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ABSTRACT

In information retrieval, sub-space techniques are usually
used to reveal the latent semantic structure of a data-set
by projecting it to a low dimensional space. Non-negative
matrix factorisation (NMF), which generates a non-negative
representation of data through matrix decomposition, is one
such technique. It is different from other similar techniques,
such as singular vector decomposition (SVD), in its non-
negativity constraints which lead to its parts-based repre-
sentation characteristic. In this paper, we present the novel
use of NMF in two tasks; object class detection and au-
tomatic annotation of images. Experimental results imply
that NMF is a promising sub-space technique for discovering
the latent structure of image data-sets, with the ability of
encoding the latent topics that correspond to object classes
in the basis vectors generated.

Categories and Subject Descriptors

L5 [Pattern Recognition]: Miscellaneous
; H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing

General Terms

experimentation, algorithms, measurement

Keywords

Automatic Image Annotation, Non-negative Matrix Factori-
sation, Object Detection

1. INTRODUCTION

The vector space model (VSM), which represents a col-
lection of documents by a term-by-document matrix, has
been a major and popular model in information retrieval, in-
cluding traditional content-based image retrieval and more
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recently automatic image annotation. Each column of the
matrix represents a document and each item of that column
represents the occurrence of a particular term. As for im-
ages, each column of the matrix corresponds to an image
and each item of the column indicates the number of times
a certain visual term appears in the image. Visual terms
have been chosen in many forms, for example ‘blobs’ [1],
quantised salient regions [2], and even single pixels [3].

Usually the term-by-document matrices are of high di-
mension and noisy, which makes it difficult to capture the
underlaying semantic structure. Dimensionality reduction
or sub-space techniques, e.g. SVD, have been developed
to reduce the dimensionality, filter noise, and discover the
latent semantic structure. Recently, [3] proposed to use a
matrix decomposition technique called non-negative matrix
factorisation (NMF). It is distinguished from SVD by its
non-negativity constraints, which leads to its unique fea-
ture - parts-based representations of documents. They have
shown that NMF is able to learn basis images that corre-
spond to face parts, such as mouth, nose and eyes. NMF
has been applied for text document retrieval [4, 5], image
patch classification [6], and object recognition [7].

In this paper, we explore the use of NMF for images in
two different scenarios, object class detection and automatic
image annotation. Firstly, we utilise the parts-based repre-
sentation characteristic of NMF to find object classes from a
collection of un-annotated images. Secondly, we investigate
the use of NMF as an alternative sub-space technique for
image auto-annotation via semantic propagation.

2. NON-NEGATIVEMATRIX FACTORISA-
TION

2.1 ClasscNMF

NMF is a technique to find a representation of non-negative
data using non-negativity constraints. Under such constraints
only additive, not subtractive, combinations are allowed,
which lead to a parts-based representation of the original
data. Given an n X m term-by-document matrix V' (where
each column is a document and each row represents a key-
word) with V;; > 0 and a pre-defined positive integer r,
NMTF finds two non-negative matrices W € R™*" and H €
R™™ such that V =~ W H. The rank r is generally chosen
as smaller than n and m, for example (n+m)r < nm. NMF
approximates each column of V' by a linear combination of
r column vectors in W. In other words, each column of



W is regarded as a “basis” vector, while each column of H
contains the corresponding weights needed for the approxi-
mation. Details of NMF can be found in [3, §].

2.2 NMF with Sparseness Constraints

Hoyer [9] noticed one of the most useful properties of NMF
is that it generates a sparse representation of data. Much of
the data is encoded in such a representation using only a few
‘active’ components. This notion is in line with the initial
interpretation of NMF that parts are combined to build a
whole. It is argued that in some applications, NMF does not
lead to parts-based representations because the decomposed
matrices are not ‘sparse’ enough. Therefore, sparseness con-
straints are applied to the objective function, in order to
achieve a pre-defined level of sparseness of the decomposi-
tion. They proved that in their experiment the parts-based
representation of data can be enhanced through this ap-
proach.

“The concept of ‘sparse coding’ refers to a representational
scheme where only a few units (out of a large population)
are effectively used to represent typical data vectors” [9]. In
other words, most units take values that are close to zero
and only a few take large non-zero values. Hoyer defines the
sparseness of a vector x as follows, which is based on the
relationship between L; norm and L2 norm:

Vv — Clwl) /v a?
vn—1

where n is the dimensionality of . This function evaluates

the sparseness of a vector to a value within the range of

[0,1]. The sparseness equals 1 if and only if 2 contains only

one single non-zero component; it equals 0 if and only if all

components of = are equal.

