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Abstract— In this paper, we design and investigate a novel Interleave
Division Multiplexing based Space-Time Code (IDM-STC) in the context
of cooperative communications. We outline the particular signalling
scheme used for exchanging the necessary information amongst the
cooperating MSs and suggest an efficient interleaver allocation scheme,
which is capable of uniquely and unambiguously differentiating the
different MSs’ signals with the aid of their user and antenna-specific
interleavers. We then characterize the achievable performance of our
proposed IDM-STC design and compare it to that of the traditional
G2 and G4 Space-Time Block Code (STBC) invoked for cooperative
communications. Our cooperative IDM-STC scheme is flexible in terms of
forming a cluster of cooperative users, it is power-efficient and capable of
maintaining a high rate, in particular when combined with non-uniform
power allocation.

I. INTRODUCTION

Multiple Input Multiple Output (MIMO) systems [1] are capable
of providing both diversity and coding gains in the context of Space-
Time Codes (STC) [2] as well as of supporting a high multiplexing
gain, when using for example Bell-Labs Layered Space Time Archi-
tecture (BLAST) [3]. However, at the Mobile Station (MS), it may
be impractical to accommodate multiple antennas. Alternatively, the
novel concept of cooperative communications allows us to assign the
MIMO elements to geographically separated cooperating MSs, which
are no longer prone to shadowing-induced correlated fading, leading
to the concept of Virtual MIMOs (VMIMO) [4], [5].

Hence STC based VMIMO designs [6] are attractive for employ-
ment in cooperative communications, where the cooperating MSs’
independently fading signals jointly constitute a STC codeword. Re-
cently, an Interleave Division Multiplexing Space-Time Code (IDM-
STC) by Wu and Ping was proposed in [7], where its potential
applicability in cooperative communications was also alluded to. The
resultant IDM-STC was then investigated and analyzed in [8], where
a similar performance was reported to that attained by Alamouti’s
STBC. This motivated us to design and investigate the proposed IDM-
STC in the context of cooperative communications.

Our design of IDM-STC was specifically contrived for cooperative
communications by appropriately adopting the Multilayer IDM-STC
concept [7], where we treat each cooperating MS as an IDM-
STC layer. Instead of using multilevel modulation schemes [9],
we employ sigma mapping for creating an error-resilient binary
cooperative system. We also design a realistic signalling scheme
required for exchanging the information amongst the cooperating
MSs and contrast the benefits of IDM-STCs to those of the traditional
G2 and G4 Space-Time Block Code (STBC) design [10]. More
specifically, the novel contribution of this paper is that we design
an error-resilient, yet high-throughput IDM-STC scheme suitable for
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cooperative communications and characterize its achievable rate,
power-efficiency and flexibility.

The rest of the paper is organized as follows. In Section II, we
describe the cooperative scenarios considered and introduce the IDM-
STC transceiver architecture designed for cooperative communica-
tions. In Section III, we design a practical signalling scheme for
exchanging the necessary information amongst the cooperating MSs
and suggest an efficient interleaver allocation scheme. In Section IV,
we outline the achievable benefits compared to the traditional G2 and
G4 STBC design. Finally, we conclude our discourse in Section V.

II. SYSTEM ARCHITECTURE

A. Cooperative Scenarios

Consider a cluster of uplink transmitters cooperatively communi-
cating with a destination Base Station (BS) employing a single receive
antenna. Similarly, each cooperating transmitter has a single transmit
antenna, resulting in a Virtual Multiple Input Single Output (VMISO)
system. We define two modes of operation for a cooperating MS of
a cluster, namely 1) active, when the MS is conveying both its own
information and other cooperating MSs’ information; 2) relaying,
when the MS is available for conveying other MSs’ information.

We assume that the channels amongst the cooperating MSs are
”ideal”, which assumes that the information exchanged amongst the
cooperating MSs is error-free and perfectly synchronized. We assume
furthermore that the channels between the cooperating MSs and the
BS exhibit independent identically distributed (i.i.d) Rayleigh fading
and that the Channel State Information (CSI) is perfectly known both
at the BS’s and the Relay Station’s (RS) receiver. 1

B. Cooperative Transmitter

In this VMISO system, we assume having a total of N transmit
antennas, K cooperating MSs and (N −K) RSs in a cluster, where
we have N ≥ K, as seen in Fig. 1.

