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ABSTRACT
Coalitional games raise a number of important questions
from the point of view of computer science, key among them
being how to represent such games compactly, and how to ef-
ficiently compute solution concepts assuming such represen-
tations. Marginal contribution nets (MC-nets), introduced
by Ieong and Shoham, are one of the simplest and most in-
fluential representation schemes for coalitional games. MC-
nets are a rule-based formalism, in which rules take the
form pattern −→ value, where “pattern” is a Boolean condi-
tion over agents, and “value” is a numeric value. Ieong and
Shoham showed that, for a class of what we will call “basic”
MC-nets, where patterns are constrained to be a conjunc-
tion of literals, marginal contribution nets permit the easy
computation of solution concepts such as the Shapley value.
However, there are very natural classes of coalitional game
that require an exponential number of such basic MC-net
rules. We present read-once MC-nets, a new class of MC-
nets that is provably more compact than basic MC-nets,
while retaining the attractive computational properties of
basic MC-nets. We show how the techniques we develop for
read-once MC-nets can be applied to other domains, in par-
ticular, computing solution concepts in network flow games
on series-parallel networks.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems; I.2.4 [Knowledge representation formalisms
and methods]; F.2 [Theory of Computation]: Analysis
of Algorithms and Problem Complexity
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Coalitional games raise a number of important questions
from the point of view of computer science, key among them
being how to represent such games compactly, and how to
efficiently compute solution concepts assuming such com-
pact representations. The aim is typically to develop a rep-
resentation that is compact for cases of interest, and yet
allows the efficient computation of solution concepts. Ac-
cordingly, a number of compact representation schemes for
coalitional games have been proposed, with various com-
putational properties. For example, Deng and Papadim-
itriou [3] consider a representation of coalitional games based
on weighted graphs: nodes in a graph correspond to players,
and to compute the value of a particular coalition C, one
computes the total weight of the sub-graph induced by C.
The representation is compact because the size of a game
represented in this way is at most quadratic in the number
of players. Deng and Papadimitriou showed that for this
representation, computing the Shapley value, one of the key
solution concepts in coalitional games, is computationally
easy. However, the weighted subgraph representation is not
complete, in that there are some coalitional games which
simply cannot be represented using this approach. An ob-
vious research question is therefore to consider how to gen-
eralise the approach of [3] as far as possible, without losing
its desirable properties. One of the simplest and most influ-
ential such generalisations is the marginal contribution nets
(MC-nets) scheme of Ieong and Shoham [6]. MC-nets are
a rule-based formalism, in which rules take the form pat-
tern −→ value, where “pattern” is a Boolean condition over
agents, and “value” is a numeric value. Ieong and Shoham
showed that, for a class of what we will call “basic”MC-nets,
where patterns are constrained to be a conjunction of liter-
als, marginal contribution nets permit the easy computation
of solution concepts such as the Shapley value. However,
there are very natural classes of coalitional games that re-
quire an exponential number of such MC-net rules. While
it is easy to define more compact generalisations of MC-
nets, the most obvious such extensions lose the attractive
tractability properties of basic MC-nets. The following two
questions therefore suggest themselves: (i) Is it possible to
extend MC-nets, to allow compact representation of those
cases where basic MC-nets fail, while retaining the desir-
able computational properties of basic MC-nets? (ii) As we
generalise basic MC-nets, at what point does the represen-
tation cross the threshold from tractable to intractable? It
is to these two questions – and in particular the first – that
we address ourselves in this paper. Our main contributions



are as follows.
First, we show that the obvious generalisation of basic

MC-nets leads to intractability with respect to computing
the Shapley value. We then present a simple and intuitive
generalisation of basic MC-nets called read-once MC-nets.
We show that read-once MC-nets are exponentially more
compact than basic MC-nets, in that there exists a very
natural class of coalitional games that can be represented
compactly using read-once MC-nets, but which would re-
quire an exponential number of basic MC-net rules, at least
if we restrict ourselves to rules with positive values. We
then prove that read-once MC-nets retain the desirable com-
putational properties of basic MC-nets: in particular, it is
possible to compute in polynomial time the Shapley value
of players in a game represented as a read-once MC-net.
We then demonstrate that our approach has wider applica-
bility. We show that our algorithm for the Shapley value
on read-once MC-nets yields a pseudo-polynomial time al-
gorithm for computing the Shapley value in network flow
games on series-parallel networks, which were introduced in
multi-agent systems in [1]. Moreover, this algorithm can also
be used to compute Banzhaf power index in such games. We
begin, in the following section, by recalling the basic frame-
work of coalitional games and MC-nets.

2. PRELIMINARIES AND NOTATION
In this section, we provide definitions of some of the basic

concepts in coalitional game theory.

2.1 Coalitional Games
A coalitional game G = (I, v) is given by a set of agents

I = {x1, . . . , xn}, |I| = n, and a function v : 2I → R that
maps any subset (coalition) of the agents to a real value.
This value is the total utility these agents can guarantee to
themselves when working together. To simplify notation, we
will sometimes write i instead of xi.

A coalitional game is simple if v can only take values 0
and 1, i.e., v : 2I → {0, 1}. In such games, we say that a
coalition C ⊆ I wins if v(C) = 1, and loses if v(C) = 0. An
agent i is critical, or pivotal, to a winning coalition C if the
agent’s removal from that coalition would make it a losing
coalition: v(C) = 1, v(C \ {i}) = 0.

