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SUMMARY 

The physical and functional interaction between the transcription factor p53 and its 

negative regulatory partner protein Hdm2 (Mdm2 in mouse) is a key point of 

convergence of multiple signalling pathways that regulate cell proliferation and survival. 

Hdm2 mRNA transcription is induced by p53, forming the basis of an auto-regulatory 

feedback loop. Growth and survival factor-activated Ras-Raf-MEK-ERK signalling can 

also regulate Hdm2 expression independently of p53, contributing to the pro-survival 

effect of these factors. In murine fibroblasts, this occurs through the regulation of mdm2 

mRNA transcription. Here we show that, in human breast cancer epithelial cells, MEK-

dependent regulation of Hdm2 expression also occurs at a post-transcriptional level. 

Pharmacological blockade of MEK activity in T47D cells inhibits Hdm2 protein synthesis 

by 80-90%. This occurs in the absence of changes in the expression of the major hdm2-P1 

mRNA transcript, and only an approximately 40% reduction in hdm2-P2 transcript levels. 

The amounts of both transcripts that are associated with polyribosomes, and are hence 

being actively translated, are reduced by >80% by the MEK inhibitor, U0126. We show 

here that this is due to the inhibition of hdm2 mRNA export from the nucleus when MEK 

activity is inhibited. In MCF-7 breast cancer cells that express wild-type p53, Hdm2 is 

required to suppress p53-dependent transcription when MEK kinase is active.  Regulation 

of the nuclear export of hdm2 mRNA provides, therefore a mechanism whereby mitogen 

stimulated cells avoid p53-dependent cell cycle arrest or apoptosis by maintaining the 

dynamic equilibrium of the Hdm2-p53 feedback loop. 
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INTRODUCTION  

The tumour-suppressor p53 and oncoprotein Hdm2 function within an auto-regulatory 

feedback loop that is a point of convergence of signalling pathways that regulate cellular 

proliferation and survival (1). p53 primarily functions as an activating transcription 

factor, and key p53 target genes include the cyclin-dependent kinase inhibitor WAF1 (2), 

PUMA, which encodes a BH3-domain containing pro-apoptotic molecule (3,4), and hdm2  

(5). Cellular p53 activity is inhibited in proliferating cells and is activated under situations 

such as cellular stress, as part of a growth arrest or apoptosis response. Hdm2 functions 

principally as the primary negative regulator of p53 function (6) and its correct expression 

and function can be essential for the prevention of spontaneous p53-dependent apoptosis 

or cell cycle arrest (7-11). Mechanisms whereby Hdm2 down-regulates p53 function 

include concealing its activation domain from the transcriptional machinery (12), and 

targeting it for ubiquitination, nuclear export and proteosomal degradation (13). 

 

Stress-induced activation of p53 almost invariably involves post-translational 

modifications to both p53 and Hdm2, which can inhibit Hdm2 function (14) or the Hdm2 

- p53 interaction (15-17). Proliferative and pro-survival signalling pathways can also 

impinge upon p53 through either the positive or negative regulation of Hdm2 function. 

AKT kinase, a key enzyme in pro-survival signalling pathways, phosphorylates Hdm2, 

which results in elevated Hdm2 levels in the nucleus (18-20). The growth factor-induced 

Ras-Raf-MEK-ERK signalling pathway can have context dependent effects on 

proliferation and survival (21), and its regulation of the p53 – Hdm2 axis appears to be 

similarly complex. Signalling via this cascade can induce the expression of p14ARF, an 

Hdm2 antagonist, resulting in p53 activation. This can be an important block to cancer 

progression, and p14ARF expression is lost in many tumours (22,23). In contrast, induction 
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of Hdm2 expression by the Ras-Raf-MEK-ERK can play an important role in the 

proliferative and pro-survival response to growth factors (24,25). Indeed, this increased 

expression of Hdm2 may dampen the p53 response to activating signals such as genotoxic 

cancer therapies, particularly in tumour cells in which p14ARF expression is lost (24,25). 

Conversely, transgenic mutations that result in as little as a 20% loss of Mdm2 expression 

in adult mice result in increased sensitivity to radiation (26). 

 

Hdm2 is normally present at very low levels in cells, as the protein directs its own auto-

ubiquitination and is rapidly degraded (27). Elevation of Hdm2 expression occurs at 

varying frequencies in diverse tumour types (28). In a proportion of cancers, this is a 

consequence of hdm2 gene amplification (29), though in many cases, alternative 

mechanisms must underlie the increase (28). Hdm2 expression is regulated by 

transcription from two promoters, P1 and P2 (5). Transcription from P1 is considered to 

be constitutive in most cells (30), whereas P2-promoter activity is highly induced by p53 

(5). The murine mdm2 P2-promoter is also induced by Ras-Raf-MEK-ERK signalling 

(25). Both hdm2 transcripts include the full length coding sequence, but the P1 transcript 

contains a long 5’ untranslated region with two upstream open reading frames, and is 

poorly translated (31). In addition to mRNA transcription, Hdm2 protein levels can also 

be controlled by mRNA translation (31,32) as well as protein turnover (33). Hdm2 

expression is elevated in as many as 50% of breast carcinomas (34-36) and we have 

provided evidence for a role for p53-independent transcription from the P2-promoter in 

this increased expression (37). In this present study we have investigated the role of Ras-

Raf-MEK-ERK signalling in controlling the levels of Hdm2 protein in breast cancer cells, 

and demonstrate a key role for this pathway in regulating the export of hdm2 mRNA to 

the cytoplasm. 
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EXPERIMENTAL PROCEDURES 

 

Culture of human breast cancer cell lines- MCF-7 and T47D breast cancer cell lines were 

cultured in Dulbecco’s modified Eagle’s medium (Invitrogen) supplemented with 10% 

foetal calf serum (Autogen Bioclear) as described previously (37). The following reagents 

were dissolved in dimethyl sulphoxide (DMSO1) at the indicated concentrations before 

adding to the medium where stated; 10 mM U0126 (Promega), 20 mM PD98059 

(Promega), 10 mM MG132 (Sigma). Cycloheximide (Sigma), and 5-fluorouracil (5-FU) 

(David Bull Laboratories) were in aqueous solutions. Nutlin-3 (Alexis Biochemicals) was 

dissolved in ethanol at 5 mM. 

