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One does not have to go very far into the subject of artificial intelligence (AI) before deep philosophical issues start to surface. The

Turing test, the frame problem, the Chinese room argument, symbol grounding, the role of representation: these are just a few of the

topics that have generated intense discussion and debate over the years. One particular controversy surrounds symbolism: whether or

not it is necessary to have explicit symbol representation and, if so, the mechanism(s) by which these symbols came into existence.

How are such questions to be answered? Generally, they are considered to lie in the realm of philosophy and not to be easily amenable

to experimental test. However, when even limited experimental test is feasible, it can offer valuable insight. In this paper, we present

an empirical test designed to explore some important foundational issues in AI. An artificial agent inhabits a digital world (a cellular

automaton) in which its cognitive abilities vary in three dimensions (size of symbol memory, percentage of symbols that are innate,

planning depth), allowing us to position it in a space that reflects degree of commitment to key philosophical standpoints. One plane of

this space corresponds to pure symbol attachment, another plane corresponds to pure symbol grounding, and the origin of coordinates

corresponds to pure enactivism. We find that an enactivist (purely reactive) agent architecture can perform as well as one employing

planning in this scenario, if properly designed. Planning has strengths when task/environment complexity make design difficult but

weaknesses if an inappropriate world model is acquired (e.g. as a result of mismatch between model and task/environment complexity).

However, the main claim of the paper is that empirical exploration of the kind presented here could usefully form the initial phase

of the design of many practical AI systems, and forms a valuable alternative to simply declaring a priori adherence to a particular

philosophical position.
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1 Introduction

Throughout the 50–60 year history of artificial intelligence (AI), the majority view of its adherents has

held that cognition can be replicated on a universal Turing machine (Turing, 1936) or equivalent; all that

remains is to find the correct ‘algorithm of thought’. And as we move towards this goal, so we will uncover a

host of benefits, not only the ability to automate increasingly complex and useful tasks previously restricted

to the exercise of human ‘intelligence’, but also gaining insights into the nature of the mind. Although

there have already been some notable successes, profound disagreement remains among researchers over

how to reach AI’s ultimate goal. Indeed, some consider the entire endeavour to be ultimately futile (cf.

Searle 1980).

For the continued health of AI as a discipline, further practical successes are mandatory. But much

as the AI practitioner or technician might wish to sidestep or ignore philosophical concerns, this is not

really an option. Philosophical issues are never far below the surface in AI (Boden, 1990; Copeland, 1993)

so that every practical approach adopted implies commitment to some standpoint. Hence, practitioners

would benefit from an effective way to untangle the philosophical debate, and reach a clearer view of

the way forward. Currently, the debate centres essentially around thought experiments, but these have

their obvious difficulties (Häggqvist, 1996; Gendler, 2000; Peijnenburg and Atkinson, 2003; Souder, 2003;

Damper, 2006). We believe that thought experiment alone is inadequate to reach definitive conclusions

and, difficult as it might be, empirical data bearing on the controversy need to be collected. At present,

the number of attempts to test empirically philosophical issues in AI is vanishingly small. In this regard,

one might mention the experiments of Kaernbach (2005) aimed at discovering what experimental subjects

in a ‘Chinese room’ do and do not come to understand about their formally-specified task, but there are

precious few other examples. The present paper aims to add to this tiny literature. We readily concede that

this approach has its own problems; to keep the empirical work focused and tractable, simplifications and

constraints need to be introduced, and these may have unavoidable bearing on the philosophical points at

issue. It is, therefore, necessary to keep this in mind in interpreting the outcomes.

Specifically, we focus on one particular and important division of opinion in AI; namely the tension
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between symbolism and enactivism. We then attempt an experimental test of the success of an artificial

agent to maintain a self-sustaining density in a simple digital world as its cognitive abilities are manipulated

to reflect commitment to the tenets of three different philosophical standpoints, namely:

(i) symbolism based on ‘symbol grounding’;

(ii) symbolism based on ‘symbol attachment’;

(iii) non-symbolic ‘enactivism’.

In the following section, we outline the basic ideas of these three different philosophies. Thereafter,

in Section 3 the general design methodology employed in the empirical comparison of these different

philosophies is described. Section 4 details our specific experimental design and the results obtained.

