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Abstract

Decentralised coordination in multi-agent systems is typically achieved using communi-
cation. However, in many cases, communication is expensive to utilise because there is
limited bandwidth, it may be dangerous to communicate, or communication may simply
be unavailable at times. In this context, we argue for a rational approach to communica-
tion — if it has a cost, the agents should be able to calculate a value of communicating. By
doing this, the agents can balance the need to communicate with the cost of doing so. In
this research, we present a novel model of rational communication that uses information
theory to value communications, and employ this valuation in a decision theoretic coor-
dination mechanism. A preliminary empirical evaluation of the benefits of this approach
is presented in the context of the RoboCupRescue simulator.

1 Introduction

Increasingly, complex real-world problems (including distributed sensing, air-traffic control,
disaster response, network routing, space exploration and unmanned aerial vehicles) are being
tackled by teams of software agents, rather than a traditional monolithic centralised system.
Whilst this approach has many benefits in terms of creating robust solutions, it creates a new
challenge — how to coordinate the actions of the agent teams to solve the problem efficiently.
In this context, coordination involves managing the interactions of the autonomous entities so
that they do not disrupt each other, can take proactive actions to help each other, and can take
multiple actions at the same time when this is required to solve the problem.

Now, in almost all existing work, communication is a central component of the coordina-
tion problem. That is, the agents communicate their state and intentions to each other in order
to reach agreements and an understanding about how to coordinate their actions. However, in
many real-world problems, communication is a scarce resource. Specifically, communication
is typically limited in bandwidth, is not always available, and may be expensive to utilise. In
such circumstances, many coordination mechanisms break down because the agents can no
longer accurately model the state of the other agents. Given this, in our research, we consider
how to utilise rational communication [4] to coordinate when communication is a restricted
resource.

Against this background, this work presents a model of rational communication based on a
principled formalisation for efficiently approximating the value of communications in a decen-
tralised sequential decision making context. This approach allows the agents to attach a value



to the communication action, and so balance the possible value gained by the team with the
costs associated with using the communication infrastructure. Whilst the current policy gen-
eration model for decentralised Partially Observable Markov Decision Processes (POMDPs)
can already perform such trade-offs implicitly, these approaches must reason about all possi-
ble observation and communication histories of the team — leading to an intractable policy
generation problem. We avoid this by introducing a novel principled valuation for communi-
cations based on information theory (specifically, the impact of any communication is mea-
sured using KL Divergence). This is an efficient calculation that does not require reasoning
over team beliefs. This novel approach then allows decentralised POMDP models to be ap-
plied to much larger problems (for instance RoboCupRescue), whilst avoiding any domain
specific knowledge to generate valuations for communication actions.

In the rest of this paper, Section 2 describes some of the related approaches for valu-
ing communications in multi-agent coordination. Section 3 describes our general formali-
sation for valuing communications and Section 4 gives a specific instantiation in terms of
RoboCupRescue, a large multi-agent disaster response simulation. Section 5 gives an empir-
ical analysis of our model within the RoboCupRescue domain and shows the utility of our
approach. Finally, in Section 6, we describe the future directions of our research.

2 Background and Related Work

In this section we first consider models of coordinating multi-agent systems since these will
influence which communication valuations are possible and how they are utilised. Following
this, we explicitly consider how to engender rational communication by the generation of
valuations. Finally, it is important to consider action selection mechanisms which are capable
of leveraging our coordination models and communication valuations.

2.1 Coordinating Multi-Agent Systems

In the current literature there are several general approaches to modelling coordination be-
tween teams of agents — including teamwork models, Bayesian Networks and Markov Deci-
sion Processes. All of these models can be distributed and utilise communication to manage
inconsistencies between agents. Furthermore, they all allow a rational approach to communi-
cation by allowing the agents to assess the impact of communication actions in the future. We
now describe each of these models in more detail.

Teamwork models such as GRATE* [5], STEAM [14] and Generalized Partial Global
Planning (GPGP/TAMS) [2] allow agents to build models of the team problem and provide
teamwork operators for perturbing these models. These models allow for complex team op-
erations, but they also require a large communication overhead for their joint-planning stages
— which is inappropriate in our problem domain where communication may be unavailable
and agents need to perform reasonably well when out of contact with the team.

Bayesian Networks have also been used to model the distribution of knowledge in teams,
allowing agents to reason about the uncertain state of the team for coordinated actions [4, 12].
Now, while this is a useful technique for modelling the impact of communication actions, it re-
quires complex belief revision processes to implement, which makes it an inefficient approach
with large teams.

