The Application of Bioinspired Engineering
Principles to Grid Resource Allocation

Simon Davy, Karim Djemame, and Jason Noble

School of Computing, University of Leeds
{wavy,karim, jasonn}Qcomp.leeds.ac.uk

Abstract. Resource allocation is an essential problem to be solved in
building effective Grid systems. Existing mechanisms employ a centralised
approach which is likely to run into performance problems as the size of
the Grid increases. We suggest taking inspiration from the biosystems
paradigm in order to construct a resource allocation protocol that is
adaptive, efficient, scalable, and robust. We have constructed a simpli-
fied Grid model in which resource nodes make competitive offers in order
to be accepted by jobs. Our simulation results show that our bioinspired
resource allocation algorithm is a viable contender for use in future Grid
implementations.

1 Introduction

Grid systems are a highly active area of research, aiming to provide computing
resources as transparently as the national power grid provides electrical power.
One of the essential problems to overcome in reaching this aim that of resource
allocation. There is a need to facilitate automatic discovery and allocation of a
dynamic set of resources. The major difference between resource allocation on
the Grid compared to other environments is the level of heterogeneity involved.
The possible variations in type, configuration, deployment and performance of
Grid resources is vast. In particular, the autonomy of each diversely owned and
administered resources poses difficult problems to a global solution.

Existing mechanisms for resource allocation are based on allocation paradigms
from previous work in other environments, where ownership and access has been
relatively uniform[5]. These initial ideas have been greatly extended for the Grid
environment. However they are based on a centralised approach which, we will
argue, is likely to run into performance problems as the size of Grid systems
increases.

We suggest that various features of the problem of Grid resource alloca-
tion call for a fully distributed approach. Existing research in the biosystems
paradigm may lead us to relevant solutions. Biosystems research involves con-
structing complex adaptive computational systems that take inspiration from
similar systems in nature such as insect colonies or even, at a higher level, mar-
ket economies. The biosystems area is relatively new, and attempts to apply
these ideas to resource allocation on the Grid are in their infancy. The current

paper sets out an application of the biosystems paradigm to Grid resource al-
location. We are continuing to develop a simulation framework with which to
explore various bioinspired allocation mechanisms and to compare their perfor-
mance with existing approaches.

We begin in section 2 with a summary of existing solutions to the prob-
lem of Grid resource allocation, and a discussion of their limitations. In section
3 we present an overview of biosystems research and present the case for its
application to Grid resource allocation. In section 4 we describe a simple Grid
simulation model and outline our bioinspired allocation algorithm. In section 5 a
detailed overview of the simulation is presented, before moving on to the results
in section 6. We conclude and outline further work in section 7.

2 Resource Allocation

The goal of Grid resource allocation is to provide a robust and scalable mech-
anism for automatic and transparent allocation of appropriate resources. The
much of the work on automatic resource allocation[9] has been carried out within
the Globus Grid project[12]. Firstly, they define a “Virtual Organisation” (VO)
as a group of resource owners that have a common agreement about sharing
resources[6]. They facilitate resource allocation within a VO by maintaining a
centralised aggregate directory service that contains information about the re-
sources available to that particular VO[3]. This approach has two components :
resource discovery and resource enquiry.

Resource discovery is achieved via a soft-state registration protocol that pub-
lishes a resource’s information to a centralised server. Some interesting work has
been done on making this process distributed [8], however, it still feeds into a
centralised server. Resource enquiry is handled by querying the centralised server
for suitable resources and then negotiating with those resources for allocation.
This approach allows a potentially globally optimal allocation of resources to
a specific request, and is helpful in giving an overall view of a VO’s state and
activity. However, there are a number of possible disadvantages to this approach.

— latency - the central directory will always be somewhat behind the actual
state of the resources, resulting in possible false matches when enquiring for
suitable resources. The impact of this will vary depending on the dynamism
of the VO resources, with highly dynamic resources implying a greater neg-
ative impact.

— centralisation - the need to globally capture the VO’s resource implies a
scalability limitation for large numbers of resources. The current solution
to this is to aggregate the server to multiple hierarchical servers to achieve
a greater distributed performance, but again, this is ultimately limited in
scale.

— maintenance - these servers must be allocated and maintained which is a
significant overhead to administration, as well as Grid activity.

— single point of failure - if the central server fails, the whole allocation mech-
anism also fails. Even if aggregated, it would decrease scalability and fault
tolerance.

