
Developing a Security Protocol for a Distributed Decision
Support System in a Healthcare Environment

Liang Xiao
University of Southampton

United Kingdom

lx@ecs.soton.ac.uk

Paul Lewis
University of Southampton

United Kingdom

phl@ecs.soton.ac.uk

Alex Gibb
University of Birmingham

United Kingdom

a.j.gibb@bham.ac.uk

ABSTRACT
In this paper, we describe the unique security issues involved in
healthcare domains. These have been addressed to the needs of the
HealthAgents project. In the proposed approach, several levels of
security have been provided in accordance with Software
Engineering principles, ethical regulations for healthcare data, as
well as the security requirements usually raised from the distributed
clinical settings. The result is the production of a secure and
maintainable Multi-Agent System that enables secure
communication, uniform home site authentication, and customised
resource access authorisation. A security policy rule scheme has
been designed for agent interaction modelling. This separates the
functional and non-functional (security) requirements but let
security policy constraints integrate into the running of the agents
via a unified role notion. Each user/agent can play a function role
only when its assigned social rights roles permit the access to
resources of various types and geographical locations, as specified
in the function role behaviour. The approach is illustrated using a
comprehensive secure access case.

Categories and Subject Descriptors
D.2 [Software Engineering]; J.3 [Life and Medical Sciences]:
Health, Medical information systems; K.6.5 [Management of
Computing and Information Systems]: Security and Protection

General Terms: Design, Security, Languages

Keywords
Security Model, Healthcare, Distributed Decision Support System

1. INTRODUCTION AND BACKGROUND
Assisting medical diagnosis has been one of the main goals of
Software Engineering (SE) and Artificial Intelligence (AI) [6]. One
approach, the use of them together as a decision support system
(DSS), is of particular interest. A successful medical DSS would
aim to improve the healthcare outcomes required by an individual
clinician. The process of designing such a system requires not only
consideration of the clinician’s needs but also access to data and
processes that may be geographically distributed, and at the same
time ensure interaction with other healthcare professionals [7].

Access to patient data, for example, is complicated further by the
patients’ healthcare records. A patient can have multiple visits to
multiple medical centres for different conditions. This requires that
data is shared between a distributed set of hospitals without recourse
to a centralised system, i.e. an agreed protocol. The protocol is
employed as part of the distributed decision support system (d-DSS)
which increases the autonomous interaction between the medical
centres. This interaction requires not only that data is not lost, but
that the technology is trust worthy and secure [5]. Patient privacy
and safety are in danger in any system application if the appropriate
technological practices are not in place.
These different attributes to providing a medical d-DSS, that is
distributed, bring challenges to security for data and services access
that are transmitted over insecure transportation networks amongst
hospitals. Challenges also lie in the access policy management and
application since each centre needs to maintain its own control over
its own resources. Moreover, the access to private patient records
must be in compliance to legal and ethical regulations as set in
countries where centres are located. All resources and services
provided by the system should be protected accordingly to
guarantee that decision making support for healthcare diagnosis can
be executed as it ought to be.
Several existing Software Engineering technologies have been
identified as qualified candidates to meet one perspective or another
of the multi-facets security needs in d-DSS: Multi-Agent System,
Certificate and Public Key Infrastructure, Role-Based Access
Control model, and so on. This research investigates the best
practice of building a secure d-DSS with the available SE
techniques in our HealthAgents project [10] in line with the SE
disciplines and healthcare guidelines.
The rest of the section gives background for security in Software
Engineering, the legal and ethical guidelines of security in
healthcare, as well as selected approaches in the area. Section 2
provides an overview of our HealthAgents project and its system
architecture. Section 3 describes the architecture’s conformance to
the data protection regulations. Section 4 analyses the
HealthAgents’s security requirements and describes several cases
where security must be enabled in resource access messaging flow.
Section 5 offers an overview of the proposed solution, followed by
detailed discussion of its secure transportation, authentication
mechanism, and authorisation mechanism which is illustrated using
a representative secure resource access case. Finally, we conclude in
Section 6 by describing the security achievements of the proposed
d-DSS from various aspects and our future work.

1.1 Security in Software Engineering
Correctness, maintainability, and security are among the key issues
under consideration when the Software Requirements Specification
(SRS) of a software system is to be documented describing the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’08, May 10–18, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-079-1/08/05...$5.00.

system’s intended functionality and attributes, according to the
IEEE standard 830-1998 [1]. Unlike functional requirements which
describe the system’s expected behaviour, maintainability and
security are quality requirements which describe the manner in
which the system behaves. The security attribute of software can
serve as the requirement of protecting the software from accidental
or malicious access, use, modification, destruction, or disclosure [1].
The maintainability attribute of software can serve as the
requirement to ensure the ease of maintenance, enhancement,
adaptation, or correction of software to satisfy the specified
requirements. Requirements originating from security and
maintainability may significantly direct or restrict the design. These
quality requirements are described in the Software Quality
Knowledge Area (KA) as part of the Guide to the Software
Engineering Body of Knowledge (SWEBOK) [2]. It serves a
baseline on a core body of knowledge on Software Engineering
established by the IEEE Computer Society and the ACM.
The distinct software quality attributes abstracted according to KA
demand careful study prior to software development. Security, for
example, is interrelated with functionality as well as maintainability.
This complexity has to be addressed before a good security-enabled
software design can be achieved. The normal business functional
requirements and non-functional requirements of security require
the software to be maintainable, in terms of both the required
functionality and the identified security constraints. On one hand,
these requirements should be separated rather than intermixed, for
improving maintainability or modifiability [1] and supporting
continuous software evolution. This separation implies the
maintenance of security requirements should be in a separate
process from the maintenance of functionality. This principle
accords with the idea of separation of concerns. On the other hand,
the security issue has an impact over the overall system and, this
again, presides over its functionality. Moreover, secure access
control is a key aspect of the management of configuration items in
software configuration [2], supporting software to function properly.
Thus, separately maintained functional and non-functional
requirements need at some point to be merged and integrated.
Therefore, functionality and security requirements need to be
maintainable, separately, and at the same time, the maintenance
needs to reflect the effects of security-related change to the
functionality. In doing so, the software system under development
will be functional, secure, and maintainable.