2.2 The Shapley Value
The Shapley value of an agent captures his marginal con-

tribution to possible coalitions. Let Π be the set of all per-
mutations (orderings) of n agents. Each π ∈ Π is a one-
to-one mapping from {1, . . . , n} to {1, . . . , n}. Denote by
Sπ(i) the predecessors of agent i in π, i.e., Sπ(i) = {j |
π(j) < π(i)}. The Shapley value of the ith agent in a game
G = (I, v) is denoted by φG(i) and is given by the following
expression:

φG(i) =
1

n!

X
π∈Π

[v(Sπ(i) ∪ {i})− v(Sπ(i))]. (1)

We will occasionally abuse notation and say that an agent i
is pivotal for a permutation π if it is pivotal for the coalition
Sπ(i) ∪ {i}. Also, we will sometimes omit the index G if it
is clear from the context.

For simple games, the formula (1) counts the fraction of
all orderings of the agents in which agent i is critical for the
coalition formed by his predecessors and himself. It thus

reflects the assumption that when forming a coalition, any
ordering of the agents entering the coalition has an equal
probability of occurring, and expresses the probability that
agent i is critical. In general, the Shapley value can be
viewed as an agent’s expected marginal contribution to the
value of a coalition, under the probability model described
above.

The Shapley value is the only payoff division scheme that
satisfies the following natural axioms:

Efficiency: It fully distributes the total payoff avail-
able to the agents:

nX
i=1

φG(i) = v(I).

Symmetry: If agents i and j are interchangeable,
i.e., for any S ⊆ I \ {i, j} we have v(S ∪ {i}) = v(S ∪
{j}), then φG(i) = φG(j).

Dummy: If an agent i does not contribute to any
coalition, i.e., v(S) = v(S ∪ {i}) for any S ⊆ I \ {i},
then φG(i) = 0.

Additivity: For any two coalitional games G = (I, v)
and G′ = (I, v′) defined over the same set of agents I,
for the coalitional game G + G′ given by (G + G′) =
(I, v + w) we have

φG+G′(i) = φG(i) + φG′(i).

2.3 Banzhaf Power Index
The Banzhaf power index was originally defined in the

context of weighted voting games. However, it can be used
to measure an agent’s power in any coalitional game. Sim-
ilarly to the Shapley value, it reflects the agent’s expected
marginal contribution to the value of a coalition. However,
the underlying probabilistic model of coalition formation is
different: rather than assuming that the agents join the
coalition in random order and thus all permutations of the
agents are equally likely, it assigns equal probability to all
2n possible coalitions. Formally, the Banzhaf share βG(i) of
an agent i in a game G is computed as follows:

βG(i) =
1

2n−1

X
S:i6∈S

[v(S ∪ {i})− v(S)]. (2)

While Banzhaf power index satisfies the symmetry axiom
and the dummy axiom, it may violate the efficiency axiom
as well as the additivity axiom.

3. MARGINAL CONTRIBUTION NETS
In this section, we introduce the notion of marginal con-

tribution networks, overview the previous results on com-
puting various solution concepts for a restricted subclass of
MC-nets, and show how to extend these results to a larger
class of MC-nets. We also discuss the limitations of our ap-
proach, showing that in the most general setting the problem
becomes NP-hard.

3.1 Previous Work
Marginal contribution networks (MC-nets) were proposed

by Ieong and Shoham [6] in 2005. MC-nets provide a flexible
and fully expressive representation scheme, which describes



a coalitional game using a set of rules. In more detail, a
marginal contribution network is given by a set of agents
I = {x1, . . . , xn} and a finite collection of rules of the form
(P → V ), where V ∈ R is the value of the rule, and P , which
is a Boolean expression over the set I, is the pattern of the
rule. A set S ⊆ I of agents is said to meet the requirements of
a given pattern P (denoted by S |= P ) if P evaluates to true

when the values of all Boolean variables that correspond to
agents in S are set to true, and the values of all Boolean
variables that correspond to agents in I \S are set to false.
The value v(S) of a group of agents S is defined to be the
sum over the values of all rules that apply to it, i.e.,

v(S) =
X

P→V :S|=P

V.

While the definition of MC-nets proposed by Ieong and
Shoham [6] is quite general, the computational results in [6]
are limited to a special case of this representation, namely,
the setting where the patterns in all rules are required to be
conjunctions of literals, i.e., expressions of the form

xi1 ∧ · · · ∧ xik ∧ x̄j1 ∧ · · · ∧ x̄jl .

In the rest of the paper, we call such rules basic, and say that
an MC-net is basic if it only uses basic rules. In [6], the au-
thors show (Proposition 1, [6]) that even this restricted class
of marginal contribution networks is universal, i.e., can be
used to represent any coalitional game (perhaps using an
exponential number of rules). Moreover, they show that
this representation is at least as succinct as some other well-
known representation languages, such as multi-issue repre-
sentation [2] or graphical form representation [3], and in
some cases can be exponentially more succinct.

Finally, [6] provides a polynomial-time algorithm for com-
puting the Shapley value in basic MC-nets. It also discusses
the problem of determining whether a given payoff vector is
in the core of such a game, and provides a polynomial-time
algorithm for basic MC-nets whose graphical representation
has bounded treewidth.

