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Abstract.

The results of the last MaxSAT Evaluations suggest there isi
versal best algorithm for solving MaxSAT, as the fastestesobften
depends on the type of instance. Having an oracle able tacptbe
most suitable MaxSAT solver for a given instance would resul
the most robust solver. Inspired by the success of SATDHSAT,
this paper describes the first approach for a portfolio ob@lgms
for MaxSAT. Compared to existing solvers, the resultingtiodio
can achieve significant performance improvements on asepta-
tive set of instances.

1 Introduction

In recent years, one of the optimization counterparts oBibelean
satisfiability problem (SAT) has attracted the interestasfearchers:

the maximum satisfiability (MaxSAT) problem. MaxSAT and its

variations find a number of relevant applications, inclgdschedul-
ing and design automation [12, 13].

This work is the first attempt to implement and evaluate an-alg

rithm portfolio solving MaxSAT problems. The portfolio cqutes

several features of an instance and estimates the runtimeafd

solver in the portfolio. Then, it solves the instance with éstimated
fastest solver. An extended number of instances have beeideo
ered, indicating that the portfolio is able to solve moretanses,

from the selected set of instances, than any other solveid8g the
total run time to solve is lower for the portfolio, despite time spent
in the feature computation.

The paper is organized as follows, Section 2 gives the nefion
MaxSAT solving; Section 3 introduces the portfolio leagprocess;
and Section 4 explains the steps to execute and test thelpmrénd
discusses the experimental results. The paper conclu@etion 5.

2 Preliminaries

This section provides a brief introduction to the MaxSAT kgemn
solving. Familiarity with SAT and related topics is assunfied

bounding and inference techniques. However, past MaxSAdl-Ev
uations did not consider complex problem instances fronotjmal
applications. As a result, we have also considered for th#qhio

a set of practical problem instances and a recent solveséaton
such instances, msu [10].

We have focused on the experience of an existent efficierit por
folio, SATzilla [14], an algorithm portfolio for SAT, whicthas
demonstrated to be a robust solver and very competitivea ST
Competitions. Before SATzilla, Gomes and Selman [3] worked
with stochastic search portfolios on sevekéP-Complete problems.
There exists also other preliminary works on algorithm folids
that deal with problems similar to MaxSAT [8, 6, 4].

3 Model Generation

The capacity to predict the time that a solver will spend orivarg
instance is one of the key aspects in the design of an algoptbrt-
folio. The prediction is done using a model created by a legrn
process over a set of instances. Once the model is creagepott
folio computes the features for a given instance and, bagetthe®
model, decides which solver to run.

Our models are linear functiorEi>0 Bizi + o, which compute
the approximate runtime of a solver on a particular instandeor
the linear functionz; is the value for the featureof the instance
andg; are the coefficients to be found for each feature by the model
generator. After several steps of forward selection andthasction
expansion, in order to fit supra-linear data, we performeidegres-
sion [9] to obtain the unknowns;. Forward selection is performed
to reduce the number of interesting features. Basis funaipan-
sion of the feature set, on the other hand, allows a lineaefraxithe
one we used to model supra-linear data (which allowed usnerge
ate the quadratic model presented in section 4). Data wegsing
also handles cases where a solver timed-out on a specifanoest
by removing it from the training set. The process of genagathe
model is executed for every solver in the portfolio. Afteckeanodel
is computed, it is tested over a test set.

The MaxSAT problem consists of finding an assignment which  oyr model generator was tested for correctness by gengratin
satisfies the maximum number of clauses in a CNF formula. M&XS  dom data and finding a model for it. If the data can be fit using ou

algorithms have been the subject of significant improvementer
the last decade (e.g., see [7, 5] for a review of past workkpide

the clear relation with the SAT problem, most modern SAT tech

nigues cannot be applied directly to the MaxSAT problem. (enit
propagation or clause learning). As a result, the most sstae
MaxSAT algorithms, in the most recent MaxSAT Evaluatioms; i
plement branch and bound search, and integrate sophestittater
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model, the model output should be the same as the model used to
generate the random data.

The selected solvers to be used are of three different kiods f
the sake of complementarity: a Pseudo-Boolean Optimiaatdver,
minisat+ [2]; a recent solver that efficiently deals withlneablem
instances, msu [10]; and the strongest solver in the Max$#dgory
in the MaxSAT Evaluation 2007, maxsatz [7]. The solver méxsa
implements a branch and bound search and integrates soatgdt
lower bounds and inference techniques. On the other hagd; al

3http://ww. sat conpetition. org/



rithm msu is a process that iteratively solves several SAblem  the rest of solvers. We are aware, however, that this cdrbetim-
instances, until it reaches the MaxSAT solution. proved. As mentioned earlier, our learning method does antlle

Three kind of features have been considered [11]: problem si solver timeouts, which means that our portfolio is biaseghrding
features, balance features and local search probe fealiresnost  solvers which timeout often and solve a few instances intgihoe.
important features (among the first selected by forwarcttel®) are  Still, having a portfolio capable of achieving these iditisults mo-
in the set of local search probes. tivates additional research in algorithm portfolios forh&a\T.

4 Experimental Results 5 Conclusions

The experimentation has been performed in a Linux Intel X&6n  This paper presents a method to develop an algorithm piortiol
GHz. A timeout of 1000 seconds was used for all MaxSAT solversthe MaxSAT problem. Given that no benchmark repositorytexts
considered. The memory limitwas setto 3GB. Some of the $@tis 0 MaxSAT, problem instances from real world problems and ftbe
MaxSAT evaluation have been used. To the best of our knowledg
msu3.1 minisat+ maxsatz pfquad  pflin _ oracle this is the first algorithm portfolio for MaxSAT problem.
507 211 135 524 548 582 From the experimental results we conclude that our MaxSgd-al
rithm portfolio is the most robust solver among the MaxSAdtpem
Table 1. Total number of solved instances for each solver instances we have considered. Future research work irchaipt-
ing the model generator to handle timeouts, and also adpfte
solver portfolio solver to deal with Partial MaxSAT and Weigd
MaxSAT. Additional research on identifying suitable feaw will
be required for further improving the model used.
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