1.2 Laws and Regulations
The UK Data Protection Act 1998 came into force in 2000. It
regulates the processing of data of individuals, including the
obtaining, holding, use or disclosure of such information. The data
protection principles are as follow.
1 Personal data shall be processed fairly and lawfully (and under certain conditions).

2 Personal data shall be obtained only for one or more specified and lawful purposes,
and shall not be further processed in any manner incompatible with that purpose or those
purposes.

3 Personal data shall be adequate, relevant and not excessive in relation to the purpose
or purposes for which they are processed.

4 Personal data shall be accurate and, where necessary, kept up to date.

5 Personal data processed for any purpose or purposes shall not be kept for longer than
is necessary for that purpose or those purposes.

6 Personal data shall be processed in accordance with the rights of data subjects under
this Act.

7 Appropriate technical and organisational measures shall be taken against unauthorised
or unlawful processing of personal data and against accidental loss or destruction of, or
damage to, personal data.

8 Personal data shall not be transferred to a country or territory outside the European
Economic Area unless that country or territory ensures an adequate level of protection
for the rights and freedoms of data subjects in relation to the processing of personal data.

1.3 Existing Software Engineering Approaches
to Security in Healthcare
In the last subsections, the paper reviewed the general SE principles
for building secure systems and related ethical data protection
regulations. Taking these into account, it is believed that security
must be engineered into a system from the starting point to achieve
pluggable and maintainable security policies technically and, in
addition, provide a lawful approach for data access and transfer. A
software system may have its functionality and usability negatively
compromised if security is to be added or fixed after its
implementation. It is our intention to build a separate yet integrative
security sub-system within the overall software design, being a
target of direct maintenance and at the same time the result of
changes immediately being reflected in the whole system. This will
alleviate the burden of post-implementation development phases
where, both high cost of maintenance throughout code and
limitation of testing are considerable barriers to achieving security.
The agent technology is promising in both the building of a d-DSS
for healthcare and ensuring its security. On one hand, agents have
the capabilities for representing different services required by the
system, providing the backbone to ensure the distribution of data,
and offering intelligent answers to the demands of the users. On the
other hand, their abstraction of different processes where resources
are accessed can be under the security control if appropriate
measures are imposed upon them. Several approaches that employ
agents in healthcare domains for providing security have been
investigated.
The concept of heuristic security agents has been introduced in a
scheme [5], in which all calls are intercepted to files, networks,
library modules and components, as well as other resources. They
are checked against behavioural rules before an “allow” or “deny”
decision is made, preventing the entire classes of attacks to
healthcare information systems.
Security concern has also been focused upon the private patient
information sharing among interconnected hospitals. Secure access
of electronic healthcare records (EHR) which may be scattered
across healthcare units has been considered in [3]. A scheme is
proposed that employs a security agent per site which authenticates
users and controls the access to the local resources by looking at the
user roles. The dedication of an agent for the full security control of
each site suffices for the protection of a simple resource type of
patient records from a single point of access. However this approach
will expose its insufficiency when 1) multiple resource types are
available each corresponding to a responsible party in an
individual’s site and 2) in addition attempting to share some
common services amongst multiple sites and 3) at the same time
ensure the differentiated access privileges of each user.
Another approach to the similar problem of exchanging private
patient records among distributed hospitals introduces a four-tier
architecture, a central access control (CAC) system and multiple
local access control (LAC) systems sitting between the client
application and hospital information systems [4]. CAC and LAC are
Multi-Agent Systems which use authentication agents, encryption
agents, and access control agents. Multiple LACs enable hospital
managers to maintain their distinct access control policies over
patient records. The single CAC serves as a communication hub
establishing secure communication network with each LAC so that

data access requests can be forwarded amongst LACs and actual
data can be passed amongst them in a secure manner. In this
architecture, the security level is determined by the weakest LAC
and the central CAC may impose a performance bottleneck and a
single point of failure to the entire system.
All the above methods introduce agents or multi-agent systems
explicitly for the purpose of access control, security not being
considered as part of an integrated software design by software
engineers in the first place. It has been shown in the Agent.Hospital
framework [8] that it is feasible and beneficial to employ MAS as
well as ontology technology for modelling and integrating existing
individualised healthcare processes towards distributed decision
making processes with improved assistance for enabling diagnosis
and subsequent treatment plans for cancer patients. The addition of
security-specific agents will impose extra designs for existing
healthcare system implementation and requires a runtime
communication overhead and in addition the maintenance of the
security components. Our hypothesis is that, a Multi-Agent System
will be most effective in securing a healthcare information system if
its participant agents serve core clinical business functions with
associated security measures or policies applicable by the agents as
behavioural constraints before their performance of normal
functioning behaviour in the clinical setting. In doing so,
functionality and security are integrated into a single architecture
but security policies can be separately maintained, hence improving
the software design and the resultant application.

2. THE HEALTHAGENTS PROJECT

2.1 Project Overview
The HealthAgents system is a distributed DSS that supports
diagnosis and prognosis, employs a set of distributed nodes that
either store patient case data, build classifiers that are trained upon
case data and capable of classifying tumour types, or use classifiers
for the diagnosis and prognosis of brain tumours. The magnetic
resonance spectroscopy (MRS) data used by the system is built up
using anonymous information from child and adult cases. Classifiers
are created by the producer nodes that receive requests from the
clinicians to generate classifiers for particular tumours. Clinicians
with cases will employ classifiers to assist in the diagnosis of
patients for particular tumours. The HealthAgents system consists of
a variety of agents each charged with a different task. In the real
world, the main sites will be located at the University of
Birmingham with 50 different contributing centres, at the
Universitat Autònoma de Barcelona with 6 centres, and at the
Universitat de Valencia with 4 centres.

2.2 Key Components and Architecture
Figure 1 shows a prototype version of the HealthAgents d-DSS.
Each clinical node, as part of the inter-networked system, can be
either a user where requests for classification of a given case are
delivered, or the producers where classifiers are created or retrained
based on pattern recognition techniques, or both. In any case, they
all contribute their data for the training of classifiers. New classifiers
may be produced or existing ones improved when new case sets
become available, due to the growth of data in existing centres or
new centre participation. When a clinical user requests the
classification of a case that resides internally, its associated GUI
Agent will retrieve the patient data from the local hospital database
via a Database Agent, local data access policies being applicable.