The kth MS’s transmitted bit stream bk is firstly channel encoded
by C1 at a rate of r1, yielding the encoded stream c1

k. The resultant
channel encoded stream is randomly interleaved by a user-specific
chip-interleaver πu

k , resulting in ĉ1
k. This stream is then repetition

coded by C2 at a rate of r2, resulting in c2
k, which is then S/P

converted to N parallel streams and mapped to the N antennas,
yielding the information c2

k,n of MS k at antenna n. Then each
stream c2

k,n, which the MS intends to transmit with the aid of its
nth cooperating partner, is again randomly interleaved by an antenna-
specific chip-interleaver πa

n, yielding ĉ2
k,n, before sending it to the

multilayer mapping stage, as seen in Fig. 1.

1Naturally, this is a very demanding assumption, since estimating all the
related channels imposes a high complexity. As a first step towards eliminating
this demanding assumption, we could consider differentially encoded and non-
coherently detected schemes.
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Fig. 1. The K-user cooperative IDM-STC UpLink transmitter

1) IDM-STC: In this paper, we employ repetition codes of code-
rate r1 and r2 for both C1 and C2 , respectively, resulting in a total
code-rate of R = (r1×r2). When considering a cluster of N available
antennas, the overall rate of the IDM-STC scheme becomes:

rIDM = N × R, (1)

which is always less than unity, when we assume N ≤ 1/R.
We will further consider three typical settings of r1 and r2 given

a fixed total code-rate R, namely: 1) r1 = R and r2 = 1, i.e. when
we employ the repetition code C1 only. The interleaver πu

k and S/P
conversion of Fig. 1 ensures that the encoded bits c1

k are randomly
dispersed across both the spatial and the time domain. 2) r1 = 1
and r2 = R, i.e. only the repetition code C2 is employed and the
following S/P conversion of Fig. 1 ensures that the encoded bits c2

k

are directly mapped to each antenna, since the interleaver πa
n of Fig.

1 operates after S/P conversion. 3) r1 = RN and r2 = 1/N .
2) Multilayer mapping: In contrast to classic mapping and modu-

lation schemes, such as PSK and QAM, sigma mapping [11], which
are based on the theory of multiuser communications, was designed
to generate an approximately Gaussian distributed transmitted signal,
which allows the system to approach the Shannon capacity.

Let us hence consider the multilayer mapping of K MSs’ cooper-
ative bit streams, i.e. ĉ2

k,n, ∀k at the nth antenna. Let us assume
that we want to transmit mk,n bits/symbol with the aid of each
substream ĉ2

k,n, where the resultant symbol vector is denoted by
vk,n = [ĉ2

k,n,1, · · · , ĉ2
k,n,mk,n

]. Then the total number of bits/symbol
transmitted by all the K MSs that are mapped to the nth antenna,
n = 1, · · · , N is given by:

Ln =
K∑

k=1

mk,n. (2)

We refer the number of bits as the number of layers. The super-
symbol vector sn = [v1,n, · · · ,vK,n] hosting all the K symbol
vectors is then weighted by the nth antenna’s coefficient un and
superimposed to generate the K-MS ”super-symbol” in the form of

xn = unsT
n , (3)

where (·)T denotes the transpose and the weighting coefficient vector
is given by:

un = [ρn,1e
jθn,1 , · · · , ρn,Lnejθn,Ln ], (4)

with the entries of ρn,m and θn,m ∈ [0, π] representing the layer-
specific amplitude2 and phase3 of the nth antenna’s stream, respec-

2The rationale of allocating a different power ρn,m to each of the Ln layers
is philosophically similar to that of the multilevel coding concept, where we
create a number of different protection levels and detect them by gleaning
extrinsic information from the previously decoded levels using multistage
decoding.