Decentralised POMDPs have been introduced by a number of authors [17, 15, 8] in or-
der to model the team decision problem in a sequential domain. Such approaches are good
at representing partially observable, stochastic problems with a more general communication
framework than teamwork models. Unfortunately, these models do not scale well because



of the classic curse of dimensionality problem. Nevertheless, this still forms the point of
departure of our work because it allows us to model our problem with communication re-
strictions and our communication valuations can be combined with existing work on efficient
policy generation to make for a more scalable solution. To give more details, consider the
dec_POMDP _com from Zilberstein and Goldman [17], which is a decentralised POMDP with
an added alphabet of possible communications. In this context, the difference between cen-
tralised and decentralised POMDPs is that the former is a single POMDP that can be solved
by each agent or a central authority — since the state of each agent is known to all others. In
a decentralised version, however, each agent has its own MDP to solve, with the other agents
corresponding to a partially observable part of that MDP. Specifically, the dec_.POMDP _com
is defined by the tuple (for 2 agents) DECPOM = (S, Ay, A, 3, Cs, P, R,Q4,92,0,T)
where:

e S is the state space. The global state is defined as the joint state of both agents.

e A; and A, are the action spaces of each agent, with a; an element of A;. An element
(ay,ay) of the joint action space A = X A;, represents the concurrent execution of the
actions a; by each agent agent :.

e ). is the alphabet of communications with o; € > a message sent by agent 7. ¢, is the
null communication.

e (% is the cost of communicating an atomic message. This cost is 0 for the null commu-
nication (sending an empty message).

e P is the transition probability function. The probability
P(s € S,a; € Aj,ay € Ay, s € S) €]0,1] (1)
of moving from state s to state s’ when the agents take actions a; and as.

e R is the reward function. Returns a real-valued reward
R(s € S,a; € Aj,01 € X1,a9 € Ay, 09 € 39,8 €5) e R ()

for executing actions a; and as and sending communications o; and o9 in state s, re-
sulting in state s’.

e (), and (), are the observation spaces of each agent.
e O is the observation function. It is the probability
O(s € S,a1 € Aj,ay € Ay, s € S,01 € Qy,00 € Q) €[0,1] (3)
of observing o1 and o2 when in state s and taking actions a; and as resulting in state s'.
e T', the time horizon, whether infinite or if finite, a positive integer

The solution to the decentralised model consists of two policies: i) the normal action policy
for the POMDP that associates belief states with actions and i7) the policy that associates belief
states with communication acts. When the communication occurs the messages are typically
broadcast to all agents and thus provide a means to synchronise the agent’s knowledge of the
global state.



2.2 Valuing Communication

To achieve rational communication, the key challenge is how the sender can estimate the value
to the team of a particular communication. There are two main approaches to do this. The
first is to measure the value of communication as the improvement in coordination that occurs.
This involves modelling the coordination problem explicitly, and perturbing it to to see how
it changes with communication. The second involves relating the content of communications
to the reward structure of the problem, rather than the team. Both approaches will now be
considered in more detail.

Considering the first approach, if we evaluate models of the coordination problem, such
as STEAM, then we can predict the change in utility based on sending a communication. This
is done in [16], which models the future stages of the team coordination in a MDP, where
communication acts cause transitions in the model. A similar approach in [4] models the state
of the team knowledge using a Bayesian Network, and values communication based on how
it changes the expected utility of possible actions. Both methods rely on agents maintaining
good models to generate coordinated actions, rather than explicitly modelling coordination.
Whilst this general approach is very powerful, and generates an accurate value of the impact
of communication, it requires an estimation of the state of each team member, which is not
realistic for larger teams where the agents can be in many different states. In essence, the
computational complexity of this approach does not scale well with the number of agents, and
it would be better if we could derive a valuation which does not depend on a team model.

In the decentralised POMDP formalisation we have chosen to use in this work, the true
impact of communications on expected reward could be calculated using the POMDP by
considering the joint belief space during policy generation, but this is intractable since decen-
tralised POMDPs have NEXP-time complexity [1]. Because of this, we propose a principled
way to approximate this valuation using an information theoretic method. This makes the
computation tractable by removing the need to consider the joint belief space in policy gener-
ation (more details are given Section 3).

Following this, information theory is a general model of valuing the information content of
a particular message. Specifically, if we can relate the information content of communication
to how useful it is to the team, then we have a simple local calculation of the value of a
communication. Furthermore, this is not dependent on a team model and consequently scales
with the number of agents. Examples of this approach are found in [9], where sensor networks
must distribute only the most valuable observations because of power restrictions. Whilst we
follow this broad approach, there are several additional problems to consider: i) how do we
normalise the communication valuation with other rewards in the problem? and ii) how do we
balance the costs for communicating with other actions? These are dealt with in Section 3.1
and 3.2 respectively.

2.3 Action Selection

Our decentralised POMDP affords us with some options for policy generation. Since we
consider classes of problems where the transaction and observation functions are fully defined
before acting in the problem, there are three relevant solution concepts:

e Offline: computation before the problem starts is used to generate an optimal or ap-
proximate policy.

e Online: agents select actions during the problem, rather than following a pre-computed
policy.



e Hybrid: an approximate policy is generated offline, and online computation is used to
improve the accuracy.