Figure 1. The distributed architecture of the HealthAgents

system and its resource access flow control.
Alternatively, if the case under classification resides externally, then
the GUI Agent will contact the local Yellow Pages Agent, which in
turn will contact an external Yellow Pages Agent through which
patient data is retrieved via the Database Agent of that hospital,
external data access policies being applicable. One Yellow Pages
Agent resides in each hospital’s local node. They synchronise with
each other and together maintain a directory of available nodes,
agents, as well as the classifiers for the entire HealthAgents
network. Their knowledge of the availability and location of
resources is useful for answering queries sent from the GUI Agent.
Global resource and service access policies will apply when 1)
cross-centre resource access is requested by an agent, and 2) global
services such as the query service provided by the Yellow Pages
Agent are requested.
Once the case has been loaded into the GUI application, it may be
classified. The local Yellow Pages Agent has registered in it
classifiers that can discriminate among tumour classes, including
descriptions about their capabilities, reputation, and the training data
upon which they have been produced. The clinician may send
various questions about the patient’s condition including details
about the tumour state being aggressive or non-aggressive, the type
of cancer, to the Yellow Pages Agent to solve. The Yellow Pages
Agent looks up its local registry, contacts external Yellow Pages
Agents, and compiles a list of appropriate classifiers. This list is
returned to the clinician and the clinician can now send the selected
classifiers which can solve questions, accompanied by the patient
data that these classifiers can operate upon, to the Classifier
Petitioner Agent. The Classifier Petitioner Agent will invoke each
Classifier Agent associated with the classifiers in the list, supplying
to it the patient data. Internal or external classifier access policies
will apply, depending upon the location of classifiers. While this
may involve remote classifier access which gives the system a sense
of full distribution, in practice, once a classifier is produced a copy
might be obtained by every node in the network for local classifier
running and better performance.

After the execution of classifiers, classification results are collected
by the Classifier Petitioner Agent from multiple classifiers and
ranked using statistical data and finally sent back to the clinician.
The clinician can now do the diagnosis, supported by the answers
and recommendations provided by the system. Eventually, when the
diagnosis is finished, the clinician evaluates the classification result
produced by the selected classifiers and their reputation updated.
The above scenario assumes that classifiers exist to solve the
questions. If no such classifier exists, a clinician requests the
Training Petitioner Agent to create one using data from distributed
sites and register the new classifier in the Yellow Pages Agent for
later use.

3. REGULATION CONFORMANCE

3.1 Anonymisation and Transference
While complete patient records may be accessed only by hospitals
and local nodes, link-anonymised records may be exchanged
between a limited number of centres producing classifiers. The term
link-anonymised data refers to data from which personal
information (e.g. name, address, date of birth) is removed but to
which a unique patient identifier is added, preserving patient
anonymity but allowing data traceability and maintainability.
Furthermore, only limited amounts of data which can be considered
as totally anonymised may be accessed outside the closed project
network.
Such a scheme constrains the form in which data can be exchanged
in the system and the common use of link-anonymised data protects
patient privacy. In addition, the direct use of patient case records no
matter what forms they may take is largely minimised, and
substituted by the use of classifiers that are produced upon cases for
decision making. This offers a further level of protection to private
data. Cases are normally only known to the classifier producer
software agents but not revealed to clinical users. In the tumour
classification processes, the produced classifier software agents, as
opposed to the specific cases are used for assisting diagnosis.

3.2 Types of Patient Cases and Classifiers and
Their Access Principles
Although patient private data is protected by the link-anonymised
data scheme and its exposure to users minimised by the
classification mechanism, the system still may have to allow the
direct access of patient records and this requires some access
principles. The age and the gender of patients, for example, can be
associated with tumour types and so may be useful for diagnosis.
Thus, a contract signed between two clinical centres working
closely with each other may allow some cases to be transferred
between the two, but not a third party. Also, some classifiers may be
trained internally for scientific experiments upon a specific set of
data and the creators may not wish them to be accessible to the
general public due to their applicability and reliability. These
requirements demand the differentiating attributes of HealthAgents
resources and their associated access principles.
An anonymised patient case is associated with a status. The status of
the patient case can be changed to, for example, validated. That is to
say the patient diagnosis has been confirmed. The case can be
public, being accessible by every HealthAgents node, or could
remain private, being only accessible by its owner node or for
producing classifiers. A selection of the validated cases labelled as
public at each site can be shared altogether to produce global
classifiers which are always public. A node can also request the

creation of local classifiers that are trained uniquely with its own
public and private data as defined by the requesting user. Apart from
the global and the local classifiers, a node may want to develop
specific classifiers that are trained with all public cases available in
the network in addition to its own private cases, being given a
special weight to gain more accurate classification results for this
particular site’s cases. Again, they can be defined by the requesting
users as either public or private. Once a classifier is produced, no
matter how it is produced and with what data, all the cases sent over
from individual databases for training purposes will be discarded.
The case data will only be temporarily stored in any other site apart
from its origin.

3.3 Legal and Ethical Obligations
We have described the architecture of our d-DSS, the types of
resources being used by it, and their associated access principles in
previous sub-sections. We have analysed these against the UK Data
Protection Act 1998 regulations listed in Section 1.2. The
conformance to the Act can be briefly illustrated as follows.
In the d-DSS, patient case records are only processed for either the
diagnosis of that particular patient or for training classifiers, fairly
and lawfully, this is in compliance with Principle 1. The publicity of
a case and its direct access is strictly controlled by the node where
the case is stored inside the HealthAgents network and the routine
use of such data is replaced by classifiers which are trained upon the
data by classifier training software. Thus, cases will not be
processed in any manner in contradiction to the specified and lawful
purposes of improving disease diagnosis as agreed by the patients
and their exposure is minimised. This is in compliance with
Principle 2. The adequacy, relevance, non-excessiveness, accuracy,
and up-to-date status of cases are maintained by clinical centres and
wherever possible, link-anonymised data is used for the preservation
of patient privacy, this is in compliance with Principle 3 and
Principle 4. All cases used for the purpose of training classifiers will
be discarded when classifiers are produced and will not be kept for
longer than it is necessary, this is in compliance with Principle 5.
Patients retain the rights of withdrawing their cases and if requested
they will be removed from the databases immediately (via the
unique patient identifier being added to the link-anonymised data),
this is in compliance with Principle 6. Each clinical centre enforces
the described case access principles and so unauthorised or unlawful
processing of personal data or damage to data will be avoided, this
is in compliance with Principle 7. The HealthAgents project is
building a network inside the EU boundary and may allow data
transfer outside its network only if it is in a fully anonymised form
and protected at an adequate level as being agreed upon, this is in
compliance with Principle 8.

