A Decentralised On-Line Coordination Mechanism for
Monitoring Spatial Phenomena with Mobile Sensors

Ruben Stranders, Alex Rogers and Nicholas R. Jennings
Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK.

{rs06r, acr, nrj}@ecs.soton.ac.uk

ABSTRACT

In this paper, we introduce the first on-line, decentralised coor-
dination mechanism for monitoring spatial phenomena with mul-
tiple mobile sensors that model the environment using Gaussian
processes (GPs). These sensors have their application domain in
highly dynamic scenarios, where strict time constraints prohibit
path planning in advance, or where the characteristics of the spa-
tial phenomena are unknown a priori. Our coordination mechanism
enables the sensors to learn the environmental parameters on-line
from their collected observations (and represents them using the
GP), and to coordinate their movements to maximise their collec-
tive information gain in a decentralised way. We evaluate our al-
gorithm using real-world sensor data collected at the Berkeley In-
tel Research lab, and demonstrate that a team of 5 mobile sensors
equipped with our algorithm monitors the environment with a 51%
reduction of Root Mean Squared error compared to a network of
fixed sensors that have been deployed using an off-line optimisa-
tion algorithm that has complete information of the characteristics
of the spatial phenomena.

1. INTRODUCTION

In disaster response, and many other applications besides, the avail-
ability of timely and accurate information is of vital importance.
Thus, the use of multiple mobile sensors for information gather-
ing in crisis situations has generated considerable interest'. These
mobile sensors could be autonomous ground robots or unmanned
aerial vehicles. In either case, while patrolling through the disaster
area, such as a smoke-filled building, these sensors usually need
to keep track of changing environmental conditions, such as the
temperature, and the concentration of smoke and potentially toxic
chemicals. The key challenges in so doing are twofold. First, the
sensors cannot cover the entire environment at all times, so the spa-
tial and temporal dynamics of the monitored phenomena need to be
identified in order to predict measurements in the rest of the envi-
ronment. Second, the sensors need to coordinate their movements
to collect the most informative measurements needed to identify
these dynamics.

Recent work has attempted to solve these challenges using Gaus-
sian processes (GPs). A GP is a principled Bayesian method for
inference about functions [8], and has been shown to be an effec-
tive tool for capturing the dynamics of spatial phenomena [1]. Us-
ing GPs in this fashion, researchers have presented algorithms to

"For example, one of the missions of both the ALADDIN project
(http://www.aladdinproject.orqg) and the Center for
Robot Assisted Search & Rescue (http://crasar.csee.
usf.edu) is to use autonomous robots for information gathering
in disaster response scenarios.

calculate informative placements of fixed sensors [3], and for pre-
planning informative paths for multiple mobile sensors [9].

Whilst these approaches present a significant contribution to their
field, they are less suitable in our domain. First, these algorithms
are geared towards solving a one-shot optimisation problem in an
off-line phase. In rapidly changing environments, however, mobile
sensors need to be able to continuously adapt to changing circum-
stances. Consequently, this is an ongoing optimisation problem
that requires an on-line solution. Second, they assume the avail-
ability of a set of previously collected measurements from which
the dynamics of the spatial phenomena can be learnt. This assump-
tion does not hold in disaster response scenarios, because in most
cases no sensor data is available beforehand (because it is usual a
unique situation that has not been seen before), and they are inher-
ently uncertain. Third, these algorithms do not model the temporal
dynamics of spatial phenomena; they consider how a phenomenon
varies in space, but not in time. For example, the temperature in
an environment may be fairly similar at different locations in the
environment at any given moment, but change rapidly over time.
For mobile sensors in a rapidly changing environment, such dy-
namics are very important. Specifically, it allows them to deter-
mine whether the uncertainty in the environmental conditions at an
unvisited location has grown too large, and consequently whether
that location needs to be revisited. Finally, these algorithms are
centralised. In hostile environments, this is undesirable, because it
creates a single point of failure, thereby increasing the vulnerability
of the information stream.

