
A Semantic Service Matching Middleware for

Mobile Devices Discovering Grid Services

Tao Guan, Ed Zaluska, David De Roure

School of Electronics and Computer Science, University of Southampton,
Southampton, UK,

{tg04r, ejz, dder}@ecs.soton.ac.uk

Abstract. The combination of mobile and Grid computing enables high
performance Grid access through resource-limited mobile devices. Many
challenges require to be addressed before vision of building the bridge
between Grid and mobile computing field is realized. One of the essential
challenges is that mobile devices need to locate and select appropriate
Grid services in an automatic and flexible way. However, at the current
stage, both Grid service description and discovery mechanisms are still
at an immature stage. This paper presents research into building a ser-
vice matching middleware with Semantic Web technologies. Semantic
Web technologies permit an efficient discovery of various Grid services
for mobile devices by adding the machine-processable explicit knowledge
into the interaction between mobile devices and Grid services. The mid-
dleware has been implemented successfully and interacts correctly with
other service-oriented mobile Grid middleware, thus facilitating an en-
hanced Grid access for mobile devices.

1 Introduction

The purpose of Grid computing is to coordinate resource sharing in dynamic and
multi-institutional virtual organizations, enabling heterogeneous resources to be
aggregated to facilitate new functionalities and capabilities [1]. As a service-
oriented approach to Grid computing is increasingly adopted, many systems
able to discover Grid resources on-the-fly and access them dynamically become
possible. Mobile computing is an extension of the traditional distributed and
desktop computing, seamlessly integrating various computing devices (e.g. mo-
bile phones, PDAs) into our daily life. Although new-generation mobile devices
have improved their absolute capabilities, there is no doubt that creating com-
plex applications on them is still a challenging objective because such devices
are inevitably resource-constrained.

One possible solution is for mobile devices to make use of Grid services so that
mobile users are able to access distributed resources automatically on demand
with appropriate quality of service delivery. Various Grid services enhance the
capabilities of mobile devices, with the potential that complicated tasks can be
completed through user handheld devices. However, the combination of Grid
and mobile computing models has the potential to realize a very significant



development in the adoption of high-performance Grid access through resource-
limited mobile devices. It is quite evident that a great number of challenges
must be solved before this vision of building the bridge between Grid and mobile
computing is realized. In a previous paper [2], we discussed a system architecture
to integrate mobile devices into the service-oriented Grid environment in an open
and flexible way. Another important challenge is that at present, Grid service
discovery mechanisms are still at an immature stage. Semantic web technologies,
providing a very considerable degree of automatic processing, interoperation and
integration, will help in the implementation of an effective Grid service matching
mechanism.

With the proliferation of Grid services, semantic specifications of Grid ser-
vices are gradually becoming a necessary requirement for the automatic flexible
service provision and utilization necessary for Grid clients to perform various
tasks. It is not straightforward for a requesting client to locate required ser-
vices in order to execute a task in a service-rich Grid environment. Semantics
of Grid services abstract top-level concepts and relationships between concepts
so that both service discovery and automatic conversion of interaction formats
between heterogeneous services can be realized. Furthermore, a semantic defi-
nition mechanism provides a comprehensive representation of a variety of Grid
service aspects, building an essential foundation for possible automatic behaviors
throughout the whole Grid service development lifecycle.

In this paper, we have presented a service matching mechanism by using
Semantic Web technologies to support mobile devices accessing Grid services.
The rest of this paper is organized as follows. Section 2 introduces related work.
Section 3 presents the general methodology for semantic service description and
matching. Section 4 describes the attribute definition of Grid services. Service
discovery mechanism is discussed in section 5, with its implementation and ex-
perimental results in section 6. Section 7 concludes our current research work
and discusses further directions.

2 Related Work

Service discovery protocols are adopted to simplify the interaction between ser-
vice consumers and service providers. A number of service discovery protocols
have been introduced during the past several years. In the field of mobile com-
puting, examples of description and discovery solutions are the Bluetooth Service
Discovery Protocol [3], Jini [4], and Universal Plug and Play (UPnP) [5]. In the
field of Web Services, Universal Description Discovery and Integration (UDDI)
is a platform-independent and XML-based registry which enables businesses to
publish service listings and discover each other. However, none of these service
discovery mechanisms support flexible matching between service advertisements
and requests, and users therefore cannot locate services automatically on the
basis of the capabilities that these services provide.