Usually, a large problem calls for offline or hybrid processing, but problems such as RoboCupRes-
cue are too large to make these feasible approaches (for example, an instance of RoboCupRes-
cue has roughly 279 states). Online approaches such as [7] and [10], are more promising
because they only generate an action for the current belief state of the agents — rather than

all possible belief states. This means computation can be done at each action selection point
during the simulation. These models then use heuristic search to return the action with highest
expected reward after some search depth.

However, to date, most of these algorithms have been designed for single agent models. In
order to apply these to the multi-agent case, the action selection mechanism needs to consider
the other agents in order to coordinate (i.e. locally optimal action selection for each single
agent may not lead to optimal team performance), and, as a result, the problem becomes
much larger. However, models that explicitly consider the multi-agent case can reduce the
size of the problem by exploiting interaction between the agents. This is seen in the solution
detailed in [13] which finds optimal policies for decentralised POMDPs, but ignores commu-
nication and is only suitable for small problems. Similarly, [11] considers communication by
assuming it is free in the offline planning stage, and then reasons about it online. Following
this algorithm, at each step, agents calculate the joint action with and without sending their
observation history. If the communication version results in a better outcome, then the ob-
servation history is communicated. However, this model relies on maintaining joint beliefs,
which grow as no communication action is taken. As a consequence, this must be approx-
imated to make the algorithm tractable for small problems, so it is very difficult to extend
it to problems as large as RoboCupRescue. A multi-agent algorithm from [3] approximates
the whole problem as a series of single step Bayesian games. This closely parallels the ap-
proaches taken in [7], but the algorithm is explicitly multi-agent. Unfortunately, there are no
results with this algorithm in large problems. Thus, as a first step, this research will extend
the work in [7] to the multi-agent case, since it has shown good results in RoboCupRescue,
with no offline computation.

3 Decentralised Coordination with Valued Communications

In this section, we present our model — dec_POMDP _Valued_Com — a model of decen-
tralised coordination which utilises an information theoretic communication valuation. We
then proceed to describe an online policy generation algorithm which has been designed to
leverage the communication valuations in our model.

3.1 The dec_ POMDP Valued Com Model

Previous work in decentralised POMDPs considers communication to be a separate problem
from other actions, which is always available in parallel. This assumes that it is possible to
communicate and take other actions at the same time. However, we do not consider this to
always be a realistic assumption because utilising the communication medium may stop other
actions. Therefore we make communication an action like any other. This allows the model
to plan actions that must be taken before communication is possible. Thus, for example, the
model can evaluate the value to the team of a particular communication, but the agent may
be in a state where communication is not possible. Given this, the agent can then estimate
the cost of moving to a state which allows communication, and decide whether it is worth



performing this state change in order to send the communication. Consequently, a solution to
our model is a single policy which includes all communications and domain actions.

Now, we would like to remove reasoning about the value of communications from the
coordination model (because of the complexity of this method) and replace it with a principled
approximation. We do this using a normalised (in terms of the concrete rewards available to
the team) information theoretic valuation over possible communications. To this end, the other
key feature which distinguishes our model is that we include a second reward function, which
is used exclusively for the communication actions. Hence, our model has two reward functions
that are weighted so that the communication reward function represents an approximation,
using an information theoretic measure, of the true value (impact on expected reward) of the
communication. This measure gives the amount of information in a subset of observations b,
relative to the communicating agent’s current beliefs b;. We use this second reward function
to remove reasoning about the value of communications from the policy generation problem.
Specifically, the weighting of this second reward function is intended to replace this reasoning
with a principled approximation. The benefit of this approach is that policy generation is more
scalable (because agents do not need to consider the possible beliefs of the other agents) and
is explicitly concerned with choosing the most valuable action (and not analysing the impact
of communication). At this time, the formal derivation of this weighting is ongoing work so
here we use an empirical approach to show the utility of our approach (see Section 5 for more
details).

The dec_POMDP _Valued_Com is defined by the tuple (for 2 agents) D EC POMV ALCOM =
(S, Ay, A9, 3, Cy, P, Ry, R, R, 4,5, 0, T) where all the symbols have same meaning as in
Section 2.1, except:

e R, is the problem reward function. It returns a real-valued reward
R,(s € S,a1 € Aj,a3 € Ay, s €5) e R 4)

when executing actions a; and as in state s, resulting in state s’. This is equivalent
to R in the original formalisation, except that the communication substage has been
removed.

e Y is the alphabet of communications with o; a member sent by agent . Here, we fix
the communication alphabet to be the alphabet of observations so that we can employ
generic metrics over it, hence > = {2; = (); = () and ¢,, is the null communication.

e R, is the communication reward function. R.(by,by,) is the value of by, (a subset of
communication symbols) in the current belief state b;. This value is information gained
by the communicating agent from b;,. We approximate the influence of this value to the
eventual reward gained, in order to give a rational value to communicating.

e Our empirical approach will aim to find an approximation for the relative importance
of communicating compared with other actions. Thus we will assign reward using the
function

R=aR,+ (1—-a)R. (5)