 

Protein analysis- cells were washed with phosphate-buffered saline (PBS), pelleted by 

centrifugation at 1000 g, snap frozen and stored at -80 °C. For immunoblotting, pellets 

were lysed for 15 min at 4 °C in denaturing urea buffer (7 M urea, 0.1 M dithiothreitol 

(DTT), 0.05% Triton X-100, 25 mM NaCl, 20 mM HEPES pH 7.6) then clarified by 

centrifugation at 13000 g for 10 min. Protein concentration was determined by the 

method of Bradford (Biorad). Immunoblotting was performed by standard procedures, as 

described previously (38), and membranes were probed for Hdm2 (monoclonal antibody 

2A9 (39)), p53 (DO-1, Serotec), phospho Thr202/Tyr204 ERK 1 and ERK 2 (E10), total 

ERK 1 and ERK 2 (both from Cell Signalling Technology) or p21WAF-1 (Clone SX118, 

Pharmingen). Equal protein loading was confirmed on all immunoblots using rabbit anti- 

β actin antibody (Sigma). Bands were visualised by chemiluminescence (Supersignal, 

Pierce) using a Fluor-S MAX system (Biorad), and quantified using Quantity One 

software (Biorad).  
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For labelling of newly synthesised proteins, cells were washed twice with labelling 

medium (RPMI medium without methionine, cysteine or L-glutamine (Sigma), 

supplemented with dialysed and heat inactivated foetal calf serum), then incubated with 

labelling medium for 30 min before the addition of fresh labelling medium containing 

0.25 mCi/ml TranS-label (Amersham Biosciences) and incubation at 37 °C for 90 min. 

Cells were then processed as for protein analysis. After the gel was stained using 

Coomassie blue, it was dried and exposed to a phosphor image plate for 5 h. Bands were 

visualised using a Personal Molecular Imager FX (Biorad). 

 

RNA analysis- RNA extraction from cell pellets, and cell fractions, was performed using 

either RNABee (Biogenesis Inc.) or RNAeasy (Qiagen). Ribonuclease protection assay 

(RPA) for hdm2 was performed as previously described (37). For Taqman quantitative 

polymerase chain reaction (qPCR) analysis of hdm2 transcripts, 0.5 - 1 µg of RNA was 

used to generate cDNA, using Superscript II RNAse H- reverse transcriptase (Invitrogen) 

and oligo dT primers, in a 20 µl volume. Oligonucleotide primer pairs and probes were 

designed using Primer Express, version 2.0 (Perkin Elmer Applied Biosystems), and were 

synthesised by MWG Biotech. Each primer sequence lies within a different exon, and the 

fluorogenic probe spans the junction between the two exons. hdm2 coding sequence 

(CDS) primers amplify a region around the exon 9-10 boundary. Primers and probe for 

gapdh, which was used as an endogenous control gene, were purchased as a Pre-

Developed TaqMan® Reagent Assay (Perkin Elmer Applied Biosystems). Analysis was 

performed using the ABI PRISM 7900HT Sequence Detection System instrument and 

software (Perkin Elmer Applied Biosystems). qPCR was performed in 20 µl reaction 

volumes containing 1X qPCR™ Mastermix (Eurogentec), cDNA (from 5 ng of RNA) and 
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one of the following sets of primers and probe: hdm2-CDS-F 

(TCTACAGGGACGCCATCGA) and hdm2-CDS-R 

(CTGATCCAACCAATCACCTGAA) (300 nM each) and hdm2-CDS probe (FAM-

TTCACTTACACCAGCATCAAGATCCGGA–TAMRA) (100 nM); hdm2-P1-F 

(GACTCCAAGCGCGAAAACC) and hdm2-P1-R 

(CCATCAGTAGGTACAGACATGTTGGT) primers (900 nM each) and hdm2-P1 probe 

(FAM-TGCACATTTGCCTGCTCCTCACCAT-TAMRA) (200 nM); hdm2-P2-F 

(CGGACGCACGCCACTT) and hdm2-P2-R 

(CAGTAGGTACAGACATGTTGGTATTGC) primers (900 nM each) and hdm2-P2 

probe (FAM-TTCTCTGCTGATCCAGGCAAATG-TAMRA) (200nM). Ct values were 

converted to relative transcript levels using a standard curve. Semi-quantitative RT-PCR 

was performed as described previously (37); primers used were: gapdh- RT  oligo dT, 

forward GAAGGTGAAGGTCGGAGT, reverse GAAGATGGTGATGGGATTTC; 

scRNA hY4- RT AAAAAGCCAGTCAAATTTAGCA, forward 

GGTCCGATGGTAGTGGGTTA, reverse AAAGCCAGTCAAATTTAGCAGT. 

