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Abstract

Social behaviours cannot be fully understood
without considering the network structures that
underlie them. Developments in network theory
provide us with relevant modelling tools. The
topology of social networks may be due to selec-
tion for information transmission. To investigate
this, we generated network topologies with vary-
ing proportions of random connections and de-
grees of preferential attachment. We simulated
two social tasks on these networks: a spreading-
innovation model and a simple market. Results
indicated that non-zero levels of random connec-
tions and low levels of preferential attachment led
to more efficient information transmission. The-
oretical and practical implications are discussed.

1. Introduction

The origin of social behaviour was a major transition in
evolutionary history. Sociality opens up a wide range
of new strategies for doing well in the world, and many
of these strategies involve sharing information. Social
animals have evolved elaborate communication systems,
such as the dance used by a honeybee to tell others about
the location of a food source (von Frisch, 1967). Social
behaviour combined with the ability to learn means that
animals are not limited to individual trial-and-error, but
can learn from the behaviour of their conspecifics. Rats,
for example, can learn from other rats about which foods
are safe to eat (Galef, 1996); chimpanzees can socially
learn new ways of exploiting a food source, such as fish-
ing for termites by probing termite mounds with thin
sticks (Tomasello, 1996). In our own species, of course,
communication and social learning have reached great
levels of sophistication and have made possible our tech-
nological progress.

The study of communication and social learning in an-
imal species is the province of behavioural ecology and
of ethology. In the human case, linguists are interested
in understanding how language is used to communicate,
how it is learned, and how it evolved. In the artificial sci-
ences, researchers attempting to build useful multi-agent

systems (in either robotic or software form) have taken
inspiration from both biology and linguistics. Across all
of these domains of inquiry, progress has been made by
focusing on dyadic interactions, such as a young animal
learning from its parent, or two people having a con-
versation. However, the bigger picture—who talks to
whom, who learns from whom, etc.—has generally been
neglected. Social behaviours such as communication or
learning cannot be fully understood without consider-
ing the social network structures over which information
transfer occurs. Indeed, social behaviour both shapes
and is shaped by such networks. This paper represents
a first step in taking social networks more seriously: the
aim is to simulate some simple social tasks over a range of
possible network configurations in order to see whether
particular topologies of the social network promote more
efficient information transmission.

The neglect of social networks in much of the existing
work on social behaviour is not down to simple laziness
on the part of the investigators. Given the mathematical
and computational formalisms that have typically been
used to express theories and models, rich representations
of network structure were simply not possible. The indi-
viduals in a population are assumed to constitute a fully
connected network, and an instance of learning or com-
munication takes place between two randomly chosen
individuals. (Consider classic adaptive behaviour work
on communication such as Steels, 1996). But it is clear
that populations of social organisms are not randomly
structured in this way. Depending on the species, ge-
ographical ranges, family groupings, dominance hierar-
chies, cliques, dialects, and many other factors could all
influence the likelihood of any two individuals interact-
ing. Given advances in computing power and individual-
based modelling techniques, it is now possible to con-
struct models of social behaviour in which complex social
networks can be directly represented. It is an open re-
search question as to the extent to which current theories
will need to be revised once the simplifying assumption
of random social interactions has been dropped.

Recent simulation results have indicated that consid-
ering social network structure can certainly affect the
conclusions drawn from a model. In ongoing work on the



iterated learning model of language transmission, Smith
and Hurford (2003) have looked at what happens when
a language learner receives input from varying numbers
of both parents and siblings. Smith and Hurford have
found that incorporating the social network in this way
places severe restrictions on the conditions for optimal
language transmission: contact needs to be limited to a
small number of parents with minimal input from sib-
lings. Similarly, in a model of social learning, Noble and
Franks (2002) found that the details of who learns from
whom affected the efficiency of different social learning
strategies. Imitation worked best if directed towards a
parent, whereas emulation (a less sophisticated strategy
involving attention to positive outcomes experienced by
other agents without the ability to copy their specific
actions) was most effective given input from randomly
encountered conspecifics.

