E., Novikov, Y.: BerkMin: a fast and robust SAT-solver. In: Design,
Automation and Testing in Europe Conference, pp. 142-149 (2002)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Improvements to Hybrid Incremental SAT Algorithms 181

Gomes, C.P., Selman, B., Kautz, H.: Boosting combinatorial search through ran-
domization. In: National Conference on Artificial Intelligence, pp. 431-437 (1998)
Habet, D., Li, C.M., Devendeville, L., Vasquez, M.: A hybrid approach for SAT. In:
International Conference on Principles and Practice of Constraint Programming,
pp. 172-184 (2002)

Hoos, H.: An adaptive noise mechanism for WalkSAT. In: National Conference on
Artificial Intelligence, pp. 655-660 (2002)

Hoos, H., Stiitzle, T.: Stochastic Local Search: Foundations and Applications. Mor-
gan Kaufmann, San Francisco (2004)

Lardeux, F., Saubion, F., Hao, J.-K.: GASAT: A genetic local search algorithm for
the satisfiability problem. Evolutionary Computation 14(2), 223-253 (2006)

Li, C.M., Huang, W.Q., Zhang, H.: Combining adaptive noise and look-ahead in
local search for SAT. In: International Conference on Theory and Applications of
Satisfiability Testing, pp. 121-133 (2007)

Manolios, P., Srinivasan, S.K.: A parameterized benchmark suite of hard pipelined-
machine-verification problems. In: Advanced Research Working Conference on Cor-
rect Hardware Design and Verification Methods, pp. 363-366 (2005)
Marques-Silva, J., Sakallah, K.: GRASP: A new search algorithm for satisfiability.
In: International Conference on Computer-Aided Design, pp. 220-227 (1996)
Mazure, B., Sais, L., Grégoire, E.: Boosting complete techniques thanks to local
search methods. Annals of Mathematics and Artificial Intelligence 22(3-4), 319-331
(1998)

McAllester, D., Selman, B., Kautz, H.: Evidence of invariants in local search. In:
National Conference on Artificial Intelligence, pp. 321-326 (1997)

McMillan, K.L.: Applying SAT methods in unbounded symbolic model checking.
Computer-Aided Verification, 250-264 (2002)

Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Engineering an effi-
cient SAT solver. In: Design Automation Conference, pp. 530-535 (2001)
Prestwich, S., Lynce, I.: Local search for unsatisfiability. In: International Confer-
ence on Theory and Applications of Satisfiability Testing, pp. 283-296 (2006)
Ravi, K., Somenzi, F.: Minimal assignments for bounded model checking. Tools
and Algorithms for the Construction and Analysis of Systems, 31-45 (2004)
Selman, B., Kautz, H., Cohen, B.: Noise strategies for improving local search. In:
National Conference on Artificial Intelligence, pp. 337-343 (1994)

Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability
problems. In: National Conference on Artificial Intelligence, pp. 440446 (1992)
Thornton, J., Pham, D.N., Bain, S., Ferreira Jr., V.: Additive versus multiplicative
clause weighting for SAT. In: National Conference on Artificial Intelligence, pp.
191-196 (2004)

Velev, M.N.: Using rewriting rules and positive equality to formally verify wide-
issue out-of-order microprocessors with a reorder buffer. In: Design, Automation
and Testing in Europe Conference, pp. 28-35 (2002)

Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla-07: The design and analy-
sis of an algorithm portfolio for SAT. In: International Conference on Principles
and Practice of Constraint Programming, pp. 712-727 (2007)

Zarpas, E.: Benchmarking SAT solvers for bounded model checking. In: Interna-
tional Conference on Theory and Applications of Satisfiability Testing, pp. 340-354
(2005)

	Improvements to Hybrid Incremental SAT Algorithms
	Introduction
	Boolean Satisfiability Solvers
	CDCL and LS SAT Solvers
	Hybrid Incremental SAT Solvers: The hbisat Algorithm

	New Hybrid Incremental SAT Algorithms
	Variable Lifting and Blocking Clauses
	Optimized Interaction between the LS and CDCL Solvers
	Additional Criteria for Moving Clauses
	The hinotos Algorithm

	Experimental Evaluation
	Methodology
	Benchmarks
	Results
	Analysis

	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