 

Cellular fractionation prior to RNA extraction or polyribosome analysis was performed 

using hypotonic lysis (40). Cells were washed twice with serum free medium (SFM), then 

scraped in SFM and pelleted by centrifugation at 365 g. Pellets were resuspended in 

hypotonic lysis buffer B (10 mM Tris HCl pH 7.6, 1 mM CH3COOK, 1.5 mM 

CH3COOMg, 2 mM DTT, RNAse inhibitor 1 unit/µl) and cells were lysed on ice using a 

Dounce homogeniser. Lysates were centrifuged at 12,000 g to separate the cytoplasmic 

extract from the nuclear pellet. For some extractions, the lysis buffer was modified where 

indicated (B1, B2, B3).  
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For analysis of polyribosome associated mRNA (40), cycloheximide (10 µg/ml) was 

added to the SFM used to wash the dishes. Cytoplasmic lysates were then layered over a 

cushion of 30% (w/v) sucrose in buffer B and centrifuged at 130,000 g for 2.5 h at 4°C. 

After removing the supernatant, the remaining polyribosome-bound RNA pellet was 

rinsed twice in buffer B before RNA extraction. For fractionation over a sucrose gradient, 

1200 µl cytoplasmic lysate containing 700 µg of protein was layered over a 3.6 ml 

sucrose gradient (15%-55% in buffer B containing 150 µg/ml cycloheximide). This was 

centrifuged at 130,000 g for 2.5 h at 4°C, and 12 x 400 µl fractions were removed for 

analysis. 

 

For in situ hybridisation a 202 base pair region of the hdm2 coding sequence (within 

exons 7-9) was generated using GGTGGGAGTGATCAAAAGGA and 

CCAGGCTTTCATCAAAGGAA primers, and cloned into pGEMTeasy plasmid 

(Promega). Sense and antisense digoxigenin-labelled RNA probes were generated using a 

digoxigenin RNA labelling kit (Roche Diagnostics Ltd.). Cells growing on glass 

coverslips were fixed for 20 min at room temperature with 4% paraformaldehyde in PBS, 

and dehydrated in ethanol before storage at -70 °C, desiccated. Following rehydration, in 

situ hybridisation was performed essentially as described previously (41). Bound probe 

was detected using anti-digoxigenin-rhodamine, Fab fragments (Roche Diagnostics Ltd.), 

and cell nuclei were stained with 4’,6-Diamidine-2’phenylindole dihydrochloride (Roche 

Diagnostics Ltd.). 

 

Plasmids, transfections and reporter gene assays- the hdm2luc03 reporter vector (37) 

contains 165 b.p. of the hdm2-P2 promoter region, including two p53-responsive 

elements, in pGL3Basic (Promega). SuperTIP, which encodes an inhibitor of the p53 – 
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Hdm2 interaction, and the inactive control MutantTIP, have been described previously 

(11). pC53SCX3, which encodes ala143 mutant p53, was a gift of Professor Bert 

Vogelstein. T47D and MCF-7 cells were transfected using Lipofectamine 2000 reagent 

(Invitrogen), and reporter assays were performed using a Dual-GloTM luciferase assay 

(Promega) on cells transfected in 96 well plates, with normalisation to Renilla luciferase 

expressed from pRLSV40 (Promega). The normalised data is presented as relative 

luciferase units (RLU). For transfection of siRNA, reagents were obtained from Qiagen. 

Cells in 60 mm dishes were transfected with 5.5 µg of either control (non-silencing) 

siRNA, or validated siRNA for Hs-mdm2 (hdm2). Transfection was for 24 h, and the 

cells were lysed a further 24 h later. 

 

RESULTS 

 
Pharmacological inhibition of MEK activity suppresses Hdm2 protein synthesis in T47D 

breast cancer cells- compared to a panel of breast cancer cell lines, oestrogen receptor-α 

positive (ERα+ve) lines such as T47D and MCF-7 express relatively high levels of Hdm2 

protein (37). T47D cells express only a transcriptionally inactive mutant p53 protein, and 

therefore this cell line provides a useful model for the study of p53-independent 

mechanisms which regulate the expression of Hdm2. Findings made in this simple model 

can then be extrapolated into the more complex situation present in cell lines such as 

MCF-7, which are more representative of the majority of ERα+ve breast cancers, in which 

changes in Hdm2 expression and p53 activity are dampened by a negative feedback loop 

(42). We determined the effect of pharmacological inhibition of MEK activity on the 

levels of Hdm2 protein in proliferating T47D cells. Consistent with studies in other cell 

types (24,25), 24 h exposure to 25 µM U0126 or 50 µM PD98059, two specific and 

structurally unrelated inhibitors of MEK activity (43), reduced Hdm2 levels by up to 95% 
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(Fig. 1A). Loss of the phosphorylated form of ERK 1 and ERK 2 confirmed that MEK 

was effectively inhibited by 25 µM U0126 in these cells (Fig. 1B). Removal of U0126, 

and the addition of fresh medium, lead to the recovery of Hdm2 to greater than pre-

treatment levels within 2-3 hours (Fig. 1C). This recovery did not occur if U0126 was 

included in the medium (data not shown).  

 

Hdm2 protein is rapidly turned over in most cells. The reduction in Hdm2 protein levels 

in U0126-treated T47D cells is not due to a further increase in the rate of Hdm2 protein 

turnover, as assayed by the rates at which Hdm2 protein levels decrease following the 

inhibition of protein synthesis by cycloheximide (Fig. 2A). 12 h exposure to 25 µM 

U0126 reduced Hdm2 protein levels by 70%, however the half-life of Hdm2 was 

approximately 15 min in both control- and U0126-treated cells. We then investigated 

whether U0126 affects Hdm2 protein synthesis by determining the rate at which Hdm2 

protein accumulates when its primary degradation pathway is blocked by a proteosome 

inhibitor MG132 (this method was used in preference to conventional metabolic labelling 

studies due to the extremely short half life of Hdm2 and our concern that radio-labelling, 

like other inducers of DNA damage (44), would induce post-translational modifications 

of Hdm2 that could affect its activity and hence turnover). The results shown in Fig. 2B 

clearly demonstrate that the rate of Hdm2 synthesis is reduced by approximately 85% 

when MEK activity is inhibited by U0126. Global synthesis of new proteins was not 

inhibited by U0126 in these cells (Fig. 2C). 