Given that social network structure makes a difference
to social behaviour, it makes sense to try to capture it
in our models of such behaviours. But how should we do
so? How exactly are human and animal social networks
typically structured? These are big questions. Fortu-
nately, the recent explosion of interest in network theory
provides us with the theoretical tools needed to start an-
swering them. Network theorists have given us classifica-
tion schemes and generative models of network structure,
as well as various statistical measures that can be used to
characterize networks. Space precludes a complete dis-
cussion of network theory here, although see Newman
(2003) for an excellent introduction. However, we will
briefly consider several basic types of networks in order
to illustrate the thinking behind the model presented in
the next section.

Perhaps the simplest type of network is a random
graph (Erdös & Rényi, 1959), in which every node is
equally likely to be connected to every other node. The
only parameter needed to describe such a network is the
average number of connections per node (also known as
the average node degree). Random graphs have been
a useful mathematical formalism but it is widely recog-
nized that they are not a good model for any real-world
network. Characteristic properties of random graphs in-
clude a short average path length and very low tran-
sitivity. The average path length of a network is sim-
ply the mean of the minimum distances between every
pair of nodes, where paths are measured along connec-
tions. Transitivity refers to the likelihood that a node’s
neighbours will themselves be connected to each other
(usually measured in terms of a clustering coefficient C,
being the average of the proportions of the n(n − 1)/2
possible inter-neighbour connections that exist for each
node, with C being defined as 1 for nodes with less than
two neighbours).

Small-world networks (Watts & Strogatz, 1998) have
received a great deal of attention lately. The idea is to

start with a network that is connected in some regular
way, such as a large ring of nodes in which each one is
connected to its two nearest neighbours on the left and
its two nearest neighbours on the right. Such a network
is highly transitive (C = 0.5 for the setup given) but
the average path length will be long as many hops are
needed to connect a node on one side of the ring with
a node on the other. However, if a small proportion
of the connections are randomly rewired, this effectively
creates short cuts across the ring, without destroying the
overall clustered structure of the network. The result is
a small world network, with the notable combination of
a high degree of transitivity and a short average path
length. Anecdotal evidence suggests that human social
networks may share these characteristics: many of our
friends know each other (transitivity), and we can often
find surprisingly short chains linking ourselves and an
arbitrary stranger (short path lengths).

In the small-world network example given, the node
degree is constant at 4 connections per node. In many
real world networks, the distribution of node degrees is
not flat, but highly variable. In particular, Barabási and
Albert (1999) noted that node degrees are often found
in a scale-free or exponential distribution. That is, there
are many nodes with only a few connections, while a few
nodes have many connections. (Another way of putting
this is to say that the distribution of node degrees is long-
tailed or heavily skewed to the right.) Consider for ex-
ample the internet, where most machines are connected
to only one or two other machines, whereas major hubs
may have many thousands of connections. Barabási and
Albert suggested the preferential attachment algorithm
for generating such networks: nodes are added to the
network one at a time, and upon its arrival each node
will make one or more connections to existing nodes.
However, these connections are not made at random
but are allocated preferentially to existing nodes that al-
ready have a higher-than-average number of connections.
Thus, nodes rich in node degree get even richer as the
algorithm continues. Barabási and Albert explored the
properties of scale-free networks generated using prefer-
ential attachment and found that, despite the absence of
a regular substrate, they share the critical properties of
small world networks: high transitivity and a short aver-
age path length. They also have a negative node degree
correlation, which means simply that a connection from
a high-degree node is likely to lead to a low-degree node
and vice versa.