3 Biosystems Engineering for the Grid

There are many naturally occurring systems that achieve a high level of com-
plex adaptive behaviour. One example that has been applied to network routing
with good results is based on colonies of social insects such as ants[4]. In the
natural world, ants deposit a pheromone when they carry food, thus developing
a pheromone trail from food sources to the nest. Other ants can follow this trail
and in turn reinforce it, so more ants follow it. The net effect is that the food
source is exploited quickly and efficiently. This metaphor has been applied to
routing tables in switched networks, where ant constructs traverse the network
building up ‘pheromone’ trails indicating good routes. Other examples of biosys-
tems work include evolutionary algorithms, neural network models and economic
market models[13][7].

Bioinspired systems consist of autonomous agents based in an environment:

— autonomous agency - the system is populated with agents acting concur-
rently with all other agents: it is inherently parallel. Each agent in a biosys-
tem is autonomous, making its own decisions based on its internally defined
behaviour; there is no exterior overriding control.

— environmentally situated - the agents in a such a system are not in a vacuum,
they are situated in an environment of some description. They can change
and be changed by this environment. An agent is only able to interact with
its local environment and other agents in that local environment. It has no
global communication or access to global state. It may be mobile and thus
able to change its locality.

A Grid system can also be viewed as consisting of agents in an environment,.
Depending on one’s point of view, the agents on the Grid could be computational
resources, users or even jobs. The environment for such agents may be a VO, the
Grid infrastructure, or a distribution of jobs in time. Therefore it is reasonable to
apply bioinspired algorithms to a problem such as match requests with resources.

Bioinspired systems have several interesting and desirable properties:

— adaptive - they can adapt quickly and efficiently to change in the environ-
ment.

— efficient - they can develop efficient solutions to difficult problems. (This
efficiency is in terms of an individual agent, and there may be a tradeoff
with global system efficiency.)

— scalable - they are highly scalable and performance is often enhanced with
a greater number of agents.

— robust - faults and failures in a minority of individual agents will not affect
the performance of the overall system.

These are the same desirable characteristics we would wish to have in a
Grid resource allocation system. They are essential for the goal of automatic
transparent allocation in a Grid of arbitrary size.

There will rarely be a direct mapping from natural biosystems to artificial
computing systems. However, what we are proposing is to use the central ideas
and principles evident in these natural systems to construct artificial systems
with similar characteristics. Some of the key principles that are responsible for
robustness, efficiency and scalability are listed below.

— indirect communication - agents often communicate indirectly through the
environment. e.g., the use of pheromones by foraging ants to leave trails for
others.

— compound communication - effective use of multiple agents to verify a par-
ticular solution’s quality. Positive feedback on good solutions gathers others
to those locations.

— decay - biosystems are never inactive, there is always some background ac-
tivity, often in the form of decay of some attribute or other. This works
directly with the positive feedback mentioned above, in that little-used so-
lutions decay and die away. e.g., ant pheromone trails evaporate over time,
meaning they will disappear unless reinforced.

— adaptive simplicity - agents often use simple behavioural functions in which
the relevant parameters are adapted through decay and positive feedback
mechanisms.

We propose that these bioinspired design ideas, possibly alongside more tradi-
tional approaches, may be used to develop a bioinspired system for Grid resource
allocation that is scalable and robust.

4 Investigation Framework

To investigate the applicability of these ideas to Grid resource allocation, we are
developing a simulation tool to analyse the performance of different algorithms.
Simulation is used because current Grid technologies are not developed enough to
implement our ideas on a real system. In addition the size of current Grids is still
relatively small: given that one of the factors we are interested in is scalability,
we need to use many more resources than are currently available. Finally, the
biosystems approach necessitates a modified Grid architecture that current Grid
middleware solutions do not provide. These factors lead us to use simulation as
our investigative tool.

Based on our case for the potential benefits of a biosystems approach to Grid
resource allocation, we are currently developing a simple bioinspired algorithm
to explore the basic performance and characteristics of this approach. An aim for
the immediate future is to gauge the effectiveness of our approach in comparison
to existing approaches; however, the current paper is about demonstrating that
our proposed algorithm can effectively allocate jobs on a simulated Grid.

4.1 Simple Grid Model

The initial Grid will consist of simple computational resources only. The ideas of
storage and network resource types will be added in at a later date. For now, we
will ignore the differences in speed or power and concern ourselves simply with
size, due to the complexities involved with predicting performance of a particular
job on a particular resource — we model the idea that some nodes have greater
capacity than others, but beyond that we assume all nodes are equal. This should
serve for an initial investigation.