 
The effects of inhibiting MEK activity on hdm2 mRNA expression levels- in the murine 

mdm2 gene, the activity of the P2-promoter is inducible by Ras-Raf-MEK-ERK 

signalling (25). We therefore determined the effects of U0126 on the levels of 

endogenous hdm2 P1- and P2-transcript mRNA using two independent techniques; RPA 
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(Fig. 3A) and qPCR on cDNA generated from polyadenylated mRNA (Fig. 3B). Both 

RPA and qPCR clearly show that the levels of the predominant P1 transcript is not 

affected by U0126 treatment and, consistent with this, no U0126-induced changes were 

detected when qPCR analysis was directed towards a region within the hdm2 coding 

sequence. RPA did not detect any large changes in hdm2-P2 mRNA levels following 

U0126 treatment (Fig 3Ai). However, quantitative analysis of multiple independent 

experiments (Fig. 3Aii) identified a small, but significant, difference in –P2 transcript 

levels between DMSO- and U0126 treated cells (100 + 24.2% compared to 70.6 + 15.8%, 

P<0.05). This effect could be more reliably detected by the more sensitive qPCR assay, 

which showed a decrease in the levels of the –P2 transcript by 41.1 +7.0% (n=5) 

following U0126 treatment (Fig. 3B). We had previously been unable to detect this 

relatively small change using semi-quantitative assays (37).  The decrease is unlikely to 

be sufficient to account for the 95% reduction in Hdm2 protein levels that are observed in 

U0126 treated cells as siRNA-mediated knock-down of the hdm2-P2 transcript by 

approximately the same amount as occurs following U0126 treatment, results in only a 

45% reduction in Hdm2 protein levels (Fig. 3C). 

 

MEK inhibitors reduce Hdm2 levels by regulating the export of hdm2 mRNA to the 

cytoplasm- the data described above suggest that inhibition of MEK activity can affect 

Hdm2 protein synthesis at a post-transcriptional level. We therefore set out to establish 

whether this might occur at the level of mRNA trafficking or translation. T47D cells were 

incubated with either U0126, or DMSO control, and then subjected to a gentle hypotonic 

lysis in order to generate cytoplasmic extracts suitable for the subsequent analysis of 

polyribosomes. Initially, qPCR was performed on these extracts to determine levels of 

hdm2 mRNA transcripts (Fig. 4A). This analysis showed that, following U0126 
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treatment, both hdm2 mRNA transcripts are significantly under-represented in these 

cytoplasmic extracts, compared to their levels in total mRNA. Specifically, whilst total 

cellular levels of the hdm2 P1 transcript were unaffected by U0126, levels in the 

cytoplasmic fraction were decreased by 64.2%. Likewise, whilst U0126 decreased overall 

hdm2-P2 expression by approximately 40% as before, the levels of this transcript were 

further under-represented in the cytoplasmic lysates, being reduced by 71.3% compared 

to mock-treated controls. These results suggest that U0126 treatment regulates the export 

of hdm2 mRNA from the nucleus to the cytoplasm. We undertook two further 

experiments to substantiate these findings.  

 

Firstly a more extensive fractionation analysis was performed (Fig 4B). Cell lysis was 

performed with the same hypotonic lysis buffer B as used in the experiment shown in Fig. 

4A and U0126 again resulted in a marked under-representation of both hdm2 transcripts 

in the soluble cytoplasmic extract (S) compared to total cell lysates (T). A corresponding 

increase in hdm2 transcript levels was seen in the nuclear pellets (P) following U0126 

exposure. Semi-quantitative PCR detection of the small cytoplasmic RNA scRNA hY4 

(45) confirmed that the cell lysis technique efficiently separated cytoplasmic RNA from 

the nuclear pellet, whereas gapdh mRNA was present in both fractions. Following U0126 

treatment, hdm2 mRNA clearly becomes associated with the insoluble pellet. The 

hypotonic lysis buffer was therefore modified in order to gain insight into the nature of 

this association. Solublisation of lipid membranes with 0.5 % IGEPAL CA-630 (B2) was 

unable to reverse the U0126-dependent association of hdm2 mRNA with the pellet. 

However addition of 100 mM NaCl to the buffer (B1 and B3) was sufficient to release 

this hdm2 from the nuclear pellet, this being most apparent in the presence of detergent 

(compare buffers B2 with B3).  
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In situ hybridisation experiments were then performed to detect hdm2 mRNA (Fig. 4C). 

In mock-treated control cells, hdm2 mRNA is detectable in the cytoplasm of the cell 

using anti-sense hdm2 RNA probe, but not the control, sense probe. However, in U0126-

treated cells, cytoplasmic hdm2 message can no longer be detected. We were unable to 

detect nuclear hdm2 mRNA in these assays, possibly due to poor access of the probe to 

the target message in the nuclei. 