3The associated phase rotation has two benefits, namely that of 1) reducing
the Peak-to-Average Power Ratio (PAPR) of the transmitted ”super-symbol”
xn; 2) making the ”super-symbol” having Ln layers more distinguishable for
the detector.
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Fig. 2. The iterative IDM-STC UpLink receiver of the K users

tively.
We assume that the number of layers Ln and the weighting

coefficient vector un is the same for all of the N antennas, which
implies that we have Ln = L, ∀n and un = u, ∀n. Furthermore, we
employ a layer-specific uniform phase rotation so that the Ln number
of layers are uniformly phase-rotated on the two-dimensional signal
space.

C. Turbo Receiver of IDM-STC

The discrete-time received signal y is given by:

y = hx + ν,

= hUs + ν, (5)

where we have:

h = [h1, · · · , hN ]1×N ,

s = [s1, · · · , sN ]TNL×1,

U = diag[u1, · · · ,uN ]N×NL,

where h denotes the i.i.d Channel Impulse Response (CIR) vector
of the VMISO system. Each entry un = u in U can be viewed
as a complex-valued scaling vector of the transmitted binary signal
vector sn corresponding to the nth antenna imposing an amplitude
scaling and phase rotation action. Finally, ν ∼ Nc(0, σ2

n) in Eq. (5) is
a complex-valued Additive White Gaussian Noise (AWGN) process
having σ2

n = N0/2 per dimension. We rewrite Eq. (5) as:

y = Hs + ν, (6)

where H = hU is the equivalent CIR matrix. Hence, by using sigma
mapping, a binary system is constructed, which facilitates a real-
valued processing at the receiver side.

The turbo receiver consists of a Soft In Soft Out (SISO) Detector
(DET) and a bank of K individual SISO decoders (DEC), as seen in
Fig. 2. The SISO DET employs the low complexity Soft Interference
Cancellation (SoIC) scheme of [12].

Let us now consider the ith bit si of the transmitted super-symbol
vector s. Then Eq. (6) can be written as

y = Hisi + ξ, (7)

where ξ =
∑

j �=i Hjsj + ν represents the interference plus noise.
In a binary system the real part (Re) of H∗

i y constitutes sufficient
statistics for estimating si, where (·)∗ denotes the conjugate, resulting
in:

Re(H∗
i y) = |Hi|2si + Re(H∗

i ξ). (8)

We denote the soft estimate of a variable a by (â). Then, the soft
estimate Re(H∗

i ξ̂) and its variance V[Re(H∗
i ξ̂)] are given by:

Re(H∗
i ξ̂) = HRe

i ŷRe + HIm
i ŷIm − |Hi|2ŝi, (9)

V[Re(H∗
i ξ̂)] = (HRe

i )2V(ŷRe) + (HIm
i )2V(ŷIm)

−|Hi|4V(ŝi) + 2HRe
i HIm

i φ, (10)
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k,1

dk =
∑N

n=1 ĉ2
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Fig. 3. The Phase-I cooperation of the K-user UpLink IDM-STC

where we have φ =
∑NL

i=1 HRe
i HIm

i V(ŝi) and Im(·) represents the
imaginary part of a complex number. The soft estimate ŷRe and its
variance V(ŷRe) may be expressed as:

ŷRe =

NL∑
i=1

HRe
i ŝi, (11)

V(ŷRe) =
NL∑
i=1

(HRe
i )2V(ŝi) + σ2

n. (12)

We remark that Eq. (11) and Eq. (12) also hold for the imaginary
counterpart. The soft estimate ŝi can be represented as ŝi =
tanh(La

DET (si)/2), while its variance is given by V(ŝi) = 1− ŝ2
i .

Thus, the extrinsic information Le
DET (si) is given by:

Le
DET (si) = 2|Hi|2 Re(H∗

i y) − Re(H∗
i ξ̂)

V[Re(H∗
i ξ̂)]

. (13)

Then the extrinsic information Le
DET (si) of each bit si detected by

the DET is sorted in the required order for creating the sequence
Le

DET (ĉ2
k,n). This is used as a priori information to be forwarded

to the DECs, which computes the more reliable extrinsic information
Le

DEC1(c
1
k) for the next iteration. The iterations are terminated, when

a predefined termination criterion is satisfied.