Network theorists employing the concepts reviewed
above have looked at social networks as one example
among many. This work has been descriptive in na-
ture, and has focused on idiosyncratic human cases for
which data is readily available (e.g., scientific collabo-
ration networks), but it has indicated that social net-
works have distinct structures in comparison to other



real-world examples such as computer networks. New-
man and Park (2003) found two distinctive features of
social networks. The first was that transitivity is unusu-
ally high. The second feature was that social networks
show positive node degree correlation. This can be il-
lustrated by the idea that well-connected people tend to
know lots of other well-connected people, and loners tend
to know (if anyone) other loners. Positive node degree
correlation stands in contrast to the negative correlation
seen in scale-free networks such as the internet, where
hubs connect to single machines and vice versa.

Newman and Park’s work is not definitive—there may
be other distinctive features of human social networks
not yet enumerated—and it is not at all clear that these
properties will also apply to the social networks of other
species. However, the fact that social networks can be
shown to have distinctive structures raises what is for
us an exciting theoretical question. Social networks in
the natural world must be a product of the social be-
haviours of the agents involved. These behaviours must
have been subject to selective pressure of some kind;
either natural selection in the case of instinctive social
behaviours, or some sort of cultural selection in the case
of learned behaviours. It seems likely that the quality of
the information an agent receives via its social network
was a factor in this selective process. It therefore follows
that we might expect some naturally occurring social
networks to have been optimized for their efficiency in
transmitting information between members of a popula-
tion. If this is so, what sort of structure would we expect
the networks to have? Could the properties observed by
Newman and Park, for instance, be the product of selec-
tion for individuals whose social behaviours lead them
to form networks with just these characteristics? One
goal of the work presented here is to begin to answer
this question by comparing the effectiveness of different
network topologies in supporting the transfer of infor-
mation. Of course, it is also possible that the structures
of social networks are spandrels; that they have not been
directly selected for but are the by-products of selective
pressure on other aspects of social behaviour. This con-
clusion would be supported by showing that networks
optimized for information transfer look nothing like real
social networks.

Another goal of our work is entirely practical. In
building a multi-agent system to perform some function,
we can take inspiration from biology but there is no re-
quirement for biological fidelity. So what sort of network
topology should be imposed in order to facilitate infor-
mation sharing between agents? The multi-agent system
we have in mind is a form of market-based control for
the coallocation of jobs and resources in Grid comput-
ing (Davy, Djemame, & Noble, 2003). Other authors
(Byde, Salle, & Bartolini, 2003) are interested in a sim-
ilar market-based control system for resource allocation

in large scale (∼ 50, 000 node) computing clusters. In
both systems, processors and jobs are treated as eco-
nomic agents in a marketplace, with jobs bidding for
suitable processors, and processors offering CPU cycles
for sale. When dealing with large-scale systems, cen-
tralized allocation approaches and all-to-all connection
schemes cannot work due to congestion. Clearly what
is needed is some type of network linking the agents,
over which bids and offers can be transmitted. However,
nothing is known about what sort of network topology
will best support the operation of such a market. In
the simple model presented below, we have chosen one
of two social-information-sharing tasks with this prob-
lem in mind. More generally, we suspect that a better
understanding of social networks will have payoffs for
multi-agent system design, in that designers will have
better guidelines for deciding who or what an artificial
agent should communicate with, who it should trust,
who it might want to imitate, etc.

2. The model

Each node in our model represents an individual, such
as a person, an animal, or an artificial agent. We be-
gan with isolated nodes positioned on a regular spatial
substrate, i.e., a grid. Our networks consisted of 2,500
nodes arranged in a 50 × 50 array. Of course, real so-
cial networks are not formed simply through every in-
dividual linking to their four immediate neighbours in
space. However, we wanted to capture the idea that
social networks have the physical world as their ulti-
mate substrate, and, generally speaking, increased phys-
ical proximity between two individuals means a higher
probability of a social connection existing. The various
network layouts that we explored deviated from this un-
derlying spatial grid to greater and lesser degrees.