 

The effects of MEK inhibition on translation of hdm2 mRNA- we next wished to establish 

whether this reduction in the levels of cytoplasmic hdm2 mRNA was reflected in an 

equivalent reduction in rates of hdm2 translation, as assessed by the association of hdm2 

mRNA with high molecular weight polyribosome complexes. Cytoplasmic cell extracts 

were separated through 30% sucrose buffer to isolate polyribosome bound- from free 

cytoplasmic- mRNA (40), and mRNA from total cell extracts and the polyribosome-

associated pellet was then assayed by qPCR (Fig. 5A). Following U0126 treatment, levels 

of hdm2-P1 transcript in the polyribosome-associated fraction was reduced by 75.6%, and 

the –P2 transcript by 83.7%, compared to mock-treated cells. This degree of reduction in 

actively translated hdm2 mRNA transcripts is in good agreement with the 85% reduction 

in the rate of Hdm2 protein synthesis shown in Fig. 2B. The effect of U0126 on the 

amount of polyribosome-associated hdm2 mRNA is largely accounted for by the decrease 

in levels of cytoplasmic message (Fig. 4A), though the effect on polyribosome association 

is slightly greater than that on subcellular localisation, suggesting that a small degree of 

regulation at the level of translation might also be occurring. 
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A more detailed analysis of polyribosome association was then performed using sucrose 

density gradient ultracentrifugation (Fig. 5B). This analysis did not detect any obvious 

shift in the hdm2 message from high to low molecular weight fractions following U0126 

exposure, indicating that U0126 does not inhibit the association of cytoplasmic hdm2 

mRNA with ribosomes in these cells. Rather, there is a reduced level of hdm2 transcripts 

in all fractions in the gradient due primarily to the effect of U0126 on cytoplasmic 

localisation of the message (Fig. 4A). MEK kinase signalling is known to regulate protein 

translation (46), possibly accounting for the apparent shift in the gapdh transcript on the 

profile following U0126 treatment. 

 

Regulation of the p53-Hdm2 auto-regulatory feedback loop by MEK signalling in wild-

type p53-expressing MCF-7 breast cancer cells- inhibiting signalling through the Ras-

Raf-MEK-ERK signalling cascade has previously been shown to have diverse effects in 

the p53 stress response pathway, (25,47-49) and we therefore sought to establish the role 

that control of Hdm2 levels by this pathway has in regulating the p53 response in breast 

cancer cell lines. Firstly, we determined that 24 h exposure to 25 µM U0126 also reduces 

Hdm2 protein levels by >75% in the wild-type p53-expressing cell line, MCF-7 (Fig. 6A). 

U0126 also prevented the induction of Hdm2 protein expression by the p53-activating 

chemotherapeutic agent, 5-FU (Fig. 6B). Interestingly, however, this inhibition did not 

result in increased levels of p53 protein (Fig. 6B), nor was there any clear synergistic 

effect on long term clonogenic survival of co-treatment with 5-FU and U0126 (Fig. 6C), 

that might have indicated that inhibition of Hdm2 expression by U0126 was leading to a 

hyper-activation of the p53 response to genotoxic stress. In fact, we found that U0126 

actually attenuated the activation of p53-dependent transcription by 5-FU in MCF-7 cells 

(Fig. 6D). This inhibition of p53 activity was completely independent of functional Hdm2 
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protein, as demonstrated by two experiments: firstly transcription from a p53-dependent 

reporter vector (Fig. 7A) and an endogenous p53-induced transcript, hdm2-P2 mRNA 

(Fig. 7B) was inhibited by U0126 in cells in which p53 had been activated by a rationally 

designed inhibitor of the Hdm2-p53 interaction, SuperTIP (11); and secondly the 

upregulation of the p53-induced protein, p21WAF-1, by a chemical inhibitor of the Hdm2-

p53 interaction, Nutlin-3 (50) was inhibited by U0126, the Nutlin-3 induced increase in 

Hdm2 protein levels also being partially attenuated. The stabilisation of p53 protein by 

Nutlin-3 was not inhibited by U0126, suggesting that the effects of U1026 on p53 

function occur at the post-translational level. Consequently, signalling through MEK 

kinase impinges on the p53-Hdm2 axis via at least three independent pathways in these 

cells (Fig. 8). 

 

DISCUSSION 

Regulation of Hdm2 expression and function is a key component of several growth factor 

activated pro-survival and proliferative signalling pathways. Increased stability and 

nuclear localisation of Hdm2 protein, following its phosphorylation by AKT kinase, is an 

important component of the anti-apoptotic response to survival factors (18-20). Growth 

factor stimulation also induces Hdm2 / Mdm2 expression (24,51) in a MEK kinase 

dependent manner (25,52). Mosner et al demonstrated that Mdm2 protein expression is 

induced in serum re-stimulated fibroblasts without a detectable increase in total mdm2 

mRNA by Northern blotting (51), suggesting that mdm2 may be regulated at the post-

transcriptional level under these circumstances. However, mdm2 was identified as an 

early response gene induced by platelet-derived growth factor receptor-β signalling in 

murine fibroblasts (53), and AP1 and ETS factor binding sites were identified in the 

murine mdm2 -P2 promoter that regulate its activity in response to Ras signalling (25). 
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Therefore, the findings of Mosner et al (51) could be explained by induction of the 

efficiently-translated mdm2-P2 transcript, which would have been masked on northern 

blots by the more highly expressed constitutive P1-derived message.  

 

Inhibiting Ras signalling or MEK activity has also been shown to down-regulate Hdm2 

protein expression in human cells (25,47). However, whilst the activity of murine hdm2-

P2 reporter vector in human colon carcinoma cells is inhibited by MEK inhibitors, the 

effects of these interventions on the endogenous human hdm2 transcripts, or the human 

P2-promoter, have not been demonstrated previously. In proliferating MCF-7 and T47D 

breast cancer cell lines, a conserved AP1-ETS element in the hdm2-P2 promoter is 

required for the p53-independent expression of the P2-transcript that occurs in these cells 

(37). As we show in this current paper, however, the activity of the hdm2-P2 promoter in 

T47D cells is only partialy dependent on MEK kinase activity. This is in marked contrast 

to the Hdm2 protein synthesis in these cells, which is reduced by up to 95% following 

exposure to MEK inhibitors. Further biochemical and histochemical analysis 

demonstrated that MEK inhibition results in greatly reduced export of both hdm2 -P1 and 

-P2 transcripts from the nucleus to the cytoplasm. 