Semantic Web technologies allow web services to provide a rich semantic
specification to enable flexible automation of service provision and utilization.



A number of semantic-based web service matching mechanisms have been devel-
oped using Semantic Web technologies, such as [6] [7] [8]. They add a semantic
layer between users and the web service WSDL description, which makes it pos-
sible to compose the web service request with high-level abstract concepts rather
than syntactic level terms, addressing several limitations in the traditional web
service discovery techniques. The service registry plays an important role for
the service discovery. It is responsible for storing the advertisements of web ser-
vices and finding a match between query requests and service advertisements.
UDDI, the traditional Web Service registry protocol, only supports keyword-
based search and does not meet the requirement of the capability-based service
discovery. To solve this problem, [9] introduce the idea of mapping the OWL-
S service profile into the UDDI web service representation and They believe
OWL-S and UDDI can complement each other.

Generally speaking, Grid services are stateful Web Services, and most of cur-
rent service-oriented Grid middleware techniques are based on the Web Service
standards. Hence, the semantic approach in the web service discovery provides
a potential direction for implementing a semantic-enhanced Grid service discov-
ery mechanism. However, these current solutions have their limitations (e.g. no
ranking in the service matching, judging concept similarity with subsumption
reasoning only) and another issues are required to be considered when building a
semantic framework for the service information centre middleware in the mobile
Grid environment. In particular, most of semantic approach for web service dis-
covery perform the service matching with service function attributes (e.g. inputs,
outputs, preconditions, effects), and their purpose is the service discovery in the
enterprise environment. Our system architecture, on the other hand, combines
both Grid and mobile computing. Hence, other service characteristics except
service capabilities are required to be considered for the service discovery, for
example, service types, service resources and service context information.

3 Methodology for Semantic Matching

A semantic approach for service matching requires a service description complete
with the ontology definition and a service search engine with reasoning mecha-
nisms. Ontology approach is usually used to present services with abstract and
high-level concepts for the service description. As long as users describe their
service requirements with terms from the same ontology model used to build
the service descriptions, logical reasoning mechanisms can check the semantic
similarity between the service description and the user requirements, and the
matching services will be discovered and returned to users.

The service provider represents all characteristics of a service in the service
description. The term description collection indicates all possible attributes to
be described for a service. These attributes may be either concepts or restric-
tions for existent concepts. For each individual service attribute, an ontology is
usually designed to illustrate the definition of the attribute and its relationship
with other service attributes. Similar to the service description, a service request



often consists of many individual requirements, specifying the service attribute
to be expected in a service. These requirements may include service outputs,
effects, inputs, function, location or any possible attributes in terms of the dif-
ferent service request. For a specific service request, all of the requirements can
be divided into two categories, a group of strict requirements and a set of gen-
eral requirements. The strict requirement specifies that this kind of requirement
is essential for the service request and has to be met precisely in the service
matching, while the general requirement means this kind of requirement is not
as important as the strict one and only an approximate matching is necessary
between the requirement and the related service attribute.

Although we assume that the service request attempts to describe expected
requirements with terms from the same ontology model used to build the ser-
vice description, it is impractical that every service request will obtain the exact
same service even though the required services have already been deployed and
advertised because one service could have a number of description formats. In
fact, the responsibility of the service search engine is to find all of the related
services including those that deviate from the request in certain degrees. These
deviation services should not be discarded but instead classified in an predefined
rule (e.g. by matching degree). The service request determines which service will
be selected based on the information returned from the service matching mid-
dleware. The service search engine takes a service request and available service
description collections as inputs, and returns matching services as well as their
matching degrees.

The service matching engine is responsible for comparing the service request
against each service description and judging whether a service should be included
in the list of candidate results. The evaluation of semantic similarity between
concepts is fundamental for implementing the service matching engine. Most
of the previous work adopts subsumption reasoning to determine the semantic
distance between concepts in the request and in the description. However, this
is not sufficient for building an effective service matching engine. We use the
method presented in [10] to check the semantic similarity between two concepts.
The attributes in a service description are categorized into three types. Type
one includes attributes whose similarity can be judged using the subsumption
reasoning. Type two includes attributes whose similarity can not be judged using
subsumption reasoning only. These assume that the knowledge of similarities be-
tween these concepts can be acquired by using available similarity measurement
approaches such as [11] and [12]. Type three means numeric attributes. The
similarity between these concept types can be qualified by using the percentage
deviation from the requested value or a fuzzy membership function.