Section 5 concludes.

2 Symbolism and enactivism

At present, the AI community is divided such that we can identify a number of philosophical approaches.

Many researchers begin from the assumption that cognition arises through the rule-based manipulation

and combination of symbolic tokens (e.g. Newell, 1973; Minsky, 1974; Fodor, 1975; Newell and Simon,

1976; Newell, 1980, 1990; Pylyshyn, 1984; Dietrich, 1990). In one school of thought, the atomic symbols are

formed through the perception of and interaction with the surrounding environment so as to give meaning

to the symbols and their combinations. But this view faces a formidable problem, famously articulated by

Harnad (1990) as: ‘How can the semantic interpretation of a formal symbol system be made intrinsic to

the system, rather than just parasitic on the meanings in our heads?’ (p. 335). Harnad characterises this

problem as symbol grounding . For AI systems to achieve meaningful ‘intelligence’, this question needs to

be addressed. In light of its importance, various solution have been proposed—see Belpaeme et al. (2007)

for some recent work.

Many agree with the symbolic perspective but contend that certain innate concepts need to be present at

birth. For example, internal representations of space and time are required to make sense of the surrounding
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environment. These innate concepts are ‘attached’ to the world through experience; they are not formed.

Accordingly, Sloman and Chappell (2004) identify this school of thought as symbol attachment . Despite

the necessity for innate concepts in virtually all (or perhaps literally all) practical AI systems, in that the

system designer has to implant some specification or driver of desired behaviour, symbol attachment faces

the charge of ignoring the challenge of ‘parasitic meaning’. Biological systems derive innate information

from the genome, which the long process of evolution has shaped (or grounded) through the interaction

between organism and environment, but this solution is not available to designed, artificial systems.

Symbolic AI has historically faced a host of problems when situated in real world environments. This

has led some to parody the symbolic approach as ‘good old-fashioned AI’ or GOFAI (Haugeland, 1985). As

a result, certain researchers—notably Brooks (1990, 1991a, 1999)—seek to discard the symbolic notions of

the mind entirely. This is typically termed ‘embodied AI’. Workers in this paradigm build systems that act

upon the world through cycles of perception and action based on some adaptive connectionist or statistical

machine learning principles. A question remains as to whether these connectionist models truly discard

symbolic representations or simply obscure them. Aside from this, embodied AI still faces a number of

challenges when modelling higher cognitive functions such as language and abstract reasoning.

Having very briefly reviewed the major schism of symbolic versus non-symbolic approaches to AI, we

now move to a slightly more detailed treatment of the three philosophical standpoints identified earlier.

2.1 Symbol grounding

Symbol grounding holds that meaning can be found in a symbolic system, so long as the symbols are

derived from the classification of the system’s experiences. These experiences come from the environment,

through sensor readings, and so have meaning intrinsic to the system, rather than just being ‘parasitic’. It is

then possible to take these symbols, grounded in the environment, and manipulate them, thereby deriving

new meanings (Cangelosi et al., 2000). Meaning then flows from initial experiences up to higher-order

symbolic manipulation.

Symbol manipulation is usually carried out through the planning paradigm. The main features of
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planning can be characterised by a distinction between the perception, the action, and the reasoning

functions of the agent. Significantly, the agent’s reasoning involves the manipulation of an explicit world

model. Symbol grounding attempts to answer the question: How do we give this world model meaning?

2.2 Symbol attachment

The symbol grounding approach is underpinned by the assumption that meaning could only be derived from

experience. To some this heralded the rebirth of concept empiricism as put forward by Locke (1690/1979),

who held that at birth the mind was a ‘tabula rasa’. According to Aaron Sloman (personal communication),

concept empiricism ‘was refuted long ago by the philosopher Immanuel Kant (1781)’, who argued that

one cannot have experiences unless one already has concepts. If the content of mind does not have any

initial meaning, further meanings cannot be derived. Therefore, our experiences cannot be the sole source

of knowledge. Some basic concepts cannot come directly from the environment and so symbol grounding,

in its strictest sense, must be flawed.