Our aim was to generate a wide range of network
topologies. In order to do this we devised two axes on
which the layouts of our networks could vary (not to
be confused with the two dimensions of the underlying
spatial grid). For the first axis of variation we took in-
spiration from work on small-world networks, in which
network properties change dramatically as a few ran-
dom, long-range connections are added. We therefore
varied the probability with which a connection would
be either local or random; we called this parameter R.
When R = 0, all links are local (see Figure 1). When
R = 1, all links are random (Figure 2). A major find-
ing with respect to small-world networks is that small
proportions of random connections can make a big dif-
ference. We therefore investigated the following values
for R: 0, 1

256
, 1

128
, 1

64
, 1

32
, 1

16
, 1

8
, 1

4
, 1

2
, and 1.

In order to instantiate local links, we needed some def-
inition of a local neighbourhood. The neighbourhood for
our nodes consisted of the 24 other nodes contained in
a 5 × 5 square centred on the focal node. (Nodes close



Figure 1: A sample network with R = 0 and P = 0, i.e., local

and egalitarian connections. This could become a small world

network with the addition of a few long-range “short-cuts”,

i.e., with R ≈ 0.05. Note that this and subsequent sample

networks have only 64 nodes and 128 connections (i.e., 4 per

node); 2500 nodes and 10000 connections were used in the

simulation runs.

Figure 2: A sample network with R = 1 and P = 0, i.e., long-

range but egalitarian connections. This is a random graph

as described by Erdös and Rényi (1959).

Figure 3: A sample network with R = 0 and P = 1, i.e.,

local and preferential connections. Note the formation of

local “hubs”.

to the edges and corners of the 50× 50 grid had a corre-
spondingly smaller neighbourhood.) A local connection
meant a connection to a randomly chosen node within
the local neighbourhood. A random connection meant
a connection to a randomly chosen node from anywhere
else on the network. Self-connections and multiple con-
nections were not allowed in either case.

The second axis of variation was based on the pref-
erential attachment idea, and we called the associated
parameter P . When P = 0, connections were egalitar-
ian, and no node was more likely to be selected for a
connection than any other (see Figures 1 and 2). That
is, all 24 local neighbours were equally eligible to receive
a local connection, and all of the other 2499 nodes in
the network were equally eligible to receive a random
connection. As the value of P increased, connections
were made in an increasingly preferential way. The value
(n+δ)P was calculated for each eligible node, where n is
the node degree and δ is a small positive value (0.1 in the
runs described below). The node that actually received
a connection was chosen by roulette-wheel selection over
these values. The parameter P thus acts as a preferen-
tial exponent, governing the strength of the bias towards
well-connected nodes. The point of the value δ was to
avoid stalemates in network generation by ensuring that
even a node with no connections had a non-zero proba-
bility of selection. Figures 3 and 4 illustrate networks
with P = 1. The following values of P were investigated:
0, 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2.

One variable that affects information transmission
across a network in an obvious way is connectivity, i.e.,
the average number of connections per node. If a net-
work has low connectivity, then whole sections of it may
be isolated from each other, for example, and informa-
tion transmission between sections would be impossible.
In order to investigate the effects of topology rather than
brute connectivity, we held the number of links constant



Figure 4: A sample network with R = 1 and P = 1, i.e., long-

range preferential connections. Prominent hubs can be seen,

and the distribution of node degree is heavily right-skewed.

at 10,000 in all of our experiments. Connections were
bidirectional, so this represented an average node degree
of 8. This level of connectivity guaranteed that all or
nearly all nodes in the network would be grouped into a
“giant component” or connected section.

To actually construct sample networks, we began by
sorting the nodes into a random order and giving each
node at least one initial connection, selected according
to the current values of R and P . This procedure en-
sured that there would be no singleton nodes. Then
the remainder of the 10,000 connections were allocated.
Note that in this phase the prevailing values of R and P
were used in the selection of both source and destination
nodes for each connection: if R = 0 and P = 1, for ex-
ample, a random neighbourhood would be selected, one
node within that neighbourhood preferentially selected
as the source, and then a destination node preferentially
selected from within the 5 × 5 square centred on the
source.