To address these shortcomings, we present the first on-line, de-
centralised coordination mechanism for teams of mobile sensors
in which path planning and learning are simultaneously performed
on-line. To this end, we represent each sensor as an autonomous
learning agent. These agents are capable of making measurements,
exchanging observations with other agents, and modelling both the
spatial and temporal characteristics of the phenomena without prior
knowledge. By exchanging their observations, the agents share the
same world view. This allows the agents to avoid each other, and
choose their movements to maximise collective information gain.
More specifically, the agents are able to coordinate because they
share the same world view through the exchange of observations.
As a result, each agent is able to determine the information content
at every location in the environment at every moment in time. For
example, an observation made by an agent reduces the amount of
information directly around it. Each individual agent will recognise
this and move away from others towards more informative parts
of the environment. Moreover, because every agent controls its
own movements using information it possesses locally, there is no

central point of control, and the coordination mechanism is decen-
tralised.

In more detail, in this paper we contribute to the state of the art in
the following ways:

e We devise an algorithm that allows mobile sensors to coor-
dinate on-line through the exchange of observations. From
these observations, each agent learns the hyperparameters of
its GP. This GP not only models the spatial, but also the tem-
poral dynamics of the phenomena being monitored. These
models are then used by the agents to move autonomously
through the environment in search of informative observa-
tions.

e We evaluate our approach using real-world sensor data from
the Intel Berkeley Research lab. The results of this sim-
ulation show that use of our coordination mechanism in a
team of 5 mobile sensors results in a 51% reduction of root
mean squared error compared to a network of fixed sensors,
or equivalent performance to a fixed sensor network of 15
nodes (in both cases, the fixed sensors are placed optimally
assuming prior knowledge of hyperparameters using an off-
line optimization routine).

The remainder of the paper is organised as follows. First, we present
a formalisation of the problem domain. Then, we describe our de-
centralised coordination mechanism and empirically evaluate it.

2. THE MONITORING PROBLEM

Our informal discussion of the problem of monitoring spatial phe-
nomena above gives rise to the requirements that our mobile sen-
sors need to satisfy. Specifically, we want them to autonomously
collect observations in the environment in order to accurately mon-
itor it. To this end, the sensors should:

e Process noisy observations and identify temporal and spatial
trends in the environment.

e Coordinate to collect observations that maximise the infor-
mation gain of the collective.

More formally, we denote an environment by a triple £ = (S, G, P),
where

e S={s;i|i =1...N}is the set of N mobile sensors;

e The graph G = (V, E) defines legal moves: the set V' con-
tains all locations the sensors can visit, and edge-set £ C
V' x V contains all permissible moves between locations in
Vi

e P is a spatial phenomena that is monitored by the sensors
in S. Here, we model phenomenon P as some real valued
function of time and location: P : V x T' — R.

The sensors’ locations at time ¢ are denoted by the N-tuple L; =
(Ii,...,1Y), where I € V. At given times ¢, the sensors take
measurements Oy = (otl7 oY) at locations L by sampling

from P: o} «— P(I,t).

Given this model, the sensors’ challenge is to monitor P at all loca-
tions V at time ¢. Since the number of sensors /V is generally much
smaller than |V| (the number of locations that are monitored), the
sensors need to not only take measurements at locations St, but also
predict the value of P at time ¢ for every location V', based on ob-
servations Oy ., made earlier. We denote these predictions at time
t by P, = {p{|v € V'}. Suppose the actual measurements made at
those locations are A; = {a{ |v € V'}, then the challenge faced by
the sensors is to coordinate their movements to minimise the root
mean squared error (RMSE) of the predictions for all timesteps ¢:

ZUEV(G%} - p?)Q

&)

3. THE DECENTRALISED
COORDINATION ALGORITHM

In this section, we describe our decentralised coordination algo-
rithm. Before doing so, however, we give a brief overview of GPs,
show how the hyperparameters of a GP can be learnt from observa-
tions, and show how to quantify informative placements of sensors.

3.1 Gaussian Process Basics

As mentioned earlier, GPs have been shown to provide an effective
tool for modelling spatial phenomena. One of their key features is
the ability to predict a measurement at any location given a set of
previously collected observations (either in space or in time), with
an explicit representation of the certainty of that prediction. More
formally, given a set of n observations A = {(xs,y:)|i = 1...n},
where x; denotes a D dimensional input vector, and y denotes the
target output, the GP can predict the value y. for any input vector
X.. This value is normally distributed: p(y.|A) = N (y«; i, 02),
where p and o2 are obtained using the following equations.

o=y + Sy Al (ya — pa))
Ky, yo) = Sy aX 20 4y 3)