Symbol attachment brings Kant’s refutation of concept empiricism into the field of AI. Like symbol

grounding, it considers the structure of concepts to be essential to the nature of meaning, but these

meanings do not have to come from the experience of the environment. Rather, sensory experience can

be used to reduce residual indeterminacy. However, the meanings themselves are not only derived from

the environment but also from an initial innate source. As the agent experiences the world, this innate

knowledge becomes grounded. An instinctive, abstract concept becomes relevant through interaction with

the environment.

Some researchers (MacDorman, 1997; Nenov, 1991; Klinspor et al., 1996), in attempting to implement

a symbol-grounding-based system, have unintentionally illustrated this problem with strict symbol

grounding. When taking the planning approach, it is always the case that certain concepts (usually space,

time and cause and effect) need to be ‘designed in’ by the programmer. Symbol attachment wholeheartedly

accepts the need for this designed element but still leaves us with a number of problems.

If we are to accept the existence of genetically-encoded concepts, the only possible source of innate
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knowledge, how is this to be represented in an AI system and where does it leave our concept of meaning?

We could simply return to the meaningless design of various concepts for our agent, citing an abstract

genetic ‘learning’ as our justification. However, we need to consider that this genetic encoding was a

product of the environment. So rather than obtaining meaning by direct sensory experience, grounding is

provided through evolutionary selection pressures. The animal as a whole, genome and all, is grounded

in the environment. By comparison, simply designing a set of concepts into an artificial system leaves us

open to Harnard’s old objection; specifically the ‘meaning’ in the system is simply parasitic, being more

relevant to the designer then the system. This is the artificial equivalent of psychology’s bete noir , the

homunculus, described by Lloyd (1989, p. 205) as ‘the primary method of passing the buck with respect

to genuine explanation’.

2.3 Enactivism

Others seek to avoid the question of meaning by eliminating any symbolic planning within the system,

e.g. Brooks (1990, 1991a, 1999). In particular, Brooks (1991b) favoured a subsumption architecture in

which different layers of control behave reactively to the environment. These reactive layers of control

are arranged on top of each other, with the actions of the higher layers taking priority over the lower

layers, whereas the information from the lower layers feeds upwards to the higher layers. By comparison,

a planning system uses a complex world model, in combination with a detailed learning algorithm, to

produce intelligent behaviour. Planning typically produces complex systems, since any failure at the task

is generally taken to reflect shortcomings of the model, which is then made more complex to cope.

2.4 Space of Cognitive Abilities

A key aspect of this work is that we devise a space—actually three-dimensional—in which we can position

the agent according to its ‘adjustable’ cognitive abilities, and study its success at some relevant task. This

space is depicted in Figure 1. The three dimensions are:

(i) The size of the agent’s symbol memory. (In this work, this ranges from 0 to 100 symbols.)
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Figure 1. In this work, the agent’s cognitive abilities are defined by its placement in a 3-D space, having a direct mapping to the
philosophical standpoints of symbol grounding, symbol attachment and enactivism.

(ii) The percentage of symbols in this memory that are innate (i.e. not acquired through experience).

(iii) The extent to which the agent attempts to predict the future behaviour of the environment, quantified

as planning depth (in time steps).

The space is devised to portray points and regions that reflect degrees of commitment to the three

opposing philosophical standpoints of symbol grounding, symbol attachment, and enactivism. As depicted

in Fig. 1, the pure symbol grounding approach to AI maps to the plane at which the percentage of innate

symbols is zero, the pure symbol attachment approach maps to the plane at which the percentage of innate

symbols is 100%, and pure enactivism maps to the origin of coordinates, at which there are no symbolic

abilities at all. The reader is warned that the design of this space is such that its three dimensions do not

correspond exactly to the three philosophical standpoints of concern, and should not be confused.

Sloman and Chappell (2004) detail the biological plausibility of the grounding-to-attachment continuum

(the z-axis of Fig. 1), by identifying a spectrum of animals ranging from the altricial to the precocial.