The intuition here is that a communication act allows the other agents to know the exact
state of the communicating agent (in some sense this is a synchronisation point), and that we
should be able to use the distance the beliefs of the agent moves from this point in the belief
space as an approximation of the probability of mis-coordinating. The idea of representing
the probability of mis-coordination is seen in [14], but there the probabilities are defined by
the designer. Here on the other hand, we use a more general approach by approximating this
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probability as a distance in the belief space. Specifically, in our work, the R, valuation is
performed using KL Divergence [6]— the difference in information in an agent’s belief state
b, with and without the communication b, are compared:

by (1)
bn (1)

Re(by,bp) = NDgep(bi|[bn) = N bi(i)log (6)

where NV is a normalisation factor, b; is the agent’s current belief state, by, is the belief state
at the time of the last communication and ¢ represents any variable in these belief states (thus
the difference is the information content of all observations since the last communication).
KL Divergence is chosen because it evaluates all state variables in a single calculation, unlike
Fisher Information, the other main information theoretic candidate, which evaluates a variable
individually. This is useful because we need to evaluate the reduction in uncertainty given by
a single observation, normalised by the uncertainty in the entire belief state. This is because
knowing a single variable to a very high precision is not as useful, in our task, as having a
rougher estimate of many variables. Essentially, we need to consider all variables at the same
time. Furthermore, this calculation is closely related to the Bayesian updating of the POMDP
model, making it computationally efficient. Finally, it can also be seen that this is a general
valuation function as it is only expressed in terms of observations in a POMDP, thus making
it straightforward to apply to a different problem domain.

3.2 Policy Generation

As described in the Section 2, Real Time Belief Space Search (RTBSS) represents a good start-
ing point for the policy generation problem, as it has shown good performance in RoboCupRes-
cue. The algorithm, in its original form, coordinates agents using a complex reward function,
which rewards the coordinated actions. Now, while this approach is valid for achieving co-
ordination in their particular scenario, it is still necessary to encode explicitly how the agents
should coordinate and thus it is not very general. Consequently, we choose to augment their
algorithm with the ability to consider joint actions — the actions taken by each team member
at each decision point. In more detail, each agent must estimate the actions available to the
other agent and consider rewards over these joint actions (see line 12 of Figure 1). This can
be achieved by considering the state of the other agents, and does not require modelling their
beliefs — which we aim to avoid. Rewards are still calculated in terms of the local interpreta-
tion of the state (see line 11 of Figure 1), which allows the agents to make coordinated actions
when they have a good idea of the state of the other agent.

4 RoboCupRescue as a dec POMDP Valued_Com

This section instantiates the dec_POMDP Valued_Com model from the previous section in
terms of RoboCupRescue. We first describe the aspects of the RoboCupRescue domain we
are interested in, followed by an instantiation of the model. Finally, we present a simple
example of rational communication in this domain.

In more detail, RoboCupRescue is a multiagent simulator of the situation in an urban area
in the immediate aftermath of an earthquake. Here, heterogeneous intelligent agents such
as fire fighters, the police and ambulance crews conduct search and rescue activities in this
virtual disaster world. Specifically, they search for civilian agents trapped in damaged and
burning buildings. Ambulance agents are responsible for freeing trapped and hurt civilians
and moving them to a refuge; Fire Brigade agents must fight the spread of the fire; and the



1: Function Modified_RTBSS(b, d, r Acc)

2: b: The current belief state, d: The current time, r Acc: Accumulated rewards.

3 Statics: D: Search time, bestV alue: The best value found in the search, action: The best action.
4 IF d = 0 THEN if at the horizon of the search

5: finalValue «— rAcc +~P x U(b) value of branch plus utility of belief state
6: IF finalValue > bestV alue THEN if this is better than the best so far

7: bestValue — finalValue set to the best so far

8: END IF

9: RETURN finalValue return the value of this leaf

10: ENDIF

11:  rAcc + rAcc+~P~% x R(b) else add reward for Belief state to accumulator
12:  JointActionList «+ Sort(b, A) get next possible joint actions

13:  maz < —oco set smallest value

14: FOR ALL a € JointActionList DO for each possible joint action

15: erxpReward «— 0 accumulated reward is 0

16: FOR ALL o € 2 DO for all observations

17: b — 7(b,a,o) calculate next belief state

18: expReward «— expReward +yP~% x P(ola,b)  current reward + value of subtree

19: x Modified_.RTBSS(b',d — 1,7 Acc)

20: END FOR

21: IF (d = D A expReward > max) THEN if this is largest so far then

22: max — expReward

23: action «— a best action is current action

24: END IF

25: END FOR

26:  RETURN max return the value for this subtree

Figure 1: Modified RTBSS

Police agents must unblock roads. In still more detail, the environment consists of buildings
connected by roads. Nodes connect different roads and buildings together, thus the map can
be seen as a graph. Agents have limited sensing capabilities; they can only tell the state of
buildings that are very close, with some amount of noise. They have knowledge of the layout
of the map, but do not initially know which roads are blocked, where civilians are trapped and
which buildings are on fire. All agents can move along roads and into buildings, if those roads
are not blocked. Agents are hurt if they move into burning buildings. Communication is peer
to peer and has a cost which we can define for our problem.