NMF with sparseness constraints is then defined as fol-
lows. Given a non-negative matrix V, find the non-negative
matrices W and H such that E(W,H) = ||V — WH|? is
minimized, under optional constraints

sparseness(x) =

(1)

sparseness(w;) = Sw, Vi,
sparseness(h;) = Sy, Vi,

(2)

where w; is the ¢th column of W and h; is the ith row of
H. S, and Sp are the desired sparsenesses of W and H
respectively, and are set by the user.

23 NMFvs. PLSA

Researchers have pointed out the similarities between NMF
and the technique PLSA (probabilistic latent semantic anal-
ysis). For example, [10] showed that PLSA solves the prob-
lem of NMF with KL divergence, and that the local fixed
point solutions found by NMF and PLSA are the same.
However, [11] claimed that the proof of [10] is incorrect.
They argued that NMF and PLSA are different algorithms,
and showed that NMF and PLSA converge to different so-
lutions using even the same initial conditions. They also
reported that in their experiments, the results achieved by
a hybrid NMF-PLSI algorithm are better than either of the
techniques. Whilst there obviously is a connection between
NMF and PLSA, they tackle problems from different per-
spectives. PLSA models data from a statistical viewpoint,
and using Maximum Likelihood estimation to find the ap-
proximation of data. NMF deals with data from a sub-space
viewpoint, and can theoretically use various objective func-
tions to approximate the decomposition of a matrix.

3. DISCOVER OBJECT CLASSAND EXTENT

3.1 Saliency Based Visual Term Representa-
tion

Salient interest points and regions have been shown to out-
perform global image descriptors in terms of content-based
image retrieval [12] performance. In our algorithm, we se-
lect salient regions by using the method proposed by Lowe
[13], in which scale-space peaks are detected in a multi-scale
difference-of-Gaussian pyramid. In addition, Lowe’s SIFT
(Scale Invariant Feature Transform) descriptor [13] is used
as the feature descriptor. The visual term representation is
generated as follows.

1. Salient regions are discovered by using Lowe’s saliency
detection technique on each image.

2. For each salient region, the SIFT feature descriptor is
calculated.

3. Salient descriptors of all the images are quantised by k-
means clustering algorithm into clusters, each of which
is regarded as corresponding to a visual term or visual
word. A salient region is then represented by a visual
term indicating its membership of a cluster.

4. Finally, each image can be described as a histogram/
vector of visual terms, indicating the number of occur-
rences of each term in the image.

This form of description is analogous to the way in which
a set of text words constitute a text document. Here, each
quantised salient descriptor is considered as a word, and each
image is a document.

3.2 NMF for Object Class Detection

Inspired by the work of [3] in which NMF was used to find
the parts that form the whole faces, we explore its applica-
tion to general-purpose images, say natural outdoor photos.
The idea is straightforward - we consider outdoor images
as analogous to face images at the whole image level, then
the objects (e.g. sky, water, tree, etc.) that constitute the
outdoor images are analogous to the face parts (i.e. mouth,
eye, nose, etc.) at the objects level. As the basis gener-
ated by NMF on the face images correspond to face parts, it
is possible that the basis generated on outdoor images will
correspond to natural objects.

The problem to be explored here can be formalised as
follows. Given a collection of un-annotated images, is it
possible to learn the object classes simply from their ap-
pearances? An object class is a group of objects which may
differ slightly from each other visually but correspond to
the same semantic concept, e.g. the object class of ‘build-
ings’. We propose to answer the question in two main steps.
Firstly, use NMF to find the bases which are expected to cor-
respond to objects. Secondly, rank all the image segments
that are generated by an automatic segmentation method,
according to the distances to each bases object to see if the
basis actually represent different object classes.