 

Regulation of the nuclear export of mRNA is a key point of control for the expression of 

a number of cellular proteins, and is one of the most elaborate nuclear transport pathways 

(54). All nuclear mRNAs exist in relatively large complexes with proteins, and it is these 

complexes which interact with components of the nuclear export pathways that are 

responsible for transporting the mRNA from the site of transcription to the cytoplasm. 

Assembly of these mRNA-protein complexes begins during mRNA processing, and the 

complexes include cap binding proteins, splicing factors, and other proteins involved in 
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pre-mRNA processing. During mRNA processing, the mRNA-protein complexes remain 

tightly attached to the nuclear matrix, but at some point following processing, this 

interaction is weakened, and the mRNA can be released from the nucleus by salt 

extraction (55). As far as we are aware, the molecular basis of this observation has not 

been elucidated, and the question of how mRNAs are transported from the site of 

transcription to the nuclear pore complex remains only partly characterised (54). 

Inhibition of MEK activity results in the export of hdm2 mRNA being blocked in this 

nuclear, salt extractable, compartment. At present we can only speculate that this 

represents the regulation, by MEK, of proteins involved in a nuclear export pathway that 

is required for the transport of a subset of mRNAs. Experimental manipulation of specific 

nuclear export processes can be shown to inhibit the expression of early response genes 

such as c-fos (56), and there is an increasing body of evidence suggesting that cellular 

mRNAs can be organised and exported from the nucleus as functionally related groups by 

RNA binding proteins (57). Whether such pathways might be dependent on MEK 

signalling has not been described. It will be of interest to determine what other mRNAs 

are similarly affected by MEK inhibitors, which are known to inhibit the synthesis of a 

number of key regulators of cell cycle progression and apoptosis at a post-transcriptional 

level (58,59). 

 

Another issue raised by our findings is what the effect of this control mechanism might be 

on the ability of Ras-Raf-MEK-ERK signalling to modulate chemo- and radio-sensitivity 

in cancer cells. MEK-dependent expression of proteins such as Hdm2, Bcl-XL, and IAPs, 

at the level of gene transcription and translation, is required for growth and survival 

factors, such as fibroblast growth factor-2, to protect cells from genotoxic agents 

(24,25,58,59). In the case of Hdm2, this is most likely to be through the suppression of 
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the p53 response, and, in cancer cells in which expression of the Hdm2 antagonist p14ARF 

is lost, MEK inhibitors can enhance the cytotoxicity obtained with γ-irradiation (25). We 

therefore examined whether, in the MCF-7 cell line model, there would be a synergistic 

effect between U0126 and the p53-activating anti-metabolite 5-FU, a chemotherapeutic 

agent which can be dependent on p53 activity to kill cancer cells (60), and also shows a 

strong induction of Hdm2 expression at cytotoxic doses. No synergism was observed in 

the colony-forming assays and, instead, we found that U0126 treatment resulted in 

inactivation of p53 function. This is consistent with other previous data showing that 

MEK activity can be required for both the expression of p53 at the transcriptional level 

(61) and the activation of p53 by genotoxic agents (48,49). We also showed that this 

inhibition of p53 activity did not require functional Hdm2 in the cell, as it occurred in the 

presence of the Hdm2 inhibitors SuperTIP and Nutlin-3. This is again consistent with the 

reports that MEK inhibitors inhibit stress-induced phosphorylation of p53 at serine 15, 

which is required for the interaction of p53 with its co-activator, p300 (62), though the 

inhibition of other post-translational modifications, or co-operating transcriptional 

activators, should also be considered. Whilst MEK inhibitors can also inhibit transcription 

of p53 mRNA (61), this is unlikely to be the mechanism of p53 inactivation in our 

experiments, as U0126 does not prevent the accumulation of p53 protein in response to 

Nutlin-3. From a broader perspective, inhibitors of the Ras-Raf-MEK-ERK pathway, and 

particularly MEK inhibitors, have good potential as anti-cancer agents (63). However, 

their ability to potentiate the effects of genotoxic chemotherapeutic agents appears to be 

highly dependent on the target cell type and agent being studied (64,65). 

 

Together, our data suggest a model by which the p53-Hdm2 feedback loop is regulated in 

response to mitogenic or anti-apoptotic signalling through the Ras-Ras-MEK-ERK 
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signalling pathway, at least in the breast cancer cell lines we have studied here. In the 

absence of MEK activity, cells reduce their proliferation rate and enter a G1 arrest phase 

(data not shown); this is associated with a loss of p53 activity, possibly due to reduced 

serine 15 phoshorylation and p300 binding. Hdm2 expression is therefore not necessary 

to inhibit p53 function, and Hdm2 protein synthesis is decreased, due to both reduced 

transcription from the P2 promoter, and through reduced nuclear export of hdm2 mRNA. 

Following activation of Ras-Raf-MEK-ERK signalling by growth factors, the block to 

hdm2 nuclear export is released, allowing expression of the Hdm2 protein, which is now 

required as p53 activity increases. This helps establish a dynamic equilibrium between the 

p53 and Hdm2 proteins in proliferating cells that is exquisitely sensitive to regulation by 

other signalling pathways, such as those induced by cellular stress. 

 

Hdm2 shows promise as a target for anti-cancer therapies (66), and small molecule 

inhibitors of the p53-Hdm2 interaction that have good efficacy against wild-type p53-

expressing tumour cells in pre-clinical modes have recently been described (50). 