In this context, the full RoboCupRescue problem requires several components not relevant
to this research (such as an estimation of how fire spreads and a highly efficient search strat-
egy), and so we will constrain the problem. To this end, we will only consider the ambulance
agents’ task — that is, we will remove fires and road blocks, and consequently remove the fire
brigade and police agents. We do this because the police task does not require teamwork to
unblock roads and the fire brigade task requires a complex model of the spread of the fire to
do well (thus it is less about coordination). Several elements need to be defined from the point
of view of the ambulance agents. Firstly, we model just two ambulance agents, a; and as, to
keep the following example clear. The state S describes whether buildings contain trapped
civilians or not, and also the position of the two ambulance agents, who can be in any build-
ings, or on any road or node (but only one of them at any one time). The actions A; available
to the agents are complex behaviours to move to unexplored buildings, rescue civilians, move
civilians to refuges, and finally, communicate their observation history since the last time they
communicated (D). At each time step, agents select joint actions (an action is assigned to
each team member) and implement their own part of that joint action. The rescue model has
been altered from the standard seen in the competitions — the amount a civilian is dug out is
now sub-linear with the number of ambulances digging. Consequently, a team of agents does
much better than when the agents work individually. We did this so that tight coordination on
rescue actions is desirable, and the problem is not dominated by the need to search the entire
map in order to do well. The cost of this communication C's; relates to the time required to



send the observation history. The reward function I?,, gives a reward for each civilian rescued
and building explored. R, and R are defined as the general formula from Section 3.1. The ob-
servation function €2; = €2 supplies each agent with the state of buildings nearby (i.e. whether
these contain trapped civilians) and the location of the other agent if it close enough. The
communication alphabet ¥ = 2; = 2, and so a message can be composed of any symbol in
the observation alphabet. A summary of this formalisation is given in Figure 2.

Component | Representation Example

S Buildings can contain zero or more civilians and each of | Any state is a complete enumeration of all variables
the 2 ambulances can be at any building, road or node. (a1 = bi,a2 = ng,bp = 0...b; = 1,ng =
On typical maps there are approximately 700 buildings, | 0...nm = 1,70 = 0...7; = 1) where i is the
600 roads and 1000 nodes. This leads to a state space of | number of buildings b, m the number of nodes n and
approximately 2790 x (700 + 600 + 1000)2 which is too | 5 the number of roads

large for offline computation

A; Each agent can move to an unexplored building, it can also | A move from Building b, to Node n, by agent a1
load and unload civilians, and communicate will change the value of the variable a1 = n,
i The alphabet of communications is the history of observa- | A communication can be null or any set of obser-
tions from the last communication vations (p(b; = civ) = 0.0,p(by = civ) =
1.0,p(b; = a1) = 1.0),(p(by = a2) =
1.0, p(b; = az) = 1.0), (p(by = civ) = 1.0))
[&5 This cost is O for the null communication, and one | If the nearest non-blackout is ng then Cx(a1 =
timestep for all other communications no) = 1 timestep. If the nearest non-blackout is

n1 and it takes 2 timesteps to move a; = n then
Cs:(a1 = ng) = 3 timesteps.

P Defined by the simulator.
Ry If ¢ = 10 and e = 50 then the reward is 3500 (from
Rp,=cxr+exr/2 (7) | equation 7) but if e = 40 then the reward is 3000,
giving a higher reward for exploring more

where r is a normalised reward (100), ¢ is the number of

civilians rescued, and e is the number of observed build-

ings (to encourage exploration)

R. Rc(b1,bp) = NDgr(bpllb1) = N Y-, by (i)log Zi‘((z)) The belief state for a single building b1 = b; =
[0.5, 0.5] and the communication b, = b; = 1, with

N = 1000 results in R, = 300

R R=aR,+ (1—-a)Re If R, = 3000, R. = 300 and o« = 0.8 then R =
2460
Q; In this case the ambulances can observe the state of any | Building b can be observed to contain civilians p(b =

building within some range and the position of the other | civ) = 1.0 or empty p(b = civ) = 0.0. Ambulance
agent within that range. This is corrupted with some noise | agent a; is observed to be at some some Building b,
Road r or Node n. Any observation is a set of these
variables with values (p(b; = civ) = 0.0,p(by, =
civ) = 1.0,p(b; = a1) = 1.0)

O Defined by the simulator

T 5

A There are 2 ambulance agents, with the joint action J; € | a1 and a2
A

b; The belief state for agent 4 is a probability distribution over | (p(b; = civ) = 0.5,p(b; = mnociv) =
the possible values of each state variable 0.5,p(a1 = by) = 1.0)

Figure 2: A dec_POMDP _Valued_com of the RoboCupRescue ambulance task

4.1 A Coordination Example

We will demonstrate this model with a simple coordination task. Two ambulances, al and a2,
must rescue a civilian from a building b1, on a map composed of two buildings with a road
rl connecting them. Agent al is in bl and has previously observed the civilian (civ) in bl,
a2 is in b2 and does not observe any civilians. We consider the action selection for agent al
as in Figure 3, and demonstrate its search to a depth of one. The agent must choose between
attempting to rescue the civilian and communicating its existence. It is assumed that once
both agents know about the civilian they will cooperate to save it. Other parameters are as
described in Figure 2.