A precocial bird will be able to function within a few days of birth. It has been born with all of the innate

knowledge it needs to survive in its environment. By comparison, an altricial bird is dependent on its

parents for survival; it needs time to develop and acquire its concepts of the world through experience.
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3 Design methodology

The agent—with cognitive abilities defined by its coordinates in the space of Fig. 1—is placed in an

environment in which it interacts with a two-dimensional cellular automaton. In this system, α the alive

cell threshold, and, β the dead cell threshold, can be adjusted within the range 0–8 allowing for a variety

of cellular automata to be used. For example, by setting α = 3 and β = 2, Conway’s ‘game of life’ is

implemented. The agent is placed at a random location within the environment; its overall task is to

maintain a proportion of cells, specified by the designer, in the entire environment, in the alive state.

There are two sub-tasks: either to increase the alive-cell density from an initial to a higher value, or to

decrease the alive-cell density from an initial to a lower value.

3.1 Agent abilities

To perform its task of maintaining a target proportion of alive cells, the agent has a number of abilities:

perceptual, action and cognitive. The perceptual and action abilities are fixed . The cognitive abilities are

variable, and correspond to parameter settings that position the agent at some appropriate point in the

3-D space of Figure 1, so enabling us to compare experimentally the various philosophical approaches to AI

embodied in this figure.

The agent moves through and alters the environment by its actions. It can move one cell in any direction

(i.e. 8-neighbourhood). When a cell is within a radius of two cells from the agent (i.e. 24-neighbourhood),

it is able to ‘flip’ the state of the cell. Potentially, it can flip all 24 cells in a single time step, but only every

four time steps—this being the number of steps required to arrive in a totally new local environment.

There are basically three perceptual abilities: the agent can look ahead in a 180◦ arc, split into 20 equal

sections, and can sense the proportion of alive cells within each section. The radius of this arc is set at

20 cells. It can sense the proportion of alive cells in the environment as a whole, enabling it to compare

this number to the target proportion. The agent is also able to perceive the density of the surrounding

24 cells from its current location, and at the last location at which it performed an action, enabling it to

assess the consequences of its actions.
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3.2 Pure symbol grounding agent

A symbolic agent is one that manipulates a (symbolic) model of its environment, enabling it to explore

hypothetical scenarios and theorise about how the world will behave in the future. It needs to experiment

with possible approaches and learn the consequences of its actions, making it capable of planning its

actions instead of simply reacting. In the case of pure symbol grounding, the agent needs to construct its

world model through experience of the environment; for the symbols to have meaning, they need to be

grounded in the world.

Taking the abilities detailed in Section 3.1 above, we add planning and learning. At each time step,

the agent records the current perceived state of the world using its vision arc, and measures the density

change from the previous time step. Thus, it acquires a set of symbols, one for each section of its vision arc,

recording how densities in the environment have changed over time. These symbols are arranged in the

agent’s memory (world model) to provide it with a record of how neighbouring densities alter the density

under consideration.

This learning process is defined by Algorithm 1. Once the world model has been constructed over a

minimum of two time steps, it can be used to explore possibilities about the world. Before deciding upon a

course of action, the agent will predict the densities of the area within its vision arc for a number of time

steps into the future (i.e. the planning depth).

The planning process is defined by Algorithm 2, by which the agent predicts how the density of the

surrounding environment will change over time. To enable the symbolic information to be generalised to

novel situations, the recorded density changes are rounded to three decimal places (i.e. numerical precision

of p = 3). Accordingly, similar local environments will be treated in a similar way. The agent acts on this

information to alter its environment.

Having made a prediction, the agent selects a heading and an action as defined by Algorithms 3 and 4. It

does this by considering how previous heading decisions and actions have affected the world. The selected

heading/action will be those that cause the greatest predicted density change towards the desired goal. If

it has not encountered the surrounding 24 cell density before, it will select a random action and observe
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Algorithm 1 Learning process for the symbol grounding agent.

loop

S[ ]← density values
P[]← placed cell pattern
for all i such that 0 ≤ i ≤ S[ ].length do

CS[ ]← S[i](t) + S[i](t− 1)
end for

for all j such that 0 ≤ j ≤ CS[ ].length do

densityL← CS[j − 1]
densityR← CS[j + 1]
if densityL ≥ CS[j] and densityR ≥ CS[j] then

I[ ]← CS[j] + P[j]
end if

if densityL ≤ CS[j] and densityR ≤ CS[j] then

D[ ]← CS[j] + P[j]
end if

if densityL ≥ CS[j] and densityR ≤ CS[j] then

IL[ ]← CS[j] + P[j]
end if

if densityL ≤ CS[j] and densityR ≥ CS[j] then

IR[ ]← CS[j] + P[j]
end if

end for

EnvInc← I
EnvDec← D
LefInc← IL
RigInc← IR

end loop

Algorithm 2 Planning process for the symbol grounding agent.

