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ABSTRACT

This paper presents research on enabling cooperative deci-
sion strategies in a distributed sensor network. The paper
begins with an introduction to distributed sensor networks
and outlines two levels of cooperation: implicit and explicit
cooperation. Implicit cooperation is the process of build-
ing and maintaining a common distributed picture where
explicit cooperation is the process of negotiating to agree
a common distributed plan. This paper focuses on how ex-
plicit cooperation can be achieved across a distributed sensor
network by exploiting factorisation in the utility function to
form a factor graph. The paper describes an efficient ap-
proach to both building and solving this factor graph using
the max-sum algorithm. Experimental results are presented
in a simulated sensor-to-target assignment problem.

1. INTRODUCTION

In recent years, the development of small and multipurpose
sensor processing devices, like the SPOT from Sun' and the
Mote from Intel?, have led to the realistic possibility of large
scale wireless sensor networks (WSN) for a range of both
civilian and military applications. In a wireless sensor net-
work, each node is equipped with a set of sensors capable
of observing the surrounding environment (EO camera, mi-
crophone etc) and a communication channel that enables
the exchange of information between nodes. In this paper,
the challenge addressed is termed “cooperative control” and
is defined as the control and reconfiguration of sensors so
as to maximise the performance of the desired application
across the entire sensor network. For example, adjusting the
position of a set of pan and tilt cameras to minimise the un-
certainty about the position of a person moving through the
environment.

In this paper, the first section defines a distributed sensor
network and presents a brief review of research conducted in
the area of cooperative control. Section 3 introduces Decen-
tralised Data Fusion (DDF) as a means of performing im-
plicit cooperation to build and maintain a common picture of
the environment. The next section introduces the problem
of cooperative control for a tracking application and shows
how the structure of the utility function can be exploited
to reduce the overall complexity. Section 5 introduces the
proposed method of building and solving the utility function
for a distributed tracking application with the experimental
results outlined in the following section. Finally, the last
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section draws conclusions from the experimental results and
outlines the future challenges to be addressed.

2. DISTRIBUTED SENSOR NETWORK

The aim of the work outlined in this paper is to enable coop-
eration between sensors in a distributed sensor network to
maximise the performance of the desired application. Typ-
ically, research into cooperation is divided into two distinct
levels: implicit and explicit, as shown in Figure 1.
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Figure 1: Levels of Cooperation in a Distributed
Sensor Network

Implicit cooperation is defined as the process of coopera-
tive inference through the exchange of measurements or es-
timates. The research conducted by Grocholsky et al.[4]
showed how this exchange between sensors can be used to
build and maintain a common and consistent picture over
which to optimise the control of sensor trajectories. For
implicit cooperation, a common picture is achieved at each
sensor but the decision-making strategy used to select the
desired orientation or reconfiguration parameters for a sen-
sor is typically performed locally (without consultation with
other sensors). This is referred to as a local assignment strat-
egy within this paper but it is sometimes termed a “selfish”
assignment strategy in the literature.

Explicit cooperation is the process of cooperation through
joint decision-making or planning. Although the focus of
the work conducted by Grocholsky was on the optimisa-
tion of trajectories by exchanging measurements, the work
included an example of explicit cooperation in a sensor-to-
target assignment scenario[3]. However, the approach taken
constrained the utility function used to be a smooth and
differentiable function. For tracking applications heuristics



were typically introduced, such as asynchronous updates,
noise terms and randomised update orders, to prevent os-
cillations and help escape unstable equilibrium or weak lo-
cal optimum solutions. Recent research has shown how dis-
tributed optimisation methods can be used to overcome the
introduction of these heuristics[9].

In this paper, the focus is on how explicit cooperation can
be performed efficiently and effectively by, where possible,
factorising the utility function. Before this approach to ex-
plicit cooperation can be defined, the underlying mechanism
for implicit cooperation or distributed picture compilation
is presented.

3. PICTURE COMPILATION

Distributed picture compilation is the formation of a com-
mon picture across spatially distributed sensors. Decen-
tralised Data Fusion (DDF) is a robust, modular, and scal-
able solution to the problem of obtaining common and con-
sistent state estimates (e.g. target types and positions)
across a sensor network [6]. DDF imposes architectural
constraints on the sensor network, which eliminate the con-
ventional notion of a fusion centre as well as access to full
knowledge of the global network topology by each sensor
node. DDF also defines probabilistic information update
algorithms which map to a variety of sensor network archi-
tectures. The algorithms are implemented at each sensor
node, to filter and fuse their local data and to assimilate
processed data from the other nodes.