Buildin Buildin

° ¢ plbl=civ)=1.0

plelRp=plollcr+elr/2)) = 0.24(0*¥100+1%50) = 0.2*50=10
plo)Rc=plo)*N*Dkl(b,0) = 0

ple)R=plo)(aRp +({1-a)Rc) = 0.7%10 + 0 =7

b1 Road rl b2

plo)=0.2

e(rescue,rescue) = 91
plo)Rp=plo){cr+e(r/2)}=0,8#(1*100+1*50)=0.8+150=120
plo)Re=plo)*N*Dki(b,0)=0
plo)R=plo){aRp + (1-aJRc) = 0.7#120 + 0 =84

plbl=civ)=0.0

rescue, rescue

plo)=0.8

rescue, explore

al action pibl=civ)=1.0

plo)Rp=plolicr+(e(r/2))=1.0%0*100+1%50)=1,0450=50
plo)Rc=p(0)*N*DkI(b,c) = 1.0*¥1000*0,301 = 301
plo)R=ple)(aRp + (1-ct)Re)=0.7%50+0.3*301 =125

communicate, rescue plo=1.0

communicate, explore elcommunicate, explore) = 125

plo)=0.0

plbl=civ)=0.0

Rational Communication | ¢ = p(bl=civ)=1.0

belief state b= bl b2
civilian here c 0505
no civilian here nc 0.50.5

Rc = 1*og(1/0.5) + 0.5*0g(0.5/0.5)
=0.301

Figure 3: An execution example

Considering the example, the agent must choose between four joint actions:
A = ((rescue, rescue), (rescue, explore), (communicate, rescue), (communicate, explore))

The first action in each tuple represents the action taken by al and the second is taken by
a2 concurrently. We demonstrate the calculations for J; = (rescue,rescue) and J, =
(communicate, explore), as these are the most illuminative. After al implements its part
of the joint action it will receive one or more observations according to equation 3. In the fol-
lowing, the probability of observation o is denoted by p(o). In this example, this observation
is always related to whether building bl contains a trapped civilian (p(b1 = civ) = 1.0) or
not (p(b1 = civ) = 0.0). In our example we do not need to utilise the full algorithm in Figure
1. Instead, we summarise the expected reward over observations and joint actions with the
following equation:

e(J;) =Y _p(o)R(J;, 0) (8)

o€

where we restrict the summation to only those observations o which satisfy p(o) > 0. This
is valid because we are using a myopic example. Consequently, we must calculate R (by
equation 5) for each joint action/observation pair. Calculating R requires values for 12, (by
equation 4) and R. (by equation 6), which we will describe in more detail for J, and the
observation p(bl = civ) = 1.0.

In this case, R, uses the instantiation from Figure 2 which relates rewards to the number
of civilians rescued and buildings explored (see equation 7 in Figure 2). Initially, one building
has been explored and no civilians rescued, giving R, = (10004 50+ 1) = 50. Furthermore,
R. = NDy(b,c) from equation 6, where b is the initial belief state for al which has no
information about whether there are trapped civilians in each building — all probabilities are
uniform. The communication c that we measure is the observation of a trapped civilian in
bl (p(bl = civ) = 1.0) and in this example N = 1000. Thus the information gain (using
KL Divergence) in that observation is 301 (which is scaled in line with R, from equation 6).
Since R = aR, + (1 — a)R, (see equation 5), this gives R = 0.7 * 50 4+ 0.3 * 301 = 125
where a = 0.7 in this example. Using equation 8, e(J5) = 1.0 x 125 = 125 and e(.J;) =
91 (see Figure 3 for the calculations for this joint action) which means that al chooses to
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communicate c¢. These calculations show that agent al expects to gain more reward (125)
by communicating the existence of the civilian than assuming the other agent knows about
it and attempting to rescue (91). Essentially, the normalised KL Divergence value of the
communication represents the extra reward that is obtained by influencing the probability of
mis-coordination inherent in assuming the other agent believes the same as the communicating
agent (which is what our coordination algorithm does). If this value is lower than other actions
or the cost of communicating, this indicates that it is not worth attempting to influence that
probability.

If we consider our example further, the agent might choose to communicate the null ob-
servation (the probability of a civilian in any building is equal to the probability of no civilian,
so (p(bl = civ) = 0.5,p(b2 = civ) = 0.5)). As per equation 6, this would have resulted in
0 for the same b. In this case communication would not have been selected. Furthermore, it
also shows that on the next timestep, the value of communicating about the civilian will have
dropped and the agent will rescue instead. This is because b will have changed to include
knowledge of p(b1 = civ) = 1.0 and R, = 0. These two examples show the rationality of our
valuation — communicating zero information has no value and communicating previously
communicated information also has zero value.