PW ← perceived world
for j such that 0 ≤ j ≤ prediction depth do

for i such that 0 ≤ i ≤ P.density do

GP←generalise(P[i])
if GP[i] ≡ one of {I[ ],D[ ], IL[ ], IR[ ]} then

PW(t + 1)← PW+ matched {I[ ],D[ ], IL[ ], IR[ ]}
PW(t + 1)← PW(t + 1)+ matched {EnvInc,EnvDec,LefInc,RigInc}
PW← PW(t + 1)
t← t + 1

end if

end for

end for

how this affects the local density after four time steps. Similarly, if the agent has not encountered the

observed density arc before (i.e. 180◦ arc of 20-cell radius), it will pick a random heading and observe how

this, combined with the selected action, has affected the global density. As a result, it can learn through
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Algorithm 3 Heading selection process for the symbol grounding agent.

if PW = one of I[ ],D[ ], IL[ ], IR[ ] then

H← H from I[ ],D[ ], IL[ ], IR[ ]
if H > 1 then

H← H from, sort(I[ ],D[ ], IL[ ], IR[ ], greatest desired density change)
end if

else

H← random
Execute H

end if

Algorithm 4 Action selection process for the symbol grounding agent.

LW← surrounding 24 cells
if LW = one of I[ ],D[ ], IL[ ], IR[ ] then

P← P from I[ ],D[ ], IL[ ], IR[ ]
if P > 1 then

P← P from, sort(I[ ],D[ ], IL[ ], IR[ ], greatest desired density change)
end if

else

P← random
Execute P

end if

its experience and construction of a generalised world model.

The world model is defined by a number of density-change symbols, sometimes linked with action

patterns or headings, which the agent can store in its memory. This number is set by the researcher and

can range from 0 to 100. When the symbol limit is reached, the oldest symbol is deleted to allow each new

symbol to be added.

3.3 Pure symbol attachment agent

An agent making use of symbol attachment can use innate concepts given to it at birth. To do this, an

agent will either have a hand-coded world model or it will be trained in one environment and then re-born

in another. The concepts acquired through experience in one life will then become innate in the next. As

the agent experiences the new environment, these innate concepts become attached to the environment as

they are experienced anew, or they remain ungrounded if they are never experienced. The pure symbol

attachment agent and the pure symbol grounding agent are distinguished only by the former’s possession
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of an established set of concepts at birth; all other abilities are equal.

3.4 Pure enactivist agent

The enactivist agent is implemented by linking its perception reactively to its actions. Its perception of

the proportion of alive cells is linked to its choice to flip neighbouring cells. If it perceives that there are

more alive cells than required, it will flip the neighbouring cells to the dead state. Conversely, if there are

not enough alive cells, the agent will flip the neighbouring cells to the alive state.

The vision arc is then used to determine the agent’s movement. If the agent has to reduce the number of

alive cells, it will move towards the highest density of cells. Alternatively, if it has to increase the number

of alive cells, it will move towards the lowest density of cells. If it cannot make a heading decision, it will

pick a random direction, as no more sensible course of action is available.

3.5 Parameter adjustment

A few relevant parameters can be used to define a position in the space spanning these three

approaches (Fig. 1). We have already specified how re-birth can create an attachment agent, but there

is a continuum between attachment and grounding. The proportion of innate symbols determines the

agent’s location on this continuum—the z-axis of Fig 1. If there is no room in the memory for additional

symbols to be formed through experience, then the agent is entirely precocial; it makes plans based on its

innate concepts. However, if there is available memory, then it is capable of learning more about the world

through experience.