This paper is concerned with a sensor network comprised
of N stationary sensors engaged in tracking M mobile tar-
gets in their environment. The sensors implement DDF al-
gorithms to estimate the dynamic states (position and ve-
locity) of the targets. Interleaved within each node’s DDF
process is a target assignment algorithm which informs the
sensor nodes about which target to observe, given the con-
straint they can only observe one-out-of-N targets at each
sensing opportunity. However, two or more sensors may si-
multaneously observe the same target. The DDF algorithm
followed by each sensor node is shown in Algorithm 1.

Algorithm 1 DDF Algorithm

: Predict the new target state (z,y,2,%,9,2)

: Select the control parameters (target assignment)
Measure target state (x,y,z)

Communicate target measure to other sensors

Wait for communicated messages for X milliseconds

: Update target states with the received measurement(s)

DU WD

The DDF algorithms maintain information states about the

targets for computational and communication efficiency. How-

ever, information also provides a direct normative basis on
which to manage the sensor-to-target assignments. The key
quantity is the Fisher information matrix, Y (k|k), which is
calculated directly by the information form of the Kalman
filter[8]. The notation (k|l) refers to an estimate at time k
conditioned on all observations up to and including time [.

Firstly (step 1 in Algorithm 1), each sensor’s information fil-
ter predicts the target state Y (k|k—1) using a motion model
for the specific target under track. The experiments in this

paper assume a linear motion model with additive Gaussian
process noise. The second step is to select the control pa-
rameters for this DDF node and hence choose which target
to observe. The process of how the control parameters are
selected is the main aim of this paper and is discussed in
detail in the next section.

After controlling or reconfiguring the sensor (i) with the de-
sired control parameters, the sensor observes the position of
the assigned target (j) in the environment. The observed
information I; ;(k) about the target position is then com-
municated across the network. The target measurements
can be communicated via a globally broadcast message or
propagated across the network between sensors via a point-
to-point protocol. Each sensor then assimilates its own infor-
mation (Y, ;(k|k—1)) about the target with the information
it receives about the target from its communication channels
(it is assumed that the information can be associated with-
out error). The assimilation equation has the advantage of
being additive in DDF:

Y j(klk) =Y (klk — 1)+ T ;(k) (1)

=1

The performance of the sensor network can be evaluated by
measuring the uncertainty in the positional accuracy, as in
the following equation:

M

GI = Z (% log(2me)®(|Yi (k‘k”)) (2)

=0

Equation 2 defines the global information(GI) or inverse of
the uncertainty in the positional estimate (position and ve-
locity) of all the targets. By exchanging track measurements
or compressed estimates, a common picture of the position
of tracks in the environment can be compiled without a cen-
tralised store. The following section introduces an approach
to enable cooperative control over this compiled picture.

4. COOPERATIVE CONTROL

The previous section presented an approach to build and
maintain a common distributed picture of the position of
targets within the environment. This section addresses the
problem of selecting the control parameters to control or re-
configure the sensor to maximise the information gathered.
Typically, the selection of the control parameters is per-
formed locally such that each sensor maximises the global
information given the local measurements possible by this
sensor alone (Equation 2). In this paper, the aim is to select
the control parameters for all sensors that maximise the sum
of global information for all targets across the entire sensor
network and not just a single sensor.

The problem of cooperative control can be defined as a dis-
tributed optimisation problem where the utility function U
is defined as the global information (GI):
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where M is the number of targets, N is the number of sen-
sors in the network and I, ; is the predicted information
for target j given that sensor 7 is controlled or configured
using control parameter 6;. In regards to the distributed
optimisation required for explicit cooperation, there are two
aspects of the utility function that are important.

