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Abstract.
The results of the last MaxSAT Evaluations suggest there is no uni-

versal best algorithm for solving MaxSAT, as the fastest solver often
depends on the type of instance. Having an oracle able to predict the
most suitable MaxSAT solver for a given instance would result in
the most robust solver. Inspired by the success of SATzilla for SAT,
this paper describes the first approach for a portfolio of algorithms
for MaxSAT. Compared to existing solvers, the resulting portfolio
can achieve significant performance improvements on a representa-
tive set of instances.

1 Introduction

In recent years, one of the optimization counterparts of theBoolean
satisfiability problem (SAT) has attracted the interest of researchers:
the maximum satisfiability (MaxSAT) problem. MaxSAT and its
variations find a number of relevant applications, including schedul-
ing and design automation [12, 13].

This work is the first attempt to implement and evaluate an algo-
rithm portfolio solving MaxSAT problems. The portfolio computes
several features of an instance and estimates the runtime for each
solver in the portfolio. Then, it solves the instance with the estimated
fastest solver. An extended number of instances have been consid-
ered, indicating that the portfolio is able to solve more instances,
from the selected set of instances, than any other solver. Besides, the
total run time to solve is lower for the portfolio, despite the time spent
in the feature computation.

The paper is organized as follows, Section 2 gives the notions for
MaxSAT solving; Section 3 introduces the portfolio learning process;
and Section 4 explains the steps to execute and test the portfolio, and
discusses the experimental results. The paper concludes inSection 5.

2 Preliminaries

This section provides a brief introduction to the MaxSAT problem
solving. Familiarity with SAT and related topics is assumed[1].

The MaxSAT problem consists of finding an assignment which
satisfies the maximum number of clauses in a CNF formula. MaxSAT
algorithms have been the subject of significant improvements over
the last decade (e.g., see [7, 5] for a review of past work). Despite
the clear relation with the SAT problem, most modern SAT tech-
niques cannot be applied directly to the MaxSAT problem (e.g. unit
propagation or clause learning). As a result, the most successful
MaxSAT algorithms, in the most recent MaxSAT Evaluations, im-
plement branch and bound search, and integrate sophisticated lower
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bounding and inference techniques. However, past MaxSAT Eval-
uations did not consider complex problem instances from practical
applications. As a result, we have also considered for the portfolio
a set of practical problem instances and a recent solver focused on
such instances, msu [10].

We have focused on the experience of an existent efficient port-
folio, SATzilla [14], an algorithm portfolio for SAT, whichhas
demonstrated to be a robust solver and very competitive in the SAT
Competitions3. Before SATzilla, Gomes and Selman [3] worked
with stochastic search portfolios on severalNP-Complete problems.
There exists also other preliminary works on algorithm portfolios
that deal with problems similar to MaxSAT [8, 6, 4].

3 Model Generation

The capacity to predict the time that a solver will spend on a given
instance is one of the key aspects in the design of an algorithm port-
folio. The prediction is done using a model created by a learning
process over a set of instances. Once the model is created, the port-
folio computes the features for a given instance and, based on the
model, decides which solver to run.

Our models are linear functions
∑

i>0
βixi + β0, which compute

the approximate runtime of a solver on a particular instancei. For
the linear function,xi is the value for the featurei of the instance
andβi are the coefficients to be found for each feature by the model
generator. After several steps of forward selection and basis function
expansion, in order to fit supra-linear data, we perform ridge regres-
sion [9] to obtain the unknownsβi. Forward selection is performed
to reduce the number of interesting features. Basis function expan-
sion of the feature set, on the other hand, allows a linear model as the
one we used to model supra-linear data (which allowed us to gener-
ate the quadratic model presented in section 4). Data preprocessing
also handles cases where a solver timed-out on a specific instance
by removing it from the training set. The process of generating the
model is executed for every solver in the portfolio. After each model
is computed, it is tested over a test set.

Our model generator was tested for correctness by generating ran-
dom data and finding a model for it. If the data can be fit using our
model, the model output should be the same as the model used to
generate the random data.

The selected solvers to be used are of three different kinds for
the sake of complementarity: a Pseudo-Boolean Optimization solver,
minisat+ [2]; a recent solver that efficiently deals with real problem
instances, msu [10]; and the strongest solver in the MaxSAT category
in the MaxSAT Evaluation 2007, maxsatz [7]. The solver maxsatz
implements a branch and bound search and integrates sophisticated
lower bounds and inference techniques. On the other hand, algo-

3 http://www.satcompetition.org/



rithm msu is a process that iteratively solves several SAT problem
instances, until it reaches the MaxSAT solution.

Three kind of features have been considered [11]: problem size
features, balance features and local search probe features. The most
important features (among the first selected by forward selection) are
in the set of local search probes.

4 Experimental Results

The experimentation has been performed in a Linux Intel Xeon3.0
GHz. A timeout of 1000 seconds was used for all MaxSAT solvers
considered. The memory limit was set to 3GB. Some of the sets of in-

msu3.1 minisat+ maxsatz pfquad pflin oracle
507 211 135 524 548 582

Table 1. Total number of solved instances for each solver

stances considered are from the MaxSAT Evaluation 2007, theones
considered hard to solve and close to real problems; and instances
from real problems: circuit design and planning. There are 586 in-
stances from the following sets:

RAMSEY, SPINGLASS, MAXCUT from the MaxSAT Evalua-
tion 2007;

DEBUG, IBM, UCLID, PIMAG from circuit design;
SATPLAN from planning problems converted to SAT instances.

In order to check our portfolio, we have created theoracle, a virtual
portfolio which always selects the best possible result. The entries
pflin and pfquad correspond to our portolios using a linear model
of the features and a quadratic model of the features respectively.
A preprocessing time per instance has been added to its totaltime.
In Table 1, we can notice the portfolio is the most robust MaxSAT
solver, since it solves the largest number of instances.
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Figure 1. Total spent time in seconds for each solver in MaxSAT

Figure 1 shows the total time taken by each of the solvers in the
portfolio, our two portfolio models and the oracle. The results ob-
tained by our models are close to the oracle, and spend less time than

the rest of solvers. We are aware, however, that this can still be im-
proved. As mentioned earlier, our learning method does not handle
solver timeouts, which means that our portfolio is biased regarding
solvers which timeout often and solve a few instances in short time.
Still, having a portfolio capable of achieving these initial results mo-
tivates additional research in algorithm portfolios for MaxSAT.

5 Conclusions

This paper presents a method to develop an algorithm portfolio for
the MaxSAT problem. Given that no benchmark repository exists for
MaxSAT, problem instances from real world problems and fromthe
MaxSAT evaluation have been used. To the best of our knowledge,
this is the first algorithm portfolio for MaxSAT problem.

From the experimental results we conclude that our MaxSAT algo-
rithm portfolio is the most robust solver among the MaxSAT problem
instances we have considered. Future research work includes adapt-
ing the model generator to handle timeouts, and also adapting the
solver portfolio solver to deal with Partial MaxSAT and Weighted
MaxSAT. Additional research on identifying suitable features will
be required for further improving the model used.
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