Additionally, an increase in the planning depth allows us to move away from a pure enactivist agent. The

more an agent can plan ahead, the less it is simply reacting to the current environment. The ‘environment

as its own model’ (Brooks, 1991b) is increasingly replaced by a plan defined by the agent’s internal model.
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Figure 2. Positioning of pure symbol grounding agent, pure symbol attachment agent and pure attachment agent in the 3D-space of
cognitive architectures. The thick solid lines denote the parameter variations employed to explore the space.

4 Experimental design and results

Clearly, the space of Fig. 1 is very large and it is not feasible to explore it fully. All we can hope is to

look at a reasonable number of points (corresponding to specific agent cognitive architectures/abilities)

within it. The experimental design aims at giving reasonable coverage, allowing us to draw valid and

useful conclusions.

Since Fig. 1 has three axes, we have evaluated the impact of each: planning depth (x-axis), size of symbol

memory (y-axis) and percentage of innate symbols in this memory (z-axis). When assessing any one of

these, the other dimensions are held constant. The default parameters for each philosophical standpoint are

depicted in Figure 2, along with thick lines to denote the parameter variations around (two of) the defaults.

For the symbol attachment agent, it is necessary to have a mechanism for supplying innate symbols.

This was done by placing a symbol grounding agent in an environment and running a simulation until its

symbolic memory was full. It was then re-born in a new environment where it was assessed. The initial

environment had the same settings as the environment in which it was reborn.

Three cellular automata were used as environments, as depicted in Table 1. In all three environments,

the agent had to adjust the alive-cell density according to the initial parameters shown in Table 2, for the

two sub-tasks mentioned previously. Each cellular automaton was run for 500 time steps, which was found
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Table 1. Specification of the three cellular au-

tomata used in this work, denoted Complex, Stable

and Exploding.

α β Name Type
{2,3} {2} Conway’s Life Complex
{5} {3,4,6} Long Life Stable
{3,4} {3,4} 34 Life Exploding

Table 2. The agent is set one of two sub-tasks, either to

increase or to decrease the density of alive cells.

Sub-task Initial density (%) Desired density (%)
Increase 20 35
Decrease 20 5

to be sufficient for the agent to have a noticeable effect on its environment. The size of the environment was

35× 35 cells. This is a reasonable compromise, being large enough to present the agent with a challenge

yet still allowing it to have an effective influence on it.

4.1 Comparison of the pure agent architectures

These are compared with respect to deviation between actual and desired density of alive cells as a

function of time. Fig. 3 shows the performance of the enactivist and symbol grounding architectures across

the 500 time steps. Each point depicted is for an average over 5 repetitions from a different random starting

point of the 2 sub-tasks and 3 environments.

As expected in view of its fixed, reactive architecture, the performance of the enactivist approach

remains unchanged apart from (quite large) statistical variation caused by the uncertain (as far as the

agent is concerned) changes in environment. Initially, the symbol grounding approach is more or less

indistinguishable from the enactivist approach, since few or no symbols have been acquired. Over time,

the symbol grounding approach undergoes a learning phase in which it is acquiring symbols and its

performance is relatively poor. At time step 50, its symbolic memory is full and old symbols may be

discarded for new ones. On the basis of a t-test of means, symbol grounding is poorer than enactivism over

the period of 50 to 225 time steps (marginally significant P = 0.07). Thereafter, as the symbol memory

starts to stabilise, performance improves and becomes competitive with the enactivist architecture. (The

pattern of performance was largely unchanged for time steps great than 500.)
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Figure 3. Performance of enactivist architecture and symbol grounding architecture over time.

Figure 4. Performance of symbol attachment architecture and symbol grounding architecture versus time.