III. IDM-STC IN COOPERATIVE COMMUNICATIONS

A. Phase-I Cooperation

Before transmitting the cooperatively combined IDM-STC signals,
all cooperating MSs’ information should be exchanged, which we
refer to as Phase-I cooperation. We assume the employment of a
Time Division Duplexing (TDD) system, where this information is
exchanged using different time-slots.

Let us now elaborate further on the Phase-I cooperation scheme
of Fig. 3 designed for the IDM-STC arrangement. In time-slot k,
MS k transmits a sigma mapped symbol dk =

∑N
n=1 ĉ2

k,n to all the
cooperating MSs. Then the nth cooperating receive antenna detects
dk, extracts ĉ2

k,n and ignores ĉ2
k,i, ∀i �= n. Since N ≤ 1/R, we have a

sufficiently high degree of freedom for detecting each bit of dk using
the turbo receiver introduced in Fig. 2. After successfully exchanging
information across all the K MSs, the nth antenna transmits ĉ2

k,n of
all the K cooperating MSs of Fig. 1.

Thus, the initial Phase-I cooperation of IDM-STC imposes a K-slot
transmission overhead, which is equal to the number of cooperating
MSs K, upon exchanging information amongst the cooperating MSs.
Hence, as far as the entire TDD system is concerned, setting aside
K time-slots for Phase-I cooperation may be viewed as reducing
the effective throughput by K time-slots for the sake of achieving
N th-order diversity.

B. Effective Throughput

1) Traditional STBC: Consider having K = 2 or K = 4
cooperating MSs in a cluster using a traditional G2 STBC [2]:

G2 =

[ −x∗
2 x1

x∗
1 x2

]

or G4 type STBC [10]:

G4 =

⎡
⎢⎢⎣

−x∗
4 −x∗

3 −x∗
2 x∗

1 −x4 −x3 −x2 x1

−x∗
3 x∗

4 x∗
1 x∗

2 −x3 x4 x1 x2

x∗
2 x∗

1 −x∗
4 x∗

3 x2 x1 −x4 x3

x∗
1 −x∗

2 x∗
3 x∗

4 x1 −x2 x3 x4

⎤
⎥⎥⎦ .

The traditional STBC used in cooperative communications operates
as follows: 1) the cooperating MSs first exchange their information,
which requires K time-slots; 2) given that all MSs now have the
signals of all other MSs, conventional STBC transmission of xk, ∀k
takes place using all N = K antennas of the K MSs according to
the above matrices.

For the sake of achieving a high throughput, each symbol xk can
be modulated to an M-ary modulation constellation, where we have
M = 2m and m denotes the number of bits/symbol. The effective
throughput per user excluding the overhead of the Phase-I inter-MS
data exchange can thus be defined as:

ηSTBC =
rSTBC × log2M

K
. (14)

2) IDM-STC: In the IDM-STC scheme considered, the overhead
imposed by the Phase-I cooperation is constitute by K slots, which
is equivalent to the traditional STBC. The effective throughput per
user, excluding the overhead of IDM-STC may be expressed as:

ηIDM =
rIDM × L

K
, (15)

where rIDM was defined in Eq. (1) and the number of layers L was
defined in Eq. (2).

C. Interleaver Allocation

In our IDM-STC based cooperative scheme, we employ the so-
called embedded interleavers of [13], where the kth MS’s user-
specific interleaver πu

k constitutes a further interleaved version of the
(k − 1)st MS’s interleaver πu

k−1 using a common ”base” interleaver
πu, hence their relationship may be expressed as πu

k = πu(πu
k−1).

This is the same for the antenna-specific interleaver allocation, where
we have πa

n = πa(πa
n−1) and πa is the common ”base” interleaver.

These two ”base” interleavers are generated randomly in this paper.

IV. BENEFITS OF IDM-STC

In this section, we compare our IDM-STC based cooperative
communications scheme to the traditional G2 and G4 STBC scheme
[10]. We assume that the channels between the N = K cooperating
MS transmitters and the BS receiver are i.i.d narrowband Rayleigh
fading channels and perfect CSI at the BS receiver. Two scenarios are
investigated, namely 1) Fast fading: the channels exhibit a normalized
Doppler frequency of fd = 0.02. 2) Block fading: the channels
remain constant over each block but change between different blocks.