Firstly, the utility function (Equation 3) for this application
is a summation over the predicted global information for all
targets. Hence, the utility function can be divided into a
small set of factors that could be maximised individually.
Factorising the utility function to a smaller set of functions
reduces the overall complexity of the optimisation process
and enables a distributed approach to be efficiently utilised.
Unfortunately, this factorisation can only be performed in
a limited number of situations. For example, consider the
scenario in Figure 2.
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Figure 2: Example Sensor Network

Figure 2 shows a sensor network with 5 sensors (represented
using squares) and 3 targets (shown with circles). Each sen-
sor has a limited range (which is shown using the dotted
lines in the figure) and therefore each sensor can only ob-
serve a subset of the targets in the environment. In the
example, the utility function U can be defined in terms of
a summation of the target factors U; over only the sensors
that can observe that target (j). In the example, the overall
utility function can be factorised in the following way:

U(01,02..0N) = UA(01,02793) +4 UB(92,94) =+ Uc(95) (4)

where Ug is defined as:

%log(%e)g(m,j(klk =1+ 1lop5(k) + loy5(K))  (5)

when the overall utility function is to maximise the predicted
global information which is the case in this paper. The util-
ity function can be augmented to include other factors such

as power usage for moving to the desired control parame-
ters. This factorisation is represented in Figure 3 where the
sensor control parameters 6; are represented as circles and
the factors of the utility function are shown as squares. This
is termed a factor graph where the interconnections between
the variables and the edges represent a dependency in the

factor.
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Figure 3: Example of the factorised graph

The definition of U; in Equation 5 highlights the limiting
factor in the decomposition of the utility function. This fac-
tor of the utility function also appears to be composed of a
summation and hence the same rule as before should apply.
For this utility function, the summation of the predicted
track information (Y (k|k — 1)) and the predicted measure-
ment information (I(k)) is surrounded by the determinate.
The determinate dictates that |Is,,5(k) + Io,,5(k)| does not
equal |Ig, g(k)|+ |Is,,5(k)| and therefore this portion of the
objective function can not be broken down into smaller fac-
tors. This indicates that the actions of sensor’s 2 and 4 are
highly correlated and hence, must be optimised together.

In previous research, it has been shown how a highly corre-
lated utility function (one that can not be factorised) could
be solved using distributed optimisation techniques based on
probability collectives [1]. The following section addresses
how a factor graph of the utility function can be built and
maintained for a tracking application and then solved to find
a globally optimal sensor-to-target assignment.

5. BUILDING AND SOLVING THE GLOBAL
OBJECTIVE FUNCTION

This section is divided into two parts, firstly it addresses
the problem of how to build and maintain the factor graph
that represents the utility function and then secondly, how
the max-sum algorithm can be used to derive the control pa-
rameters that maximise the utility function through a simple
message passing scheme.

5.1 Communicating Observable Tracks

This section outlines how the factor graph of the utility func-
tion can be constructed for a tracking application using the
underlying decentralised data fusion process. The construc-
tor of the factor graph occurs in two stages: variable nodes
and then the factor nodes. At initialisation, each of the
sensors creates a variable node that represents the control
parameter (6;) to be adjusted. The second stage is to define
a single factor (Uj) for each target (j) observable in the en-
tire sensor network. In this paper, the sensor responsible for
spawning the original target track is tasked with managing
the factor node for that target.



At the end of the initialisation stage, the factor graph for
the utility function exists in the form of both the variable
and factor nodes. During the scenario, the edges of the fac-
tor graph must be continually updated depending on the
position of the targets in the environment. As previously
outlined in Section 4, the key to factorising the global util-
ity function is to identify the subset of sensors capable of
observing the individual targets. In this paper, the edges of
factor graph are built using observation data derived from
the underlying DDF layer. The track measurements, ex-
changed during the distributed picture compilation process,
are augmented to include the list of targets a sensor is ca-
pable of observing. This set of observable targets is used by
each sensor to build a mapping between a target and the
observable sensors. Each sensor must maintain this map-
ping only for those targets (factors) that it is responsible
for. Every time a target moves within or out of range of
a sensor, the underlying factor graph is updated by adding
or removing the corresponding edge. The following section
describes how the factor graph can be used with a message
passing scheme to find the set of variables that result in the
maximum utility.

5.2 The Max-Sum Algorithm

This paper proposes solving the resultant factor graph us-
ing the max-sum algorithm as defined in [2]. The max-sum
algorithm, which is a variant of the sum-product algorithm
[5], exploits the factorisable form of the utility function to
efficiently find the maximum control parameters (for only
discrete variables) using a simple message passing scheme.
The max-sum algorithm and variants have been exploited
in “loopy” belief propagation in Bayesian Networks [7]. In
this section, the max-sum is adapted to optimise a sensor to
target assignment in a distributed sensor network.