Fig. 4 shows the performance of the symbol attachment and symbol grounding architectures across the

500 time steps. Again, each point depicted is for an average over 5 repetitions of the 2 sub-tasks and

3 environments. At face value, and given the effect of the uncertain (as far as the agent is concerned)

environmental changes, it is hard to say that there is much systematic difference between these two. We

do, of course, expect greater variability in the performance of the symbol grounding architecture simply

because it is a learning system; its world model is subject to constant change. Although symbol attachment

might speed the learning process, the innate concepts need to be relevant to the actions and performance

of the agent.
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In summary, there is little to choose between the two pure symbolic architectures (Fig. 4). The

attachment architecture performs generally better in the short term (Fig. 3), since it does not have to learn,

and learning can be an error-prone process. However, after successful learning, a symbolic architecture can

do just as well. A well-designed purely reactive system uses the world as its own model and can behave

appropriately as a result. It may have a prediction depth of zero, but by the same token, there will be

zero error in its world model (since it doesn’t have one). In this work, the environment stops while the

agent builds its world model; this does not happen in the real world! Previous work, e.g. Shakey the robot

(Nilsson, 1984), has shown that the time taken to construct a world model is a crucial problem when a

real-world robot is constructed. While the agent is building its representation, the world itself carries on,

making any plan built for a static environment potentially irrelevant. This gives an edge to the enactivist

agent when compared to the symbol grounding agent.

4.2 Variation of planning depth

Here, we test the agent’s performance as a function of planning depth by varying its position along Line 1

in Fig. 2 from depth 0 to 20, in increments of 5. Note that when planning depth equals 0, we have a pure

enactivist agent—symbol memory size is irrelevant if there is no symbolic planning.

Figure 5 shows the deviation from the desired density. Each point depicted is for a particular time step

(of the 500) averaged over 5 repetitions of the 2 sub-tasks and 3 environments. It seems that there is a

disadvantage to having planning capability, or at least, the agent is unable to exploit it to build an accurate

world model.

Why is the model inaccurate? Is it a result of poor generalisation? To answer these question, the difference

between the agent’s world model and the actual world was computed, averaged over both sub-tasks, the

3 environments, 500 time steps and 5 repetitions, as a function of planning depth and level of generalisation

(i.e. the degree of numerical rounding, or precision, p). The result is shown in Figure 6. At this point,

we should emphasise the (subtle) difference between the y-axes of Figs. 5 and 6. The y-axis of Fig. 5

(divergence from desired density) indicates how far the agent is from achieving its goal, i.e. it is a measure
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Figure 5. Average performance difference between actual and desired alive cell density as a function of planning depth, for the default
value of precision parameter, p = 3.

Figure 6. World model accuracy for different levels of planning depth and numerical precision, p. Note that p is an inverse measure of
the agent’s level of generalisation.

of ‘performance’. However, the y-axis of Fig. 6 (divergence of agent’s model from actual world) indicates

how far the agent’s internal world model is from the actual world.

The curve in Fig. 6 for the higher levels of generalisation (p ∼ 3) is very similar in shape to that of Fig. 5,

indicating that the deterioration in performance as planning depth increases is most likely due to a failure

of the world model when generalisation is too severe. This error affects the agent’s predictions causing it

to make the wrong heading decisions and action choices; it can be countered by relaxing the degree of

generalisation, i.e. increasing the numerical precision by increasing p. The divergence of the agent’s model

from the actual world then falls to zero, irrespective of planning depth, for p ≥ 6. The question arising is
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Figure 7. Difference in performance over different planning depths when the numerical precision is 1 and 9.

how this reduced generalisation capability would be reflected in agent performance.

As can been seen in Figure 7, when the precision parameter is set to p = 1, the performance improves as

the planning depth increases. This suggests that a reasonably high level of generalisation makes the world

model useful, in spite of its divergence from the actual world, as one would expect intuitively (by avoidance

of over-fitting to specific cases). By comparison, when the symbols have high levels of precision, p = 9, the

performance appears to decrease with planning depth, probably because the precise world model scenarios

are used only very few times (i.e. there is over-fitting). As a result the agent is forced to choose a new

random action and heading at each time step.

4.3 Variation of symbol memory capacity

By varying the parameters along Line 2 of Fig. 2, we investigated the role of the size of the agent’s symbolic

memory. As seen in Figure 8, the memory size has no discernible effect on performance.

4.4 Variation of proportion of innate concepts

We assessed a range of configurations, from grounding to attachment, by varying the proportion of innate

concepts along Line 3 of Fig. 2. The cognitive architecture of the agent was initially set to pure symbol

grounding with its memory capacity set to 100 symbols. Further configurations were tested by increasing
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Figure 8. World model accuracy for different levels of planning depth and generalisation.

the proportion of innate concepts in the memory from 0 to 100 in increments of 20 symbols. The average

deviation from the desired density was recorded for all combinations of the 2 sub-tasks and 3 environments,

and for 5 repetitions. In addition, the deviation in prediction accuracy (between the world model and the

cellular automaton) was recorded and averaged.