4 Attribute Definition for Service Description

4.1 Attribute Definition

Inputs, outputs, preconditions and effects (IOPEs) are important functional at-
tributes for a web/Grid service. Inputs and preconditions define the constrains



required for a service invocation, and outputs and effects indicate the results or
the state transformation of a service execution. As a standard web service de-
scription language, OWL-S [13] provides an comprehensive ontology definition
for describing IOPEs.

Service-oriented Grid computing architecture is an extension of current Web
Service technologies. In the computing architecture, applications are built on top
of a set of common, standard and high-level services, which meet the definition
of Open Grid Services Architecture (OGSA). One of the important requirements
of OGSA is that the underlying middleware should store information about the
service state because Grid application users usually need this kind of information
to be maintained from one invocation to another. Because the service resource is
the key parameter for the Grid service invocation, we regard it as an important
functional attribute in the Grid service description.

In a service-oriented mobile Grid environment, mobile devices form the in-
tersection between the physical world and the digital world. Users execute their
tasks by using a variety of Grid services through their mobile handheld devices.
Two main styles of application scenario are identified from the viewpoint of
users: an information access scenario and a work assistant scenario. In the in-
formation access scenario, the main task is to collect required information or
knowledge. Mobile devices act as universal operating terminals to access vari-
ous available Grid services. In the work assistant scenario, users usually need
to execute relatively complicated applications (such as data-deluge programs)
to achieve specific tasks using their mobile devices. However, due to resource
limitations, most complex programs cannot be executed on a handheld device.
Users have to offload resource-demanding programs of the task to the Grid, and
the Grid provides the executing environment for users to achieve their tasks.

An ontology is defined on the basis of the analysis of two application sce-
narios. The ontology represents a hierarchy of possible application scenarios and
contains a taxonomy of service types which are usable for mobile clients. The
top-level concept of the ontology is Service, which represents the most generic
type. There are two direct subclasses of Service: the InfoAccess class represents
the general service for the information access scenario; the WorkAssistant class
represents the general service for the work assistant scenario.

Service context attributes are required when describing a Grid service. An on-
tology is designed to model the context of the service-oriented Grid environment.
At present, we consider two context attributes in the Grid service description:
the first is the service location, which corresponds to the “Place” class of the
environment context ontology; the second is the service access range, based on
which a service discovery restricting mechanism is implemented.

Mobile users access Grid services with their portable devices, which may
expose their personal information. For example, if the service directory is so
“open” that every mobile user can discover and obtain all deployed Grid ser-
vices, a user location information may be exposed to other users as long as
they can locate and try to invoke corresponding location-monitoring services.
Protecting personal privacy thus becomes an important issue when designing a



service discovery mechanism. The user personal information decides their access-
ing level during the authorization process, which is kept in their “User” class.
The service provider defines the service range for every service in the service
description. When a new mobile user sends a request to search Grid services,
the service searching engine will reason and decide whether Grid services can be
exposed by comparing the service access range of Grid services and the access
level of the mobile user.

4.2 Service Description with Extended OWL-S

OWL-S [13] is a language for describing services, which provides a standard
vocabulary that can be used together with other aspects of the OWL description
language to create service descriptions. The structure of the OWL-S upper-level
ontology is based on the types of knowledge of service description: the “Service
Profile” provides the high-level descriptive information of a service, such as the
name, input/output of the service, and additional text description; the “Service
Model” and “Service Grounding” provide information on how the service is used
and how to interact with the service.

We use the OWL-S language to describe Grid services. However, the “Service
Profile” does not specify the Grid service attributes required in our mobile Grid
computing environment and has to be extended by adding the service parameters
discussed above. Figure 1 illustrates the extended service profile class and its
properties.