The max-sum algorithm computes the maximisation of the
utility function by computing summaries at the variable and
factor nodes and sending appropriate messages along the
edges of the factor graph. These messages are split into two
types: messages (Qi—;) from variable nodes to factor nodes
and messages (R;j—;), in the reverse direction, from factor
nodes to variable nodes. At initialisation, and each time the
factor graph is altered, the values of QQ and R are set to an
initial small random number, which is used to help break
any symmetry within the optimisation. As previous stated,
the variable nodes represent the control parameter (6;) at
each sensor (7) and the function nodes represent the utility
(U;) for each target (j). The messages represent summaries
of the utility function available at the variable and factor
nodes and is defined as below:

From variable to function:

Qi—j(0:) = ouj + Z

J'eM(\j

Rjr.i(6:) (6)

where «;; is a scalar to normalise the value such that:

> Qij(0:) =0 (M)
0;

From function to variable:

Rj—i(0:) = mazg\; | Us(05)+ D Qu—s(0s) | (8)
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where R is an approximation of the utility function, @ is the
preferences for each control parameter represented by this
variable and Uj is the utility for target j as defined by Equa-
tion 5. The function M (%) represents the set of factor nodes
that this variable is connected to in the graph and N (j) cor-
responds to the set of variables nodes that this factor node
is connected to. Both M (i) and N (i) are derived from the
process in the previous section using the set of observable
targets from each sensor. The parameter 93- represents the
set of all the control parameters from all the sensors involved
in observing target j in U;. In this paper, this correlated
utility function (one that can not be factorised) is solved
using a brute-force approach (the evaluation of the utility of
all combinations for the control parameters). The scalability
of this approach will be highly dependant on the correlated
nature of the sensor network.

The resultant control parameters are derived from the marginal

function which is calculated by summing the approximation
R. The results from [2] show that with sufficient iterations
the marginal function will approximate Z;bio U; the global
utility function. The resultant algorithm to derive the con-
trol parameters for a single sensor in a distributed sensor
network is now presented in Algorithm 2.

Algorithm 2 Max-Sum Algorithm

1: Update the list of sensors that can observe the assigned
track(s)

: if list of sensors has changed then
Rebuild the Factor Graph
Initialise function node for the assigned track(s)

end if

: Evaluate the utility function (U;) for assigned tracks (j)

: Exchange Function (R) and Variable Messages (Q) for
Y milliseconds

8: Run the DDF algorithm 1 using the assigned value of
the variable as the control parameter

6. EXPERIMENTAL RESULTS

In this section, the experimental setup is defined and the
performance of a local, centralised and decentralised sensor-
to-target assignment strategy presented.

The sensor and targets are arranged as in Figure 4 where
the sensors are stationary and the targets move as indicated.
Each of the sensors has a limited observation range, which
shown by the grey areas bounded by the dashed lines. This
scenario was selected because it requires the factor graph to
be modified as the targets move and selection of the opti-
mal control parameters requires optimisation of the utility
function rather than purely the local factors. All the sen-
sors were initialised with a weak prior as to the position of
all the targets and were given the targets (factors) they are
responsible for maintaining in the factor graph. The per-
formance of the application was evaluated using the global
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Figure 4: Demonstration Scenario

information as defined in Equation 2 from one sensor (the
DDF network was given sufficient time to enable all track
measurements to be propagated around the network before
proceeding - hence the picture is common across all sensors).
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Figure 5: Global Information for each time step of
the simulation for a Local, Centralised and Decen-
tralised assignment strategy

The initial results presented in Figure 5 show the perfor-
mance of a local, centralised and decentralised assignment
strategy on the scenario. The local assignment strategy se-
lects the control parameter (pan angle) that maximises the
total global information given the measurements taken only
by this sensor. The centralised assignment strategy chooses
the control parameters for all the sensors using a brute-force
approach to find the assignment that results in the maximum
global information for all combinations of assignment. The
decentralised assignment strategy solves each of the factors
using a brute-force approach and then uses the max-sum al-
gorithm to derive the maximum for the overall utility func-
tion.

Figure 5 shows the total global information for all the tar-

gets in the scenario. In the first 10 steps of the scenario, the
total global information increases as the estimate of a tar-
get’s position and velocity improves in accuracy with each
new measurement. The performance of all the assignment
strategies is equivalent at this stage in the scenario because
the targets are initialised sufficiently close to the sensors to
make a local assignment strategy globally optimal. As all
the targets pass through the centre of the environment, each
sensor must handover the tracked target to another sensor.
Depending on the noise in the individual scenario, the two
handover points occur at approximately time step 18 and
34. Figure 5 shows that the local assignment strategy is sig-
nificantly lower than both the centralised and decentralised
assignment strategies at these points in the scenario. Al-
though the local assignment strategy is based on a common
picture, the control parameters selected require conflict res-
olution to prevent the selection of the same target and there-
fore achieve a clean handover.