Once the layout was established, we ran two simple
social tasks across the network in order to find out what
sorts of topology best support social information trans-
fer. The two tasks were quite different in character, but
each task had clearly defined success measures to en-
sure that our results would be unambiguous. For each
task, we also looked at how well the network coped with
a sudden localized change. This work is exploratory, so
we were not strongly committed to particular hypotheses
about what we would find. However, the network theory
literature suggested some promising questions. Might
there be a “sweet spot” for the classic small-world net-
work, at R ≈

1

32
? Does node degree distribution make a

difference? Could it be that the highly connected nodes
in a skewed distribution function as information centres,
increasing the overall efficiency of the network?

The first task was a basic spreading-innovation or

behavioural-contagion model of social learning. We were
mindful of Kawamura’s (1959) research on Japanese
macaques, in which one animal came up with a be-
havioural innovation (i.e., washing potatoes in a stream
before eating them) and the novel behaviour could be
seen to spread gradually throughout the social network.
In our model, a random node was chosen as the source
of the behavioural innovation. Every time-step an indi-
vidual would observe one of its social partners, chosen
at random from among the nodes it was connected to,
and would adopt the novel behaviour if the chosen part-
ner had already done so. If the chosen partner had not
yet adopted the new behaviour, nothing happened. The
measure of effective information transmission was sim-
ply the time taken for the novel behaviour to reach 99%
prevalence in the population.1

The second task was more complex: each node repre-
sented an agent in a market. Every agent can both buy
and sell, but only to its social partners, i.e., the nodes
it is connected to. The market trades in a single indis-
tinguishable commodity, let’s say bicycles. Each agent
can only possess one bicycle at a time, and a randomly
chosen 50% of the agents begin the simulation owning a
bicycle. Each agent has a personal valuation of a bicycle
that is known only to itself; this is drawn from a uniform
random distribution between $1 and $1000. Each agent
also has access to a medium of exchange—we can think
of this as a bank account with an infinite overdraft.

The agents operate according to very simple financial
principles set out in a paper by Gode and Sunder (1993);
they are “zero-intelligence” (ZI) traders. (We chose the
ZI trading architecture not because we think it is a sen-
sible way to trade but because it is probably the simplest
way to set up a working market.) Each turn, an agent
will make either an offer or a bid to a random partner,
depending on whether the agent has or does not have
a bicycle respectively. Would-be buyers will bid at a
price randomly chosen from between the minimum price
($1) and their private valuation. This is the core logic
of the ZI trader: it makes no sense to bid more than you
think a bicycle is worth, and by bidding less, you may
pick up a bargain. Similarly, would-be sellers will make
a random offer somewhere between the maximum price
($1000) and their private valuation. Offers received by
agents who already have a bicycle are ignored, as are bids
received by agents who have no bicycle to sell. However,
if the neighbour has a bike and receives a bid higher than
their valuation, or has no bike and receives an offer under
their valuation, a trade will take place. The market con-
tinues to operate in this way until a complete time-step
passes without any successful trades being made.

1In fact there were no strict time-steps in either task; random
nodes were chosen and allowed to act. After 2,500 random choices,
i.e., one per node in the network, a nominal time-step was assumed
to have passed. However there was no guarantee that a particular
node would be chosen exactly once during each time-step.



Compared to the spreading innovation model, the eco-
nomic task is not as obviously related to the spread of
information. However, the bids and offers do transmit
information about private valuations, and the net result
of trading is to transfer bicycles to agents that valued
them highly, and cash to agents that did not. We can
therefore measure the efficiency of the market by look-
ing at the mean increase in utility across the population
of agents. We assume that an agent’s utility is equal to
its private valuation of the bicycle, if it ends up own-
ing one, plus the amount of money it has in the bank,
which may be either positive or negative. Note that the
initial average utility will be around $250, as half of the
agents have bicycles and the average valuation is $500.
After a period of trading we can calculate the change in
this score and use that as an index of market efficiency.
We measured the change in utility at two points: after
ten time-steps had elapsed, and after the market had
stabilized.