4. RESOURCE ACCESS CONTROL
Although in the discussion of Section 3.3 we validated the existing
infrastructure against the data protection regulations in the UK as
stated in Section 1.2, engineering disciplines for security in Section
1.1 must be equally respected in planning and implementing the
proper set of security policies for network-wide resource access
control. This is because the intended use of data as regulated by
principles may be compromised when the system is abused or
misused, by unauthorised people in unintended ways. Technical
measures must be in place to prevent such access. This requires
identifying methods that may result in the breaking of the so called
CIA Triad: confidentiality, being concerned about unauthorised
access to private information; integrity, being concerned about the

creation, change, or deletion of data without authorisation; and
availability, being concerned about the loss of control over the
functioning system and its security measures.
Fundamentally, the distributed nature of d-DSS should help to
maintain the integrity amongst hospitals since individual centres can
retain the control over their local patient cases and the policies for
sharing them, the responsibility of overall data protection being
spread. In addition, the distributed nature of d-DSS should improve
availability with some built-in fault tolerance. When one node is
down, requests for classification service can still be fulfilled due to
multiple copies of classifiers being available across centres.
Furthermore, the shift to classifier access from patient case access,
which is now usually limited to the principle treating doctor and
classification software, should help to improve the confidentiality of
individual patient privacy. Nevertheless, some cases where the CIA
Triad may be broken have been identified as follow.
• Theft and disclosure of patient privacy information by a hacker due to

insecure transportation network – a confidentiality issue.
• Malicious users may create low quality classifiers – an integrity issue.
• Accidentally, inexperienced users may assign unreasonable reputation

values to classifiers, such incorrect alteration of classifier reputation
values will mislead diagnosis results – an integrity issue.

• Abuse of system services (Yellow Pages, Classifier Training, etc.) and
so make them unavailable or even replace them with malicious
alternatives and direct to wrong diagnosis – availability and integrity
issues.

• Users from one hospital access data or execute classifiers from another
hospital without the proper permission – confidentiality and integrity
issues.

In order to avoid such potential security breaches, the existing
HealthAgents architecture should tackle some generic security
requirements as outlined below.
• Secure encrypted message passing among HealthAgents nodes.
• Local site authentication. Appropriate policy sets application wherever

resources are required across centres without requiring extra
identification.

• Global resource and service policy sets at the overall HealthAgents
level.

• Dynamic site addition to the HealthAgents network and trust
relationship management, straightforward new policy sets deployment
and minimum intervene to the existing infrastructure.

• Individual policy sets for access authorisation at local sites which retain
their independent control over resources reside in their own site and
these policies should override the global policy sets wherever a conflict
occurs.

• Transparent user interaction without requiring them to be aware of the
security measures, their access privileges being dynamically managed
and maintained.

Apart from secure communication and authentication, centred in
these requirements is the access control over critical system
resources. Resource access must be distinguished according to its
sensibility and so access policies and handling procedures can be
defined accordingly. Common security classification labels have
been used widely, i.e. unclassified, sensitive but unclassified,
confidential, secret, top secret. In the interest of HealthAgents,
access levels can be classified for its resources under protection, in
accordance with sensibility and confidentiality levels (from highest
to lowest), as the following.
0. Update a private patient record: often only available to the patient’s
principle physician.

1. Read a private patient record: also available to the producers of specific
classifiers.

2. Read a public anonymised patient record: available to classifier producers
and under agreements to other hospitals in the HealthAgents network.

3. Create a classifier: available to specific experienced clinicians with
sufficient power who may allow the classifier producers to access required
anonymised data and later set the publicity of the classifier.

4. Update a classifier reputation: available to experienced clinicians who have
executed that classifier upon a case and the accurate diagnosis result is known
to them at that moment.

5. Execute a local classifier: often available to local hospitals.

6. Execute a global classifier: available to all hospitals in the HealthAgents
network.

7. Invoke a system service (Yellow Pages, etc.): may open even to hospitals
outside of the HealthAgents network, this allows them to gain better
knowledge of the available resources inside the network so they may want to
join in later.

These distinguished levels imply that the subjects of access can be
categorised as individual users (level 0, 1 and 4), roles (level 3) and
organisations (level 2, 5, 6, and 7). More restrictive permissions
may be required. Access at level 5, for instance, may require a
general open policy for an organisation to be restricted to an
individual role or even a specific person for the use of a particular
classifier. In this case, more specific rules in addition to some
general ones may be defined. Generalisation is also possible. A
patient’s principle doctor, for example, may delegate the diagnosis
to a specific trusted hospital, in a certain context. All these factors
influence the building of a security model and the structure of policy
rules. This will be described in Section 5.5.

Message passing: resource request agent resource manager agent

Resource or result of resource usage passing: resource resource request
agent

Policy application: resource manager agent (apply policy set S with operation
O upon resource R, sensibility level L)

Follow-up operation: if success then:

Figure 2. Symbols for expressing resource access control
constructs within our cases.

Resource access levels being specified in such a scheme, based on
which security policy rules can be defined, the policies must be
applied to enable the HealthAgents access processes. We have
outlined such cases in Figure 3 where various access control policy
sets (referring to Figure 1) can protect a variety of resources in
various control flows. Figure 2 provides the minimum set of
symbols for expression of such cases. These cases specify the
security needs of major HealthAgents business functions, supported
by the envisioned policy sets and associated access sensibility
levelling. Based on the formalism, logic expressions will be later
employed for formal specification and implementation, illustrated
by using a comprehensive case in Section 5.5.

Case 1 Execute a local classifier upon a local case.

GUI Agent A DB Agent A (apply Local data access policies A with read
upon local case data, sensibility level 2) and GUI Agent A Classifier
Petitioner Agent A (apply Local classifier access policies A with execute
upon local classifier, sensibility level 5) if success then: classification results

 GUI Agent A

Case 2 Execute an existing external classifier upon an already loaded
case.