Service Profile


profile


&QN;#Parameter


&QN;#Input


&QN;#Output


&QN;#Condition


&QN;#Effect


&QN;#Resource


Functional Description


hasParameter


hasInput


hasOutput


hasPrecondition


hasResult


serviceCategory


&xsd;#URL


&xsd;#URL


name


description


Non-Functional Description


serviceCategory


serviceClassifcation


serviceProduct


serviceName


serviceDescription


subClassOf


hasResource


&QN;#ServiceType


hasType
 &QN;#Context


&QN;#Location


&QN;#AccRange


subClassOf


hasContext


&QN;#ServiceDetail


hasDetail


Fig. 1. Extended Service Profile



Grid services are described based on the extended service profile. For a Grid
service, its description collection may include the functional attributes (e.g. in-
puts, outputs, preconditions, effects), the service type (an instance of InfoAccess

class or WorkAssistant class), the service resource, the service detail, and the
service context information (the location of the service provider and the service
access range).

5 Service Discovery Algorithm

A service request is composed of a number of individual requirements, specifying
various attributes to be expected in services. The service matching engine takes
a service request and a group of service description collections as inputs, and
is responsible for determining whether a Grid service is a matching service for
this service request. The comparison between the service request and the service
description collection consists of two steps. Initially, the service matching engine
will check to judge whether each strict requirement can be matched precisely
in the service description. If a service description does not contain the expected
attributes, it will be dismissed and the service matching engine will compare the
next service description to the service request. If a Grid service satisfies all of the
strict requirements, the matching engine will then turn to estimate the general
requirements.

As discussed in the Methodology section, the concepts are categorized into
three types when checking the semantic similarity. For type one, subsumption
reasoning based on the taxonomic relation is used to determine the matching
degree between general requirements of the request and related attributes of the
service. Three expected matching level for general requirements are defined:

– “Substitute” indicates that the user expects to find a concept in the service
description which is equal to or is the direct superclass of the concept in the
requirement.

– “Cover” indicates that a concept which subsumes the concept in the service
request is expected to be found.

– “Fuzzy” means this requirement is less important for the service matching.
As long as a concept in the service description can be found which has the
subsumption relationship (either superclass or subclass) with the concept in
the requirement, it will be satisfied.

These expected matching levels can be set when the service request is sub-
mitted to the service matching engine. The service matching engine will check
the similarity between each general requirement in the service request and the
related service attribute in the service description. The actual matching level is
determined by the semantic relationship in the predefined ontology structure. If
all of the expected matching levels are satisfied, this service will be a reasonable
candidate for the service request.

For type two, the knowledge of similarities between concepts is assumed to
be available, and the service matching engine will take the decision according to



all of close degrees between user requirements and related attributes. For type
three, both the attributes and the requirements are numeric. Their similarity
can be checked using the percentage deviation from the requested value or a
fuzzy membership function, depending on the detailed service implementation
and the user requirement.

The service matching engine may find a number of candidate services for
a specific service request. Although the service discovery mechanism is not re-
sponsible for the service selection, the matching degree information about each
candidate service is required to be provided as a result for the service request.
We use the term “MatchingScore” to show the matching degree of the candi-
date service. For a candidate service, its MatchingScore is calculated using the
following equation:

MatchingScore =

n
∑

i=1

Scorei/n (1)

The “Scorei” indicates the matching degree of every individual general re-
quirement in the service request against the related service attribute in the
service description, which is obtained based on the concept types categorized for
checking the semantic similarity. For type one, because the subsumption relation
exists between these concepts, the score can be obtained based on the semantic
distance ||Cr, Ca|| between the individual requirement (Cr) and the related ser-
vice attributes (Ca) in the ontology structure. The following equations are used
to calculate the individual score:

Scorei =























1 if Ca = Cr

1
2 + 1

2∗(||Cr,Ca||+1) if Ca is a superclass of Cr

1
2∗(||Cr,Ca||+1) if Cr is a superclass of Ca

(2)

For type two, the score is assumed to be acquired from an available similarity
measurement approach [11] [12]. For type three, similar to the similarity check-
ing, the score can be obtained using the percentage deviation from the requested
value or a fuzzy membership function.

The matching score of each candidate service is calculated based on Scorei,
and it will determine the ranking of candidate services. The higher the score is,
the higher ranking the candidate service has.

6 Implementation and Experimental Results

The ontology classes for the service description are defined with the OWL lan-
guage using the Protege toolkit (an open-source ontology editor and knowledge-
based framework). Protege can also be used to create OWL-S services by inte-
grating an OWL-S editor plug-in [14].