S
V]
Il

Here, KC(-, -) is referred to as the covariance function, and the el-
ements of the covariance matrix X xy are computed by evaluat-
ing K(-,-) for all pairs of elements from sets X and Y. In this
context, the covariance function determines how observations are
correlated, and is critically dependent on the characteristics of the
spatial phenomena of interest. For most spatial phenomena, the
correlation between observations is inversely proportional to their
separation in the input space (in space, time or both). Moreover,
these phenomena tend to be non-smooth functions of time and lo-
cation. To model these kinds of functions, the Matérn class of co-
variance functions has been shown to be suitable [6] and we will,
therefore, adopt it in this work:

K(x,x") = JJ% (1 + \/gr) exp (f\/gr) “4)

where 0? is the signal variance, and r is defined as:

r=+(x—-xP-1(x —x))

Here, P is a diagonal matrix with entries 12,... 1%, that scale the
dimensions of the input vector x independently. Depending on the
type of dimension, these entries are more commonly referred to
as lengthscales or timescales. The more gradually the modelled
phenomenon varies over an input dimension, the longer lengthscale
for that dimension, and vice versa®. The individual scales allow
us to model processes that are strongly correlated along one input
dimension, while weakly correlated along another. For example, a
spatial phenomena that varies slowly over space, but very quickly
over time has a long lengthscale, but a short timescale®.

As formalised earlier, the phenomenon P is a function of time and
space. Therefore, we use three input dimensions x = (z,y,t):
two spatial (corresponding to the x and y dimensions of the envi-
ronment), and one temporal (corresponding to the time ¢) to model
the correlations in P. Consequently, the matrix P contains three
non-zero entries: P = diag(12,12,17), where I is the lengthscale,
and l; is the timescale. By adding a timescale, we explicitly intro-
duce the temporal aspect of the spatial phenomenon into the GP, in
contrast to the placement algorithms for fixed sensors (e.g. [3]).

Finally, one of the requirements discussed above is the ability of
a sensor to process noisy measurements. In order to model this
noise, we add an extra term 0,0y to Equation 4, where o, is
the noise variance, and d,- is the Kronecker delta which is one iff
x = x’. To see why this models noise, note that o, will appear on
the diagonal of the covariance matrix, which is the variance of the
measurement.

3.2 Marginalising Hyperparameters

The Matérn covariance function in Equation 4, extended with the
capability of modelling noisy observations, has a number of free
variables (o, on, ls, l¢). Since these variables determine the dis-
tribution of weights of an underlying parametric model [8, Section
2.1], they are usually referred to as hyperparameters. In most cases,
the values of these hyperparameters are not known a priori, but
have to be inferred from the set of observations O,/ . In practical
terms, this involves the marginalisation of the hyperparameters, a
process captured in the following integral:

_ [yl A, ¢)p(Ald)p(p)de
PO = T A)p(0)do ©

In our case, the parameter space ¢ is the Cartesian product of the
parameter spaces of o ¢, o, Is, I;: R®. Needless to say, in general,
this space grows very large as the number of parameters increases.
Furthermore, the non-trivial dependence between the likelihood of
the parameters p(A|¢) and the prediction p(y|.A, ¢) on ¢, makes
this integral non-analytic. However, Osborne et al. ([6]) show how
sophisticated quadrature can be used to approximate it. In gen-
eral, quadrature involves evaluating both p(A|¢) and p(y|A, ¢),
for multiple samples of ¢, which is a computationally intensive op-

*Note that for I; = 1 for 1 < ¢ < D, the numerator of the expo-
nent becomes the square of the Euclidean distance between the two
vectors, in which case the resulting GP exhibits the same charac-
teristics over all input dimensions.

*This choice is not critical to our work, but has been found to be
suitable during our experimental evaluation. Different phenomena
may warrant other types of covariance functions, without the need
for changing the operation of our proposed coordination mecha-
nism.

eration®. Moreover, the size of the parameter space ¢ precludes
exhaustive sampling from these functions. Therefore, Bayesian
Monte Carlo (BMC) [7] is used to reduce the number of samples.
Unlike many frequentist approaches, BMC uses as much informa-
tion about the sample functions as possible. So, instead of taking
into account only the sample values, BMC also uses the sample
locations and the smoothness of the integrand. As a result, BMC
needs significantly fewer samples to produce an accurate approxi-
mation of the left hand side of Equation 6. The result of applying
BMC is a weighted sum of GPs:

pylA) = Y wep(y|A, ¢) (7)
¢

Note that p(y|.A, ¢) denotes a GP fitted to data A for hyperparam-
eter sample ¢, and w, denotes the weight assigned to the GP with
hyperparameters ¢. To put it differently, the prediction of y is a
weighted sum of predictions from GPs with the hyperparameters
from the sample set. Space prohibits a full treatment of BMC, and
how the weights w, are obtained. For further details, refer to [6]
and [7]. It suffices to say that by using algorithms for re-using the
major part of the computations when new data points are collected,
BMC is a very suitable and efficient algorithm for learning the hy-
perparameters, while at the same time providing a principled way
for regression and prediction’.