For both tasks we wanted to let the network reach an
initial equilibrium and then see how quickly it would re-
cover from a sudden local disturbance. In both cases we
disrupted the function of 25% of the nodes, correspond-
ing to the northwest quadrant of the underlying spatial
grid. For the spreading innovation task, we assumed that
all individuals in the northwest quadrant had suffered an
abrupt memory failure and lost the ability to perform the
novel behaviour. We then measured how long it took
for the novel behaviour to regain 99% prevalence in the
population. For the economic task, we abruptly took
the bicycles away from any individuals in the northwest
quadrant who possessed one. We then recalculated the
average utility, allowed the market to run for ten time-
steps, and recorded the improvement in average utility
that was achieved within that time.

3. Results

For each combination of 10 values of R and 7 values of
P , we generated 20 sample networks and recorded the
results on the spreading-innovation and economic tasks.
Thus our primary results, shown in Figures 5 and 6, are
measures of average success on each task across the space
of the P and R values investigated.

Our network generation algorithm was successful in
producing valid networks, and most of the time a con-
nected graph resulted (overall mean number of nodes
outside the giant component was only 0.48 out of 2,500).
In order to be sure that our network topologies had the
expected properties, we measured several basic network
statistics. These were average path length (sampled over
5,000 random pairs of nodes rather than being calcu-
lated exhaustively), clustering coefficient (defined ear-
lier), node degree correlation, and skewness of the de-
gree distribution. This last was calculated using the 1st
percentile, the median, and the 99th percentile of the

node degree distribution, combined to give a standard
measure of skewness as follows:

(n99 − n50) − (n50 − n1)

n99 − n1

.

A value of zero on this skewness measure indicates a
symmetrical distribution, while positive values, up to a
maximum of 1.0, indicate increasingly long tails to the
right.

Beyond simply measuring success on each task for par-
ticular values of R and P , we also constructed multivari-
ate analyses of variance for the success score on each
task against the four network statistics listed above. Al-
though R and P would themselves be useful predictors in
a multivariate model, we did not include them. The idea
was to put ourselves in the position of investigators look-
ing at a real-world network, where the relevant network
statistics could be measured with some degree of error
but “behind the scenes” variables such as R and P were
not available. We hoped that these multivariate models
would help us to identify which network properties were
associated with successful outcomes.

Results for the spreading-innovation task are shown
in Figure 5. Note that this graph shows time-to-
convergence data, so lower values are better. The re-
sults are very clear: the novel behaviour reaches 99%
prevalence most rapidly (in around 15 time-steps) when
the probability of random connections (R) is equal to 1,
and the preferential exponent (P ) is low. This means
that the most successful network for the rapid spread
of an innovative behaviour would be a classical random
graph. For lower values of R, i.e., as the networks be-
come more locally connected, the time taken to reach
99% prevalence greatly increases. Although R has the
strongest effect on the outcome, it is also clear that in-
creasing values of P , i.e., more preferentially connected
networks with more heavily skewed degree distributions,
are associated with slightly longer convergence times.

A multivariate analysis of the data was highly signif-
icant (F4,1395 = 758.9, p < 2.2 × 10−16) and explained
68% of the variance in the time to reach 99% prevalence.
Average path length, clustering coefficient, and skewness
of degree distribution were all significant predictors, and
were all positively associated with longer times. The
outstanding predictor was average path length, however,
which, fitted alone, explained 65% of the variance in
convergence times. The rapid spread of an innovation
around a social network appears to depend chiefly on
that network having short average path lengths.

When the network was disrupted by resetting the be-
haviour of the 625 agents in the northwest quadrant,
the story was very similar. The fastest recovery of 99%
prevalence of the novel behaviour was found in networks
with high R and low P .