Presumably, such compounds will only be effective in cells in which the target molecule 

is expressed, and in which its activity is required for cellular survival or proliferation. In 

the specific case of breast cancer, which may well be a suitable target for such 

interventions, we have previously demonstrated that elevated levels of Hdm2 protein in 

proliferating cultures of breast cancer cell lines with ERα+ve, compared to ERα-ve, 

phenotypes, correlates with transcription from the P2-promoter of the hdm2 gene in the 

ERα+ve cells (37). In breast tumour samples, Hdm2 protein is over-expressed compared to 

normal cells in as many as 50% of cases (34-36), however in most cases in which Hdm2 

expression is observed in breast cancer, it is limited to small patches of cells in the 

tumour (34). Additionally, one study determined that, of the tumours in which hdm2 
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mRNA was up-regulated, only 69% showed Hdm2 protein over-expression (35). Our data 

support a model in which differences in Hdm2 expression between cancers with different 

phenotypes and differentiation status is defined at the transcriptional level. However 

either specific mutations, or the local tumour environment, that affect signalling through 

the Ras-Raf-MEK-ERK cascade, superimpose upon the transcriptional phenotype by 

regulating Hdm2 protein expression at the level of nuclear export of its mRNA. Whilst 

our study has focussed specifically on breast cancer cell lines, it is likely that this pattern 

of Hdm2 regulation will be prevalent amongst many cancer types in which Hdm2 protein 

is highly expressed. 
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FIGURE LEGENDS 

FIG. 1. MEK kinase activity is required for Hdm2 protein expression in T47D breast 

cancer cells. (A) T47D cells were cultured in the presence of DMSO control (D, 7 h) or 

MEK inhibitors PD98059 (50 µM) or U0126 (25 µM) for the indicated time before Hdm2 

proteins levels were determined by western blotting using 2A9 antibody (a second Hdm2 

antibody, 2A10, gave similar results (data not shown)). For quantification, Hdm2 levels 

were normalised to the β actin loading control (open bars – DMSO, grey bars – PD98059, 

black bars – U0126). (B) T47D cells were incubated with DMSO or 25 µM U0126 for 18 

h before expression of the indicated proteins was determined. (C) Cells were incubated as 

in Fig. 1B, then refed with drug-free medium and incubated for a further 0-5 h before 

lysis and western blotting analysis. 

 

FIG. 2. MEK inhibitors block Hdm2 protein synthesis. (A) T47D cells were cultured 

with DMSO carrier or 25 µM U0126 for 12 h before 100 µg/ml cycloheximide (CHX) 

was added to the medium to block new protein synthesis. Normalised Hdm2 protein 
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levels are shown in the bar graph. The line graph shows the percentage of Hdm2 levels in 

either DMSO- or U0126-treated cells relative to levels prior to the addition of 

cycloheximide. Black graphics – DMSO treated, grey graphics – U0126 treated. 

Representative of three independent experiments. (B) T47D cells were cultured with 

DMSO or 25 µM U0126 for 18 h before 50 µM MG132 was added to the medium to 

block proteosome-mediated degradation of Hdm2. Cells were cultured for a further 0-90 

min, then lysed and analysed by quantitative western blotting. Normalised Hdm2 protein 

levels are shown in the bar graph as in Fig. 2A. Lines show linear regression of these data 

over the first 60 min after MG132 addition. Rate of Hdm2 protein accumulation over this 

period in U0126-treated cells was 13.6% of controls. Representative of two independent 

experiments. (C) T47D cells were exposed to 25 µM U0126 (U) or DMSO (D) for 24 h 

before being labelled with 35S-methionine/cysteine for 90 min in the presence of the same 

treatment. Equal protein amounts were run on SDS-PAGE gels that were then analysed 

by Coomassie blue staining for total protein and autoradiography for newly synthesised 

protein. Similar results were obtained with a 30 min labelling period (not shown). Cells 

treated identically in parallel were analysed by western blotting for Hdm2.  

 

FIG. 3. Effects of inhibiting MEK activity on hdm2 mRNA levels. (A) Total cellular 

RNA was analysed by RPA using an hdm2 exon 2 – exon 3 probe, with a gapdh probe as 

a loading control. (Ai) shows a representative experiment. Lanes are: 1, non-digested 

probe; 2, digested probe; m, size markers; 5 and 6, mRNA from T47D cells which had 

been treated for 24 h with DMSO or 25 µM U0126 respectively. (Aii) Shows quantitation 

of RPA analysis of 4 independently treated sets of cells. Open bars – DMSO controls, 

black bars – U0126 treated. Data is normalised to gapdh mRNA levels, and is expressed 

as mean + SEM (B) Total cellular RNA from T47D cells was analysed by qPCR. hdm2 
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mRNA levels were normalised to gapdh housekeeping gene expression, and normalised 

hdm2 mRNA levels in U0126-treated (25 µM, 24 h) cells are expressed as a percentage of 

levels in DMSO-treated cells. Data are mean + S.E.M. for five independently treated sets 

of samples. Western blots confirmed that Hdm2 protein levels decreased in cells treated 

in parallel to the experiments shown in Fig. 3A and B (not shown). (C) T47D cells were 

transfected with control, non-silencing siRNA (lanes- C), or hdm2 specific siRNA (lanes 

–h). 48 h after transfection, cells were analysed for levels of Hdm2 protein (open bars, 

and western blot) and hdm2 mRNA (solid bars). The hdm- P2 transcript levels are shown, 

however the hdm2-specific siRNA targets both -P1 and -P2 transcripts.  

 

FIG. 4. Inhibition of MEK reduces levels of hdm2 mRNA transcripts in the 

cytoplasm. T47D cells were cultured for 24 h with either DMSO carrier, or 25 µM 

U0126. (A) RNA was extracted from either whole cell pellets, or cytoplasmic lysates 

prepared using hypotonic buffer B, and levels of hdm2-P1 and –P2 transcripts determined 

by qPCR. Data is normalised to gapdh. Open bars- DMSO treated, solid bars- U0126 

treated. Error bars are S.D. of duplicate qPCR assays. (B) Cells were extracted using 

either buffer B, or buffer B with the following modifications - B1 (B + 100 mM NaCl), 

B2 (B + 0.5% IGEPAL CA-630), B3 (B + 100 mM NaCl + 0.5% IGEPAL CA-630). 