3.3 Quantifying Informative Placements
Before we turn to the key contribution of this paper, we first need
to quantify how informative a sensor placement is. Two measures
have been proposed in earlier work. The first is the entropy crite-
rion® [1]:

L} = argmax H(L) ®)
Lt

where L, is obtained from L;_; through legal moves of the mo-
bile sensors (i.e. moving sensor s; from I tollis possible iff
(1{_1,1}) € E). Using this criterion, the sensors will position
themselves at locations with high entropy at every time step ¢’.

*Calculating p(y|A, ¢) alone involves fitting a GP with parameters
¢ on observations .A using Equations 2 and 3.

SSimpler alternatives for BMC exist for estimating hyperparame-
ters ¢, such as Marginal Likelihood (ML) [8, Section 5.4]. How-
ever, our experiments showed that ML too often ends up in local
maxima, resulting in very poor predictions.

®With slight abuse of notation, we will denote the location and the
random variable representing the measurement at that location with
the same symbol.

"Guestrin, Krause, & Singh ([3]) show that this criterion tends to
place fixed sensors along the border of the environment, where
they are maximally uncertain about each others’ measurements.
Consequently, these sensors waste a large part of their sensor
range. As an alternative, they propose the mutual information
(MI) criterion, which leads to a more central placement of the sen-
sors: L; = argmaxr, I(V \ L¢; L), where mutual information
I(X;Y) measures the reduction in uncertainty of random variable
X, given the value of random variable Y. Using MI, sensors tend
to collectively position themselves at those locations that reduce
the uncertainty at locations V' \ L, as far as possible. However,
calculating MI is a computationally more involved process than
calculating the entropy, because it requires calculating the result-

Regrettably, optimising entropy is an NP-hard problem [4]. More-
over, in the applications mentioned earlier, the observations needed
to learn the hyperparameters are collected on-line, and are not avail-
able beforehand. These two considerations have led to the use of
a greedy on-line policy [5]. The policy is greedy, because at each
timestep, individual sensors move to the location with the highest
entropy, without considering subsequent moves. This is computa-
tionally less demanding than calculating L; in Equation 8. Further-
more, the policy is on-line, because the entropy is constantly being
updated based on newly acquired observations made by the sen-
sor itself and the other sensors. Now, we can formalise the greedy
on-line entropy criterion for each individual sensor as follows:

li11 = argmax H(li41|Op <t = Opr<t) 9
ly41€adj(ly)

where ;1 is an adjacent location to the sensor’s current location [;
in graph G, and o4/ - is the realisation of the set of variables Oy,
that is, all observations made before the current time step.

This leaves open the question of how entropy can be evaluated in
a GP. For a random variable X that is normally distributed with
variance o2, the entropy can be evaluated analytically:

H(X) = log(cv/2me) (10)

However, the approximation of p(y|.A4) using BMC in Equation 7
is not a normal distribution, but a mixture of Gaussians. No method
of analytically evaluating the entropy of such a mixture is known
to us. Fortunately, our experiments show that the distribution of
the weights w; becomes very peaked after only a limited number
of observations. Consequently, the result effectively approximates
a normal distribution and allows us to use the variance of the prob-
ability distribution function (pdf) from Equation 7% in Equation 10.

3.4 The Coordination Algorithm

Our algorithm is outlined in pseudo code in Algorithm 1. At the
beginning of each time step, the sensors take measurements (line
1), and send these to their peers (line 2). Their own measurements,
combined with those received from the other sensors in line 3, are
used to update the GP model (line 4). Next, each sensor predicts
measurements at every location in G for which it is closest (line 6).
Finally, in line 8, each sensor moves to the neighbouring location
with the highest entropy according to Equation 9.