3.2 Limitations of Basic MC-Nets
In basic MC-nets, the formulas used in the rules are re-

quired to be conjunctions of literals. For example, x1∧ x̄2 →
V is a rule that can appear in a basic MC-net. However,
when using coalitional games to describe multi-agent sys-
tems, in addition to explicitly listing the agents whose pres-
ence/absence is necessary for completing a task, one may
want to express the fact that some of the agents are substi-
tutes for a particular task. A natural way to represent this
would be by using the ∨ connective. For instance, suppose
that a certain task can be completed by a team that includes
agent x1 and one of the agents x2 and x3 (e.g., because x2

and x3 have identical skills, but x1 has a unique set of skills
different from that of x2 and x2). This information can be
represented by a rule of the form

(x1 ∧ (x2 ∨x3)) → V, (∗)

where V is the value of this task. However, x1 ∧ (x2 ∨ x3) is
not a conjunction and hence (∗) is not a basic rule.

To overcome this difficulty, in [6], the authors show how
to represent any coalitional game using basic rules. Indeed,
if we want to describe a coalitional game that corresponds
to (*), we can do so using two basic rules, namely, x1 ∧
x2 → V and x1 ∧ x3 ∧ x̄2 → V . However, in some cases

such transformation may lead to a superpolynomial blow-up
in the representation size, at least if we restrict the values
associated with rules to be non-negative, as we do in this
paper. Consider the following example.

Example 1. Consider a set of 2n agents, where agents
2i and 2i − 1 have identical skills. Suppose that there is a
task of value V > 0 that can be completed using all n skills.
This situation is naturally represented by the following rule:

(x1 ∨ x2) ∧ · · · ∧ (x2n−1 ∨ x2n) → V. (3)

However, we will now show that to replace this rule with
a collection of basic rules with non-negative values, we will
need a superpolynomial number of rules.

Theorem 1. In Example 1, one needs Ω(2n) basic rules
with non-negative values 1 to represent the game given by (3).

Proof. The game given by rule (3) will be represented
using a collection of basic rules, each of which is satisfiable.
Observe that for all i in {1, . . . , n}, every basic rule in the
collection must contain a non-empty subset of {x2i, x2i−1}.
If that is not the case for some i, consider the set R of rules
that do not contain those literals, where R 6= ∅. If we put
x2i = x2i−1 = false, rules in R should be satisfied by some
values of the remaining Boolean variables, and should give
associated positive values to the coalition satisfying them.
That is a contradiction, since the total value should be 0 if
x2i = x2i−1 = false.

Define a minimum satisfying assignment (MSA) to be one
where for each pair {x2i, x2i−1}, only one of them is set
to true. There are 2n MSAs. We claim that the set of
basic rules satisfied by any MSA does not intersect with
the rules satisfied by any other MSA, implying that there
should be at least 2n basic rules. To see this, note that
for any two distinct MSAs there is some i such that one of
them has x2i = true and the other has x2i−1 = true. All
rules satisfied by the MSA with x2i = true must contain the
literal x2i—this is due to the observation that at least one
of {x2i, x2i−1} must be present, and the literal x2i−1 would
not be satisfied. However, those rules cannot be satisfied by
the other MSA.

3.3 Intractability of Computing Shapley Value
for General MC-nets

The results of the previous section suggest that we can
obtain exponentially more compact representation by allow-
ing the use of arbitrary Boolean expressions in the patterns.
However, if we do so, we may lose an important property
possessed by basic rules, namely, that of polynomial-time
computability of agents’ payoffs under classical value divi-
sion schemes.

Indeed, [6] shows how to efficiently compute Shapley val-
ues for basic marginal contribution nets. First, the authors
observe that the Shapley value is additive over rules, and
then they give an explicit formula for the Shapley value
of each agent under a given basic rule. This provides a
polynomial-time algorithm for computing Shapley values of
all agents in basic MC-nets. However, for rules that use ar-
bitrary Boolean formulas such an algorithm is unlikely to
exist.
1We believe that this result holds even if we do not require
the values to be non-negative. However, the proof for the
genreal case is more involved and is omitted from this version
of the paper.



Theorem 2. It is NP-hard to compute agents’ Shapley
values in general marginal contribution nets, i.e., MC-nets
in which the patterns in the rules can be arbitrary Boolean
expressions. This holds even if the coalitional game in ques-
tion is described by a single rule.

Proof. The proof is by reduction from 3-SAT. An in-
stance of 3-SAT is given by a set of Boolean variables X =
{x1, . . . , xn}, and a set of clauses c1, . . . , cm, where each
clause is a disjunction of at most three literals, i.e., the vari-
ables from X or their negations. It is a “yes”-instance if
the formula c1 ∧ · · · ∧ cm is satisfiable and a “no”-instance
otherwise.

Given an instance of 3-SAT, consider a coalitional game
with n+1 agents, and a rule of the form c1∧· · ·∧ cm∧xn+1 →
1, where xn+1 is a variable that does not appear in X. It is
easy to see that the Shapley value of the (n + 1)st player is
greater than zero if and only if the original instance of 3-SAT
is satisfiable. As a corollary, it is NP-hard to approximate
the Shapley value with any positive multiplicative error; for
if we could efficiently approximate the Shapley value, then
we could certainly check whether a player’s Shapley value is
greater than zero.

Remark 3. Our hardness result also applies to comput-
ing Banzhaf power shares. Indeed, the Banzhaf index satis-
fies the dummy axiom. Therefore, the proof of Theorem 2
shows that the original instance of 3-SAT is satisfiable if
and only if the Banzhaf power share of the (n + 1)st player
is greater than zero.