[3] used the grey level pixel values of the face images to
construct the term-by-document matrix. Each column is a
face image and each element in the column corresponds to a
pixel. Since the resolutions of the images used were 19x19
in their case, it does not cause a problem when all the pixels



are used. However, it can result in a very large matrix with
general-purpose images which are often of high resolution.
Resizing the images will lose a lot of useful information, and
make them hardly recognisable at a resolution level as low as
19x19. Therefore, another manner of image representation
has to be developed. We choose the visual term represen-
tation described in Section 3.1. All the vectors from step
4 are arranged as columns to form a matrix. Suppose the
image collection is I; (i = 1,2,...,m, where m is the total
number of images), mathematically we now have a n X m
term-document matrix V', where V; is the occurrence of the
ith visual term in image I;, and n is the size of the visual
vocabulary.

Since all the elements in the term-by-document matrix
are non-negative, we can now apply NMF to it. We adopted
the projected gradient method! for NMF that is developed
by [14], because it converges faster than the popular multi-
plicative update approach [3]. NMF decomposes the term-
by-document matrix V into W and H where V ~ WH. If W
is represented by its column vectors as W = [Wq, Wa, ..., W, ]
(r is the number of basis vectors, or the dimensionality of
the subspace), W; is considered as a basis vector, or a con-
ceptual part/object of the image collection. Each element
of a basis vector indicates how many times a particular vi-
sual term appears in this conceptual object. In order to
demonstrate if the basis vectors (i.e. W;) actually corre-
spond to object classes, the following approach is chosen.
We use Normalized Cuts [15], which is an automatic image
segmentation algorithm, to divide each image into regions.
The visual terms within a specific region are used to form
a vector representing the region. As a result, all the seg-
ments from the data-set can be represented by vectors I*
(t =1,2,...,M, where M is the total number of segments
in the data-set). For each basis vector, we rank all the im-
age segments according to the distance, which is calculated
as the cosine value of the angle between the two vectors,
cos(Wi, I')%. The top ranked segments are examined to see
if they represent an object class, which corresponds to the
basis vector.

3.3 Experimental Results and Discussion

For comparison purposes, we choose the same data-set as
used by [16] for our experiments. The data-set is a subset of
a large image database named LabelMe [16]. The subset has
1554 images which are returned by querying the LabelMe
data-set with words “cars”, “trees” and “buildings”. The im-
ages also contain many other additional objects. Most of
the images have a resolution of 640x480. The size of the
visual vocabulary is set to 2000, which results in a term-by-
document matrix of 2000x1554. Finding the optimal value
of r, the dimensionality of sub-space or the number of ba-
sis vectors, is a difficult problem in itself. In this work, we
set the value empirically to 35.. In terms of segmentation,
we followed the setting of the work by [16]. Specifically,
to produce multiple segmentations, we varied two param-
eters of Normalised Cuts: the number of segments K and
the size of the input image. K is set to 3,5,7,9,11,13 and
the segmentation algorithm is applied at 2 image scales: 50-
and 100-pixels across. This results in 12 different levels of

!Code available at: http://www.csie.ntu.edu.tw/~cjlin/nmf/
index.html
Vi-Va
2
F tors V1 and V5 i, Va) = ———~
or vectors V1 and Va2, cos(Vi, Va) VATVal

| Methods | buildings | cars | roads | sky |
Our Methods
Multi Seg NMF 0.69 0.11 | 0.39 | 0.83
Sing Seg NMF 0.50 0.09 | 047 | 0.67
Russell et al.’s Methods
Multi Seg LDA 0.53 0.21 | 0.41 | 0.77
Multi Seg pLSA 0.59 0.09 | 0.16 | 0.77
Sing Seg LDA 0.55 0.29 | 0.32 | 0.65

Table 1: Segmentation accuracy of the top 20 seg-
ments returned by NMF on four object classes from
the LabelMe dataset. It is compared with the results
from Russell et al. (2006) on the same data-set.

segmentation per image. For each basis vector, segments
from all segmentation levels are ranked according to their
distances to the basis vector. Figure 1 shows montages of
segments for the object classes found by NMF, each group
corresponding to a basis vector of W. Each of the depicted
segments comes from a different image to avoid showing mul-
tiple segments of the same object from the same image. As
can be seen, NMF manages to find some object classes (e.g.
“trees”, “sky”, “buildings”, etc.) fairly well. However, it was
not successful on “cars” in our experiments.