A job will initially simply consist of a size value and a length (time). Large
jobs will only be able to run on large nodes. For now we ignore the possibility
of multiple resource node co-allocations. Another factor we are not considering
initially is advance reservation; we assume a simple immediate accept or reject
allocation. Job size and rate will be modelled using established distributions from
the simulation literature[10], i.e., Gamma distributions for job size and length,
and a negative exponential distribution of job interarrival times.

4.2 Simple Bioinspired Allocation Algorithm

We propose a relatively simple decentralised algorithm for allocating jobs to
resources based only on job size and available resources. We also use an overlay
network in order to introduce a notion of locality.

Resource nodes are interconnected via an ‘internet’ so any node can interact
directly with any other, but on top of that there is an overlay network between
nodes. This overlay network is used to forward allocation messages between
resource nodes, and represents a single VO in organisational terms. Initially this
network is based on a small world topology[14]; extensions could investigate
other topologies, including random or hierarchical networks[11].

The basic mechanism for allocating a job is as follows. An initiating node
sends a description of the job out on the overlay network. This is forwarded
through the overlay network to distribute the request. Upon receiving a job
description, a resource node may make an offer on that job directly back to the
initiating node. A node waits to receive a fixed number of offers, and chooses
the best offer . This bidding metaphor is used for two reasons. Firstly it is the
suggested economic model for Grid systems[2], and secondly it is a relatively
well understood mechanism within economics and biosystems[7].

The mechanism a node uses for deciding whether or not to make an offer,
or indeed how much to offer, is based around a simple heuristic. This assumes a
natural bias toward it being more profitable to accept a small number of large
jobs rather than large numbers of small jobs. This is the intuitive direction
given the overhead of job startup/teardown costs. This is captured by a sigmoid
function of available resources against job size (see figure 4.2). The shape of
the sigmoid reflects the acceptance strategy. This function is inspired by similar
functions in ants[4], and is chosen for simplicity.

A possible extension is to combine this with a time out mechanism to prevent re-
source allocation failure

Offer Size

Job Size Capacity
Fig. 1. Simple sigmoid function making offers based on size. Note that in the bidding
metaphor, resources are sellers and jobs are buyers — therefore the more a resource
‘wants’ a job, the lower the bid it will make.

This sigmoid gives a measure of how profitable the job is for the node. The
sigmoid score represents a competitive price for the job. In this situation, the
resources are producers and the jobs are consumers. If it is a profitable job for
the resource (i.e. it will fill the resource to capacity or close) it offers a low price.
The less profitable the job is, the less competitive a price (i.e., a higher price)
the node offers to do the job.

There is a need for bidding to be adaptive over time, or else some resources
may be starved of jobs. This idea is consistent with adaptive thresholds in some
species of insects[4] as well as market economy price fluctuations[7]. For the sake
of simplicity, we have not included this aspect in this initial work. However,
further work will include this.

4.3 Performance Metrics

In order to assess the performance of our algorithm, we collect data on allocation
latency, the number of successfully allocated jobs, the number of failed alloca-
tions, and the proportion of failed allocations among the set of all jobs. These
metrics will be gathered across different contexts of Grid size and job load.

5 Experimental Design

5.1 Simulation Tool

We designed and implemented a sequential discrete event simulator in C++.
The simulator provides control over Grid size, load, job duration and resource

node capacity. It uses these values to determine an appropriate time frame and
arrival rate for new jobs into the system.

5.2 Simulation Scenario

The simulation begins by setting up a randomly generated architecture for the
overlay network. As noted above, the network has a small world topology. This
network is generated by creating a mother node, and then iteratively creating
additional nodes each with two two-way connections. These connections run
from the new node to an existing node which is randomly chosen with a bias
toward nodes that already have more connections. This “rich get richer” effect is
characteristic of small-world networks. The capacity of a new node is a random
variate drawn from a Gamma distribution; see table 1 for the relevant parameter
values.

The simulation proceeds to generate jobs with a negative exponential dis-
tribution of inter-arrival times. The mean job arrival rate is chosen such that
it gives a specified load level for the network, where a load of 1.0 represents
a situation in which, hypothetically speaking, 100% of the network’s resources
would be in use assuming an ideal distribution of jobs. Job arrival rate therefore
depends on Grid size (number of nodes), mean job duration, mean job size, mean
resource capacity, and the desired load level for the simulation.