Figure 9 shows the deviation from desired cell density (i.e. performance) for these different configurations

as a function of time. There is a slight decrease in performance as proportion of attached symbols increases,

and performance is more or less constant over time. Figure 10 shows divergence between the agent’s world

model and the actual world for the same situation as depicted in Fig. 9. The results indicate a possible

problem with the inflexibility of innate concepts, in that accuracy decreases with increased proportion of

attached symbols and also over time, although there is no impact on the performance (Fig. 9). This occurs

even when the symbol attachment agent has been trained in a similar environment to the test environment,

and may be a result of changes in the initial configuration of the two environments: concepts acquired in

one do not necessarily apply in the other. This further illustrates the dangers of using inflexible innate

concepts even if they appear to be correct.

It is noteworthy that here the deterioration in model accuracy was not reflected in depressed performance

whereas in Section 4.2 it was. The simplest interpretation of this finding is that it is the interplay of planning

depth and proportion of attached symbols that is the cause of deterioration.



June 18, 2007 10:58 Journal of Experimental & Theoretical Artificial Intelligence paper

20 Manuscript submitted to Journal of Experimental & Theoretical Artificial Intelligence

Figure 9. The world model deviation from the environment on the altricial-precocial scale.

Figure 10. The world model deviation from the environment on the altricial-precocial scale.

5 Conclusion

In this paper, we have attempted to show how empirical or experimental research might offer at least some

insight into foundational, philosophical questions underpinning artificial intelligence (AI). Of course, the

findings here are highly specific to the situation studied, and it would be foolhardy to suggest that they

had general validity for all fields of AI. Rather, our main claim is that an empirical exploration of the

space of possibilities, in the way that we have done, could usefully form the initial phase of the design of

many practical AI systems. It forms a valuable alternative to the AI technician simply declaring a priori

adherence to a particular philosophical position, as tends to happen at present. This a priori allegiance to

a school of thought anyway carries the danger of ending up being compromised by the practical necessity

of making a system work.
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With this important caveat, and given that we must always be careful when drawing general conclusions

from designed models, what insights have we gleaned and how portable are they between applications?

Clearly, both our agent and its artificial environment were highly simplified, to keep the work focused and

tractable; hence, we readily concede that portability is low. However, as we scale up complexity, we believe

that the sort of issues identified here will only become more acute.

Specifically, we have found the following. In some circumstances, a purely reactive (enactivist) system

may not only be sufficient, but can have concrete advantages. These stem from the avoidance of having

to acquire a world model that has the right level of generalisation, tracks changes in the environment

on an appropriate time scale, etc. Well-known problems such as the bias-variance, stability-plasticity and

exploration-exploitation dilemmas raise their head here. Of course, the reactive system has to be properly

designed in the first place, and herein lies a real problem when the application confronts a significant degree

of complexity. Although symbolic planning offers a solution in this case, the complexity of the world model

and the algorithm for acquiring it need to be matched to the complexity of the environment and of the

task, as explored here through the symbolic memory size.

Although obviously simplified, we argue that the environment devised for this work has many positive

aspects; it is dynamic and has a useful degree of complexity, providing a valid challenge for the agent. But

this dynamic nature places a limit on the significance of the results as the density changes effected by the

agent are often dwarfed by the density changes of the environment. By averaging the results over 3 cellular

automata, 2 sub-tasks and multiple runs, we limit the effect of the environments’ own interactions and

expose the agent’s achievements.

With the empirical framework outlined here, researchers can begin to define, test, and justify their own

approaches. It might even lead to a reappraisal of apparently competing philosophies, and perhaps to their

extension and/or reconciliation. This is important because otherwise we are left with verbal theories based

loosely on the mind-as-machine metaphor. These verbal theories can suffer from a lack of precision and

hidden assumptions. Ultimately, let the success of AI be judged by its results and not its philosophy.
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