We also conducted an evaluation on the effect of using
multiple segmentations to see if more accurate segments can
be found. Segmentation accuracy, which is a metric used by
[16], is calculated on the top ranked LabelMe segments for
each object class. The top twenty returned images for four
object classes are tested: “buildings”, “cars”, “roads” and
“sky”. They are compared with the ground truth object
segmentation that was generated manually. Suppose R and
GT denote the set of pixels in the retrieved object segment
and the ground truth segmentations of the object. The ac-
curacy score p measures how correct the area segmented by
the retrieved object segment is. It is calculated as the ratio
of the intersection of GT and R to the union of G1" and R,
as follows

_ GTNR
P=GTUR

If more than one ground truth segment intersects with R,
we choose the one achieving the highest score. The accuracy
score is averaged over the top 20 returned object segments
for the four classes. The results are shown in Table 1. The
table also included the results of using single segmentation,
for comparison with multiple segmentations. As can be seen,
NMF performs as well as, if not better than, the methods
proposed by [16]. In particular, NMF with multiple seg-
mentations ourperforms LDA (Latent Dirichlet Allocation)
with multiple segmentations by 0.16 on “buildings” and 0.06
on “sky”; altough 0.02 and 0.10 worse on “roads” and “cars”
respectively.

It is interesting to note the difference between our ap-
proach and that of [16]. Although both methods use quan-
tised descriptors of salient regions as visual terms, we treat
each entire image as a document, while Russell et al. treat
each image segment as a document. We build a term-document
matrix and then rely on NMF to find the basis vectors, or
underlying “topics” as called by Russell et al. They apply
statistical models to the whole set of image segments to find
the “topics”. Therefore, the data that needs to be processed
is less in our approach.



Figure 1: Top segments for 6 (out of 35) object classes discovered in the LabelMe data-set. Note how the
segments, learned from a collection of unlabeled images, correspond to trees (a), sky (b), buildings (c), leafless
trees (d), roads (e). However, for the last group of segments (f), it is not obvious which class of objects it
corresponds to. We consider it as the class of cars in our evaluations.



4. AUTO-ANNOTATION VIA SEMANTIC
PROPAGATION IN SUB-SPACE

The technique latent semantic indexing (LSI) was pro-
posed by [17] to perform document clustering. They demon-
strated that it is possible to reveal the implicit higher-order
structure in the association of terms with documents, by
projecting the term by document matrix into a sub-space
through singular value decomposition (SVD). SVD is a pop-
ular matrix decomposition technique that decomposes a m x
n matrix A into the product of a m X r matrix T, a r X r
matrix S, and a r X n matrix D: A = TSD” such that
TTT = DT D = I, where I is the identity matrix. Therefore,
T and DT are orthogonal matrices. S is a diagonal matrix
in which diagonal elements are called singular values of ma-
trix A, in monotonically decreasing order. It is claimed that
the k largest singular values together with the corresponding
left and right eigenvectors encode the most important infor-
mation of A [17]. Hare and Lewis [2] used this technique
(SVD for LSI) for automatic image annotation via semen-
tic propagation. The premise of their approach is based on
the intuition that visually similar images often have similar
meaning or semantics. NMF as another matrix factorisation
technique can be used as an alternative to SVD in order
to project high dimensional data to a low dimensional sub-
space, in which the semantics of data is expected to be more
explicit. In this section, we will examine the use of NMF for
image auto-annotation via sementic propagation.

4.1 NMF for Sub-space Projection

Given a document corpus, or a collection of images, we
assume that it consists of k topics. Note that we use the
same terminology “k” as used in SVD where it refers to the
k largest singular values. Each document in the corpus ei-
ther completely belongs to a particular topic, or is partially
related to several topics. Ideally, if the documents can be
projected into a k dimensional semantic space in which each
axis corresponds to one of the k topics, the semantic struc-
ture of the data-set will be more explicit. In other words,
each document can be represented by a linear combination
of the k topics. Because it is more natural to consider each
document as an additive instead of subtractive mixture of
different topics, the coefficients of the linear combination
should be all non-negative. Moreover, it is usually the case
that topics of a corpus are not completely independent of
each other. Overlaps may exist among the topics. There-
fore, the axes of the semantic space that capture the topics
are not necessarily orthogonal, which is the case for the sub-
space generated by SVD.