3.4 Read-once MC-nets
We have seen that there are natural coalitional games

that cannot be compactly described by basic MC-nets. On
the other hand, the previous subsection shows that using
arbitrary patterns in MC-nets leads to computational in-
tractability. Therefore, we would like to identify a class of
Boolean formulas that is more expressive than conjunctions
(and, in particular, is rich enough to express the fact that
certain agents are substitutes with respect to a certain sub-
task), and yet allows for polynomial-time computation of
Shapley values. In what follows, we show that these two
conditions are satisfied by the class of read-once Boolean
formulas. Informally, in a read-once Boolean formula, each
variable can only appear once. This condition has a natural
interpretation in the coalitional game setting: each agent
has a set of skills/disabilities that can be useful/harmful in
achieving a certain subtask, the agents can be substitutes
with respect to a subtask, but no agent can contribute to
more than one subtask. The subtasks are then combined
into a task using the Boolean connectives ∧ and ∨. The
formal definition is given below.

Definition 4. A read-once Boolean formula is a binary
rooted tree in which each internal node is labelled with ∧ or
∨, the leaves are labelled with literals (i.e., variables or their
negations), and each variable appears in at most one leaf.

Remark 5. Our algorithm for computing the Shapley
value (presented below) can be extended to the case when
negations appear as nodes of indegree one throughout the
tree. However, it is easy to see that any such formula can
be transformed into one of of the form described in Defi-
nition 4 with at most polynomial overhead. Therefore, in
what follows we restrict our attention to the formulas where
negations can only appear in the leaves.

Shapley(N = [{x1, . . . , xn}, (P1 → V1), . . . , (Pr → Vr)])
1. set t1 = t2 · · · = tn = 0;
2. for j = 1, . . . , r
3. [A,B,T,F] =Sh(Pj);
4. for i = 1, . . . , n
5. if Pj contains xi

6. set vi = 1
n!

Pn
k=0 k!(n− k − 1)!Ak,i;

7. if Pj contains x̄i

8. set vi = − 1
n!

Pn
k=0 k!(n− k − 1)!Bk,i;

9. if Pj contains neither, vi = 0;
10. set ti = ti + Vj · vi;

11. return (t1, . . . , tn);

Figure 1: Algorithm Shapley(N). (The subroutine
Sh(F ) is given in the appendix and described infor-
mally in the proof of Theorem 6, where relevant
definitions are given.)

We will refer to MC-nets that use read-once Boolean for-
mulas in the patterns as read-once marginal contribution
networks. It is easy to see that the formula used in Ex-
ample 1 is, in fact, a read-once Boolean formula, so this
representation can be considerably more compact than that
of [6], at least if we restrict ourselves to non-negative values.
On the other hand, we will now show that for this class of
rules it is still possible to compute the Shapley values of all
players in polynomial time.

Theorem 6. Given an MC-net of the form N = [I, (P1 →
V1), . . . , (Pr → Vr)], where I = {x1, . . . , xn}, V1, . . . , Vr ∈ Z,
and P1, . . . , Pr are read-once Boolean formulas, the algo-
rithm Shapley(N) presented in Figure 1 computes the vector
of Shapley values of all players (φN (1), . . . , φN (n)) and runs
in time poly(n, r, maxj log |Vj |).

Proof. Let XF be the set of agents corresponding to
variables that appear in a formula F . To simplify notation,
we will denote the ith element of I by i rather than xi.
Recall that we say that a coalition X satisfies a formula F
(and write X |= F) if F is satisfied by a truth assignment in
which the variables that correspond to agents in X are set
to true, while the variables that correspond to agents not
in X are set to false.

For each subformula F of an input formula Pj , for all i ∈
XF and k = 0, . . . , n, we now define the following quantities.

• Ak,i(F) =
|{X ⊆ XF : |X| = k, i 6∈ X, X 6|= F , X ∪ {i} |= F}|

• Bk,i(F) =
|{X ⊆ XF : |X| = k, i 6∈ X, X |= F , X ∪ {i} 6|= F}|

• Tk(F) = |{X ⊆ XF : |X| = k, X |= F}|

• Fk(F) = |{X ⊆ XF : |X| = k, X 6|= F}|

The first two of these quantities denote the number of sub-
sets (of a given size k) of agents for which the addition of
agent i causes a given formula to become respectively sat-
isfied, or unsatisfied. The latter two denote the number of
subsets (of size k) of agents that respectively satisfy, or fail
to satisfy, a formula. These quantities are computed recur-
sively as follows.



First, suppose that F = xj . We have A0,i(F) = 1 if i = j
and 0 otherwise, and Ak,i(F) = 0 for k > 0. Similarly,
B0,i(F) = 0 for all k ≥ 0. Finally, Tk(F) = 1 if k = 1 and 0
otherwise, Fk(F) = 1 if k = 0 and 0 otherwise.

Next, suppose that F = x̄j . We have Ak,i(F) = 0 for
any k = 0, . . . , n, Bk,i(F) = 1 if k = 0 and 0 otherwise,
Tk(F) = 1 if k = 0 and 0 otherwise, Fk(F) = 1 if k = 1 and
0 otherwise.

Now, suppose that F = F1 ∨ F2, and we have computed
Ak,i(Fj), Bk,i(Fj), Tk(Fj), and Fk(Fj) for i = 1, . . . , n,
k = 0, . . . , n and j = 1, 2.

Note that since F is a read-once formula, each variable xi

(or its negation) may appear in F1 or F2, but not in both of
these subformulas. First, suppose that i ∈ XF1 . Consider
a set Y ⊆ XF \ {i} of size k such that Y1 = Y ∩ XF1 has
size s and Y2 = Y ∩ XF2 has size k − s. We have Y 6|= F
if and only if Y1 6|= F1 and Y2 6|= F2. Moreover, in this case
Y ∪ {i} |= F if and only if Y1 ∪ {i} |= F1. Therefore, Y
can contribute to Ak,i(F) if and only if Y1 contributes to
As,i(F1) and Y2 contributes to Fk−s(F2). Consequently,

Ak,i(F) =

kX
s=0

As,i(F1)Fk−s(F2).