Furthermore, if the value of o was less than the value used here (0.7) then communication
would not be used in this scenario, but ultimately the agents would take longer to save the
civilian. Similarly, if o was greater then the agent would communicate too much and again
the team would do less well. This shows the importance of setting the correct normalisation
between the actual rewards for solving the problem 2, and the virtual rewards for communi-
cating I?.. To this end, in Section 5, we experiment with a range of « values.

5 Experimental Evaluation

We now evaluate our coordination mechanism and communication valuation in the context
of RoboCupRescue. We will first describe our experimental setup, including performance
measures and experimental variables. Following this, we will establish an upper and lower
bound on the performance of our coordination mechanism in this problem. Finally, we present
results for our valuation mechanism and compare this to a benchmark. These results include
a comparison of performance with varying communication availability — a common feature
of many coordination scenarios that existing work ignores.

5.1 Experimental Setup

In these experiments, we compare four communication policies — two of these (Zero and
Full) are designed to establish a lower and upper bound for the standard coordination problem,
and between these we analyse our mechanism (Valued) for valuing communications and a
simple benchmark solution (Selective):

e Zero: the agents do not communicate with each other, and essentially solve the problem
in isolation.

e Full: the agents send a communication to each other containing their last observations
at each time step (making communication effectively free). More formally, agent a;
receives observation o at timestep ¢. At timestep ¢t + 1, a; chooses an action and com-
municates o to all other agents, who receive it at timestep ¢ + 2. This is equivalent to
a centralised solution, because the agents have full knowledge of the state of the other
agents and so they are all calculating the solution to the same single-agent POMDP.
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e Selective: the agents can choose to communicate all observations since their last com-
munication action at each time step, but doing this has a cost. Specifically, this cost
is incurred because the agents cannot take any other actions whilst communicating.
Here communication is an option, and at the same time a simple static domain val-
uation is used to estimate the reward that communication represents. This value in-
creases with a constant each time the agent does not communicate, and resets to 0 when
communication is employed. More formally, initially R. = 0 and at each timestep ¢,
R., ., = R, +c/10 where cis the value of rescuing a civilian from R,,, and o = 0.5 giv-
ing equal weighting to each reward function. If communication is used then R,,., = 0.
We use these values for ¢ and « as these result in the greatest performance after empiri-
cal analysis (which we do not present here due to space constraints). Furthermore, agent
a; has a history of observations since the last time it communicated b,,. At timestep ¢,
a; receives observation o and appends this to its history b, = b, + 0. At timestep ¢ + 1,
a; chooses an action, including the option of communicating b,. If communication is
taken then b, = @ and R, = 0.

e Valued: the agents can select to communicate as in Selective communication, but the
information content of the message is used to value the communication actions and a
parameter controls the mixing of this with problem rewards. Thus, communication is an
option, but now the agents can evaluate whether it will be helpful. More formally, agent
a; has a history of observations since the last time it communicated b,. At timestep ¢,
a; receives observation o and appends this to its history b, = b, + 0. At timestep ¢ + 1,
a; chooses an action, including the option of communicating b;, and which will have a

value R, = N x Value(b;,b,) = N X Dgp,(bi]|bn) = N, bi(i)log% where b; is the
belief state of agent a; and NV is a normalisation factor. If communication is taken then
b; = &. We define the relationship between the two reward functions as R = o l?, and
(1 — a)R.. Intuitively « controls the relative importance of communicating to problem

solving, and we explore its value empirically.

To summarise, communication is completely free in Full — hence it is used all the time;
the agents never communicate in Zero; Selective and Valued both use the model of commu-
nication valuations but Selective uses a constant reward per timestep, whereas Valued uses
an information valuation over the agent’s knowledge and possible communications.

In these experiments we measure performance as the number of civilians moved to refuges
by the end of the simulation run. Each test run starts on the same map with random placement
and status of civilians. The ambulance agents always start in the same place. Maps could
be generated randomly, but we hold that this does not add any validity to our method, since
the map used represents a standard competition map which has not been altered to favour our
approach. Furthermore, generating random maps can add noise to the process as ambulance
agents can start off trapped in collapsed buildings and we have not considered this scenario at
this stage.