This algorithm has two important emergent properties. The first is
the patrolling behavior of the individual agents. Using the greedy
on-line entropy policy, sensors will tend to move towards locations
with high entropy. Recall that the covariance function we use not
only takes into account the spatial correlations in the environment,
but also the temporal correlations. As a result, observations made
in the past will have increasingly less relevance for predicting the
current state of the environment. The entropy at locations that re-
main unvisited will therefore increase automatically, and those lo-
cations consequently become increasingly attractive to visit again.

ing entropy in the entire environment for every possible movement.
Moreover, preliminary experiments with mobile sensors showed no
significant improvements in performance when using MI instead of
entropy. So, we focus on the entropy in the remainder of this paper.

8Details on calculating the variance of this pdf can be found in [6].

Algorithm 1 The coordination algorithm instantiated for sensor s;
at time ¢.

1: Take measurement o} «— P(t,1}) ,

2: Send measurement o; and current position [; to sensors S \ s;
. : S\s;

3: Receive measurements O;
Sensors

: Update GP using newly acquired measurements

:forall {v € V| [l —v| < |lI] —v|Vj #i} do

Calculate prediction pj

: end for

: Move to the adjacent vertex [} ; that maximises the entropy:
Z:Jrl = argmax H(lt+1‘ot/<t = Ot/<t)

lt+1€adj(ly)

and positions Lts *i from other

This effectively incentivises the sensors to be in a constant state
of hill climbing in the direction of the steepest entropy gradient’.
So, in contrast to algorithms that calculate informative placements
for fixed networks, it is crucial for the mobile sensors to model the
temporal dynamics of the spatial phenomena, because the problem
they face is not a one-off optimisation problem; the sensors need to
determine the next informative placement given newly acquired ob-
servations, while the relevance of older observations declines over
time. Consequently, they will have to keep patrolling the environ-
ment by revisiting previously visited locations.

The second emergent property is the coordination between the agents.
The exchange of observations in step 2 of the algorithm allows the
sensors to share the same world view. It enables them to calculate
the entropy for every possible move, based on their neighbours’ lo-
cations and observations. Sensors will therefore tend to avoid each
other, and spread out, because moving in the direction of another
sensor will generally decrease the entropy. As a result, the sensors
are capable of implicitly coordinating their actions through the ex-
change of simple observations, and need not also exchange their
plans or intentions.

Figure 1 shows a snapshot of the algorithm in action. It shows
the path of a single sensor, and the variance with which the sensor
is able to predict measurements throughout the environment. As
can be seen, the sensor is moving in the direction of higher vari-
ance (and thus entropy). Note how the variance behind the sensor
increases along the travelled path. This is illustrates the effect of
modelling the phenomenon’s time dynamics: the older the mea-
surement at a certain location, the less useful it is to predict the
current measurement. For a more dynamic view of the operation of
the algorithm, see our videos at http://www.youtube.com/
mobilesensors.

4. EXPERIMENTAL SETUP

To empirically evaluate our approach, we simulated teams of 5 sen-
sors using a dataset from the Intel Berkeley Research lab. This
dataset has been extensively used in related work to evaluate ap-
proaches in sensor networks [3]. It contains temperature, humidity
and light intensity measurements, and has been collected from 54
fixed wireless sensors between 28 February and 5 April 2004. Fig-
ure 2 shows the layout of the lab, and the location of the sensors.

‘We compared our approach with five benchmark policies using the

°This is similar to information surfing as proposed in [2], where
mobile sensors for target tracking move in the direction of the
steepest mutual-information gradient.

X (meters)

Figure 1: The world view of a single sensor moving through
the Intel Berkeley Research lab at timestep ¢ = 25. The path
of the sensor is indicated by arrows. Superimposed is a con-
tour plot of the predictive variance with which the sensor can
predict measurements throughout the environment (the num-
bers on the contour lines indicate the variance). The lower
the predictive variance, the better measurements at uninstru-
mented locations can be predicted. These predictions are made
using the sensor’s GP, based on measurements collected along
the sensor’s path. Times are in minutes.

dataset. Using the formal model introduced earlier, the graph G is
populated with vertices V' that correspond to the 54 sensor loca-
tions, and the edges E that restrict movement between any pair of
locations v;,v; € V that are no further than 8 meters apart. At
every 5 minute interval, each deployed sensor s; makes a tempera-
ture reading 0! by querying the Berkeley dataset for the sensor’s
present location [and the current simulation time ¢. After the
sensors have updated their GP models (Algorithm 1, step 4), the
sensors make temperature predictions P; for all of the 54 sensor
locations V' (step 6). The RMSE is subsequently using the actual
readings A; obtained by the 54 sensors. Finally, the policies that
use mobile sensors decide where to move next.