Similarly, we have Y ∪{i} 6|= F if and only if Y1∪{i} 6|= F1

and Y2 6|= F2. Moreover, in this case Y |= F if and only if
Y1 |= F1. Therefore, Y can contribute to Bk,i(F) if and only
if Y1 contributes to Bs,i(F1) and Y2 contributes to Fk−s(F2).
Consequently,

Bk,i(F) =

kX
s=0

Bs,i(F1)Fk−s(F2).

Similarly, if i ∈ XF2 , we have

Ak,i(F) =

kX
s=0

As,i(F2)Fk−s(F1)

Bk,i(F) =

kX
s=0

Bs,i(F2)Fk−s(F1).

Finally, in both cases we have

Tk(F) =

kX
s=0

(Ts(F1)Tk−s(F2) + Fs(F1)Tk−s(F2) +

Ts(F1)Fk−s(F2))

Fk(F) =

kX
s=0

Fs(F1)Fk−s(F2).

The case when F = F1 ∧ F2 is similar. First, suppose
that i ∈ XF1 . Consider a set Y ⊆ XF \ {i} of size k such
that Y1 = Y ∩ XF1 has size s and Y2 = Y ∩ XF2 has size
k − s. We have Y ∪ {i} |= F if and only if Y1 ∪ {i} |= F1

and Y2 |= F2. Moreover, in this case Y 6|= F if and only if
Y1 6|= F1. Therefore, Y can contribute to Ak,i(F) if and only
if Y1 contributes to As,i(F1) and Y2 contributes to Tk−s(F2).
Consequently,

Ak,i(F) =

kX
s=0

As,i(F1)Tk−s(F2).

Furthermore, we have Y |= F if and only if Y1 |= F1 and
Y2 |= F2. Moreover, in this case Y ∪ {i} 6|= F if and only

if Y1 ∪ {i} 6|= F1. Therefore, Y can contribute to Bk,i(F) if
and only if Y1 contributes to Bs,i(F1) and Y2 contributes to
Tk−s(F2). Consequently,

Bk,i(F) =

kX
s=0

Bs,i(F1)Tk−s(F2).

Similarly, if xi ∈ XF2 , we have

Ak,i(F) =

kX
s=0

As,i(F2)Tk−s(F1)

Bk,i(F) =

kX
s=0

Bs,i(F2)Tk−s(F1).

Also, in both cases we have

Tk(F) =

kX
s=0

Ts(F1)Tk−s(F2)

Fk(F) =

kX
s=0

(Fs(F1)Fk−s(F2) + Fs(F1)Tk−s(F2) +

Ts(F1)Fk−s(F2)).

The algorithm Sh(F) for recursive computation of Ak,i(F),
Bk,i(F), Tk(F), and Fk(F) outlined above is formally de-
scribed in the appendix. For any formula F , the algorithm
Sh(F) returns four lists of numbers, namely, A = {Ak,i |
k = 0, . . . , n, i = 1, . . . , n}, B = {Bk,i | k = 0, . . . , n, i =
1, . . . , n}, T = {Tk | k = 0, . . . , n}, and F = {Fk | k =
0, . . . , n}. These lists correspond to the quantities Ak,i(F),
Bk,i(F), Tk(F), and Fk(F) defined above.

Our main algorithm Shapley(N) is described in Figure 1.
It uses the algorithm Sh(F) as a subroutine. To prove the
correctness of our algorithm, it remains to show that lines
5–8 of our algorithm correctly compute the Shapley value of
agent i in the MC-net Nj given by a single rule Pj → 1: by
the linearity of the Shapley value, this would imply that the
output of our algorithm is indeed the list of Shapley values
of the agents in N .

Consider an agent i in the game described by Nj . As
Pj is a read-once formula, it can contain xi or x̄i, but not
both. If the formula Pj contains xi, then i’s contribution
to the value of any coalition is non-negative. Furthermore,
for any coalition of size k counted in Ak,i(Pj), the agent
i contributes 1 to the value of this coalition if he appears
in a permutation right after the members of this coalition.
Therefore, we have

φNj (i) =
1

n!

nX
k=0

k!(n− k − 1)!Ak,i(Pj). (4)

Similarly, if the formula Pj contains x̄i, then i’s contribution
to the value of any coalition in Nj is non-positive and can
be computed as

φNj (i) = − 1

n!

nX
k=0

k!(n− k − 1)!Bk,i(Pj). (5)

This is exactly the formulas used by our algorithm to com-
pute the Shapley values of all players in Nj . We conclude
that Shapley(N) correctly computes the Shapley values of
all agents. Moreover, it is clear that the running time of our
algorithm is polynomial in n, r, and maxj log |Vj |.



Remark 7. A similar algorithm can also be used to com-
pute the Banzhaf power share of each player as long as
the value of each coalition is given by a single rule based
on a read-once Boolean formula. For any agent i and any
k = 0, . . . , n, our algorithm computes the number of coali-
tions C of size k such that adding i to C changes the value
of the coalition. Therefore, if the formula F contains xi, we
have

β(i) =
1

2n−1

nX
k=0

Ak,i(F),

and if the formula F contains x̄i, we have

β(i) = − 1

2n−1

nX
k=0

Bk,i(F).

However, as Banzhaf power shares do not satisfy the addi-
tivity axiom, our algorithm does not give a way to directly
compute the Banzhaf values in games that are described by
MC-nets with two or more rules, even if these rules are basic.