Given sufficient time (Y in Algorithm 2), the decentralised
approach achieves the same level of performance as the cen-
tralised approach. The performance of the decentralised ap-
proach is then evaluated as the time allowed to exchange
variable and factor messages is reduced. Figure 6 shows
the performance compared to the centralised approach as
the negotiation time (period to exchange variable and fac-
tor messages) is adjusted from 50 milliseconds to 1000 mil-
liseconds (the experiment was conducted 20 times for each
negotiation time).
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Figure 6: Total Global Information over the sce-
nario for the Decentralised assignment strategy as
the negotiation time (Y) allowed is adjusted

Figure 6 shows that with only 50ms of negotiation time,
the max-sum algorithm does not have time to exchange a
sufficient number of messages to find the maximum con-
trol parameters. The high variance in this result is driven
from the initial random preferences used. With only a small
number of messages exchanged, these initial random prefer-
ences still have a pronounced effect. As the negotiation time
is increased, the performance of the decentralised strategy
achieves that of the centralised approach but this is still sig-
nificantly higher than the local assignment strategy which



resulted in a total global information of just above 1049.

7. CONCLUSION AND FUTURE WORK

The problem of cooperation in a distributed sensor network
has been defined on two levels: implicit and explicit coop-
eration. Implicit cooperation relies on exchanging sensor
measurements (or compressed versions) to build a common
picture over which to base decisions. Explicit cooperation,
which is the main focus of this paper, solves a distributed
optimisation problem to agree on a common plan of action.

This paper has shown how a utility function, based on max-
imising the global information in a distributed sensor net-
work, can be simplified through factorisation and then solved
efficiently in a decentralised manner using the max-sum al-
gorithm. Experimental results have shown that this decen-
tralised approach can achieve equivalent performance as the
centralised approach. The number of iterations was altered
and shown to have a dramatic impact on the quality of the
performance.

The approach taken in this paper has shown that the max-
sum algorithm can be used to achieve explicit cooperation
in a distributed sensor network. The paper has shown a
method to build and maintain the factor graph required “on
the fly” but the sensor responsible for each target remained
static during the scenario. Future work should concentrate
on evaluating the performance of re-allocating the responsi-
ble for targets during the scenario depending on the observ-
able targets and fully understanding the impact of commu-
nication delays on the performance of the algorithm.

8. ACKNOWLEDGMENTS

The BAE SYSTEMS work was funded by the Systems En-
gineering for Autonomous Systems (SEAS) Defence Tech-
nology Centre (DTC). The ECS work was funded by the
ARGUS II DARP which is funded by the EPSRC.

9. REFERENCES
[1] S. Bieniawski. Distributed Optimization and Flight
Control Using Collectives. Thesis, Stanford University,
2005.
A. Farinelli, A. Rogers, A. Petcu, and N. Jennings.
Decentralised coordination of low-power embedded
devices using the max-sum algorithm. In Seventh
International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS-08), May 2008.
B. Grocholsky. Information-Theoretic Control of
Multiple Sensor Platforms. Ph.D. dissertation, Univ. of
Sydney, Australia, 2002.
B. Grocholsky, A. Makarenko, T. Kaupp, and
H. Durrant-Whyte. Scalable control of decentralised
sensor platforms. In Information Processing in Sensor
Networks: 2nd Int Workshop, IPSN03, pages 96-112,
2003.
[5] D. J. C. MacKay. Information Theory, Inference, and
Learning Algorithms. Cambridge University Press, 2003.
[6] J. Manyika and H. Durrant-Whyte. Data Fusion and
Sensor Management: A Decentralised
Information-Theoretic Approach. Ellis Horwood, 1994.
K. Murphy, Y. Weiss, and M. Jordan. Loopy belief
propagation for approximate inference:an empirical

2

3

[4

[7

8

]

study. In Proceedings of Uncertainty in Al pages
467-475, 1999.

J. Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann,
1988.

A. Waldock and D. Nicholson. Cooperative
decentralised data fusion using probability collectives.
In First International Workshop on Agent Technology
for Sensor Networks (ATSN-07). A workshop at the Gth
International Joint conference on Autonomous Agents
and Multiagent systems (AAMAS-07), pages 47-54,
2007.