Now, the six policies can be seen as points in three-dimensional
space: the first dimension specifies the movement: mobile (M),
jumping (J), and fixed (F). The second dimension describes learn-
ing: knowing (K) the hyperparameters in advance'’, or having to
learn (L) them. The last dimension specifies the type of policy:
greedy (G) or random (R). In case of greedy, it is also specified
what is greedily maximised: entropy (e) or mutual information
(mi).

MLGe Our algorithm as detailed in the previous section: mobile
sensors that are capable of learning the values of the hyper-
parameters using BMC, and employ a greedy on-line move-
ment policy for entropy maximization.

MLR The same mobile sensors as MLGe, except that they move
randomly. This policy was included to determine the effect
of the greedy entropy policy.

Using an off-line learning algorithm, we determined the values of
the hyperparameters of the temperature in the lab.

87 Lie 0

%"o’eL Rl e

f%ﬁjx

W u’_\\
=

\(!IIJ

@ 1 op @ Qd@?ﬁjg?j m;
@?ﬂmmf @J @ @Q o @ 7&[@51%'7

Figure 2: Sensor deployment at the Intel Berkeley Research
lab. In our simulation, the sensors can move between the 54
real sensor-locations every 5 minutes to a location within 8
meters of their previous position. The lab itself measures 30
by 40 meters. (Copied from http://db.csail.mit.edu/
labdata/labdata.html).

MKGe The same sensors as MLGe, except that they have prior
knowledge of the all hyperparameters. This policy evaluates
the effect of having to learn the hyperparameters.

JKGe The same as MKGe, except that these sensors can instan-
taneously jump to a desired location without visiting inter-
mediate locations. This policy acts as an upper bound for
achievable performance.

FKGmi Fixed sensors that are placed using a greedy mutual infor-
mation maximisation algorithm that has prior knowledge of
all the hyperparameters [3].

FKGe Fixed sensors that are placed using a greedy entropy max-
imisation algorithm that has prior knowledge of the hyperpa-
rameters.

Given the characteristics of these policies, we can formulate the
following experimental hypothesis.

HYPOTHESIS 1. The prediction accuracy of our algorithm MLGe
will be higher than that of both fixed sensor networks, as well as
that of the random policy.

HYPOTHESIS 2. Our algorithm will closely approximate the
performance of benchmarks MKGe and JKGe that possess prior
knowledge of all the hyperparameters, that our algorithm has to
learn on-line.

S. RESULTS

Figure 3 shows the accuracy of the predictions in terms of RMSE of
a single run through the dataset, averaged over the days on which
the measurements were made. It clearly shows that our mobile
sensors outperform both fixed placements, and the randomly mov-
ing sensors, confirming Hypothesis 1. Furthermore, the fact that
the randomly moving sensors perform worse clearly shows that
the greedy entropy policy is indeed effective. Finally, the predic-
tion accuracy of our mobile sensors is comparable to those sensors
that can instantaneously jump to their desired location, and the mo-
bile sensors that have prior knowledge of the hyperparameters (i.e.

2
i T
Il I
1.5
%)
=
S 1
$
o
s
< T
0.5 1
0

MLGe MLR MKGe JKGe FKGmi FKGe

Figure 3: Average RMSE for the different types of sensor poli-
cies. Each simulation was performed with 5 sensors. The error
bars indicate the standard error of the mean.

the two policies used to put an upper bound on achievable perfor-
mance), confirming Hypothesis 2.

Figure 4 shows the effect of varying the number of sensors in the
environment. The mobile sensors start off with a significantly higher
performance than the fixed sensor network; around 15 fixed sensors
with prior knowledge of the hyperparameters are needed to attain
the same performance as a team of 5 mobile sensors. However,
when the number of sensors increases to around 15 (30% of the
number of sensors in the Berkeley lab), the two solutions become
equivalent. At this point, increasing the number of fixed sensors has
a greater effect on the performance than introducing additional mo-
bile sensors. This is caused by the fact that as the number of mobile
sensors increases, the freedom of movement of the sensors is re-
duced, thereby making it more difficult for them to reach locations
of high entropy. As a result, the performance of the mobile sensors
increases more slowly. We believe that this can be prevented by in-
troducing more explicit coordination between the sensors, and we
will consider this in future work.