The Grid service matching middleware has been implemented with the jUDDI
toolkit, the Racer system [15], the MySQL database and other related tech-
niques. Figure 2 shows its internal components. The middleware is written as
both a Java Web Service for use by other middleware in the system architecture
and an AJAX web application which can be accessed through a standard web
interface.

MySQL database (Grid Service Repository)


Query

Interface


Publishing

Interface


Service

Matching


Service

Publishing


Reasoning API


Ontology

Repository


jUDDI

Toolkit


RACER System

Database

Query API


Fig. 2. Internal Components of Service Matching Middleware

We evaluated our service matching middleware in two stages. First, we in-
tegrated it into our system architecture to evaluate whether it interfaces well
with the other middleware. Second, we measured the performance of our service
matching middleware against a number of typical service requests.

In our system architecture, the static distributed Grid resources and mobile
devices are interconnected by the Grid gateway. The Grid gateway is a small
server available for nearby mobile devices within the covered range through the
local wireless network, providing a relatively resource-rich, stable execution envi-
ronment with enhanced network connectivity for handheld devices. Three kinds
of middleware exist in the Grid gateway: the mobile deputy middleware performs
a reliable task management mechanism (including task submission, execution,
monitoring and result storing on behalf of mobile users) by accepting and packing
tasks as the deputy object; the service-based Grid middleware provides access
interfaces for Grid service invocation to execute user tasks; the service matching
middleware is responsible for the implementation of Grid service registration,
discovery and management so that mobile users are able to locate and select
required Grid services to achieve their tasks.



In order to evaluate the system performance, we compare our semantic service
matching middleware with UDDI, the traditional web service registry. We use
the system response time as the performance index and focus on calculating
the time required to process a query. The time of publishing a Grid service is
not relevant in this study because in our system architecture, mobile users are
usually Grid service consumers rather than service providers.

The following experiment was designed in order to obtain the time of query-
ing a Grid service. Both the description information of real Grid services and
a large number of pseudo services are published in the service repository. Alto-
gether, more than fifty services can be accessed by the semantic service matching
middleware. A UDDI web service registry was built and a number of web ser-
vices is published onto it. Table 1 shows the average time of querying a service
on two different service discovery platform. The time of querying a Grid service
with semantic concepts is longer, because the additional computation effort is re-
quired to determine the concept subsumption relationships in the logic reasoning
system.

UDDI Semantic Matching Middleware

Time (ms) 37.4 52.1
Table 1. Time of Querying a Service

Although UDDI has a faster system querying performance than our semantic
service matching middleware, it has several shortcomings when used in practice
for the service discovery. UDDI does not provide sufficient technical details of the
service, does not support any inference based on the concepts, can only support
the search based on the string comparison, and cannot identify a match between
functionally equivalent services that are described by different key words. Our
service matching middleware overcomes these shortcomings by using the seman-
tic service description and discovery mechanism. We believe it is worth obtaining
a relatively-significant improvement in system function at the price of a small
increase in the service discovery time.

In the above experiment, the time of returning one service only is measured.
To test the system scalability, we used five kinds of service repository sizes (10,
20, 50, 100, and 200) and varied the number of matching services to be one,
two, four or eight. Figure 3 shows the experimental results. As we expected, the
system response time is within an acceptable limit and loosely proportional to
the size of the service repository and the number of the matching results.

7 Conclusion

In a service-oriented Grid environment, mobile clients are concerned about three
aspects when considering the problem of using Grid services to perform their



0


20


40


60


80


100


120


140


160


180


200


0
 50
 100
 150
 200
 250


Service Size in Repository


A
v
e
r
a
g
e
 
R
e
s
p
o
n
s
e
 
T
i
m
e
 
(
m
s
)



1 match
 2 match
 4 match
 8 match


Fig. 3. Average Query Time from Service Matching Middleware

tasks. The first is a method that describes what capabilities Grid services sup-
port is required to be developed so that services can be advertised to provide
contributions for the task achievement. The second is building a Grid service
discovery mechanism so that services can be located by mobile users. The third
is the mechanism of Grid service invocation so that the required information or
resources can be utilized during the process of the task execution. Essentially,
Grid service description, discovery and invocation are interdependent: Grid ser-
vice description is the prerequisite of Grid service discovery; the mechanism of
Grid service discovery determines how a Grid service should be described; the
service invocation process depends on the discovery of Grid services.