Results for the economic task were very different, and
are shown in Figure 6. This graph shows the mean in-
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Figure 5: For the spreading-innovation task, the graph shows the number of time-steps until the novel behaviour reached 99%

prevalence in the population for various network architectures. Each data point is averaged over 20 runs.
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Figure 6: Change in average utility per agent after ten time-steps of trading in the economic task, for various network

architectures. Each data point is averaged over 20 runs.



crease in utility per agent, which is a measure of market
efficiency, and thus, unlike Figure 5, higher values are
better. We measured the change in average utility both
after 10 time-steps, and after the market had stabilized.
The pattern of results was similar in both cases, and Fig-
ure 6 shows the situation after 10 time-steps. The first
point to note is that high values of the preferential ex-
ponent P are associated with lower increases in average
utility. The most impressive increases in utility are found
when P = 0 and R = 1

64
, 1

32
and 1

16
. In other words, the

most efficient markets are found when the network has
an egalitarian distribution of node degrees, and a small
proportion of random connections. This corresponds to
Watts and Strogatz’s (1998) original small-world model.

The multivariate analysis of the data was again highly
significant (F4,1395 = 462.9, p < 2.2 × 10−16) and in
this case explained 57% of the variance in added utility.
The clustering coefficient and the skewness of the node
degree distribution were both significant predictors, and
both had a negative association with added utility. The
clustering coefficient fitted alone explained 14% of the
variance in utility, but the skewness of the node degree
distribution explained 54% of the variance when fitted
alone. Thus the efficiency of a market appears to depend
primarily on an egalitarian distribution of connections,
but also on transitivity being low.

When the market was disrupted by removing all bi-
cycles from the northwest quadrant of the grid, how-
ever, the results were more in line with the spreading-
innovation task: the fastest recovery of utility was found
when the network had many random connections. The
value of P was not especially important, although it was
associated with slightly poorer recovery of utility. How-
ever, high values of R led to much greater improvements
in utility, e.g., a mean improvement after 10 time-steps
of 16.7 when R = 1 compared to only 3.55 when R = 1

32

(P = 0 in each case).

One point of concern in our results was that we only
observed very moderate levels of positive degree corre-
lation in any of the networks in our space of possible
topologies. The highest values for node degree corre-
lation (only around 0.025) were seen for low levels of
random connections and egalitarian node degree distri-
butions; as preferential attachment increased, the node
degree correlation dropped to around −0.23. However,
Newman and Park (2003) argue that significantly posi-
tive node degree correlation (popular people know other
popular people, and loners know other loners) is one of
the defining characteristics of human social networks.
We therefore put together an alternative network gen-
eration algorithm that was designed to produce positive
node degree correlations: the probability of a connection
going from a source to a target node was proportional
to how closely the target node’s degree matched that of
the source node. The parameter R applied to these net-

works in the usual fashion, but the parameter P was no
longer relevant. This algorithm succeeded in producing
positive node degree correlations, with an overall aver-
age correlation of 0.23 across the different values of R.
We re-ran both of the social tasks on these networks but
in all cases the results were not substantially different
from those for the equivalent network with egalitarian
connections (i.e., P = 0).

4. Conclusions

The higher the proportion of random connections, the
faster an innovative behaviour spread throughout the so-
cial network. On the other hand, a modest proportion
of random connections led to the most efficient market
performance. In both cases, an egalitarian distribution
of node degrees was more effective: the heavily skewed
distributions generated by preferential attachment just
seem to slow things down.

With the benefit of hindsight it seems obvious that
high levels of random connections will be advantageous
on the spreading-innovation task, as random connections
ensure a short path length between any two nodes which
in turn allows the most rapid spread of the novel be-
haviour. Similarly, in both the spreading-innovation and
the economic tasks, the fastest recovery from the disrup-
tion of one quadrant of the underlying grid was seen in
networks with many random connections. We can draw
a parallel here with recovery from a disaster in human
society: if your town has been flooded, for instance, you
will do well to get help and temporary accommodation
from friends who live some distance away (i.e., random
connections) rather than seeking help from neighbours
whose houses are also flooded (local connections).