We stipulate furthermore that the information exchange amongst
MSs is error-free. The transmission frame length in our simulations
was set to 800 bits and the maximum number of iterations used was
I = 20.
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A. Investigation of IDM-STC

In this subsection, we illustrate IDM-STC having three typical
values of C1 and C2 as mentioned in Section II, given a fixed
total code-rate of R = 1/4 compared to the G2 STBC benchmarker
represented by the solid line seen in Fig 4, where we have K = N =
2. The three code-rate settings are 1)r1 = 1/4 and r2 = 1; 2)r1 = 1
and r2 = 1/4; 3)r1 = 1/2 and r2 = 1/2.

As seen in Fig 4, in the block-fading scenario, both Setting 2 and
3 have a similar BER as the G2 STBC, implying that these two
IDM-STCs are capable of achieving full transmit diversity, as the
G2 STBC. By contrast, Setting 1 has the worst performance, since
it is unable to guarantee that the coded bits equally allocated to the
transmit antennas, because they may be mapped by the S/P to the
same antenna, resulting in a loss of transmit diversity gain. However,
when fast fading is encountered, Setting 1 is superior in comparison
to the G2 STBC, since both transmit diversity and time diversity are
available.

When a sufficiently high number of layers, such as L = 6 is
employed, Setting 1 was seen to be best in Fig 4, while Setting
2 is incapable of supporting the high throughput of Setting 1,
which was 3 bits/symbol. This implies that Setting 1 is a high-
throughput multiplexing-oriented configuration, while Setting 2 is a
low-throughput diversity-oriented configuration. In our forthcoming
simulations, we employ Setting 1 aiming at achieving a high rate.

B. Benefit 1 - Power Efficiency

In this subsection, we consider uniform power allocation.
1) Comparison to G2 STBC: Fig. 5 shows the BER performance

of the G2 STBC scheme using various M -ary modulation schemes
and IDM-STC invoking a total code-rate of R = 1/4 and having
different number of layers. For fast fading, a single-MS, single-layer
system having N = 2 distributed antennas using IDM-STC was
simulated, which served as a benchmarker. Clearly, Fig. 5 suggests
that the IDM-STC had a steeper BER slope, when the number of
layers L was as high as 6 and a significant Eb/N0 gain was observed
at BER ≤ 10−4. In this case, the effective throughput of IDM-STC
was ηIDM = 6/4 according to Eq. (15), which is equivalent to G2

STBC using 8PSK modulation. However, the effective throughput
of IDM-STC will be lower than that of a G2 STBC using a 4
bits/symbol modulation scheme. By contrast, in the block fading
scenario characterized in Fig 5, the IDM-STC is inferior to G2 STBC,
when the number of IDM-STC layers obeys L ≥ 4.
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Fig. 5. BER performance of G2 STBC and IDM-STC having R = 1/4
over both fast fading and block fading in cooperative communications.
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Fig. 6. Performance of G4 STBC and IDM-STC over fast fading in
cooperative communications, where L = 4, 5, 6, 7 layers corresponding upto
7 bits/symbol transmission were supported. Additionally, with the aid of non-
uniform power allocation, L = 8 layers can be supported.

2) Comparison to G4 STBC: Let us now compare IDM-STC hav-
ing R = 1/8 to the above G4 STBC in cooperative communications,
where we have K = N = 4. Fig. 7 shows the achievable BER
performance of IDM-STC in the block-fading scenario. Although a
reduced performance was observed for IDM-STC compared to that of
the fast-fading scenario of Fig. 6 owing to the lack of time diversity,
they are both superior to that of the G4 STBC. In Fig. 6, a single
MS assisted by N = 4 distributed antennas using IDM-STC was
characterized, which served as a benchmarker. It can be seen in both
Fig. 7 and Fig. 6 that the maximum number of layers L supported
was L = 7, which is equivalent to a G4 STBC scheme using a large
and hence error-sensitive 128-QAM constellation, while requiring a
lower power than the 4 bit/symbol G4 STBC aided 16-QAM scheme,
as observed at BER ≤ 10−5.