In this paper, we have presented a semantic service matching middleware for
the service-oriented mobile Grid environment. A number of service attributes
have been defined to represent service characteristics in the service description.
Because of the centralized range of Grid service registry in the system infras-
tructure, a service search engine is built with the extended OWL-S semantic
language and the RACER ontology reasoning system, providing query interfaces
for users or other middleware systems to locate required services. The semantic
service matching middleware has been integrated into our system architecture
and demonstrated to interact correctly with other middleware. We have also
measured its performance against a number of service request, and the results
show that there is only a small increase in the service discovery time compared
to the traditional service discovery mechanism in return for the significant im-
provement obtained.

In the future, we plan to continue the current research work to allow such a
Grid service matching mechanism to be extended so that it can be more suitable
for the service-oriented mobile Grid environment. OWL-S supports not only
automatic service discovery, but also automatic service invocation, composition
and interoperation. At present, we only use the “Profile model” to describe



Grid services. In the future, we will extend the system to use both the “Process
model” and the “Grounding model” to build Grid service descriptions, enabling
the vision of automatic service discovery, composition, and invocation to be
realized.

References

1. Foster, I., Kesselman, C., Teucke, S.: The anatomy of the grid: Enabling scalable
virtual organizations. International Journal of Supercomputer Applications 15
(2001)

2. Guan, T., Zaluska, E., Roure, D.D.: Extending pervasive devices with the semantic
grid: A service infrastructure approach. In: Sixth IEEE Conference on Computer
and Information Technology, Seoul,Korea (2006)

3. Haartsen, J., Allen, W., Inouye, J.: Bluetooth: Vision, goals, and architecture.
Mobile Computing and Communications Review 1 (2006) 1–23

4. Waldo, J.: The Jini Specifications. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (2000)

5. Allard, J., Chinta, V., Gundala, S., Richard, G.: Jini meets upnp: an architecture
for jini/upnp interoperability. In: Proceedings of Symposium on Applications and
the Internet. (2003) 268–275

6. Srinivasan, N., Paolucci, M., Sycara, K.: Semantic web service discovery in the
owl-s ide. In: Proceedings of the 39th Hawaii International Conference on System
Sciences, Hawaii, USA (2006) 109

7. Majithia, S., Ali, A.S., Rana, O.F., Walker, D.W.: Reputation-based semantic
service discovery. In: Proceedings of the 13th IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises, Modena, Italy
(2004) 297–302

8. Li, L., Horrock, I.: A software framework for matchmaking based on semantic web
technology. In: Proceedings of 12th International World Wide Web Conference
Workshop on E-Service and the Semantic Web, Budapest, HUNGARY (2003) 331–
339

9. Martin, D., Paolucci, M., Mcilraith, S., Burstein, M.: Bringing semantics to web
services: The owl-s approach. In: First International Workshop on Semantic Web
Services and Web Process Composition (SWSWPC 2004), San Diego, CA, USA
(2004)

10. Bandara, A., Payne, T., Roure, D.D., Lewis., T.: A semantic approach for service
matching in pervasive environments. In: Technical Report in IAM group shool of
ECS. (2007)

11. Schwering, A.: Hybrid model for semantic similarity measurement. Lecture Notes
in Computer Science 3761/2005 (2005) 1449–1465

12. Tverski, A.: Features of similarity. Phychological Review 8 (1977) 327–352
13. Acuna, C., Marcos, E.: Modeling semantic web services: A case study. In: Proceed-

ings of the 6th international conference on Web engineering, Palo Alto, California,
USA (2006) 32–39

14. Elenius, D., Denker, G., Martin, D., Gilham, F., Khouri, J., Sadaati, S.,
Senanayake, R.: The owl-s editor - a development tool for semantic web services.
In: Proceedings of the Second European Semantic Web Conference. (2005)

15. Haarslev, V., Moller, R.: Racer: a core inference engine for the semantic web.
In: Proceedings of 2nd International Workshop on Evaluation of Ontology-based
Tools, Sanibel Island, Florida, USA (2003) 27–36