GUI Agent A Yellow Pages Agent A (apply Global resource and service
policies with invoke upon query service, sensibility level 7) Yellow Pages
Agent B Classifier Petitioner Agent B (apply Local classifier access
policies B with execute upon global classifier, sensibility level 6) if success

then: classification results Classifier Petitioner Agent B (results being
ranked) Yellow Pages Agent B Yellow Pages Agent A GUI Agent
A

Case 3 Update a patient case record from a local site and the reputation
of an employed classifier after diagnosis.

GUI Agent A DB Agent A (apply Local data access policies A with
update upon local case data, sensibility level 0) and GUI Agent A Yellow
Pages Agent A (apply Global resource and service policies with update upon
classifier reputation, sensibility level 4) if success then: success GUI
Agent A

Case 4 Build a new classifier using data sets distributed in another site.

GUI Agent A Training Petitioner Agent A (apply Local classifier building
service policies A with invoke upon classifier building service, sensibility
level 7) Yellow Pages Agent A Yellow Pages Agent B DB Agent B
(apply Local data access policies B with read upon local case data,
sensibility level 2) if success then: case data Yellow Pages Agent B
Yellow Pages Agent A Training Petitioner Agent A and if success then:
produced classifier Yellow Pages Agent A and if success then: success
GUI Agent A

Figure 3. Major security-critical cases in HealthAgents.

5. THE SECURITY SOLUTION
Security must cover three aspects for HealthAgents to fulfil the
security requirements together. First of all, communication amongst
clinical centres must be secured. This means that the contents of the
messages being transported in the HealthAgents network which
might contain patient privacy information or diagnosis results
should not be intercepted or modified by eavesdroppers. One widely
established techniques to resolve this problem is SSL. Java supports
SSL connections among nodes by its key and certificate
management tool. This same tool can be applied to set up secure
links among distributed JADE containers. JADE-S, the extension
package of JADE towards security also supports message-based
signing and encrypting. This level of security ensures that messages
passing in the network are safe but without concern of who is
attempting to interact with the system. Authentication is, therefore,
required at the next level of security. Only users with particular user
names and passwords should be able to access the system. The Java
Authentication and Authorisation Service (JAAS) provides a
framework for user-based authentication. This is inherited by
JADE-S. If it is assumed the previous two levels of security are in
place, this will guarantee that only authenticated users can access
the HealthAgents system and the communication among its
distributed nodes is secure. Yet, users should only be able to access
what they are allowed to with given permissions and nothing else.
The last level of security should constrain the access control of the
system, and only permit authorised operations to be performed upon
critical system resources according to the security policies set by the
administrative authority, as already discussed in the previous
section. JADE-S inherits JAAS in this aspect for MAS and it is
insufficient. This is because authorisation is business-dependent,
but the actions JADE-S can permit or reject are specifically
concerned with agents running in the JADE platforms, i.e. to create,
send messages, or kill agents. Table 1 outlines these security levels.

Table 1. Three major security levels
 Principles Protection Techniques

Secure
communication
(to be discussed
in Section 5.1)

All messages
passing in the
network should be
securely signed and
encrypted.

Messages in
transmission are kept
secrete and unaltered,
ensuring confidentiality
and integrity.

SSL,

Public Key
Infrastructure,

JADE-S

Authentication
(to be discussed
in Section 5.2)

Users will be
allowed to enter the
system only if their
identities are
recognised.

The one who claims to
be of an identity has
indeed that identity. No
one can pretend to be
someone else.

JAAS

Authorisation (to
be discussed in
Section 5.3)

When resources are
being requested,
security policy
rules, as set
globally in the
network, locally in
hospitals, or
individually by
clinicians will be
applied against the
particular identity.

Users can access or
perform operations
upon critical system
resources only if they
have been authorised to
do so, their access
permissions being
bound with their
identities recognised
during authentication.

Access control
model and
policy rules

An example of combining these security levels is shown in Figure 4.
A clinician from hospital 1 retrieves and classifies a case from
hospital 2 using a classifier from hospital 4. In this scenario, he/she
must be authenticated in hospital 1 before access to the local
network, after which all messages passing through for the
classification purpose in the interconnected HealthAgents network
will be encrypted and the case requested from hospital 2 will be
classified using the classifier requested from hospital 4, both access
to resources being authorised.

Figure 4. Overview of the security architectural levels using a

cross-hospital resource access scenario.

5.1 Secure Message Transportation
Using the public key infrastructure (PKI) and digital signature, a
secure communication protocol would be that the sender encrypts a
message with a private key where the message is implicitly signed
and on receipt of the message the receiver decrypts the message
with the sender’s public key where its signature is verified. JADE-S
provides in its API a security helper and signature and encryption
services. Apart from these, we make use of Yellow Pages Agents
for storing and managing public keys and establishing trust
relationships. In a conversation involving multiple parties, only
those agents who have been formally recognised and registered in
the Yellow Pages after their starting up will be regarded trustworthy
and Yellow Pages Agents are responsible for acknowledging the
trusted parties in the network. Thus, they play the role of Certificate
Authority (CA) in the sense that they assure the trustworthiness of
communicating parties. Being an integral part of the framework, the
use of Yellow Pages Agents for secure communication enables
easier management and simpler communication. Figure 6 shows the
class diagram of the agents we have developed in this level.