Hdm2 transcript levels in the soluble cytoplasmic extract (S), or the insoluble nuclear 

pellet (P), as well as in total cell extracts (T), were determined by qPCR. Data are 

presented as in Fig. 4A. Cellular fractionation was validated using semi-quantitative PCR 

for scRNA hY4, and gapdh. Two PCRs for each extraction method are shown, with a two-

fold difference in the amount of input cDNA to confirm the PCRs have not plateaued. (C) 

hdm2 mRNA was detected by in situ hybridisation using antisense hdm2 probe. Control, 

sense, probe is also shown. Dotted white lines outline the position of the cell nuclei. 
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FIG. 5 Effect of MEK inhibitors on the levels of polyribosome-associated hdm2 

mRNA. T47D cells were incubated with either 25 µM U0126, or DMSO carrier for 24 h. 

(A) Polyribosome-associated RNA was then isolated by lysis in buffer B, followed by 

centrifugation of the cytoplasmic lysate through 30% sucrose buffer. qPCR analysis of 

hdm2 transcript levels was performed on total-cell (solid bars) and polyribosome-

associated (open bars) RNA. Data are presented as a percentage of levels in DMSO-

treated cells, and are mean + S.D. for two independent experiments. Hdm2 protein levels 

were analysed in parallel and were reduced by approximately 90% in U0126-treated cells 

(data not shown). (B) Cytoplasmic extracts (from the experiment shown in Fig. 4A) 

containing equal amounts of protein were separated on a 15-55% sucrose gradient. 12 

consecutive fractions were taken from the gradient. 12.5% of the RNA from each fraction 

was used to synthesise cDNA, which was then analysed by qPCR. Upper panel- relative 

protein concentration (Bradford assay); second panel- agarose gel electrophoresis to 

detect the major ribosomal RNAs; lower panels- levels of the indicated mRNA transcripts 

in each fraction. y axis is the same for both DMSO and U0126-treated cells.  

 

FIG. 6. Effect of inhibiting MEK activity on the p53-Hdm2 feedback loop in wild-

type p53-expressing breast cancer cells. (A) Hdm2 expression in MCF-7 cells 

following incubation with 25 µM U0126 or DMSO for the indicated times. (B and C) 1.5 

x 106 MCF-7 cells were plated per 90 mm dish and 48 h later re-fed with medium 

containing 25 µM U0126, or DMSO. After a further 24 h, 200 µM 5-FU was added where 

indicated, and all dishes incubated for a further- (B) 4 h before cell pellets were made for 

western blotting analysis or- (C) 6 h before plates were trypsinised, 2 x 104 cells plated in 

a new dish, and cultured for a further 14 days before cells were fixed and stained with 

28 



Phelps et al  Regulation of Hdm2 expression
  

Giemsa. (D) MCF-7 cells were transfected with a minimal p53-responsive reporter 

construct (hdm2luc03) and refed with medium containing 25 µM U0126 (solid bars) or 

DMSO carrier (open bars) plus the indicated concentration of 5-FU. Reporter gene 

activity was assayed 40 h later. Results are mean + S.D. of duplicate dishes and are 

representative of two independent experiments.  

 

FIG. 7. Inhibition of MEK kinase in MCF-7 cells inhibits p53-dependent 

transcription independently of Hdm2 protein function. (A) MCF-7 cells were 

transfected with hdm2luc03 or pGL3basic reporter plasmids plus plasmids encoding 

either SuperTIP (S-TIP, an inhibitor of the Hdm2:p53 interaction), the inactive control 

vector, MutantTIP (M-TIP), or dominant negative (ala143) mutant p53. Following 

transfection, cells were incubated for 48 h in the presence of 25 µM U0126 (solid bars) or 

DMSO control (open bars) before reporter activity was assayed. Data are mean + S.D. for 

duplicate dishes. Representative of >3 separate experiments. (B) MCF-7 cells were 

transfected with either SuperTIP or MutantTIP plasmids and then cultured for 24 h in the 

presence of 25 µM U0126 (solid bars) or DMSO (open bars) for 24 h. qPCR was 

performed for the p53-responsive hdm2-P2 transcript, levels of which are normalised to 

gapdh control. Data are mean of duplicate assays. (C) MCF-7 cells were cultured in the 

presence of vehicle control (DMSO) or U0126 (25µM) for 24 hours, before Nutlin-3 

(5µM) or vehicle control (ethanol) was added to the media and the cells harvested after 

the indicated time. Hdm2, p53 and p21 protein levels were determined by Western 

blotting. 

 

FIG. 8 MEK signalling maintains the p53-Hdm2 feedback loop in a state of dynamic 

equilibrium in cancer cells. The three distinct points of regulation described in this 
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manuscript are: [1] MEK activity promotes the Hdm2-independent activation of p53 as a 

sequence-specific transcriptional activator of genes that promote cell cycle arrest and 

apoptosis. This activation is counteracted by a MEK-dependent increase in both the 

transcription [2] and nuclear export [3] of hdm2 mRNA, which together prevent 

spontaneous p53-dependent growth arrest or apoptosis occurring in cancer cells following 

activation of the growth factor–Ras-Raf-MEK signalling cascade. Note this diagram does 

not include the MEK-dependent activation of the Hdm2 antagonist, p14ARF, which is not 

expressed in MCF-7 breast cancer cells (67). 
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