Description Values |Distribution

Grid size (nodes) 100, 256

Load 0.8. 1.1

Mean resource capacity 100 |Gamma (a = 0.5)
Mean job duration 500 |Gamma (a = 2.0)
Mean job size 20 |Gamma (a = 2.0)
Mean overlay communication time 0.1 |Normal (¢ =0.1)
Mean 'internet’ communication time| 0.3 |Normal (¢ = 0.3)
Mean service time 0.1 |Normal (¢ =0.1)
Overlay hop limit 3

Minimum number of offers 5

Table 1. Parameter values for the simulation. Note that variates from each of the
three normally distributed latency times are resampled if negative.

A new job is assumed to arrive on the network at a random node; this node
is designated as the job handler. The job is associated with a randomly de-
termined size and duration; both of these numbers are random variates drawn
from a Gamma distribution; table 1 gives the relevant means. The handler node
immediately forwards the job’s service request to all of its connections on the
overlay network. Transmitting these messages involves a modest, normally dis-
tributed delay time. Those connections in turn forward the service request on

to all of their overlay network connections; however, care is taken not to send
the request on to a node that has previously seen it. This process comes to an
end when the overlay hop limit is reached. The overlay hop limit exists in order
to avoid never-ending message broadcasts; the idea is to start looking for an ap-
propriate resource in the local area, to look further afield if necessary, but never
to scan the whole network. (Without a hop limit, our approach would not have
any potential advantages over the centralised approach.)

When a resource node receives a service request, it evaluates that request
according to its sigmoid function and sends back an offer (directly, via the ‘inter-
net’) to the job handler. The evaluation process involves a normally distributed
delay, as does the direct communication over the ‘internet’ (see table 1). The job
handler waits until it has received a minimum number of offers (in this case five;
see table 1), and then attempts to allocate the job with the node that has made
the lowest or cheapest offer. For the purposes of this simple initial simulation,
failure to receive the full complement of offers (typically due to system load)
results in the complete and permanent failure to allocate the job. In a richer
model, it would of course be possible to implement a timeout system whereby
the best offer is eventually accepted even if too few offers have arrived. In the
event that the node making the lowest offer is no longer available at the point
in time when allocation is attempted, the job handler chooses the next lowest
offer. Note that this is not an uncommon occurrence as system load increases,
because in the current system, the bidding node does not reserve space for the
job in any way.

Once jobs are allocated, they are assumed to automatically complete after
their scheduled duration has been reached and they have no further effect on the
system. The simulation is run for a period of 2000 units of simulated time; this
particular value was chosen such that each resource is expected to have been
allocated to capacity three over. When this time limit is reached, no new jobs
are added (i.e. load drops off to 0), however allocations in progress are allowed
to succeed or fail.

6 Results and Evaluation

We simulated Grid systems of both 100 and 256 nodes. The results for both sizes
were qualitatively similar, and so we will report only the results for the larger,
256-node system.

Figure 6 shows that larger numbers of jobs are successfully allocated under
higher load levels. This is not surprising given that there are more jobs in the
system. The results also show that jobs are allocated successfully with a relatively
small failure rate. As load increases we see increasing failure rates, however the
failure rate remains linearly proportional to load until the highest load levels are
reached.

Given that the mean communication latency for overlay network hops is 0.1
and for ‘internet’ communication is 0.3, the allocation times shown in figure 6
indicate that a significant amount of back and forth communication is occurring

400
|

o
0 8] (7]
ﬁ o 1 ﬁ § _
3 g | 3
s ¥ g 8
€ — 5 «
o [5)
8 o c
- Q o
E ~ E S
z . =4
8
_ o
S \ \ \ \ \ \ \ \ \ \ \ \ \
0.80 0.90 1.00 1.10 0.80 0.90 1.00 1.10
Load Load
o | .
z g g
£ u | > 3
c [ee] ©]
RS 3
g 2 £ 3
o o ©
I 5 £ .
8 ~ § o
S o | 5 ©
% ~ % —
n o 8 i
© T T T T T T T S T T T T T T T
0.80 0.90 1.00 1.10 0.80 0.90 1.00 1.10
Load Load

Fig. 2. Performance of the simulation. Clockwise from top left, the figure shows the
number of completed jobs, the number of incomplete jobs, the proportion of incomplete
jobs, and the mean job allocation time. All of these measures are shown across 7 load
levels; each data point shows the mean and standard error across 10 simulation runs.

before jobs are assigned to nodes. In other words, the negotiation process be-
tween jobs and resources takes time. On the positive side, the mean allocation
time scales linearly with load. As the load exceeds 1.0 and the system becomes
more ‘crowded’, unsurprisingly, some jobs fail to be allocated. However, there
is no corresponding explosion in allocation time for those jobs that have been
successfully allocated.