NMF is theoretically superior to SVD for the following
reasons. First, overlaps exist among topics. The orthogo-
nal restriction by SVD makes the derived latent semantic
directions less likely to correspond to each topic. Second,
NMF decomposes the matrix in such a way that each docu-
ment can be considered as an additive combination of topics,
which makes more sense in the image domain. Third, for a
particular document, the coefficients of the linear combina-
tion in NMF give direct indications of to what extent this
document belongs to each of the topics. In contrast, SVD
can not give this advantage because those negative values
do not have intuitive interpretations.

Based on the above theory, we propose to utilize NMF to
find the latent semantic structure for a collection of images,
and then use a semantic propagation method to annotate

images automatically.

4.2 Semantic Propagation based Auto-annotation

Semantic propagation is perhaps the simplest automatic
image annotation method. The basic idea is intuitive; im-
ages that have similar visual appearance should have similar
semantics. For a given new un-annotated image, a CBIR-
like process is carried out first in order to rank the training
images which are already annotated. Then, labels are chosen
from the top (most similar) training images to annotate the
new image. Therefore, most of the traditional CBIR tech-
niques can be directly transfered to image auto-annotation
applications in the manner described above. For example,
[2] search for visually similar images in the semantic space
that is generated by applying SVD to the term-by-document
matrix of an image collection, and then propagate the labels
from the top ranked images (1, 2 and 3 respectively) to a
new query image.

We choose the same approach as that of [2], except that
NMEF is used to find the latent semantic topics. The whole
process is conducted as follows.

1. The visual term representation (Section 3.1) of train-
ing images are calculated and used to build the term-
by-document matrix V. NMF is applied on V to gen-
erate W and H such that V ~ WH.

2. Each query image ¢ is projected into the semantic
space spanned by W. Because we assume that the
query image shares the same latent semantic structure
as the training set, equation ¢ = Wh, stands, where
hgq is the new coordinates of gq. hq can be calculated as
he =W lq.

3. Training images are ranked according to their distances
to the query image in the space of W. In other words,
we compare each column of H with hy. Cosine dis-
tance of vectors is used in this work.

4. Labels of the top M training images are propagated to
the new image as its predicted labels.

4.3 Experiment and Results

4.3.1 TheWashington Image Data-set

For comparison, the same data-set as used by [2] is cho-
sen for experiments, namely the University of Washington
Ground Truth Data-set'. The Washington data-set contains
697 public-domain images, each of which has been semanti-
cally annotated with between 1 and 13 keywords. For exam-
ple, an image may have several labels describing its content,
such as “trees”; “buildings”, “sky”, etc. On average there are
4.8 keywords per image. After the original keyword labels
were processed by correcting mistakes and merging plurals
into singular forms [2], e.g. “trees” became “tree”, the vo-
cabulary consisted of 170 keywords.

4.3.2 Performance Evaluation

For each test image, precision and recall, as well as the
normalised score proposed by Barnard et al [18], are cal-
culated for performance evaluation. Each kind of metric is

http://www.cs.washington.edu/research /imagedatabase,/
groundtruth/



averaged over the entire test set to get a mean value. The
definitions of these metrics are as follows.

Recall =r/n
Precision =r/(r + w) (3)
Bu= % -t

where, r is the number of correctly predicted words, n is the
actual number of words in the test image, w is the number
of wrongly predicted words, and N is the number of words
in the vocabulary.

4.3.3 Experiment Settings

We compare the results of three different experiments on
sub-space techniques for semantic propagation based im-
age auto-annotation, i.e. classic NMF (denoted as CNMF),
NMF with sparseness constraints (denoted as NMFsc) and
SVD. The results of SVD based approach were taken directly
from the work of [2] for comparison purposes. The projected
gradients based method developed by [14] was used for the
classic NMF. As for NMF with sparseness constraints, the
algorithm® developed by [9] was adopted.

Additional parameters need to be set in using the sparse-
ness constrained version of NMF, namely the degree of sparse-
ness of W and H. The constraints can be placed on W,
or H, or both, depending on the particular problem to be
solved. [9] described an example in which a doctor tries to
analyze disease patterns. It was assumed that most diseases
are rare (hence sparse), and present in a small number of
patients. However, each disease can cause many symptoms.
Therefore, given a matrix in which each column denotes an
individual patient and each row denotes a symptom, it might
be better to place sparseness constraints on the “coefficients”
(rows in H) but not the “basis vectors” (columns in W).
Based on empirical analysis of the Washington images set,
we chose to constrain W but not H for two reasons. Firstly,
as the number of visual terms was set to 3000 but on av-
erage each image generated only several thousand salient
regions, it is unlikely that an object or object part from an
image contains a variety of different visual terms. In other
words, the "basis vectors” in W tend to be sparse. Secondly,
many objects/keywords exist in a large number of images
in the data-set. For example, 484 of the images contain
“tree”, and 218 and 199 of them have “building” and “peo-
ple”. These keywords affect a big portion of the data-set. It
is more appropriate to unconstrain H. Our experiments also
confirmed this hypotheses; the results of experiments using
constrained W and unconstrained H were much better than
using unconstrained W and constrained H, or when both
were constrained. When both W and H are unconstrained,
it becomes the classic NMF, the results of which are pre-
sented in the following.