When considering Full, Zero and Selective, the dependent variables are graphed with
respect to simulation timestep and mean behaviour is compared directly. When considering
Valued, the mean summaries of the experimental variables are graphed with respect to the
« values employed. In more detail, for the dependent variables it is useful to obtain a figure
summarising the entire simulation performance. This is useful when evaluating the impact
of a on the other simulation variables, as we need to compare performance across the entire
space of . This takes the form of the dependent variable values after 300 time steps in each
run. In general 30 runs are performed for statistical significance, which is computed using a
standard t test for the 95% confidence interval — ensuring the error statistic is less than 0.005.
a is explored between 0 and 1 with increments of 0.1, interpolating in-between.
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5.2 Results

Initially, we compare civilians saved by the end of the simulation in Full, Zero and Selective,
in order to investigate the upper and lower bounds on our coordination method. As Figure 4
shows, Full performs the best because the agents model each other at all times (they have a
centralised view of the problem) — this means that the agents actions are always coordinated.
By way of contrast, the agents do not coordinate well in Zero because they do not model each
other accurately. Hence they duplicate the areas of the map they have searched and do not
dig co-operatively. In Selective, the agents do a little better because communication happens
periodically. Still, the agents do not communicate efficiently, since this algorithm assumes the
agents gather information at a constant rate — which is clearly not true because an agent is
not compelled to gather new information.

Civilians Rescued
45 T T T

T
Full Communication
Zero Communication -------
40 | Selective Communication -------1

35

25

20

% Civilians rescued

15

10 +

0 50 100 150 200 250 300
Timestep

Figure 4: Percentage of civilians rescued during the simulation averaged over 30 runs

Given these bounds on performance, we now investigate the utility of valuing communi-
cations in our Valued model. In more detail, our model requires us to mix the rewards from
acting in the problem with rewards in communicating — denoted by R, and R, respectively.
It is interesting to consider how these should be mixed, to find where maximal performance
occurs. To this end, o controls the relative importance of solving the problem I?,,, against in-
formation dispersal 2. and will vary from 1 (only assign reward to solving the problem) to O
(only assign reward to dispersing information). It can be seen in Figure 5 that for a range of «
values, the performance of Valued with no restrictions on communication availability (Valued
0% Blackout) approaches Full (the communication time requirements make this an unrealistic
assumption). When o = 0 the agents communicate all the time (leading to very low perfor-
mance), and when o = 1, the agents never communicate, reducing it to Zero (although the
points do not meet exactly due to the noise introduced by extra actions — communication).
When comparing Valued with Selective, it is clear that both can be used to value commu-
nications appropriately but Valued is more efficient and leads to a higher team utility. This
is because Selective assumes a constant information gain with time which is not the case —
Valued measures the information gain before deciding whether to communicate.

With the utility of our method established in the simple case, we now consider the impact
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Figure 5: Percentage of civilians rescued at the end of the simulation averaged over 30 runs

of communication restrictions. The communication restrictions we describe here more realis-
tically model the sorts of communication conditions found in many real problems, and we are
interested to see if our mechanism is robust to these restrictions. Here we define ‘blackouts’
over some areas of the RoboCupRescue maps, where it is impossible for the agents to com-
municate. If an agent chooses to communicate within a blackout area, the agent first moves
to the nearest point where communication is available. This area is defined randomly as a
number of points on the map, and within a small radius of these points the blackout exists.
We experiment with a range of blackout volume (25%, 50%, 75% and 99%). We perform the
same experiments as with unrestricted communication and present the results in Figure 5.
For blackouts ranging from 0-75%, the change in response to the o parameter is not sta-
tistically separable. It is clear that whilst the overall performance hardly changes, the shape
does — reflecting a change in the value of communication because of the higher cost when
there are restrictions. With a blackout covering 99% of the map, performance is drastically
impacted because of the increased time involved in travelling to an area where communica-
tion is possible. Consequently, performance never exceeds Zero. This suggests that when
communication is very expensive, it is better to try to solve the problem in isolation.

6 Conclusions

We develop a model of rational communication that can evaluate the usefulness of commu-
nicating to the team using an information theoretic measure. This is combined with a de-
centralised decision theoretic coordination mechanism to balance the cost of communicating
with the benefit of communicating. We then implement this in terms of RoboCupRescue and
compare our approach with a centralised version, a non-cooperative team, and communicating
selectively with no information about the importance of that communication.

In more detail, the results show that our approach can provide a principled, domain in-
dependent valuation function for communication actions that allows for agent coordination,
without the complexity of considering all agent beliefs. We also demonstrate that our model
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is robust to severe communication restrictions, which existing work assumes will not occur.
This represents a first step towards a robust, scalable coordination mechanism which is able
to employ communication rationally.

Our experiments form a useful empirical validation of this technique, and in future work
we intend to extend the model and analyse its theoretical properties. In more detail, we need to
demonstrate that a parameterised information theoretic reward function for communications
is a valid approximation to analysing joint beliefs in the decentralised POMDP model. This
includes proving the rationality of our valuation function. Furthermore, we want to be able
to calculate the value of communications as a function of the problem specification and the
communication language employed. This would then enable us to analytically define the
optimal « rather than obtaining this value empirically. Both of these aspects would prove the
utility of this technique for dramatically reducing the complexity of decentralised POMDPs
and increasing their applicability beyond the RoboCupRescue domain. Finally, we envisage
this work being useful in domains where communication costs are dynamic. Consequently, it
would be interesting to consider how to learn the approximation online.
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