4. NETWORK FLOW GAMES
In this section, we show how to apply the techniques of

Section 3 to computing Shapley values and Banzhaf power
shares in network flow games.

4.1 Previous Work
Network flow games have been studied in the game theory

literature [4, 5], and, more recently, in the context of multi-
agent systems [1]. In this paper, we will use the model of [1],
which views a network flow game as a simple game, where
agents correspond to edges in the network, and a coalition
wins if it admits a flow of a given size and loses otherwise.
We will first define the network flow problem, and then in-
troduce the respective game.

Definition 8. A network flow problem N = (V, E, s, t, c)
is given by a set of nodes V , a set of edges E ⊆ V × V ,
a source s ∈ V , a sink t ∈ V , and a list of capacities
c = {ce}e∈E, ce > 0. We say that f = {fe}e∈E is a valid
flow of size k in N if

• (capacity constraints): fe ≤ ce for all e ∈ E.

• (flow preservation constraints): for any v ∈ V \ {s, t},X
(v′,v)∈E

f(v′,v) =
X

(v,v′′)∈E

f(v,v′′).

• (size of the flow):X
(s,v)∈E

f(s,v) =
X

(w,t)∈E

f(w,t) = k.

We are now ready to define the class of network flow
games. (Note that we assume that all capacities are inte-
ger.)

Definition 9. A network flow game is given by a net-
work N = (V, E, s, t, c) and a target flow value K. Each
edge e ∈ E is controlled by a different agent; therefore, we
identify the set of agents with the set of edges. A coalition
E′ ⊆ E is winning if the network N ′ = (V, E′, s, t, c′), where
c′ = {ce}e∈E′ , admits a flow of size K from s to t and losing
otherwise.

Connectivity games are a special class of network flow
games that satisfy K = 1 and ce = 1 for any e ∈ E. In
other words, in a connectivity game, a coalition is winning
if it contains a path from s to t and losing otherwise.

Value division schemes for network flow games were first
studied by Bachrach and Rosenschein [1]. Paper [1] shows
that for general networks, i.e., ones where there is no re-
strictions on the structure of the underlying network N , and
the capacities and the target flow value are integer numbers
given in binary, computing Banzhaf shares of all players is
#P -hard. On the positive side, they provide a polynomial-
time algorithm for computing the Banzhaf shares in the spe-
cial case of connectivity games on bounded-layer networks
(for the definition of a bounded-layer network, see [1]).

4.2 Flow Games on Series-Parallel Networks
and MC-nets

In this section, we extend the results of [1] by providing a
polynomial-time algorithm for power indices in another im-
portant class of networks, namely, series-parallel networks.
This is a class of networks with a clear hierarchical struc-
ture that enables us to use ideas from the previous section.
Our algorithm can be used to compute both Shapley and
Banzhaf values. Moreover, unlike the algorithm of [1], it
is not restricted to connectivity games, but can be applied
for an arbitrary target flow value K. However, the running
time of our algorithm is exponential in K. Therefore, our
algorithm for general network flow games on series-parallel
graphs is a pseudopolynomial algorithm, i.e., an algorithm
whose running time is polynomial if all input values (i.e., the
edge capacities and the target flow value) are given in unary.
Alternatively, it can be said to run in polynomial time if all
edge capacities and the target flow value are polynomially
bounded, which is a realistic scenario in many applications.
In Section 4.3, we will see that this is essentially the best
we can do, as even for series-parallel networks the problem
of computing the Shapley value is NP-hard and is therefore
unlikely to have a polynomial-time algorithm.

We start by formally defining series-parallel networks.

Definition 10. A series-parallel network (SPN) is a net-
work N = (V, E, s, t, c), such that one of the following con-
ditions holds:

Base case: A single edge (s, t), i.e., a network of the
form ({s, t}, {(s, t)}, s, t, c(s,t)) is an SPN.

Series: Suppose that N 1 = (V 1, E1, s1, t1, c1) and
N 2 = (V 2, E2, s2, t2, c2) are SPN such that V 1∩V 2 =
∅. Set V = V 1 ∪ V 2, E = E1 ∪ E2, merge t1 with s2,
and set c = c1 ∪ c2. Then (V, E, s = s1, t = t2, c) is
an SPN.

Parallel: Suppose that N 1 = (V 1, E1, s1, t1, c1) and
N 2 = (V 2, E2, s2, t2, c2) are SPN such that V 1∩V 2 =
∅. Set V = V 1 ∪ V 2, E = E1 ∪ E2, merge s1 with s2

and t1 with t2, and set c = c1 ∪ c2. Then (V, E, s =
s1 = s2, t = t1 = t2, c) is an SPN.

We will now show that even though network flow games
and marginal contribution nets appear to be quite differ-
ent, we can re-use the algorithm of the previous section to
compute the power indices in the connectivity game on a
series-parallel network. To do so, we will now establish a



connection between series-parallel networks and read-once
Boolean formulas. For connectivity games we have ce = 1
for all e ∈ E, so in this reduction we omit the list of capaci-
ties from the description of a network.

Given a series-parallel network N = (V, E, s, t), E =
{e1, . . . , en}, we will recursively construct a corresponding
read-once Boolean formula FN , XF = {x1, . . . , xn} as fol-
lows. If N consists of a single edge ei, set FN = xi. If N
has been obtained by connecting two networks N1 and N2

in parallel, set FN = FN1 ∨ FN2 . Finally, if N has been
obtained by connecting two networks N1 and N2 in series,
set FN = FN1 ∧ FN2 .