Figure 6. A HealthAgent achieves secure message sending and

receiving via two facilitating agents and two supporting services.
a) In the beginning a HealthAgent in the network starts up, it needs
to register itself in the YellowPagesAgent. The message of
registerAgent must be signed so its identity can be checked and if
recognised its principal (public key) will be added to the list of
trustedPrincipals the YellowPagesAgent maintains.
b) Then the HealthAgent uses the handleMessage in communication
with other agents which are trusted within the network. It uses
JadeMessagingService for sendMessage and receiveMessage, which
involve a message encryption and decryption process performed in
JadeSecurityService.
c) When this HealthAgent attempts to send a message,
JadeSecurityService will use its secureSendingMessage to check if
the principal of the message receiver is in the trust list and if so, it
will sign and encrypt the message and send it on. Otherwise no
message will be sent since (even secure) communication with agents
outside of the network will endanger the system.
d) When this HealthAgent receives a message, JadeSecurityService
will use its secureReceivingMessage to check if the principal of the
message sender is in the trust list and if so, it will decrypt the
message and reply in signed and encrypted messages. Otherwise, if
the message has not been signed or the signature is not recognised
then the message will be discarded.
e) In both above situations, we need JadeSecurityServiceAgent
validatePrincipal of the communicating agent against the
trustedPrincipals of YellowPagesAgent for JadeSecurityService at
runtime. It maintains in its securityHelper internally the trusted
principals (addTrustedPrincipal) and provides it to
JadeSecurityService so it can check the principals of message
senders and receivers (getPrincipal) against those trusted
(getTrustedPrincipal) in secureSendingMessage and
secureReceivingMessage. Moreover, this helper also encrypts
messages (setUseEncryption) in the process of
secureSendingMessage and gets message signatures and decrypts
messages (getUseSignature and getUseEncryption) in the process of
secureReceivingMessage.

5.2 The Authentication Mechanism
Establishing secure message passing among communicating parties,
we can be sure that, in the scenario given in Figure 4, a Clinical
User GUI Agent, a DB Agent, and a Classifier Petitioner Agent are
all within the trusted domains and their communication will be
secure. Note that this does not take into account who logs in and
initialises such a conversation involving these parties for
classification purposes and that user must be authenticated at the
GUI Agent side, otherwise the established secure communication
does not protect the system and become meaningless.

A web-based GUI has been developed in HealthAgents for loading
cases, performing classification, and presenting results. The
associated GUI as currently in the prototype development stage
assumes a single identical account for all user login and we intend to
incorporate the JAAS authentication model into it for authentication.
In the model, a user’s identity should be confirmed in authentication,
represented by a subject seen in the model. A principal is granted to
the user after his/her identity is verified during the authentication,
being associated with a set of credentials. Such a principal is bound
with a user identity to the GUI, while the principal of a GUI Agent
is bound with an agent identity to the HealthAgents network as
described in the previous subsection.
A LoginModule performs the authentication, typically by prompting
for and verifying a subject of his/her username and password.
Several module implementations have been provided by JAAS and
JADE-S and a special SimpleLoginModule allows very basic
authentication. Alternative LoginModules can be loaded as
configured in a Configuration file, being consulted by a
LoginContext that can be instantiated from the GUI. LoginContext
invokes a login method of the loaded LoginModule for
authentication of subjects and upon success will associate principals
and credentials with them. Principals of a subject can be later
retrieved by invoking its getPrincipals method. JAAS policies can
be configured for subjects and grant them authorised permissions
following authentication. These can be later enforced by invoking
doAs(subject,action) method, achieving the effect of having an
action run as the subject. Those permissions, however, are centred
on file or code access and are not of concern in HealthAgents. We
will discuss in the next section the fine-grained access control
mechanism to resources valued by HealthAgents based on the
JAAS-authenticated subject principals.

5.3 The Authorisation Mechanism
Secure communication is guaranteed by identifying the principal of
communicating sites and agents, and the secure interaction between
users and the system is guaranteed by identifying the principal of
the login users. Following these, as shown in Figure 4, the
authenticated user should be able to access resources that he/she has
been authorised. Authorising access to resources can be based on
the identity of a principal, which may be mapped to unique roles for
easier access control administration. Since the user principal is
obtained in the previous authentication level, it should be passed on
and encapsulated in following messages and available to the entire
conversation (for classification, etc.). Then associated roles and
groups can be looked up and applicable security policy rules
enforced where the distributed system resources are accessed.
Having been authenticated at the home site, the same principal will
be reused for uniform authorisation across the centres. This supports
successive security levels and provides a transparent user
experience.
In our previous work [9], we have developed a Security Model and
an associated Policy Rule Model. Briefly, they borrow the role
permission association from Role-Based Access Control [11], avoid
its weaknesses, and extend it towards a seamless integration with the
role playing pattern from Agent-Oriented Software Engineering.
The security model sitting in MAS won’t let agents fulfil regular
functional requirements unless security requirements are met. A role
plays its functional duty if and only if its social constraints are
satisfied. This scheme combines the social security role together
with computation function role into an integrated role notion. This,
therefore, achieves the separation of functional and non-functional

requirements for easier management and maintenance but at the
same time the two parts are integrated in the running system with
unified agent playing behaviour according to the combined
specification. The fundamental access permission rules take the
following form with four major dimensions.
{Subject (Id, Role, Organisation), Resource (Id, Type), Access
Operation (Op), Access Context (Co)}
This provides fine-grained access permission configuration based on
individuals, roles, and organisations. A resource access request

message can be identified to its origin and mapped to the roles that
subject plays. Role based policies are easier for management but
identity based policies allow customisation and exception. Policies
can be defined in both forms. In HealthAgents, we have case
records, classifiers, services (Yellow Pages, etc.), and their access
must be protected by policies. Access operations should be
distinguished for resources. One clinician may be able to execute a
classifier but not update its reputation as differentiated in sensibility
levels as discussed previously.

Figure 7. Agent interaction model with security policy set application in HealthAgents.

A context provides the flexibility to the model such as 1) allowing
in particular situations certain specially delegated access in the
name of a particular role; 2) providing justification of the special
access; and 3) constraining the valid time period associated with the
access.
Several security-critical access cases have been described in Section
4 and now a more comprehensive one involving all of them is used
to demonstrate the application of the above policy rule scheme to
meet the requirements described in that section. The case is a
representative of most of the HealthAgents business functions as
well as resource access flows. Briefly, the scenario is that a new
hospital joins the HealthAgents network with a new MAS setup in
that site, new clinician users wish to perform classification upon
cases from there, and they do so by creating new classifiers for the
purpose. The role interaction model (referring to Figure 7) can be
described as follows, referring to Figure 1 for HealthAgents
architecture and previous sections for supporting layers of secure
communication and authentication.