6. CONCLUSIONS

In this paper, we introduced the first decentralised coordination
mechanism for monitoring spatial phenomena with mobile sensors.
These sensors can be applied in scenarios where a fixed sensor net-
work is not available or where a sensor network needs to be rolled
out quickly. Potential applications include dynamic environments,
such as disaster response and surveillance, but also more routine
tasks such as agricultural monitoring and weather prediction.

In particular, using a benchmark dataset, we demonstrated that not
only does our algorithm monitor the phenomena better than a net-
work of fixed sensors, but also that it does so with a reduced number
of sensors. Moreover, in contrast to the fixed sensor placement al-
gorithms, our algorithm is capable of learning the characteristics of
the environment while monitoring it, without the need for an off-
line learning phase. Furthermore, we showed how the sensors can
coordinate their movements to collect informative measurements
through greedy on-line entropy maximisation.

There are several interesting directions for future work. Firstly, we
intend improve the communication protocol. For example, band-
width can be saved by propagating only informative observations

25

- - - FKGmi
—MLGe

Average RMSE

2 4 6 8 10 12 14 16 18 20
Number of sensors

05 I I I

Figure 4: Graph showing the effect of varying the number of
sensors in the environment. Around 15 fixed sensors are needed
to attain a similar performance to the 5 mobile sensors. Addi-
tionally, the graph shows that adding additional moving sensors
to the environment does not bring about a significant increase
in prediction quality. The error bars indicate the standard er-
ror of the mean.

through the network, or by limiting communication to the exchange
of hyperparameter weights. Also, the sensors might need to remain
in communication range with each other and with the human op-
erators that use their information. Restricting their motion to keep
them connected is one of the problems that we need to address.
Secondly, we would like to investigate the effect of more sophis-
ticated coordination mechanisms. Currently, the sensors implicitly
coordinate with each other through the exchange of observations,
combined with zero-lookahead maximisation of the entropy. This
can lead to slight complications when the number of sensors in-
creases, as they tend to reduce each others’ freedom of motion.
Therefore, introducing negotiation between the sensors about plan-
ning longer paths might allow them to more effectively monitor
complex environments.

7. REFERENCES

[1] N. Cressie. Statistics for Spatial Data. Wiley-Interscience,
1993.

[2] B. Grocholsky, A. Makarenko, T. Kaupp, and H. F.
Durrant-Whyte. Scalable control of decentralised sensor
platforms. In Proceedings of the second International
Workshop on Information Processing in Sensor Network
(IPSN 2003), pages 96—112. Springer Berlin / Heidelberg,
2003.

[3] C. Guestrin, A. Krause, and A. P. Singh. Near-optimal sensor
placements in gaussian processes. In ICML ’05: Proceedings
of the 22nd International Conference on Machine Learning,
pages 265-272, New York, NY, USA, 2005. ACM Press.

[4] C.-W. Ko, J. Lee, and M. Queyranne. An exact algorithm for
maximum entropy sampling. Operations Research,
43(4):684-691, 1995.

[5] A. Krause and C. Guestrin. Nonmyopic active learning of
gaussian processes: an exploration-exploitation approach. In
ICML °07: Proceedings of the 24th International Conference
on Machine Learning, pages 449-456. ACM Press, New
York, NY, USA, 2007.

[6] M. A. Osborne, A. Rogers, S. D. Ramchurn, S. J. Roberts, and

(7]

(8]

[9]

N. R. Jennings. Towards real-time information processing of
sensor network data using computationally efficient
multi-output gaussian processes. In IPSN '08: Proceedings of
the seventh International Conference on Information
Processing in Sensor Networks (in press), 2008.

C. E. Rasmussen and Z. Ghahramani. Bayesian monte carlo.
In S. T. Suzanna Becker and K. Obermayer, editors, Advances
in Neural Information Processing Systems, volume 15, pages
489-496. MIT Press, 2003.

C. E. Rasmussen and C. K. Williams. Gaussian Processes for
Machine Learning. The MIT Press, 2006.

A. Singh, A. Krause, C. Guestrin, W. J. Kaiser, and M. A.
Batalin. Efficient planning of informative paths for multiple
robots. In International Joint Conference on Artificial
Intelligence (IJCAI), pages 2204-2211, 2007.