It is easy to see that the resulting formula is read-once,
and this transformation can be performed in polynomial
time. Moreover, S = {ei1 , . . . , eit} is a winning coalition
in a connectivity game on the network N if and only if
S′ = {xi1 , . . . , xit} is a winning coalition in the marginal
contribution net described by the rule FN → 1. Conse-
quently, the Shapley value of any player ei in the original
game is the same as the Shapley value of its counterpart xi

in the new game. The same is true for the Banzhaf power
shares. Consequently, we have the following theorem.

Theorem 11. There exists a polynomial-time algorithm
to compute Shapley values and Banzhaf power shares in con-
nectivity games on series-parallel graphs.

To generalise this result to network flow games, we need
to modify the algorithm of Section 3 to take into account
the size of the flow.

Theorem 12. There is an algorithm that, given a series-
parallel network N = (V, E, s, t, c), ci ∈ Z for i ∈ E, |E| =
n, and a target flow value K, computes the Shapley values of
all players in the game (N , K), and runs in time polynomial
in n,

P
e∈E ce, and K.

Proof. Given a network N = (V, E, s, t, c), let f(N )
denote the size of the maximum flow in N . It is well-
known that f(N ) can be computed in time polynomial in
n and log

P
e∈E ce. Set C =

P
e∈E ce; clearly, f(N ) ≤ C.

For any network N = (V, E, s, t, c) and any S ⊆ E, set
NS = (V, S, s, t, {ce}e∈S). For all k = 0, . . . , n, e ∈ E, 0 ≤
X < Y ≤ C, let Ak,e,X,Y (N ) be the number of sets S ⊆ E
of size k such that e 6∈ S and f(NS) = X, f(NS∪{e}) = Y .
Also, let Tk,X be the number of sets S ⊆ E of size k such
that f(NS) = X.

Given the values Ak,e,X,Y (N ) for k = 0, . . . , n, X, Y =
0, . . . , C, it is easy to compute the Shapley value of the agent
e. Indeed, for each coalition S counted in Ak,e,X,Y (N ) such
that X < K ≤ Y , agent e contributes 1 to the value of the
permutation where he appears directly after the members of
S. Hence, we have

φ(N ,K)(e) =
1

n!

nX
k=0

X
X<K
Y≥K

k!(n− k − 1)!Ak,e,X,Y (N ).

It remains to show how to compute Ak,e,X,Y (N ) for all
k = 0, . . . , n, e ∈ E, 0 ≤ X < Y ≤ C. This is done re-
cursively, by simultaneously computing Ak,e,X,Y and Tk,X

for subnetworks of the original network N .
If N is a single edge e with capacity ce, then we have

Ak,e,X,Y (N ) = 1 if k = 0, X = 0 and Y = ce; otherwise,
Ak,e,X,Y (N ) = 0. Also, Tk,X(N ) = 1 if k = 0 and X = 0,
or k = 1 and X = ce, and Tk,X(N ) = 0 otherwise.

Now, suppose that N is obtained by connecting two net-
works N 1 = (V 1, E1, s1, t1, c1) and N 2 = (V 2, E2, s2, t2, c2)
in parallel. For any S ⊆ E, f(NS) = X if and only if for
some X ′ ≤ X we have f(N 2

S∩E2) = X ′ and f(N 1
S∩E1) =

X −X ′. Hence, if e ∈ E1, we have

Ak,e,X,Y (N ) =

kX
k′=0

XX
X′=0

Ak−k′,e,X−X′,Y−X′(N1)Tk′,X′(N2),

and if e ∈ E2, we have

Ak,e,X,Y (N ) =

kX
k′=0

XX
X′=0

Ak−k′,e,X−X′,Y−X′(N2)Tk′,X′(N1).

Observe that if X < Y , then we have X − X ′ < Y − X ′,
so the quantity Ak−k′,e,X−X′,Y−X′ is well-defined. Also, we
have

Tk,X(N ) =

kX
k′=0

XX
X′=0

Tk′,X′(N1)Tk−k′,X−X′(N2).

The case where N is obtained by connecting two networks
N 1 = (V 1, E1, s1, t1, c1) and N 2 = (V 2, E2, s2, t2, c2) in
series is similar. Fix an edge e ∈ E1 and consider a set S ⊆
E \ {e}. Suppose that f(NS) = X, f(NS∪{e}) = Y , X ≤ Y .

This can happen in two cases: either (i) f(N 1
S∩E1) = X,

f(N 1
S∪{e}∩E1) = Y and f(N 2

S∩E2) ≥ Y , or (ii) f(N 1
S∩E1) =

X, f(N 1
S∪{e}∩E1) = Y ′ > Y and f(N 2

S∩E2) = Y .

Consequently, if e ∈ E1, we have

Ak,e,X,Y (N ) =

kX
k′=0

CX
Z=Y

Ak′,e,X,Y (N1)Tk−k′,Z(N2) +

kX
k′=0

CX
Y ′=Y +1

Ak′,e,X,Y ′(N1)Tk−k′,Y (N2),

and if e ∈ E2, we have

Ak,e,X,Y (N ) =

kX
k′=0

CX
Z=Y

Ak′,e,X,Y (N2)Tk−k′,Z(N1) +

kX
k′=0

CX
Y ′=Y +1

Ak′,e,X,Y ′(N2)Tk−k′,Y (N1).

Also, we have

Tk,X(N ) =

kX
k′=0

CX
X′=X

[Tk′,X(N1)Tk−k′,X′(N2) +

Tk′,X(N2)Tk−k′,X′(N1)].