We did not have concrete hypotheses concerning our
results, but there were suspicions that small-world net-
works might do well. This was borne out with respect to
the economic task, with the highest increases in average
utility seen in networks with a few percent random con-
nections and a fairly flat distribution of node degrees. In
addition, if we return to the spreading-innovation task
(Figure 5) and look at the performance of networks with
R = 1
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and P = 0, for example, we find that they reach

99% prevalence in 19.87 time-steps. This is not as im-
pressive as 15.78 time-steps for the networks with R = 1,
but far better than the figure of 41.60 time-steps when
R = 0 (P = 0 in all cases). It would be wrong to say
that small-world networks were the optimal design for so-
cial information transfer—indeed, an important message
from the results is that different topologies favour differ-
ent social tasks. However, small-world networks look like
a reasonable compromise given the tasks and topologies
explored so far.

The suspicion that preferential attachment and skewed
node degree distributions might promote information
sharing turned out to be completely wrong. For the



economic task one might imagine that the high-degree
nodes could help things along by acting as “dealers”, be-
ing more likely to buy and sell bicycles from their many
trading partners several times before the market stabi-
lized. However, the other side of the coin with a skewed
node degree distribution is that many nodes have rela-
tively few connections, and in the marketplace task this
means that they will have a lower chance of being con-
nected to an appropriate partner to make a trade, i.e.,
to someone who has a bike and a lower valuation than
one’s own, or to someone who has no bike but a higher
valuation than yours.

One of our theoretical goals was to show what we
would expect social networks to look like if they had
been optimized for social information transfer. Although
we would be far more confident if we had covered a
wider range of social tasks, based on what we have done
so far we can predict that optimized networks should
show a non-zero level of random connections and a near-
symmetrical node degree distribution. The validity of
the first prediction is hard to assess and possibly needs
to wait for both more modelling work and more empiri-
cal measurements of average path length and clustering
coefficients in real social networks. Still, it is clear that in
a population of animals, for example, having many long-
range or random connections would entail costs (e.g., the
energy costs of travelling around to meet all of these dis-
tant connections). So even if a high proportion of ran-
dom connections had selective value for an individual
due to information-gathering payoffs, this would need to
be balanced against the cost of maintaining such links.

The second prediction, that node degree distribution
should be symmetrical, is clearly not seen in nature. We
therefore speculate that the skewed node degree distribu-
tions found in natural social networks are not the result
of selection for efficient information transmission but are
produced by some other factor, e.g., competition for sta-
tus.

A practical goal of the work was to find out what sorts
of network topologies would best support a marketplace
populated by self-interested agents. On this point we can
be clear: our results suggest that the overlay networks for
trading in the systems currently being designed by Davy
et al. (2003) and Byde et al. (2003) should be classic
small-world networks, with about 1 in 32 connections
being random and a flat distribution of node degrees.

We admit that in some of these conclusions we are per-
haps pushing the results of an early, exploratory model
a little too hard. Clearly a wider range of social tasks
needs to be investigated. The two tasks that we did
consider could be examined in more detail as well: it
is not clear how the spreading-innovation model would
respond to the addition of factors such as noisy percep-
tion, multiple competing innovations, and a tendency
to copy the majority behaviour among one’s neighbours.

The economic task dealt with about the simplest market
imaginable: something as simple as allowing the agents
to possess more than one bicycle at a time might alter
the results significantly.

In future models we also want to look at what hap-
pens when the network topology (or, more specifically,
the mechanisms and behaviours that generate that topol-
ogy) is under evolutionary pressure. Currently the net-
work architecture is static and pre-specified, but this is
not the case with real social networks. Indeed, your so-
cial network is not imposed on your communicative and
learning behaviours, it is in fact shaped by those very
behaviours: if you talk to someone and receive useful
information from them, you are likely to talk to them
again in future and thus your social network has altered.
Capturing such reciprocal effects will be critical to fu-
ture models. This would leave the way open for tackling
much bigger questions about what sorts of social net-
work formation and maintenance strategies—in people,
animals, robots, or software agents—are likely to win out
in the struggle for selection.
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