A closer inspection of the results shows that jobs that fail to be allocated tend
to be large jobs. The overall mean size of unallocated jobs is 56.3, compared to
a mean size of 20 for all jobs. We have also found that many observed allocation
failures were due to the lack of a time out mechanism for responding to offers.
Many of the failed jobs never received a full set of five offers, and therefore never
responded to an offer and were never allocated. A timeout mechanism would
have allowed these jobs to eventually respond to their best existing offer.

The mechanism that allowed the simulation to continue past 2000 time units
led to an overall average of 18 time units being added on. This represents about
three consecutive job allocation times but does not seem to have any significant
effect on the results.

7 Conclusion and Further work

We have shown that our bioinspired resource allocation algorithm is a viable
contender for use in future Grid implementations. In particular the linear scal-
ing of job allocation times suggests that graceful degradation under high load
conditions may be exhibited by real systems of this type.

Clearly, the most important step for the further exploration of these results
is the systematic comparison of this algorithm with the existing centralised ap-
proaches such as that used in Condor/G [1].

There are a number of ways in which this algorithm could be refined. Cur-
rently the sigmoid function for evaluating a job is static. Greater flexibility could
be achieved by allowing each node to adapt its evaluation function over the course
of the simulation run. An under-utilised resource could lower its offers according
to how long it has been idling. Similarly a busy resource could raise its offers in
order to achieve better balance over the network.

Further expansions that would allow as to more accurately model a real Grid
system include:

— Performance — estimation of a job’s performance factored into decision to
bid and bid amount.

Network topology — examine different networks for their effects on perfor-
mance and robustness[11].

Multiple resource types — model various types such as storage, network,
I/0 devices, etc.

— Multiple resource co-allocation — spreading large jobs across multiple re-
source nodes.

Advance resource reservation — reserving capacity for jobs that are expected
to arrive in the future.

— Multiple VO networks — the current system assumes a common usage policy

across all nodes, but this is not likely to be the case on future large scale
Grid systems.

References

10.

11.

12.

13.

14.

. Jim Basney and Miron Livny. Deploying a high throughput computing cluster.

High Performance Cluster Computing, 1:Chapter 5, May 1999.

Rajkumar Buyya, Steve J. Chapin, and David C. DiNucci. Architectural models
for resource management in the grid. In In Proc. of 1st IEEE/ACM Interna-
tional Workshop on Grid Computing (GRID 2000), Springer Verlag LNCS Series,
December 2000, Bangalore, India.

K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid information ser-
vices for distributed resource sharing, 2001.

. Guy Theraulaz Eric Bonabeau, Marco Dorigo. Swarm Intelligence : From Natural

to Artificial Systems. Oxford University Press, 1999.

I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann, 1999.

Tan Foster. The anatomy of the grid: Enabling scalable virtual organizations. Int.
Journal of Supercomputing Applications, Vol 15, No. 3, 2001.

B. A. Huberman, editor. The Ecology of Computation. NorthHolland Publishing
Company, 1988.

Adriana Iamnitchi and Ian Foster. On fully decentralized resource discovery in grid
environments. In International Workshop on Grid Computing, Denver, Colorado,
November 2001. IEEE.

R. Buyya K. Krauton and M. Maheswaran. A taxonomy and survey of grid resource
managment systems for distributed computing. Int. Journal of Software: Practice
and Experience, Feb 2002.

A. Law and W. Kelton. Simulation Modeling and Analysis. McGraw-Hill, 3rd
Edition, 2000.

M. E. J. Newman. The structure and function of complex networks. STAM Review,
45:167-256, 2003.

Globus Project. The globus project homepage. http://www.globus.org/
[25/4/2002], 2002.

Mitchel Resnick. Turtles, Termites, and Traffic Jams: Ezplorations in Massively
Parallel Microworlds. MIT Press, 1994.

D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks.
Nature, 393:440-442, 1998.