This completes the description of the procedure for comput-
ing Ak,e,X,Y (N ), and hence the proof.

Remark 13. Just as in the previous section, once we
have computed the values Ak,e,X,Y (N ), we can use them
to determine the Banzhaf power shares of all players in time
polynomial in K, n, and

P
i∈E ci.

4.3 Hardness Results for Large Capacities
The running time of the algorithm described in the pre-

vious subsection is polynomial in
P

e∈E{ce} and K rather
than log

P
e∈E{ce} and log K, i.e., it is exponential in the



size of the input. This leaves open the question of design-
ing a polynomial-time algorithm for computing the Shap-
ley value in network flow games on series-parallel graphs.
While [1] shows that this problem is #P-hard for general
graphs, no similar result was known for our setting. In this
section, we close this gap. Namely, we show that for series-
parallel graphs where the edge capacities and the target flow
value are given in binary, checking whether a player is not a
dummy (and hence whether his Shapley value and Banzhaf
power share are non-zero) is NP-hard.

Our reduction is from Partition, which is a well-known
NP-complete problem.

Definition 14. An instance of Partition is given by a
set of n integer weights W = {w1, . . . , wn}. It is a “yes”-
instance if it is possible to partition W into two subsets
W1 ⊆ W , W2 ⊆ W so that W1∩W2 = ∅, W1∪W2 = W , and
the sum of the weights in each subset is equal:

P
wi∈W1

wi =P
wi∈W2

wi. If there is no such partition, it is a“no”-instance.

Theorem 15. Given a network flow game G = (N , K),
where N = (V, E, s, t, c) is a series-parallel network, and
an agent e ∈ E, it is NP-hard to decide whether e is not a
dummy player.

Proof. Given an instance W = {w1, . . . , wn} of Parti-
tion, we construct a network game as follows. We set V =
{s, v1, . . . , vn, vn+1, t}. There are edges in E from s to each
vi, i = 1, . . . , n + 1, and from each vi, i = 1, . . . , n + 1, to t.
The capacities are chosen as follows. Let Cmax =

P
i wi. Let

the capacity of the edge (s, vi) be 2wi for i = 1, . . . , n, and let
the capacity of the edge (vi, t) be 2Cmax for i = 1, . . . , n+1.
Finally, let the capacity of the edge (s, vn+1) be 1. Set the
target flow value to be

P
i wi + 1. It is easy to see that the

agent that owns the edge (s, vn+1) is a dummy if and only
if the original instance of Partition is a “no”-instance.

5. CONCLUSIONS
We have presented read-once MC-nets, which retain the

attractive computational properties of basic MC-nets while
being exponentially more compact. We have also demon-
strated how the algorithmic ideas developed in the context
of read-once MC-nets can be applied to other domains — in
particular, network flow games on series-parallel networks.

Many issues suggest themselves for further study. Most
obviously, one might investigate other constraints on the
logical construction of MC-net rules which retain tractabil-
ity while yielding further compactness. Results in the area
of Boolean function complexity and representation will per-
haps be of value here. Another issue is the extent to which
our techniques can be applied to other classes of coalitional
games, beyond network flow games.
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APPENDIX
A. THE PROCEDURE SH(F)

Sh(F)
if F = xj then

for k = 0, . . . , n
if k = 1 then Tk = 1 else Tk = 0;
if k = 0 then Fk = 1 else Fk = 0;
for i = 1, . . . , n
if (i = j, k = 0) then Ak,i = 1 else Ak,i = 0;
Bk,i = 0;

if F = x̄j then

for k = 0, . . . , n
if k = 0 then Tk = 1 else Tk = 0;
if k = 1 then Fk = 1 else Fk = 0;
for i = 1, . . . , n

Ak,i = 0;
if (i = j, k = 0) then Bk,i = 1 else Bk,i = 0;

if F = F1 ∨ F2 then

[A1,B1,T1,F1] = Sh(F1); [A2,B2,T2,F2] = Sh(F2);
for k = 0, . . . , n

Tk =
Pk

s=0(T
1
s T 2

k−s + F 1
s T 2

k−s + T 1
s F 2

k−s)

Fk =
Pk

s=0 F 1
s F 2

k−s

for i = 1, . . . , n
if xi does not appear in F

then Ak,i = 0, Bk,i = 0
if xi appears in F1 then

Ak,i =
Pk

s=0 A1
s,iF

2
k−s; Bk,i =

Pk
s=0 B1

s,iF
2
k−s;

if xi appears in F2 then

Ak,i =
Pk

s=0 A2
s,iF

1
k−s; Bk,i =

Pk
s=0 B2

s,iF
1
k−s;

if F = F1 ∧ F2 then

[A1,B1,T1,F1] = Sh(F1); [A2,B2,T2,F2] = Sh(F2);
for k = 0, . . . , n

Tk =
Pk

s=0 T 1
s T 2

k−s

Fk =
Pk

s=0(F
1
s F 2

k−s + F 1
s T 2

k−s + T 1
s F 2

k−s)

for i = 1, . . . , n
if xi does not appear in F

then Ak,i = 0, Bk,i = 0
if xi appears in F1 then

Ak,i =
Pk

s=0 A1
s,iT

2
k−s; Bk,i =

Pk
s=0 B1

s,iT
2
k−s;

if xi appears in F2 then

Ak,i =
Pk

s=0 A2
s,iT

1
k−s; Bk,i =

Pk
s=0 B2

s,iT
1
k−s;

return [A,B,T,F];