434 Results

We repeated the experiments of CNMF and NMFsc for
image auto-annotation 100 times on different training and
test sets. For each run, a randomly selected 50:50 mix of
images from the Washington data-set were used to build a
set of training images and a set of test images. Precision, re-
call and normalised score (Ens) were calculated at different
values of M (1,2, 3), which represents the number of top im-

1Code available at:
software.html

http://www.cs.helsinki.fi/u/phoyer/

ages chosen for propagation. The average results from the
100 runs are used in the following. The number of visual
terms was set to 3000 and the term-by-document matrix
was not weighted.

The dimensionality of the sub-space generated by NMF,
or the value of r in V-~ Wy, xr Hrxm, is a number pre-defined
by users. Theoretically, it should relate to the class number
of object or object parts in the data-set. However, at this
time, finding the optimal value of r is still a difficult and
unsolved problem. In our experiments, we varied its value
from 2 to 200 with a fixed step of 2. Besides, for NMFsc,
the results were calculated at different sparseness degrees of
W, ie. 0.5, 0.6, 0.7, 0.8 and 0.9.

In order to choose the optimal sub-space dimensionality
and degree of sparseness for NMFsc, we use normalised score
as a single value indicator. Figure 2 depicts the values of
E,s at different settings of dimensionality (r) for different
degrees of sparseness of W. For each test image, the closest
training image was chosen for propagation, i.e. M = 1. The
horizontal axis represents the value of , and the vertical axis
represents the value of normalised score E,s. Each degree
of sparseness generated one curve in the chart, denoted by
different colours. Figure 3 and 4 show the results of using 2
and 3 top images for propagation respectively, i.e. M = 2, 3.
As can be seen from the figures, E,s achieves the highest
when the sparseness is 0.8 (the green curve) and r is around
100. We have also calculated the results for CNMF and
depicted this in Figure 5. The best performance is found at
r =~ 40, as shown in the chart. The above mentioned values
of parameters are chosen for comparisons with SVD.

The results in terms of precision, recall and normalised
score are summarised in Table 2, along with the results of the
methods proposed by [2], namely the vector space and LSI
(based on SVD) model. The results of each method are also
plotted into a precision-by-recall chart, Figure 6, for a better
view of the comparison. As can been seen, the annotation
results of NMF with sparseness constraints are better than
that of the classic NMF. Besides, NMF'sc achieved similar
results as SVD when M = 1, and slightly better when M = 2
and 3. Some samples of annotation results are shown in
Figure 7.

5. CONCLUSIONSAND FUTURE WORK

We have investigated the application of NMF, a relatively
new matrix factorisation technique, in two different tasks,
object class detection and automatic image annotation. In
both cases, the quantised salient region based visual term
representation of image is used to build the term-by-document
matrix. Thanks to the parts-based representation feature of
NMF, the basis vectors generated by NMF correspond to ob-
ject classes that occur frequently in the image set. As a sub-
space technique, NMF also outperformed SVD slightly in
terms of propagation based image auto-annotation. There-
fore, we argue that NMF is not only a potentially effective
sub-space technique for information retrieval, but also one
that comes with the advantage of parts-based representation
of documents.

As we have mentioned, finding the optimal dimensional-
ity of the sub-space in using NMF is still an unsolved prob-
lem. Ways to circumvent it are interesting as this problem
exists in almost all the sub-space techniques. As for im-
age auto-annotation, the simple semantic propagation based
approach was used in this work. We plan to explore more



advanced approaches that build upon the sub-space gener-
ated by NMF, for example, the linear-algebraic technique
proposed by [19].
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sparseness of W is varied from 0.5 to 0.9.
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