• The new clinician is authenticated by JAAS via the local GUI Agent
and his/her principal is bound with the interface for the entire
interactive session (R1)

• The GUI Agent registers this new node via the YellowPagesAgent
which recognises its identity (prior to this the local hospital manager
may have to acknowledge the participation of the new site to the
HealthAgents network administrator through conventional phone calls,
R1 and R2)

• The YellowPagesAgent adds this new node to the trusted node list (R2)
• The GUI Agent at that node can start to communicate in the

HealthAgents network and now it wants to perform a classification
upon a local case (R3)

• The GUI Agent searches the YellowPagesAgent for available
classifiers by sending questions to solve as the first message it
initialises for a new conversation (R3 and R4)

• The YellowPagesAgent has its principal registered and it is in the
trusted list so all ongoing communication in this conversation with all
other agents will be allowed and all these messages will be signed and
encrypted (R4)

• The YellowPagesAgent checks this GUI Agent against the permission
of using its Yellow Pages query service and will perform the query to
its registered classifiers but unfortunately no such classifier is available
(R3 and R4)

• The GUI Agent requires the building of a new specific classifier
(referring to Section 3.2 for definition) using distributed data sets (R5
and R6)

• The TrainingPetitionerAgent applies a local policy repository and
allows the request operation of building a new classifier (R6)

• Relevant public cases as well as local private cases from the request site
will be sent to the building site for the production of the new classifier
and data access policy rules will be applied before the data is sent from
each site (R6 and R7, R6 and R8)

• A new classifier is produced and registered to the YellowPagesAgent, a
copy becoming available to the original request site (R6 and R9)

• The clinician now wants to execute the new classifier upon the case
when being informed of the availability of the classifier (R9 and R10)

• The local policy rules on the use of the classifier and the particular case
will be applied against this specific clinician and he/she will be allowed
to do the operation (R10 and R11, R10 and R12, R12 and R13)

• Decision making support is received from the results of the
classification and a diagnosis will be made later on (R12 and R14)

• When an actual diagnosis result is known, the clinician wants to update
the classifier reputation and the case he/she just diagnosed and the local
policy rules on both operations will be applied against the clinician and
he/she will be allowed to do so eventually (R14 and R15, R14 and R16)

Figure 7 shows an interaction model that captures the interactive
behaviour of involving agents each playing their respective roles,
subject to the satisfaction of associated security policy constraints.
The descriptive interaction behaviour which consists of message
passing and constraint solving have been defined in Lightweight
Coordination Calculus (LCC) [12] that can be transmitted,
interpreted, and executed by agents in the network. The LCC
language has been developed in the OpenKnowledge project [13]
and it uses logic expression to regulate the message exchange
protocols among participant peers each of which plays a particular
role that dictates its particular message passing pattern in protocols.
The following LCC clauses describe the fundamental interaction
pattern for resource access control.
a(resource_request, RRID) ::

 request(Resource, Operation, Context) ⇒ a(resource_manager, RMID)

a(resource_manager, RMID) ::

 request(Resource, Operation, Context) ⇐ a(resource_request, RRID) ←
grantPermission(RRID, Resource, Operation, Context, Policies) then (

 response(Grant_yes) ⇒ a(resource_request, RRID) or

 response(Resource_result) ⇒ a(resource_request, RRID) ←
getOperationResult(Resource, Operation, Access_result))

Briefly, a(resource_request, RRID) :: DefRRID and
a(resource_manager, RMID) :: DefRMID denotes that agents RRID
and RMID play the roles of resource_request and resource_manager
respectively as defined in the definitions follow. DefRRID has a
single and DefRMID has a composite message passing behaviour
constructed using the following forms: Defa then Defb (Defa
satisfied before Defb), Defa or Defb (either Defa or Defb satisfied), or
Defa par Defb (both Defa and Defb satisfied). In the Def, Ml ⇒ Am
denotes that a message Ml is sent to agent Am while Ml ⇐ Am
denotes that a message Ml is received from agent Am. In the above
role definitions, a message of resource access request is sent from
the agent that plays the request role to the agent that plays the
manager role. This appears equivalently as the first clause of two
definitions as a message being sent or (expected to be) received for
two communicating agents. Upon receipt of this message, the

resource manager agent applies appropriate security policies and
responds by sending back a message either saying the request has
been granted (or rejected) or by providing the actual resources (or
the results of their usage) being requested. In the Def, ←Consn
denotes that a constraint must be satisfied (as some running code)
before the clause prior to it. Two constraints have been used in the
second role definition, one being used for policy rule sets evaluation
and enforcement and another being used for the computation
following the use of required resource sets. It has been assumed that
all operations will be granted in the above interaction model for
simplicity.
In the following, we give the actual LCC clauses as the specification
of the interaction model shown in Figure 7, concentrating on the
resource access control procedures of case classification as well as
case record and classifier reputation updating afterwards, in the
interest of conciseness. The clinician role playing behaviour for
resource access includes classification (R10) and updating of case
record and classifier (R14). Its role changes when an accurate
diagnosis result is known.
/* R10: classify a local case using the new classifier just produced */
a(clinician_classify, CID) ::
 classifierAvailable(C) ⇐ a(yellowpages_register, YPID) then
 requestCaseRecordByID(I) ⇒ a(database, DBID) then
 caseRecord (R) ⇐ a(database, DBID) then
 requestClassification(R, C) ⇒ a(classifier_petitioner, CPID) then
 classificationResults(S) ⇐ a(classifier_petitioner, CPID) then
 a(clinician_followingdiagnosis, CID)
/* R14: update case record and classifier reputation following diagnosis */
a(clinician_followingdiagnosis, CID) ::
 (updateCaseRecordByID(I) ⇒ a(database_update, DBID) then
 caseRecordUpdated(Y) ⇐ a (database_update, DBID))
 par
 (updateClassifier(I) ⇒ a(classifier_petitioner, CPID) then
 classifierUpdated(Y) ⇐ a (classifier_petitioner, CPID))