Thus a significant power gain can be observed compared to the G4

STBC both under fast-fading as well as block-fading conditions. In
this case we have rIDM = rSTBC = 1/2, implying that IDM-STC
does not suffer a rate loss in comparison to G4 STBC.

C. Benefit 2 - Achieving an Increased Throughput

In this subsection, in addition to uniform phase rotation, non-
uniform power allocation is also considered. In this paper, no attempts
were made to formally optimize the power allocation scheme. Instead,
the following simple non-uniform power allocation strategy [14]
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η G4 / IDM-STC Δf
1 /Δb

1 Δf
2 /Δb

2
4/8 M = 16 / L = 4 9 / 6 - / -
5/8 M = 32 / L = 5 9 / 5 - / -
6/8 M = 64 / L = 6 14 / 4 24 / 9
7/8 M = 128 / L = 7 8 / 2 23 / 7
8/8 M = 256 / L = 8 -1 / -1 4 / 4

TABLE I
THE POWER GAIN Δ IN DB OF IDM-STC COMPARED TO G4 STBC IN

COOPERATIVE COMMUNICATIONS, WHERE Δ1 , Δ2 DENOTES THE POWER

GAIN CORRESPONDING TO 16-QAM AND 64-QAM IN G4 STBC,
RESPECTIVELY. THE SUPERSCRIPT f AND b DENOTE FAST FADING AND

BLOCK FADING, RESPECTIVELY.

was adopted4. Consider the length-L weighting coefficient vector u,
which obeys:

ρ2
m+1 = ρ2

m/β, (16)

while ensuring that
∑L

m=1 ρ2
m = Pn, where we refer to β ≥ 1 as

the scaling factor and Pn is the maximum total power of the nth
transmitter antenna, which is assumed to be equal for all N different
antennas.

Returning briefly to Fig. 6 and Fig. 7, they also show the achievable
BER performance of IDM-STC, when using non-uniform power
allocation. Upon investigating the most appropriate values of β
experimentally, β = 1.2 was found to be adequate and the number
of layers for which an adequate BER performance was attainable
was found to be as high as L = 8, corresponding to a 256-QAM
modulated 8 bits/symbol G4 STBC scheme, while requiring a lower
power than the 6 bits/symbol G4 STBC aided 64-QAM scheme.

The achievable power gain of IDM-STC used in cooperative
communications was summarized in Table I, where Δ was the
Eb/N0 gain of IDM-STC at BER = 10−4 over conventional
G4 STBC scheme having identical-throughput, i.e. we had Δ =
(Eb/N0)STBC − (Eb/N0)IDM .

D. Benefit 3 - Flexibility

The design flexibility of IDM-STC allows the employment of an
arbitrary number of antennas. This implies that IDM-STC based

4This power allocation strategy under consideration was derived in the
context of capacity region assuming capacity-achieving codes.

cooperative communications can be used in diverse cooperative
scenarios. More explicitly, when R = 1/8 IDM-STC was used, the
system was capable of supporting K = 2, 3, 4, 5 cooperative MSs
without designing different matrices when the traditional STBC code
was employed.

Suffice to say, however that in most practical scenarios having a
diversity order of more than five attains a near-AWGN BER per-
formance and hence there is limited benefit in further increasing the
diversity order, i.e. the number of cooperating antennas, in particular,
when considering the effective throughput reduction imposed by the
Phase-I inter-MS cooperation. This flexibility is beneficial in terms
of forming a flexible cluster of cooperating MSs, allowing MSs to
freely join or disjoin the cluster of cooperation.

V. CONCLUSION

In this paper, we analyzed the achievable IDM-STC performance
in cooperative communications. The Phase-I inter-MS data-exchange
was designed and an efficient interleaver allocation scheme was
suggested. Compared to the traditional STBC based cooperative
design, our proposed system is power-efficient and is capable of
achieving a high throughput, especially in the case of non-uniform
power allocation. Our scheme is flexible in terms of forming a cluster
of cooperating MSs.
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