A construct a(role, id) can represent a clinician with a unique
identity who wants to play a certain function role, being associated
with certain constraints. Only when the social rights roles assigned
to that identity are permitted to access all resources involved in the
function role playing behaviour, the compound role of that clinician
can successfully complete the required requirements. To that end,
his/her access must be controlled by the database agents and
classifier petitioner agents before permissions are granted and
functions carried out. The local database role playing behaviour for
resource access control includes database issues a case record (R11)
and updates the same record (R15). Different access control policy
sets will be enforced in two situations.
/* R11: send a case record for classification */
a(database_download, DBID) ::
 requestCaseRecordByID(I) ⇐ a(clinician_classify, CID) ←
grantPermission(CID, I, Read, Normal_classify_from_local_site,
Local_database_read_policy_set) then
 caseRecord(R) ⇒ a(clinician_classify, CID) ← getCaseRecordByID(I, R)
then
 a(database_update, DBID)
/* R15: update a case record after classification */
a(database_update, DBID) ::

 updateCaseRecordByID(I) ⇐ a(clinician_followingdiagnosis, CID) ←
grantPermission(CID, I, Update, Normal_update_from_local_site,
Local_database_update_policy_set) then

 caseRecordUpdated (Y) ⇒ a(clinician_followingdiagnosis, CID)

Being in compliance with the security policy schemes previously
discussed, in every resource access request, the dimensions of
(Resource, Operation, and Context) should be attached in addition
to the identity of the requester. This identify can be extracted from
the message being sent from the sender. Appropriate policy sets will
be applied by respective resource manager agents (YellowPages
Agent, Database Agents, Classifier Petitioner Agent, etc.). The
constraint construct as part of the LCC language provides a solution
that integrates the security constraints into the agent interaction
protocols. These must be evaluated satisfactorily with a Boolean
value of true returned once a resource request message is received
and only then a response message can be sent back. A
grantPermission method will be provided in the system that will be
invoked for security policy application.
grantPermission(ID RRID, Resource r, Operation o, Context c, PolicySet p) {

logger.setAccessAudit(RRID, r, o, c, getTimestamp());

return applyPolicies(RRID, getRoleByID(RRID), r, o, c, p); …… }

This offers audit points where each access can be later traced back,
hence the audit-ability of sensitive resource access being enabled.
The running and execution of LCC specification for agent
interaction is supported by the OpenKnowledge kernel.

6. CONCLUSIONS
The unique security issues involved in healthcare domains have
been discussed in this paper. The practical solution of these security
issues have been addressed to the needs of the HealthAgents project.
We believe a sustainable security solution should be provided in
accordance with Software Engineering principles, and conform to
ethical regulations for healthcare data, as well as fulfil the security
requirements usually raised from distributed Decision Support
System (d-DSS) due to the nature of clinical settings.
Our work in these directions includes the design and development of
security architecture in three levels. Various Software Engineering
techniques are employed. We have developed or are in the process
of developing in our system the secure communication to enable the
protection of data transmission; authentication for user identity
recognition; authorisation for fully customised resource access
control. Using a security policy rule scheme and applying it in the
interaction model for the HealthAgents MAS, we separate the
functional and non-functional (security) requirements but let
security policies integrate into the running of the agents in a
distributed network via a unified role notion. Security policies
enable easy and separate maintenance tasks across centres since
they can be independently defined and maintained in each
individual site but their application is yet under a unified access
control scheme for resources with diverse types and locations. These
make our security model adaptive. When a new hospital joins, new
policy sets can be defined locally by the hospital managers. When
its resources are required from other sites these policies will be
applied by responsible manager agents residing in that site
uniformly, conforming to the regulations set in that site. When its
users require the access to resources from other sites, the external
policies will be applied in the same manner where users and their
assigned roles determine their access privileges. Once any policy
rule is changed the effect is immediate to all roles or individuals
associated with the rule. Policies are automatically deployed and

immediately available, requiring no coding and the minimum
administrative overhead. The implementation work to fully achieve
these goals is going on in our HealthAgents and OpenKnowledge
projects. The work so far has established the basis for providing a
comprehensive security model for distributed healthcare systems.

Acknowledgements
This work is supported under the HealthAgents and
OpenKnowledge STREP projects funded by EU Framework 6
under Grants: IST-FP6-027214 and IST-FP6-027253.

7. REFERENCES
[1] The Institute of Electrical and Electronics Engineers. 1998.

IEEE recommended practice for software requirements
specifications. IEEE Std 830-1998.

[2] Bourque, P., Dupuis, R., Abran, A., Moore, J.W. and Tripp,
L.L. 2005. Guide to the Software Engineering Body of
Knowledge: 2004 Edition – SWEBOK. IEEE Computer
Society.

[3] Gritzalis, D. and Lambrinoudakis, C. 2004. A security
architecture for interconnecting health information systems.
International Journal of Medical Informatics. 73, 3, 305-309.
Elsevier.

[4] Choe, J. and Yoo, S. Web-based secure access from multiple
patient repositories. International Journal of Medical
Informatics. Elsevier. In press.

[5] Keese, J. and Motzo, L. 2005. Pro-active approach to malware
for healthcare information and imaging systems. International
Congress Series. 1281, 943-947. Elsevier.

[6] Szolovits, P. and Pauker, S.G. 1993. Categorical and
Probabilistic Reasoning in Medicine Revisited. Artificial
Intelligence. 59, 167-180.

[7] Coiera, E. 1994. Question the Assumptions. Knowledge and
Decisions in Health Telematics - The Next Decade. 61-66. IOS
Press.

[8] Kirn, S., Heine, C., Herrler, R. and Krempels, K.H. 2004.
Agent.Hospital: A Framework for Clinical Applications in
Agentcities. In Applications of Software Agent Technology in
the Health Care Domain. 67-85. Birkhauser.

[9] Xiao, L., Peet, A., Lewis, P., Dashmapatra, S., Sáez, C.,
Croitoru, M., Vicente, J., Gonzalez-Velez, H. and Lluch i
Ariet, M. 2007. An Adaptive Security Model for Multi-agent
Systems and Application to a Clinical Trials Environment. In
Proceedings of the 31st IEEE Annual International Computer
Software and Applications Conference (COMPSAC’07)
Volume II. 261-266. IEEE Computer Society.

[10] HealthAgents. http://www.healthagents.net/.
[11] Sandhu, R.S., Coyne, E.J., Feinstein, H.L. and Youman, C.E.

1996. Role-Based Access Control Models. Computer. 29, 2,
38-47. IEEE Computer Society Press.

[12] Robertson, D. 2005. A lightweight coordination calculus for
agent systems. 183-197. LNCS 3476. Springer.

[13] Robertson, D. et al. 2006. Open Knowledge: Semantic Webs
Through Peer-to-Peer Interaction. OpenKnowledge Manifesto.
http://www.openk.org/.

